Multiplicity and Hilbert-Kunz Multiplicity of Monoid Rings

Kazufumi ETO

Nippon Institute of Technology
(Communicated by K. Kobayasi)

In this paper, we will give a method to compute the multiplicity and the Hilbert-Kunz multiplicity of monoid rings. The multiplicity and the Hilbert-Kunz multiplicity are fundamental invariants of rings. For example, the multiplicity (resp. the Hilbert-Kunz multiplicity) of a regular local ring equals to one. Monoid rings are defined by lattice ideals, which are binomial ideals I in a polynomial ring R over a field such that any monomial is a non zero divisor on R / I. Affine semigroup rings are monoid rings. Hence we want to extend the thoery of affine semigroup rings to that of monoid rings.

1. Main Result.

Let $N>0$ be an integer and \mathbf{Z} the ring of integers. For $\alpha \in \mathbf{Z}^{N}$, we denote the i-th entry of α by α_{i}. We say $\alpha>0$ if $\alpha \neq 0$ and $\alpha_{i} \geq 0$ for each i. And $\alpha>\alpha^{\prime}$ if $\alpha-\alpha^{\prime}>0$. Let $R=k\left[X_{1}, \cdots, X_{N}\right]$ be a polynomial ring over a field k. For $\alpha>0$, we simply write X^{α} in place of $\prod_{i=1}^{N} X_{i}^{\alpha_{i}}$.

For a positive submodule V of \mathbf{Z}^{N} of rank r, we define an ideal $I(V)$ of R, which is generated by all binomials $X^{\alpha}-X^{\beta}$ with $\alpha-\beta \in V$ (we say that V is positive if it is contained in the kernel of a map $\mathbf{Z}^{N} \rightarrow \mathbf{Z}$ which is defined by positive integers). Put $d=N-r$. Then $R / I(V)$ is naturally a \mathbf{Z}^{d}-graded ring, which is called a monoid ring. Further, there is a positive submodule V^{\prime} of \mathbf{Z}^{N} of rank r containing V such that $\mathbf{Z}^{N} / V^{\prime}$ is torsion free. That is, $\mathbf{Z}^{N} / V \cong \mathbf{Z}^{N} / V^{\prime} \oplus T$, where $\mathbf{Z}^{N} / V^{\prime} \cong \mathbf{Z}^{d}$ and T is a torsion module. Hence we can see an element of \mathbf{Z}^{N} / V as a pair (α, β) where $\alpha \in \mathbf{Z}^{d}$ is a degree element and $\beta \in T$ is a torsion element. Put $t=|T|$ (if $T=\{0\}$, put $t=1$). Let $A=R / I(V)$ and $A^{\prime}=R / I\left(V^{\prime}\right)$. For each $\alpha \in \mathbf{Z}^{d}$, we denote the degree α component of the \mathbf{Z}^{d}-graded ring A (resp. A^{\prime}) by A_{α} (resp. A_{α}^{\prime}). It is clear $\operatorname{dim}_{k} A_{\alpha} \leq t$ and $\operatorname{dim}_{k} A_{\alpha}^{\prime} \leq 1$ for $\alpha \in \mathbf{Z}^{d}$ and $\operatorname{dim}_{k} A_{\alpha} \geq \operatorname{dim}_{k} A_{\alpha^{\prime}}$ if $\alpha>\alpha^{\prime}$ and if there is a monomial of A of the degree $\alpha-\alpha^{\prime}$.

ExAmple. Let V be a submodule of \mathbf{Z}^{3} generated by $-e_{1}+2 e_{2}-e_{3},-2 e_{1}-e_{2}+3 e_{3}$ and $-3 e_{1}+e_{2}+2 e_{3}$. Then $\mathbf{Z}^{3} / V \cong \mathbf{Z} \oplus \mathbf{Z} / 5 \mathbf{Z}$. And there is an isomorphism which corresponds e_{1}, e_{2} and e_{3} to $(1,0),(1,1)$ and $(1,2)$, respectively.

KAZUFUMI ETO

Lemma 1.1. Let $A=R / I(V)$ be as above. Then there is $\alpha>0$ with $\operatorname{dim}_{k} A_{\alpha}=t$.
Proof. Let e_{1}, \cdots, e_{N} form a canonical basis of \mathbf{Z}^{N}. Since V is positive, $\alpha_{i}>0$ for each i where $\left(\alpha_{i}, \beta_{i}\right)$ is the image of e_{i}. For each $(0, \beta) \in \mathbf{Z}^{d} \oplus T$, there is $\gamma \in \mathbf{Z}^{N}$ whose image is $(0, \beta)$. Let $T=\left\{\beta_{1}, \cdots, \beta_{t}\right\}$ and $\gamma_{i} \in \mathbf{Z}^{N}$ whose image in \mathbf{Z}^{N} / V is $\left(0, \beta_{i}\right)$. Then there is $\delta_{i} \in \mathbf{Z}^{N}$ with $\delta_{i}>0$ and $\gamma_{i}+\delta_{i}>0$. Further, there is $\delta \in \mathbf{Z}^{N}$ with $\delta>0$ and $\gamma_{i}+\delta>0$ for each i. Then the degree part α of the image of δ in \mathbf{Z}^{N} / V is also positive and $\operatorname{dim}_{k} A_{\alpha}=t$.
Q.E.D.

Definition. Let R be a graded k-algebra of dimension d, \mathfrak{m} its maximal ideal, M a finite R-module and $\mathfrak{q}=\left(x_{1}, \cdots, x_{s}\right)$ a homogeneous \mathfrak{m}-primary ideal of R. We denote the multiplicity of \mathfrak{q} by $e(\mathfrak{q}, M)$ i.e. $e(\mathfrak{q}, M)=\lim _{n \rightarrow \infty} d!\frac{l_{R}\left(M / \mathfrak{q}^{n} M\right)}{n^{d}}$ where l_{R} is the length. Similarly, Conca defined the generalized Hilbert-Kunz multiplicity $e_{\mathrm{HK}}\left(x_{1}, \cdots, x_{s}, M\right)=$ $\lim _{n \rightarrow \infty} \frac{l_{R}\left(M / \mathfrak{q}^{[n]} M\right)}{n^{d}}$ where $\mathfrak{q}^{[n]}=\left(x_{1}^{n}, \cdots, x_{s}^{n}\right)$ ([3]). Generally, it is not clear that $e_{\text {HK }}\left(x_{1}, \cdots, x_{s}, M\right)$ is always defined. But Monsky proved that $\lim _{e \rightarrow \infty} \frac{l_{R}\left(M / q^{\left[p^{e}\right]} M\right)}{p^{e d}}$ is well defined if char $R=p>0$, which is called the Hilbert-Kunz multiplicity ([6]). In this case, it does not depend on a generating system of \mathfrak{q}. Note that the generalized Hilbert-Kunz multiplicity coincides with the Hilbert-Kunz multiplicity if char $R=p>0$ and if it is defined. We also denote $e_{\mathrm{HK}}\left(x_{1}, \cdots, x_{s}, M\right)$ by $e_{\mathrm{HK}}(\mathfrak{q}, M)$. We write $e(R)$ (resp. $e_{\mathrm{HK}}(R)$) in place of $e(\mathfrak{m}, R)\left(\right.$ resp. $e_{\mathrm{HK}}(\mathfrak{m}, R)$).

When R is a monoid ring over a field k and both \mathfrak{q} and M are monomial ideal, the length $l_{R}\left(M / \mathfrak{q}^{[n]} M\right)$ is equal to the number of monomials in $M-\mathfrak{q}^{[n]} M$. Since $e_{\mathrm{HK}}\left(x_{1}, \cdots, x_{s}, M\right)$ is defined if char $k>0$ and since $l_{R}\left(M / \mathfrak{q}^{[n]} M\right)$ does not depend on the base field k, $e_{\mathrm{HK}}\left(x_{1}, \cdots, x_{s}, M\right)$ is defined for any k.

Note. The following properties are known about the multiplicity;

- if $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is a exact sequence,

$$
e(\mathfrak{q}, M)=e\left(\mathfrak{q}, M^{\prime}\right)+e\left(\mathfrak{q}, M^{\prime \prime}\right)
$$

- $e(\mathfrak{q}, M)=\sum_{i=1}^{t} e\left(\overline{\mathfrak{q}_{i}}, R / \mathfrak{p}_{i}\right) l\left(M_{\mathfrak{p}_{i}}\right)$ where $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{t}\right\}$ is a set of a minimal prime ideals and $\overline{\mathfrak{q}}$ is the image of \mathfrak{q} in R / \mathfrak{p}_{i}.
- $e(\mathfrak{q}, M)=e(\mathfrak{q}, R) \operatorname{rank} M$.

In turn, Monsky showed $e_{\mathrm{HK}}(\mathfrak{q}, M)=e_{\mathrm{HK}}\left(\mathfrak{q}, M^{\prime}\right)+e_{\mathrm{HK}}\left(\mathfrak{q}, M^{\prime \prime}\right)$, if $0 \rightarrow M^{\prime} \rightarrow M \rightarrow$ $M^{\prime \prime} \longrightarrow 0$ is a exact sequence ([6, Theorem 1.8]). Hence another two formulas are also valid for the Hilbert-Kunz multiplicity.

THEOREM 1.2. Let A, A^{\prime} be monoid rings defined in this section and \mathfrak{q} an \mathfrak{m}-primary monomial ideal of A. Then $e(\mathfrak{q}, A)=t \cdot e\left(\mathfrak{q} A^{\prime}, A^{\prime}\right)$ and $e_{\mathrm{HK}}(\mathfrak{q}, A)=t \cdot e_{\mathrm{HK}}\left(\mathfrak{q} A^{\prime}, A^{\prime}\right)$.

Note. In general, A is not A^{\prime}-module. In section two, we will prove that the generalized Hilbert-Kunz multiplicity for affine semigroup rings and \mathfrak{m}-primary monomial ideals is rational. Hence this theorem says that it is also rational in this case.

Proof. By Lemma 1.1, there is $\alpha>0$ with $\operatorname{dim}_{k} A_{\alpha}=t$. Put $M=\bigoplus_{\alpha^{\prime} \geq \alpha} A_{\alpha^{\prime}}$. Then it is not only an A-module but also an A^{\prime}-module. Note that $\operatorname{rank}_{A} M=1$ and $\operatorname{rank}_{A^{\prime}} M=t$. Hence

$$
\begin{aligned}
e(\mathfrak{q}, A)=e(\mathfrak{q}, M) & =e\left(\mathfrak{q} A^{\prime}, M\right)=t \cdot e\left(\mathfrak{q} A^{\prime}, A^{\prime}\right), \\
e_{\mathrm{HK}}(\mathfrak{q}, A)=e_{\mathrm{HK}}(\mathfrak{q}, M) & =e_{\mathrm{HK}}\left(\mathfrak{q} A^{\prime}, M\right)=t \cdot e_{\mathrm{HK}}\left(\mathfrak{q} A^{\prime}, A^{\prime}\right) .
\end{aligned}
$$

Q.E.D.

2. Hilbert-Kunz multiplicity of semigroup rings.

In this section, we treat the case of affine semigroup rings. Watanabe gives a method to compute the Hilbert-Kunz multiplicity for normal semigroup rings([10]). We will extend them to the generalized Hilbert-Kunz multiplicity for affine semigroup rings. We always assume that all semigroups are finitely generated.

Let S be a semigroup contained in $\mathbf{Z}^{N}, \mathfrak{q}=\left(x^{a_{1}}, x^{a_{2}}, \cdots, x^{a_{v}}\right) \subset k[S]$ such that $k[S] / \mathfrak{q}$ is finite length and $\bar{S}=\left\{p \in \mathbf{Z}^{N} \mid a p \in S\right.$ for $\left.\exists a>0\right\}$. Then $k[\bar{S}]$ is finite as $k[S]$-module. By applying [11, Theorem 2.7] to them, we have

$$
e_{\mathrm{HK}}(\mathfrak{q}, k[S])=e_{\mathrm{HK}}(\mathfrak{q} k[\bar{S}], k[\bar{S}])
$$

Note that $k[\bar{S}]$ is normal. By the above lemma, we can extend Watanabe's result ([10]) of rationality of the Hilbert-Kunz multiplicity for normal semigroup rings to that for general semigroup rings;

COROLLARY 2.1. The Hilbert-Kunz multiplicity for semigroup rings is always rational.

We will give a way to compute the Hilbert-Kunz multiplicity for semigroup rings.
THEOREM 2.2. Let S be a semigroup and $a_{1}, \cdots, a_{v} \in S\left(\subset \mathbf{Z}^{N}\right)$ elements such that $k[S] / \mathfrak{q}$ is finite length where $\mathfrak{q}=\left(x^{a_{1}}, \cdots, x^{a_{v}}\right)$. Let C denote the convex rational polyhedral cone spanned by S in \mathbf{R}^{N} and $\mathcal{P}=\left\{p \in C \mid p \notin a_{j}+C\right.$ for each $\left.j\right\}$. Then

$$
e_{\mathrm{HK}}(\mathfrak{q}, k[S])=\operatorname{vol} \overline{\mathcal{P}},
$$

where $\overline{\mathcal{P}}$ is the closure of \mathcal{P} and vol denote the relative volume ([8, p. 239]).
Proof. We may assume S is normal. Let $d=\operatorname{dim} k[S]$ and $n \mathcal{P}=\{p \in C \mid p \notin$ $n a_{j}+C$ for each $\left.j\right\}$. Since $C \cap \mathbf{Z}^{N}=S$,

$$
n \mathcal{P} \cap \mathbf{Z}^{N}=\left\{p \in S \mid p \text { in not of the form } n a_{j}+b \text { for } \exists b \in S\right\}
$$

Thus $l_{k[S]}\left(k[S] / \mathfrak{q}^{[n]}\right)=\left|n \mathcal{P} \cap \mathbf{Z}^{N}\right|$. If $\lim _{n \rightarrow \infty} \frac{\left|n \mathcal{P} \cap \mathbf{Z}^{N}\right|}{n^{d}}=\operatorname{vol} \overline{\mathcal{P}}$, we finish the proof.
We will prove the above equality. Let P be a rational polytope of dimension d containing the origin as a vertex. Put $i(P, n)=\left|n P \cap \mathbf{Z}^{N}\right|$. Then $\lim _{n \rightarrow \infty} \frac{i(P, n)}{n^{d}}$ exists ([7, Theorem 2.8], [8, p. 273, Ex. 33]). Further, there is $c>0$ such that $c P$ is integral. Since $c P$ is integral,
$\lim _{n \rightarrow \infty} \frac{i(c P, n)}{n^{d}}$ is equal to vol $c P$ ([8, Proposition 4.6.30]). Hence

$$
\begin{aligned}
\operatorname{vol} P & =\frac{1}{c^{d}} \operatorname{vol} c P=\lim _{n \rightarrow \infty} \frac{\left|n c P \cap \mathbf{Z}^{N}\right|}{(n c)^{d}} \\
& =\lim _{n \rightarrow \infty} \frac{\left|n P \cap \mathbf{Z}^{N}\right|}{n^{d}}=\lim _{n \rightarrow \infty} \frac{i(P, n)}{n^{d}} .
\end{aligned}
$$

Let $b_{1}, b_{2}, \cdots, b_{u}$ be generators of C i.e. $C=\left\{\sum d_{j} b_{j} \mid d_{j} \geq 0\right.$ for each $\left.j\right\}$. Let $F_{1}, F_{2}, \cdots, F_{w}$ are cones divided by all hyperplanes spanned by a_{i} and b_{j} with $a_{i} \neq b_{j}$. Then the closure of the complement of $a_{i}+C$ is a finite union of convex sets $\overline{F_{j}-\left(a_{i}+C\right)}$. Hence $\mathcal{P}=C \cap\left(\bigcap_{i} \overline{\left(a_{i}+C\right)^{c}}\right)$ is a finite union of rational polytopes $P_{1}, P_{2}, \cdots, P_{s}$ containing the origin such that $P_{j} \cap P_{j^{\prime}}$ is rational polytope of dimension $<d$ if $j \neq j^{\prime}$. We will prove $\lim _{n \rightarrow \infty} \frac{i(\overline{\mathcal{P}}, n)}{n^{d}}=\sum_{j} \lim _{n \rightarrow \infty} \frac{i\left(P_{j}, n\right)}{n^{d}}$. Let $P_{\leq j}=P_{1} \cup \cdots \cup P_{j}$ for each j. Since

$$
i\left(P_{\leq j_{0}}, n\right)=i\left(P_{\leq j_{0}-1}, n\right)+i\left(P_{j_{0}}, n\right)-i\left(P_{\leq j_{0}-1} \cap P_{j_{0}}, n\right)
$$

and $\lim _{n \rightarrow \infty} \frac{i\left(P_{\leq j_{0}-1} \cap P_{j_{0}}, n\right)}{n^{d-1}}$ is finite, we have

$$
\lim _{n \rightarrow \infty} \frac{i\left(P_{\leq j_{0}}, n\right)}{n^{d}}=\lim _{n \rightarrow \infty} \frac{i\left(P_{\leq j_{0}-1}, n\right)}{n^{d}}+\lim _{n \rightarrow \infty} \frac{i\left(P_{j_{0}}, n\right)}{n^{d}}
$$

The claim follows from this. Further, we have vol $\overline{\mathcal{P}}=\sum_{j}$ vol P_{j}. Therefore, we conclude vol $\overline{\mathcal{P}}=\lim _{n \rightarrow \infty} \frac{i(P, n)}{n^{d}}$.
Q.E.D.

EXample. Let $A=k[X, Y, Z, W] /(X W-Y Z)$. Then $A \cong k[X, Y, Z] \oplus W k[Y, Z, W]$ as k-vector space. Hence $e(A)=2$. There is a grading with

$$
\operatorname{deg} X=(1,0,0), \quad \operatorname{deg} Y=(0,1,0), \quad \operatorname{deg} Z=(0,0,1) \quad \text { and } \quad \operatorname{deg} W=(-1,1,1) .
$$

Thus, by considering \mathcal{P}, we have $e_{\mathrm{HK}}(A)=4 / 3$.
By the following corollary, we can easily compute the Hilbert-Kunz multiplicity of the semigroup rings in special case. It also directly follows from [11, Theorem 2.7]. And it also can follow from the above theorem, by putting $C=\mathbf{N}_{0}^{d}$ and by noting vol $\overline{\mathcal{P}}=\frac{1}{\delta} l_{R}(R / J)$.

Corollary 2.3. Let $S \subset \mathbf{N}_{0}^{d}=\bigoplus_{i=1}^{d} \mathbf{N}_{0} e_{i}$ be an affine semigroup such that there is $c_{i}>0$ with $c_{i} e_{i} \in S$ for each i and $\delta=\left|\mathbf{Z}^{d} / \mathbf{Z} S\right|<\infty$ and $J=\left(x^{\alpha} \mid \alpha \in S\right)$ the ideal of $R=k\left[X_{1}, \cdots, X_{d}\right]$, where $\mathbf{N}_{0}=\{0,1,2, \cdots\}$. Then $e_{\mathrm{HK}}(k[S])=\frac{1}{\delta} l_{R}(R / J)$.

Example. Let $A=k\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]$. Then

$$
e_{\mathrm{HK}}(A)=\frac{1}{4} l_{k[s, t]}\left(k[s, t] /\left(s^{4}, s^{3} t, s t^{3}, t^{4}\right)\right)=\frac{11}{4} .
$$

EXAMPLE (Veronese subrings of [11, Example 2.8]). Let $R=k\left[X_{1}, \cdots, X_{d}\right], \mathfrak{m}_{R}=$ $\left(X_{1}, \cdots, X_{d}\right)$, and $A=R^{(c)}$ the Veronese subring of R, which is generated by all monomials of degree $c>0$. Put $A_{0}=A$ and $A_{i} \subset R$ be an A-module generated by all monomials of degree i for $i=1,2, \cdots, c-1$. Further, let $W \subset \mathbf{Z}^{d} \oplus \mathbf{Z} / c \mathbf{Z}$ generated by $\left(e_{i}, 1\right)$ for
$i=1,2, \cdots, d$. Then $W \cong \mathbf{Z}^{d}$ and the monoid ring defined by W is isomorphic to R and equal to $\bigoplus_{i=0}^{c-1} A_{i}$ as A_{0}-module. Hence, for the maximal ideal \mathfrak{m}_{A} of A, we have

$$
\begin{gathered}
e\left(\mathfrak{m}_{A}^{a}, A\right)=\frac{1}{c} e\left(\mathfrak{m}_{R}^{a c}, R\right)=a^{d} c^{d-1}, \\
e_{\mathrm{HK}}\left(\mathfrak{m}_{A}^{a}, A\right)=\frac{1}{c} e_{\mathrm{HK}}\left(\mathfrak{m}_{R}^{a c}, R\right)=\frac{1}{c} l_{R}\left(R / \mathfrak{m}_{R}^{a c}\right)=\frac{1}{c}\binom{d+a c-1}{d} .
\end{gathered}
$$

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press (1993).
[2] R. O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997), 246-267.
[3] A. Conca, Hilbert-Kunz function of monomial ideals and binomial hypersurfaces, Manuscripta Math. 90 (1996), 287-300.
[4] K. Eto, Defining ideals of complete intersection monoid rings, Tokyo J. Math. 18 (1995), 185-191.
[5] H. Matsumura, Commutative ring theory, Cambridge Univ. Press (1986).
[6] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43-49.
[7] R. P. Stanley, Decomposition of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342.
[8] R. P. Stanley, Enumerative combinatorics vol. 1, Cambridge Univ. Press (1997).
[9] N. V. Trung and L. T. HoA, Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. Amer. Math. Soc. 298 (1986), 145-167.
[10] K. Watanabe, Hibert-Kunz multiplicity of toric rings, Proc. Inst. Nat. Sci. (Nihon Univ.) 35 (2000), 173177.
[11] K. Watanabe and K. Yoshida, Hibert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295-317.
[12] K. Watanabe and K. Yoshida, Hibert-Kunz multiplicity of two-dimensional local rings, Nagoya Math. J. 162 (2001), 87-110.

Present Address: Department of Mathematics, Nippon Institute of Technology, SAITAMA, 345-8501 JAPAN.

