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MULTIPLICATIVE SUBGROUPS OF FINITE INDEX IN A RING

VITALY BERGELSON AND DANIEL B. SHAPIRO

(Communicated by Louis J. Ratliff, Jr.)

Abstract. If G is a subgroup of finite index in the multiplicative group of an
infinite field K then G - G = K . Similar results hold for various rings.

Introduction

Let R be an associative ring with 1 and let R* denote the multiplicative
group of units (invertible elements) of R. If G is a subgroup of R*, the set
G - G consists of all differences g¡ - g2 for g¡■ e G. If this subgroup G is
"big enough" then G - G = R. For example, if K is an infinite field and G is
a subgroup of finite index in K*, then we prove that G -G = K . The proof is
valid for a wider class of rings, which we call (G - G)-rings. (Fields with this
property were called uniform fields in [B].)

0.1.   Definition. A ring R is a (G — G)-ring if G — G = R whenever G is a
subgroup of finite index in R*.

We will show that if R is an infinite field then R isa (C7-C7)-ring. Generally
if R* is big enough then R is (G — C7)-ring. For example, if R is any finite-
dimensional algebra over an infinite field (Proposition 2.2), then R is a (G—G)-
ring. Further examples are presented in §2.

These results are of interest because of the interplay of the additive and mul-
tiplicative structures in the ring R. See Proposition 2.14 for a complementary
result. Although the theorem is a purely algebraic statement, it is proved using
techniques of analysis (the amenability of abelian groups) and of combinatorics
(Ramsey's Theorem).

The original motivation for this theorem came from the new elementary proof
by Berrizbeitia of an old result about finite fields: if K isa finite field then every
element of K can be expressed as x3 + yi for some x , y £ K*, except when
\K\ = 4, 7, 13, or 16. (References to this result are given in [LS].) Leep and
Shapiro [LS] extended Berrizbeitia's idea to infinite fields K by replacing the
subgroup of cubes by a subgroup G of index 3 in K*. They gave an elementary
argument proving that G + G = K for any such subgroup G. The question
for subgroups of index n > 3 in a field was left as a conjecture in [LS]. In
the case of finite fields this question is settled by applying classical estimates to
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show that for a given index n there are only finitely many exceptions among
the finite fields. See [LS] Theorem 7 for further information and references.

To show that the question is not vacuous for infinite fields let us describe
a few examples of subgroups of finite index in Q* . Every r £ Q* can be
expressed uniquely as r = (-i)"oC) •Ylpp'/p^ where v0{r) £ {0, 1}, up{r) g Z,
and vp{r) = 0 for all but finitely many primes p . For any given positive integer
n and ck £Z/nZ {k = 0 or prime), define /: Q* -» Z/nZ by setting f{r) =
Covo{r) + X)p cPup(r) (mod n). Then / is a homomorphism and G = ker/ is a
subgroup of index at most n . For example the set of all r where X) i>p(r) = 0
(mod 5) is a subgroup of index 5 in Q*. This sort of construction applies to
any field of fractions of a unique factorization domain. A different example is
given at the end of §3.

The next step was another insight by Berrizbeitia, who noted that the set of
differences G - G is easier to work with than G + G ; in fact, if -1 ^ G he
noted that G + G need not be additively closed (see §3). Using the higher-
dimensional version of van der Waerden's Theorem on arithmetic progressions,
Berrizbeitia proved [B] that if G is a subgroup of finite index in a field K of
characteristic zero then G-G — K . Our proof of the result for fields of arbitrary
characteristic was inspired directly by a preprint of [B], although the methods
we employ are substantially different. (Yet another proof for characteristic 0 is
mentioned at the end of §1.) Since the same proof works for a wider class of
rings, we deal with the more general context from the start.

1.   (G-G)-RINGS

Throughout this note R denotes an associative ring with 1 and R* is its
group of units (invertible elements). Here are two necessary conditions for
R to be a {G - G)-ring. We do not know whether these conditions are also
sufficient.

1.1. Lemma. If R is a {G - G)-ring then R* + R* = R and every nontrivial
homomorphic image of R is infinite.
Proof. The first statement follows using G - R*, noting that -1 £ R*. For
the second statement suppose there is a ring homomorphism <p: R —> S where
S is a finite ring. Let G be the kernel of the induced group homomorphism
<p': R* -» S* ; that is, G = <p~x{l) C\R*. Then R*/G S <p{R*) ç S* is finite
and the hypothesis implies that G - G = R . Then lR £ G - G so that \$ =
(p{\R)£(p{G-G) = l^-ls = Qs. It follows that S = {0}.   D

The proof of our theorem involves certain invariant measures on the additive
group of the ring R . Since this additive group is abelian, it is amenable. (See
[W, pp. 146-150] for a readable introduction to the subject of measures in
groups. Another proof of amenability of abelian groups can be found in [G,
p. 5].) Therefore there exists a finitely additive, invariant probability measure
p on 3S{R), the set of all subsets of R . This means that p: 3°{R) -> [0, oo)
is a mapping such that (i) if A , B £ 3°{R) with A n B = 0 then p{A U B) =
p(A) + p{B) ; (ii) p.(x + E) = p{E) for every x G R and E £ 3°{R) ; and (iii)
p{R) = 1 . Throughout this paper an invariant measure will be a measure of
this type on 3S{R).
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1.2. Definition. A ring R is in the class ftf if:
(1) R* is additively big; that is, p{R*) > 0 for some invariant measure p

on R.
(2) There is an infinite set in R having invertible differences; that is, there

exist a\ , a2, a?,, ...  in R such that a¡ - a¡ G R* whenever i ^ j .
1.3. Theorem. If a ring R is in the class %f then R is a {G - G)-ring.

In §2 we will describe algebraic conditions on R that imply that R is in % .
Furthermore we show in Proposition 2.12 that the converse of Theorem 1.3 is
false. Theorem 1.3 remains true if ¿^ is enlarged to the class %o defined by
weakening condition (2) as follows:

(2') There are arbitrarily large finite sets in R having invertible differences.
We do not know whether % is actually larger than í¿ .

In order to prove Theorem 1.3 we use a combinatorial lemma.
1.4. Lemma. Suppose S ç R is an infinite subset having invertible differences.
If G is a subgroup of index n in R* then there exist an infinite set B =
{bi, b2, ...} ç S and a coset dG such that b¡ - b¡ g dG whenever i > j.
Proof. This lemma is a consequence of a version of Ramsey's Theorem. A
"finite coloring" of a set T is a function p: T —> C where C = {c\, ... , cn}
is a finite set of "colors." A subset T0 ç T is monochromatic (relative to the
given coloring) if p{To) = {<:,} is a single color. If 5 is a set let [S]2 denote the
set of all 2-element subsets of S. We need the following version of Ramsey's
Theorem:

if S is an infinite set and [S]2 is finitely colored then there ex-
ists an infinite subset ACS such that [A]2 is monochromatic.

For a proof see [GRS, Theorem 5, p. 16].
Let S = {a\, a2, ...} ç R be the given set where a, - a¡ £ R* whenever

i > j. Define a coloring on [S]2, using the cosets of G in R* as the colors, in
the following way: if {a¡, üj} G [S]2 where i > j assign it the color {a¡~aj)G .
Ramsey's Theorem then provides an infinite subset B ç S and a coset dG such
that every element of [B]2 has the same color dG. Writing B = {akt , akl, ...}
where k\ < k2 < ■ ■ ■ , this says that ak¡ - akj £ dG whenever i > j. Setting
b, = ak. we are done.   D
Proof of Theorem 1.3. Let G be a subgroup of finite index in R*. Since R*
is a finite union of cosets of G and p{R*) > 0 by hypothesis, there must exist
c £ R* with p{cG) > 0. Let B = {b\, b2, ...} be the infinite set found
in Lemma 1.4. For any x £ R there must exist i > j such that xb¡ + cG
meets xbj + cG. (For otherwise those translates are pairwise disjoint so that
m • p{cG) = p {[JlLiixb,+ cG)) < p{R) = 1 for every positive integer m,
contradicting the inequality p{cG) > 0.) Then x{b¡ - b¡) G cG -cG and since
b, - bj £ dG, it follows that c~xdx £ G - G. Since x was arbitrary, we have
R = c~xdRçG-G.   D
Appendix to §1. Sets of recurrence. The definition of the class f¿ can be made
more general by using an idea from ergodic theory.
1.5. Definition. Suppose H is a group (written additively), H acts on a set
X , and p is an //-invariant probability measure on X . A set S ç H - {0} is
a set of recurrence for H acting on {X , p) if for every A ç X with p{A) > 0
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there exists s £ S such that p{A n {A + s)) > 0. S is a set of recurrence for H
if it is a set of recurrence for every such space {X, p). If R is a ring then, a
subset S CR is a dilatable set of recurrence if for every nonzero x £ R the set
Sx is a set of recurrence for the additive group of R . A partition dilatable set
of recurrence is a subset 5 such that whenever 5 is finitely colored there is a
monochromatic subset that is a dilatable set of recurrence.

The usual application of these ideas in this paper is the case R acts on itself
and the set S lies in R*. If B = {b\, b2 , ... } is any infinite set in R then the
set of differences B - B always contains a partition dilatable set of recurrence
(by the Ramsey Theorem argument used in the proof of (1.3) and (1.4)).

Using these ideas we define a somewhat larger class of rings.

1.6. Definition. A ring R belongs to the class y if there is a finitely additive,
invariant, probability measure p on R where (1) p{R") > 0 and (2) there
exists S ç R* that is a partition dilatable set of recurrence for R acting on
{R,p).

The arguments above establish the following stronger version of our result.

1.7. Theorem. If R is in the class %' then R isa {G - G)-ring.

A result of Bergelson (see [Ber, Theorem 4.11]) shows that if S is any set
of recurrence that is finitely colored, then 5" contains a monochromatic set of
recurrence. {Question: Is it true that every dilatable set of recurrence is partition
dilatable?) Dilating by units is not a problem, at least in the commutative case,
provided that we use a "doubly invariant" measure.

1.8. Lemma. // R is a commutative ring then there exists a finitely additive
probability measure p on R that is doubly invariant: for every E g 3°{R),
p{aE + b) = p{E) for every a £ R* and b £ R.
Proof. The affine group r{R) = {/: R —> R\f{x) = ax + b for some a £ R*
and b £ R} is always amenable (since it is solvable). Use the fixed point
property (see [W, Theorem 10.11(8)] or [G, §3.3]) for T acting on the space of
normalized linear functionals on R .   D

This ^" seems to be a better class than % because sets of differences are
such special types of sets of recurrence. There are many sets of recurrence
that do not arise as differences. For example a theorem of Furstenberg-Sarközy
states that if f{x) £ Z[x] is "intersective" (i.e., for every integer m > 1 there
exists n £ Z with f{n) / 0 (mod m)), then the set /(N) is a set of recurrence
for Z. (Further details are discussed in [Ber, pp. 80-82].) This provides a
somewhat different proof of Berrizbeitia's result that fields of characteristic 0
are {G - C7)-rings.

Proof. Suppose K is a field of characteristic 0 and G < K* is a subgroup of
index n . Since N C K* (because char K - 0) the set S„ - {kn: k G N} is in
G. By the remarks above S„ is a set of recurrence for K (since Z ç. K). If
p is a doubly invariant measure on F then S„ is a dilatable set of recurrence
for K acting on {K, p). The rest of the proof follows as before.

If R is a ring containing Q, this argument shows only that if G ç R* is a
subgroup of finite index then R* ç G - G. To show that G - G = R by this
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method we require that R*n = {un : u £ R*} be a dilatable set of recurrence for
every n . We do not know whether this is true for every R containing Q. For
any c with 0 < c < 1, there does exist a ring R containing Z with an invariant
measure p having p{R*) = c but where even R* is not a set of recurrence.
For instance if R has a finite nonzero homomorphic image then R* is not a set
of recurrence (because the group G considered in Lemma 1.1 has p{aG) > 0
for some a £ R* but aG - aG does not meet R*). Such a ring is described in
Corollary 2.9.
1.9. Remark. It is true that if K is any infinite field then K*n is a set of
recurrence for every invariant measure on K. This result then implies that K
is a {G — G)-ring. The proof uses ergodic theoretical techniques.

2. Examples of rings in the class %
2.1. Lemma. // R is tiled by translates of R* {i.e., R = \Jk=x{xk + R*) for
some xk £ R) then p{R*) > 0 for every finitely additive invariant probability
measure p on R.
Proof.   1 = p{R) < J2sk=i p{xk +R*)=s- p{R*) so that p{R*) > 0.   D

It is easy to see that any infinite field is in the class ^ . Here are some further
examples.
2.2. Proposition. (1) Any infinite division ring is in the class %.

(2) // R is a finite-dimensional algebra over an infinite field then R is in %.
Proof. (1) Easy. (2) Since K ç R an infinite set of distinct elements of K
provides a set with invertible differences in R . Using the regular representation
we view R as a subring of the matrix algebra Mn{K). If r g R then r £ R*
if and only if det(r) ^ 0 .

Claim. If X\, x2, ... , x„+i in K are distinct, then R - \Jlt\ {xk+R*). For
if r £ R, the polynomial det(x • I - r) has at most n roots in K . Therefore
there exists k where det{xk-I-r) / 0, so that xk-I-r £ R* and r g xk-I+R*.
Then Lemma 2.1 applies. (Note. This result is a special case of Proposition
2.5.)    D

In order to see how the class ^ and the class of {G- C7)-rings behave under
homomorphisms and products we need some information about the behavior
of invariant measures.
2.3. Lemma. (1) Suppose J is an ideal of R and n: R -» R/J is the projec-
tion. An invariant measure p on R induces invariant measures po on J and
p on R/J. Conversely given po and p there is a unique measure p inducing
them. For such measures, if A £ 3S{R/J) we have Ji{A) = p{n~x{A)).

(2) // R = /?i x R2 is a direct product of rings and if p¡ is an invariant
measure on R, then there is an invariant "product measure" p on R satisfying
p{A\ x A2) — p\{A{)p2{A2) for every A, G 3B{R¡). Furthermore this construc-
tion can be done for infinite direct products flitti Rk so mat ß{\~\T=\ Ak) =
UZifik(Ak).
Proof. {1 ) The existence of an invariant measure p on R is equivalent to the
existence of an invariant mean m: 38{R) —» R, where 38{R) is the set of all
bounded real-valued functions on R. (A linear functional m on 38{R) isa
mean if inf{/} < m{f) < sup{/} for every / G 38{R). It is invariant if
m(fc) = mCf)  for every / G 38{R) and c £ R, where ¿-(x) = /(x + c).)
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This equivalence is explained in [G, pp. 14-15]. If invariant means Wo on J
and m on R/J are given, we construct m on R as follows. If / G 38(/?)
and c £ R define cpc £ 38{J) by setting <pc{x) = f{x + c) for x G J. Then
mo{(pc) is defined and, since mo is invariant, it depends only on the class c + J
in R/J . Define m{f) = m{mo{<pc)) ■ The rest of the properties are left to the
reader.

(2) Suppose R = Ri x R2 and m¡ is an invariant mean on R¡ . The product
mean m on R is defined easily as in (1): if / G 33{R) and x £ R\ , define
<px £ 38{R2) by (Px{y) = f{x,y). Then m2{tp) G ^(/?i) and we define
m{f) = m\{m2{q>)). (See [HR, §17.18].) This m is an invariant mean on R.
The construction for infinite products is more sophisticated. Define a cylinder
in R = Ylh=i Rk to be a set of the form A = YiT=\ ̂-k where Ak = Rk for all
but finitely many k . By the method above we can define an invariant measure
pi on the Boolean algebra generated generated by all the cylinders in R . This
measure can be extended to an invariant measure p on all of 3°{R) by invoking
the Invariant Extension Theorem as in [W, Theorem 10.8].   D
2.4. Proposition. (1) Suppose S is a homomorphic image of R. If R is in "?/
then so is S. If R is a {G - G)-ring then so is S.

(2) Suppose R = R\ x R2 . Then R is in %f {resp. is a {G - G)-ring) if and
only if Ri and R2 are in í¿ {resp. are {G - G)-rings).

(3) Here xad{R) denotes the Jacobson radical {the intersection of all the max-
imal left ideals). If J ç xad{R) and R/J is in %, then R is in %S.
Proof. (1) Let cp: R —» S be the given surjective homomorphism. Then <p{R*)
ç S*. If R is in the class ¿^ then 5" is too, by Lemma 2.3. Suppose R
is a (G - G)-ring, and let G be a subgroup of S* of finite index. Let H =
(p~x{G) DR* = ker{R* -> S*/G). Then H has finite index in R* so that
H-H = R. Then G - G D <p{H) - <p{H) = S .

(2) If R is in ^ (resp. is a {G - G)-ring) then (1) implies R¡ and R2
have the same property. Suppose Ri and R2 are in %f. Since R* = R* x R^
it is easy to get an infinite set with invertible differences. Suppose p¡ is an
invariant measure on R, with p¡{R*) > 0. Using the product measure p
described in Lemma 2.3, we have p{R*) > 0 so that R is in í¿. Suppose R\
and R2 are {G - c7)-rings, and let G be a subgroup of R* with finite index.
Define Ax = {a £ R\: {a, \) £ G} . Then Ax = ker(a, : R* -* R*/G) where
a\{a) = {a, 1)G and it follows that A¡ has finite index in /?*. Similarly define
A2 of finite index in Rj. Since A, - A, = /?, and A\ x A2 ç G, it follows that
G-G = R.

(3) The radical rad{R) is characterized as the largest ideal M of R such
that 1 + M ç R*. (See, e.g., [J, vol. II, §4.2] for further details.) Let S = R/J
and let <p: R —► 5 = R/J be the natural map. Since J ç rad{R), we have
I + J ç R*, and the group homomorphism tp*: R* —> S* is surjective. Also,
if r £ R then r £ R* iff cp{r) £ S*. Suppose S is in í¿. If ax, a2, ...
is an infinite set with invertible differences in S choose b¡ £ <p~x{a¡). Then
tp{b¡ - bj) = a, - a¡ G S* so that b, - b¡ G R* whenever i ^ j . By Lemma 2.3
there is an invariant measure p on R satisfying p{tp~x{E)) = p{E)) for any
Ë £33{S). Then p{R*) = p{<p~x{S*)) = p{S*) >0.    o

A semilocal ring is, by definition, a ring R such that R/ rad{R) is semisim-
ple artinian.   (A ring is artinian if it satisfies the descending chain condition
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on left ideals.) The Artin-Wedderburn Theorem implies that R/rad{R) is a
direct product of a finite number of simple rings, and each simple component
is isomorphic to a matrix ring over some division ring. (For details on these
results see a graduate algebra text, e.g., [J, vol. II, §3.13, §4.4].) For example,
every artinian ring is semilocal. A commutative ring is semilocal when it has
only a finite number of maximal ideals.

2.5. Proposition. If R is a semilocal ring with no finite nonzero homomorphic
images, then R is in f¿.
Proof. By the discussion above and Proposition 2.4 it suffices to consider the
case R = Mn{D), the ring of n x n matrices over an infinite division ring
D. Since D ç R, there does exist an infinite set with invertible differences.
To prove the measure property we verify the tiling condition of Lemma 2.1.
We work with D" viewed as the right Z)-vector space of column vectors. Let
e¡ G D" be the column vector with 1 in the z'th position and O's elsewhere.
Define eQ = 0.

Claim. If v\, ... ,vr £ D" where r < n then there exist i\, ... , ir £
{0, \, ... , n} such that the vectors V[ + e¡¡, ... , vr + e,r are right Z>-linearly
independent.

The case r — 1 is easy, so we assume inductively that r > 1 and the claim
is true for smaller values. Then there exist i¡ for I < j < r where v\ +
e¡¡, ... , vr-\ + eh_¡   are right D-independent.   Let   W be the span:    W —
Y!]-\{vj + eij)F> ■ Then dim W = r-\ < n so there must exist an index k with
ek £ W. If vr £ W let ir = 0 while if vr £ W let ir = k . In either case we
have vr + e,r $. W and the independence follows, proving the claim.

If a £ R is given, let v\, ... , vn be the columns of a . Apply the claim to
these vectors to find the indices i\, ... , in , and define a matrix ß where the
jth column of ß is e¡j . Then the columns of a + ß are right D-independent,
so that a + ß £ R*. Since these yS's vary in a finite set, the tiling condition of
Lemma 2.1 is verified.   D

For example suppose R is a ring that contains an infinite division ring D and
such that R is finite-dimensional as a right D-vector space. Then Proposition
2.5 implies that R is in the class %.

The analog of Proposition 2.4(3) for (G - G)-rings, seems harder. We can
prove it in the following special case.

2.6. Proposition. If l + J is a divisible group and R/J isa {G-G)-ring, then
R is a (G - G)-ring. This condition on J is fulfilled whenever J is a nil ideal
and QÇR.
Proof. By Lemma 2.7 below, 1 + J has no proper subgroup of finite index. If
G is a subgroup of R* of finite index then Gn ( 1 + J) has finite index in l + J ,
so that 1 + J ç G. If H = <p{G) then <p~x(H) = G(l + J) = G. Therefore
S*/H s R*/(p-x{H) S R*/G so that H has finite index in S. Since S is a
(G - G)-ring, //-// = S, so that G - G = <p~x{H) - (p~x{H) = R. Finally, if
J is a nil ideal (i.e., every element of J is nilpotent) and Q ç R, then 1 + J
must be divisible. For if j £ J and « is a positive integer, the binomial series
for {\+j)xln is a finite sum in R .   G

If T is a group and n > 1 , define Tn to be the subgroup generated by the
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nth powers of elements of Y. Define Y to be predivisible if Yn = Y for every
positive integer n.

2.7. Lemma. If Y is predivisible then it has no proper subgroups of finite index.
If Y is abelian the converse also holds.
Proof. If G is a subgroup of Y of finite index, let A' be a largest subgroup
of G that is normal in Y. Then [r:/V] is also finite. (In fact, if [Y:G] = n
the action of Y on the n left cosets of G provides a homomorphism <p : Y —>
S„. Then N = kertp and [Y:N] divides n\.) If k = [Y:N] and x G T,
Lagrange's theorem implies that xkN = N in Y/N. Therefore Yk ç N. If Y
is predivisible this implies that N — G — Y. Conversely, suppose Y is abelian
and has no proper subgroups of finite index. For any prime number p the
group T/rp (written additively) is an ¥p vector space. If this space is nonzero
there exists a subspace of codimension 1. Pulling this subspace up to Y yields
a subgroup of index p, contrary to hypothesis. Therefore Y = Yp for every
prime p, and it follows that Y is predivisible. If Y is noncommutative, this
argument shows only that Yn • [Y, Y] = Y.    D

Consequently, if R* is a divisible abelian group then R is a (G- G)-ring if
and only if R* + R* = R. For example, if R = YikLo c then R* is divisible and
R is a (G - G)-ring, but it does not have the finite tiling property of Lemma
2.1. However this R does still lie in ¿^ as we see from the next result.

2.8. Proposition. (1) Suppose E ç R. There exists an invariant measure p
on R such that p{E) = 1 if and only if for every finite set F ç R there exists
r £ R such that r + F ç E .

(2) If there exists an invariant measure p on R such that p{R*) = 1, then
R is in %.

(3) Suppose R = Y\T=()Ak. There exists an invariant p with p{R*) — 1 if
and only if for every k there exists an invariant measure pk with pk{A*k) = 1 .
Proof. (1) This is a special case of Lemma A. 1.2 of [G, pp. 91-93].

(2) If A, B are subsets of measure 1 in R then p{A (Iß) = 1 so that
A n B / 0 . Then for any rx £ R* there exists r2 £ R* n {R* - r,). Similarly
there exists r3 g R* n {R* - r{) n {R* - r2) n {R* - r{ - r2). Continuing in this
way we get an infinite sequence r\ , r2 , ... in R such that all finite sums of the
r/s are in R*. Then a, = /-, + r2 + • • + r¡ provides an infinite sequence in R
having invertible differences.

(3) By (1) the existence of p says that for any X\ , x2, ... , x„ £ R there
exists r £ R with r + X\ , ... , r + xn £ R* . Equivalently, for every z and any
Xu , x2i, ... , xm G A, there exists r, G A¡ with r¡ + X\¡, ... , r¡ + x„¡ g A*. By
( 1 ) this is equivalent to the existence of p, .    D

2.9. Corollary. For every c £ [0, 1) there exists a ring R with an invariant
measure p such that p{R*) = c, but there is no measure p' with p'{R*) = 1 .
Proof. Let R - TT^Li FP, where P\,p2, ... is a sequence of primes. Let p
be the invariant product measure as described in Lemma 2.3. Since the Haar
measure is unique on each component (since it is finite), we see that p{R") —
util <"(Fp,) = l~[T=\(Pi ~ UM • For the given c £ [0, 1) choose the primes p¡
so that this product converges to c . Since R has a finite homomorphic image,
Lemma 1.1 implies that R is not a (G - G)-ring, so by Theorem 1.3 it cannot
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be in °¿¿. There is no invariant measure p' with p'{R*) = 1 by Proposition
2.8(3). Even though there exists an invariant measure p with p{R*) arbitrarily
close to 1, there does not exist an infinite set with invertible differences (and,
in fact, R* is not even a set of recurrence).   D

The ring R = R[x] is not a (G — G)-ring since there are certainly not enough
units: R* + R* = R. If we expand the ring by adjoining more units there is a
better chance that it will become a (G - G)-ring. Here is one example.
2.10. Proposition. Let R — A_1R[x] where A = {g £ R[x]: g has no nonreal
roots}; that is, R = {f/g: f, g £ K[x] and g G A} . Then R is in %.
Sketch of proof. We verify the condition in Proposition 2.8(1). It suffices to
show that if ft,... , fk 6 R[x] are given then there exists g £ R[x] such
that g + f £ A for every j. To do this suppose n > maxjdeg /}} and let
g — c{x - l)(x - 2) • • ■ (x - n) where c is a large constant. Then each g + f¡
has degree n. Choose c so large that the ffs are tiny compared to g so
that each g + f has n real roots (which are near to the roots 1,2,...,« of
g)-   □

Finally we show that there exist (G - G)-rings that are not in í¿. We use
a criterion for telling when a set has measure 0 with respect to all invariant
measures.
2.11. Lemma. Let G be an infinite amenable group {written multiplicatively)
and E ç G. Suppose that there exists an infinite sequence f\, f2, ... in G and
an integer k > 1 such that the intersection of any k of the translates fE is
empty. Then p{E) — 0 for every invariant measure on G.
Proof. Let p be an invariant measure on G and consider the invariant mean
m on 38{G) that corresponds to p (as in the proof of Lemma 2.3). For a
large integer n , let <p„ = Y^,"=\ IfjE, where l/jE is the characteristic function
for the set f¡E. By hypothesis <pn < k • lg. Therefore n • p{E) = m{tp„) <
m{k • lG) — kp{G) = k so that p{E) < k/n . Since this holds for every n , it
follows that p{E) = 0.   D

This criterion for measure 0 is similar to the condition for measure 1 used in
Proposition 2.8. In fact, they are both consequences of the following criterion
for a subset E of an infinite amenable group G and a number c £ [0, 1]:
There exists an invariant measure p on G such that p{E) > c if and only if
for every finite set F ç G there exists a G G such that \aF R E\ > c\F\.
2.12. Proposition. Suppose R = M„{K[x]) where n > 2 and K is a field of
characteristic 0. Then R isa (G - G)-ring and R does not lie in the class %?.
Proof. For the first statement we prove more generally that if A is a commuta-
tive euclidean domain containing Q then R — M„{A) isa (G-G)-ring. Let S¡j
be the matrix with 1 in the (/, y)-position and 0's elsewhere. For a £ A and
i ^ j let e,j{a) = I + ae¡j. Define En{A) to be the subgroup of R* = GLn{A)
generated by all these "elementary" matrices e,j{a). The following 3 steps imply
that R isa (G-G)-ring.

Step 1. If G is a subgroup of R* - GLn{A) of finite index, then E„{A) ç G.
Proof of Step 1. If a £ A and k is a positive integer then a/k g A (since

Q ç A) and therefore e¡j{a) - elj{a/k)k is a k\h power. Hence E„{A) is
predivisible and Lemma 2.7 applies to the subgroup G R En{A).
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Step 2. En{A) - E„{A) contains all diagonal matrices.
Proof of Step 2. An elementary row operation on a matrix a is done by

adding a multiple of one row to another. Elementary column operations are
defined similarly. Any sequence of elementary row and column operations on
a produces a matrix paq for some p , q £ En{A). If t is a triangular (upper
or lower) matrix with l's on the diagonal, then t g En{A), since t can be
reduced to / by a sequence of elementary row operations. Consequently, if ß
is a matrix with all O's on the diagonal then ß £ E„{A)-En{A). Similarly, every
permutation matrix of determinant 1 is in En{A). If ô is a diagonal matrix
there is a permutation matrix p £ En{A) where pô has O's on the diagonal.
Therefore S £ En{A) - En{A).

Step 3. If A is euclidean then E„{A) - E„{A) = R. Moreover En{A) =
SL„(¿).

Proof of Step 3. For any matrix a in R there is a sequence of elementary row
and column operations reducing a to a diagonal matrix 6 . (See, e.g., [J, vol. I,
Theorem 3.8], noting that only operations of type I are needed in the reduction.)
As in Step 2 there exist p, q £ E„{A) such that paq = S £ En{A) - E„{A).
The equality follows. Finally if a G SL„(A) then a can be reduced to some
ô = diag(úíi, ... , d„) where d\d2 ■ ■ ■ d„ — 1. To reduce ô to the identity matrix
it suffices to note that if u, v g A* then the matrix diag(w, v) can be reduced
to diag(l, uv) by a sequence of elementary row and column operations. (Note.
Those groups E„{A) appear in algebraic A"-theory, as seen for example in [HO,
§1.2C].)

Finally suppose A = K[x] where K is a field of characteristic 0. We will
prove that R* = GLn(K[x]) has measure 0 relative to every invariant measure.
This will show that R is not in the class í¿ . By Lemma 2.11 it suffices to show
that the set of translates R* - jx for j £ Z has the property that any n + 1
of them have empty intersection. To do this suppose J ç Z is a subset with
|7| = n + 1 and there exists a £ f)jeJ{R* - jx). Then jx + a £ R* for every
j £ J so that det(yx + a) £ K[x]* — K*. Let T be a new indeterminate and
define p{T) = det(7x +a) = {Tx)n + cn-{{Tx)n-x + ■ ■ ■ + c0 where c¡ £ K[x].
Then for every j £ J the polynomial p{j) - c0 is in K and is a multiple of
x in K[x]. Therefore p{j) - Co — 0. But then p{T) - cq is a polynomial of
degree n in K{x)[T] having n + 1 roots, which is absurd. Therefore no such
a can exist and the intersection is empty.   D

A number of basic questions concerning (G - G)-rings remain unanswered.
Here are some examples:

2.13. Questions. (1) Does the converse of Lemma 1.1 hold? That is, if R* +
R* — R and every proper homomorphic image of R is infinite must R be a
(G - G)-ring?

(2) Is there a commutative (G - G)-ring that is not in ^ ? Noncommutative
examples are given in Proposition 2.12.

(3) Suppose R = Mn{A) where n > 2 and A is an integral domain contain-
ing Q. For which A does it follow that SL„(^) - SL„(^) = /?? For which A
is R a (G - G)-ring?

(4) Suppose R is a finite-dimensional algebra over an infinite field K. Let
G = ker/V where N is the norm homomorphism N: R* —► K*  (e.g., if r £ R
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we can define N{r) = det(Ar) where X: R —> End^(/?) is the regular represen-
tation (defined Àr{x) = rx).) When does it happen that G - G = RI For
example it holds when R — M2(K) (by Proposition 2.12), but it fails when R
is the quaternion division algebra over R.

We end this section by answering a twisted version of the original question,
where the roles of multiplication and addition are switched.

2.14. Proposition. Let K be an infinite field and G ç K a subgroup of finite
index in the additive group. Then G* • {G*)~x = K* where G* = G - {0} ; that
is, for every c £ K* there exist g\, g2 £ G* such that c = gi/g2.
Proof. If char K — 0 then the additive group is divisible, G — K, and the
claim is trivial. Suppose char K = p > 0. Then K is an infinite-dimensional
¥p-vector space (where Fp is the field of p elements). Since G and cG are
Fp-subspaces of finite codimension, we must have GilcG / {0} and the result
follows.   D

3. Behavior of G + G in a field

Suppose K is an infinite field and G is a subgroup of finite index n in
K*. The questions raised in [LS] concerned the set G + G. Theorem 1.3 above
implies that if -1 G G (e.g., if the index n is odd), then G + G = K. What
happens if -1 ^ G ?

Let m • G denote the sum of m copies of G (for example, 2 • G — G + G).
Let ZG be the smallest additively closed set containing G, so that EG is the
union of all the m • G. If -1 ^ G then G + G ç IG R K*, and it is tempting
to conjecture that this is an equality. When n = 2 the equality does follow
[LS, Proposition 2]. However, at the end of [B] Berrizbeitia described examples
when K = Q showing that this conjecture is false and discussed the number
of summands needed to make G -\-+ G = ZG. Here is a summary of those
results.

3.1. Proposition (Berrizbeitia). Let K be an infinite field and G < K* a sub-
group of index n.

(1) ra • G ç (m + 1 ) • G with equality if and only if m • G = ZG.
(2) // 0 G ZG then ZG = K. In fact, 0 G m • G if and only if m ■ G = K.

Moreover, n ■ G D K* so that (n + 1) • G = K.
(3) If 0 £ ZG then K is a formally real field and ZG is the intersection

of finitely many ilorderings of higher level " in K. The index d = [K* : ZG] is
even and {n/d) • G = ZG.
Sketch of Proof {following [B, §3]). (1) By Theorem 1.3, 1 = g - g' for some
g, g' £ G. Then G = {I + g')G ç G + G and the remaining statements follow.

(2) If 0g m-G then -1 g {m-\)-G and K = G-G ç G+{m-\)-G = m-G.
If Wo is the smallest index with mo • G = ZG then for each k < m the set
{k + 1) • G contains some element (and hence some coset of G) not contained
in k • G. Hence k • G contains at least k cosets and the claim follows.

(3) If 0 ^ ZG then ZG is a torsion preordering in the sense of [Bee], and
therefore K is formally real. As noted in [Bee], every torsion preordering is
the intersection of some orderings of higher level. The index d is even since
-1 ^ ZG. The equality follows as before since ZG contains n/d cosets.   D
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Moreover Berrizbeitia proved that the bound in (2) cannot be improved in
general. For any odd prime p he found a subgroup Gp < Q* of index n = p - 1
such that (p - 1 ) • Gp / Q but p • Gp = Q. This Gp is the kernel of the
homomorphism ^ : Q* ^ {Z/pZ)* defined as follows: Every r £ Q* can be
expressed uniquely as r = pm -ro where m £ Z and r0 is a p-adic unit. Define
<P(r) = I/o] > the class of ro in Z/pZ.
3.2. Question. If n is even, is there a subgroup G of index n in Q* such
that n • G # Q but (n + 1) • G = Q? If such G exists, must the factor group
Q*/G be cyclic?
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Added in proof

F. Kalhoff has noted that these ideas also apply in the following nonassociate
case: If K is a quasifield and G < K* is a subloop of finite index then G - G
= K.
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