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Recently it has been shown1l that the 

multiplicity distribution in high energy pp 
collisions is broader than the Poisson distri­
bution, and obeys the Koba-Nielsen-Olesen 

scaling law2l above 50 Ge VIc up to 300 Ge V 
I c of the initial momentum. We calculate 
the multiplicity distribution assuming that 
in high energy hadron collisions, some 

clusters are formed and then decay into 
secondary particles. To obtain the distri­
bution function of secondary particles emit­
ted from each cluster, we follow the argu­
ment of photon counting distribution from 
a thermal source. 8l , 4) 

Let ak be the annihilation operator for 
the particle with momentum k. It is well 
known that the coherent state \z) corre­
sponding to it satisfies the following equa­

tion: 

(1) 

where 

(2) 

We will identify this state with the :final 
particle state emitted from a cluster. Here 
the particles are assumed to be neutral 
and scalar for simplicity. Then, the proba­
bility for n particles :finding in the :final 
state is given as5l 

Therefore, the squared value of \zk\ speci-

fying the coherent state \z) represents the 
average multiplicity. 

We further assume that the coherent 
state of secondary particles emitted from 
a cluster is distributed at random analo­
gously to photon distribution from a thermal 
source. Then the density operator of the 
coherent state is given as follows: 

p= J cp(z) \z)<z\d 2z (4) 

and 

(5) 

Here d 2z denotes d(Rez)d(Imz), and <n) 
is the average of \zk\ 2. Because of this 
distribution of the coherent state the proba­
bility given by equation (3) is changed to 
the following: 

Equation (6) is known as a geometric 
distribution or Bose distribution, 8) , 4) which 

can be obtained from the generating func­
tion Q().) defined as 

00 

Q(Jc) = 2J (1-J.)nP(n) = (l+J.<n))- 1• (7) 
n=O 

In the above derivation only one mode is 

treated. Extension to general modes is 
straightforward, but we will not consider 
the momentum dependence in this short 

note. 
Now let us consider the case in which 

the number of produced clusters is a. If 
the multiplicity distribution from each 

cluster obeys Eq. (6) and the average 
number is the same, the generating func­
tion takes the form 

Here <n> denotes the average total multi­
plicity in the hadron collisions. Then, from 

Eq. (8) the probability Pa (n) is given as 
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1 f)n 
Pa(n) = n! ( -1)n f)J.nQaCJ.) ll~l-

=r-ci-i~)~P(a)(1+ ~>t"' 
( a )-n 4),6) 

X .1+ (n) . (9) 

We also obtain F<kl =:=(n(n-1)···(n-k+1)) 
as 

(10) 

Defining gk=:=F<kl /(n)k and Ck=:=(nk)j(n)k, 
we get 

Under the assumption nch=in as usual, we 
put naturally 

where nch is the charged multiplicity. For 
n, (n) )> 1 multiplicity distribution becomes 
as follows: 

P() ~(a\"' 1 a- 1 ( n\ a n - <n>) r(a) n exp '-a <n>) 

1 a"' 
= <n> r (a) za-1 exp ( -az) 

1 
= <nl"'(z), (12) 

where we put z=n/(n)=nch/(nch). This 
is the KNO scaling law, unless a depends 
on energy. In this limit Ck is equal to 

gk as is clear from Eq, (11). 
Finally we will compare this model pre­

dictions with the experimental data. For 
the choice of free parameter a=5 and 
some cases of (nch), we obtain numerical 
values shown in Table I together with the 
experimental data. From Fig. 1 and Table 
I, the multiplicity distribution and moments 
predicted by the model will be consistent 
with the experimental data and the KNO 
scaling law will be satisfied. There is, 
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Fig. 1. The solid line is the multiplicity distri­
bution from Eq. (9) with (nch)=8 and a=5 
and the dotted line is the multiplicity distri­
bution in the high energy limit from Eq. 

. (11) with a=5. 

Table I. 

for (nch)=8 for (nch)=lO for nch, (nch)}>l Data'l 

c' 1.283 1.266 1.2 1.244 
c' 1.987 1.924 1.68 1.813 
c• 3.587 3.397 2.688 2.973 
c' 7.380 6.82 4.838 5.36 
c• 16.95 15.34 9.677 10.43 
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however, another possibility that the num­

ber of clusters a may vary with the energy 

of incident particle. If the average num­

ber ofsecondaries emitted from a cluster is 

constant, a will increase with energy, for 

example, a oc <n> oc logs. In this case 

Eq. (9) will approach the Gaussian distri­

bution in the high energy limit. 
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