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The aim of this paper is to introduce a concrete notion of multiplicity for
invariant algebraic curves in polynomial vector fields. In fact, we give sev-
eral natural definitions and show that they are all equivalent to our main
definition, under some “generic” assumptions.

In particular, we show that there is a natural equivalence between the
algebraic viewpoint (multiplicities defined by extactic curves or exponential
factors) and the geometric viewpoint (multiplicities defined by the number
of algebraic curves which can appear under bifurcation or by the holonomy
group of the curve). Furthermore, via the extactic, we can give an effective
method for calculating the multiplicity of a given curve.

As applications of our results, we give a solution to the inverse problem
of describing the module of vector fields with prescribed algebraic curves
with their multiplicities; we also give a completed version of the Darboux
theory of integration that takes the multiplicities of the curves into account.

In this paper, we have concentrated mainly on the multiplicity of a sin-
gle irreducible and reduced curve. We hope, however, that the range of
equivalent definitions given here already demonstrates that this notion of
multiplicity is both natural and useful for applications.

1. Introduction

In 1878, Darboux published his seminal work on the integrability of polynomial
differential equations in the plane. He showed how the integrability of a polynomial
system could be obtained from an abundance of invariant algebraic curves. The
idea was to construct an integrating factor for the system of the form

r∏
i=1

f li
i ,
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where the fi were polynomials defining the invariant algebraic curves of the sys-
tem. Although this might be seen as a rather special case, it was shown in [Prelle
and Singer 1983] that such integrating factors account for all systems with elemen-
tary first integrals.

However, in order to find a natural completion of Darboux’s theory, it was found
necessary to consider the possibility that certain of the algebraic curves coalesce
(see [Christopher 1994] for example). When this happens, these “multiple” curves
give rise to exponential factors in the Darboux integrating factor of the form

r∏
i=1

f li
i

s∏
j=1

exp(gj/hj ),

where the functions exp(gi/hi ) satisfy an equation similar to the polynomials fi

that define the invariant algebraic curves fi = 0. We call such a function Dar-
boux, and the terms exp(gi/hi ) exponential factors. It has been shown by Singer
[1992] (with the additional comments from [Christopher 1999], for example) that
polynomial vector fields with a Darboux integrating factors are exactly those with
Liouvillian first integrals.

Although the heuristic equivalence between the coalescence of algebraic solu-
tions and the rise of exponential factors has now been used by several authors,
there has been no general theory given beyond ad hoc comments like those of
[Christopher 1994]. In particular, the case where several curves coalesce and form
exponential factors has been mostly ignored.

The difficulty is that it is not obvious, given a polynomial vector field, to see
whether any given invariant algebraic curve is ‘multiple’ or not, nor how to assign
it a multiplicity. Clearly the usefulness of this goes beyond the Darboux theory to
any problem dealing with families of polynomial systems with several algebraic
curves. Such families arise very naturally: for example when looking at families
of vector fields with centers or other integrable critical points, where many of the
irreducible components of these families have generically a Darboux first integral
or integrating factor, and it is interesting to know what happens for the nongeneric
vector fields in these components.

Our aim in this paper is to give a concrete definition of multiplicity which is
effectively computable and show that, given some ‘generic’ assumptions, there is
an equivalence between this definition and several other natural definitions which
we will indicate below.

Throughout the paper, therefore, we have concentrated only on the “generic”
case. By this, we mean that we only consider the multiplicity of an irreducible
and reduced curve. That is, a curve given by an irreducible polynomial. For more
general curves, there seem to be several competing definitions of multiplicity, and
we plan to treat these cases in a future paper. It is our hope, however, that although
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in a somewhat restricted setting, the results given here are sufficient to show that
this definition of multiplicity is indeed a very natural and useful one.

We shall sketch, briefly, the contents of the paper, and the notions of multiplicity
considered in the text.

In Section 2, we give a short overview of the basic results and methods using
invariant algebraic curves for polynomial vector fields, with the aim of giving some
sort of orientation to the rest of the paper. Most of the results given in this section
are entirely standard and well-known.

In Section 3 we give our main definition of multiplicity, which expresses the
fact that the existence of a multiple curve involves not just the curve but also some
infinitesimal information about it. We call this infinitesimal multiplicity when we
need to distinguish it from the other definitions below, but otherwise we shall drop
the adjective.

Let ε be an algebraic quantity with εk
= 0 (or, equivalently, we consider ε as

lying in the ring C(ε)/(εk) ); we say a curve f = 0 has multiplicity k if there exist
polynomials f0 = f , f1, . . . , fk−1, of degree no more than the degree of f , such
that F = f0 + ε f1 + · · · + εk−1 fk−1 satisfies

X (F) = F LF

in C[x, y, ε]/(εk), where X is the vector field, and LF lies in C[x, y, ε]/(εk) also.
When k =1, this is just the defining equation of a single invariant algebraic curve. If
f1 is not a multiple of f0, then we say that F is nondegenerate. The infinitesimal
multiplicity is then the maximum of the k’s for which such a nondegenerate F
exists.

We then go on to consider briefly some local consequences of this definition,
and to derive bounds on the multiplicity of a curve based on the formal normal
forms of the critical points on the curve.

Section 4 defines multiplicity in terms of the number of exponential factors
associated with the curve f = 0. This is the feature which has been found so
useful in applications. A curve f = 0 is said to be of integrable multiplicity k if
it gives rise to k − 1 exponential factors in the form exp(gj/ f j ), j = 1, . . . , k−1,
with the degree of gj at most j times the degree of f , and such that f is not a
factor of gj . These exponential factors can be used in the construction of Darboux
integrating factors, first integrals, or linearizing changes of coordinates. We show
that, under the assumption that f = 0 be irreducible and reduced, this definition
coincides with the infinitesimal multiplicity above.

Section 5 gives another purely algebraic definition of multiplicity. In [Pereira
2001] were introduced the extactic curves for polynomials vector fields. Essen-
tially, these are curves of higher-order inflection points for a given vector field.
A nice feature of these curves is that they can be calculated directly from the
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determinant of a matrix. A curve f = 0 is said to have algebraic multiplicity k
if f k is a factor in this determinant; and hence the algebraic multiplicity is effec-
tively computable. Again, we show that this definition is equivalent to infinitesimal
multiplicity under the assumption that f = 0 be irreducible and reduced.

Section 6 defines multiplicity in geometric terms: we say that a curve f = 0 has
geometric multiplicity k if there are arbitrarily small perturbations of the vector
field which give rise to k invariant algebraic curves, bifurcating from f = 0. To
make this concept more supple in applications, we allow perturbations in the class
of rational vector fields as well as polynomial ones. However, we give a sufficient
condition for the perturbation to be realized polynomially. It is a long section, as
we digress slightly to solve the inverse problem of describing the space of vector
fields with prescribed multiple invariant algebraic curves. This is a result of inde-
pendent interest, however, we use it here to show that the geometric multiplicity is
equivalent to the infinitesimal multiplicity, under the previous assumption on f .

Our final definition, in Section 7, is more geometric still. Given an algebraic
curve, we can define the holonomy group of the foliation induced by the vector
field in a neighborhood of the curve. A curve is said to be of holonomic multi-
plicity k if all the elements of its holonomy group are tangent to the identity, up
to order k. Its clear that this is a necessary condition for having the possibility of
bifurcating multiple algebraic curves, but without some underlying assumptions
this notion of multiplicity is much weaker than geometric multiplicity. However,
if we assume that the curve f = 0 is nonsingular, as a projective curve, and make
some assumptions on the critical points which lie on f = 0, we can show that
holonomic multiplicity is equivalent to the other multiplicities.

In the final Section 9, we give a small application, by completing Darboux’s
theorem on integrability to include the case of multiple curves, and add some final
remarks.

Main Theorem. If an invariant algebraic curve f = 0 is irreducible and reduced
(that is, the polynomial f does not factorize at all), then the following multiplicities
are equivalent:

• the infinitesimal multiplicity of f = 0;

• the integrable multiplicity of f = 0;

• the algebraic multiplicity of f = 0;

• the geometric multiplicity of f = 0.

If , in addition, the curve f = 0 is nonsingular (as a projective curve) and all the
critical points which lie on f = 0 are regular with respect to f = 0, including the
ones at infinity, then the above multiplicities are also equivalent to

• the holonomic multiplicity of f = 0.
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Here, a critical point on f = 0 is said to be regular with respect to f = 0 if it
is either hyperbolic with a positive ratio of eigenvalues, or it is a saddle node and
the eigenvalue associated to the direction tangent to f = 0 is the nonzero one.

A number of authors have considered how to define the multiplicity of a curve.
Żoła̧dek [1992] gives a definition in terms of the local multiplicities at each critical
point. Unfortunately, the definition is not sufficiently strong to guarantee that this
number of curves can actually be produced by bifurcation. This definition would
seem to be closest to holonomic multiplicity, but only considered locally.

Schlomiuk [1997] defines a notion of geometric multiplicity of an invariant
algebraic curve with respect to a particular family of polynomial vector fields.
However, no effective means is given for calculating this multiplicity apart from
inspecting the family itself. This definition is closest in spirit to the definition of
geometric multiplicity given here.

A simplified version of the chain of equations which underlie the definition
of infinitesimal multiplicity was considered in Gröbner and Knapp [1967]. Of
course, the concept of curves and other objects which include infinitesimal infor-
mation about themselves is an essential component of modern algebraic geometry.
However, although interesting, we do not pursue this relationship here.

2. Background and preliminaries

Before embarking on our main journey, we want to summarize briefly the way that
invariant algebraic curves have been defined up to now, and the use that has been
made of them in the Darboux theory on integration, etc. In doing so, we hope that
the subsequent sections will be put in a clearer context.

2A. Vector fields.

Definition 2.1. We say that X is a (polynomial) vector field of (affine) degree d on
C2 if it can be written in the form

(2-1) X = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
,

where a(x, y) and b(x, y) are polynomials in C[x, y] such that the maximum de-
gree of a and b is d .

We shall always assume that X is nondegenerate or reduced; that is, there is no
nontrivial polynomial dividing a and b.

A different notion of degree of a vector field is this: X has (projective) degree
d if the number of tangencies of X with a generic straight line is d . This second
definition has the advantage that the family of systems of degree d are invariant
under projective transformations (after a time-scaling). In general, the two defini-
tions do not coincide. However, a vector field of degree d in this second sense can
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always be put into the form

(2-2) X =
(
a(x, y) + xh(x, y)

) ∂

∂x
+

(
b(x, y) + yh(x, y)

) ∂

∂y
,

where a and b have degree d as before, and h is a homogeneous polynomial of
degree d .

The system (2-2) reduces to (2-1) if and only if h = 0; this corresponds, geomet-
rically, to the line at infinity of (2-2) being invariant. In fact, a vector field of the
form (2-2) with an invariant line can be brought to the form (2-1) by a projective
transformation (and a time-scaling) which takes the invariant line to the line at
infinity. Conversely, if we want to understand the role of the line at infinity of
(2-1), we can perform a projective transformation to bring the line at infinity to an
invariant line in the finite plane. In this case, the vector field (2-1) is brought to the
form (2-2) (after a time-scaling). For more details about this, see [Lins Neto and
Scárdua 1997].

Unless otherwise stated, we shall consider the affine case.

2B. Invariant algebraic curves.

Definition 2.2. Let f ∈C[x, y]. If the algebraic curve f =0 is invariant by a vector
field X of degree d , then X ( f )/ f is a polynomial of degree at most d − 1. In this
case we say that f = 0 is an invariant algebraic curve of X and L f = X ( f )/ f is
its cofactor.

An algebraic curve f = 0 is said to be irreducible if it has only one component,
and reduced if all components appear with multiplicity one (that is, the polynomial
f is square-free). Clearly, a curve f = 0 is irreducible and reduced if and only if
f is irreducible as a polynomial.

Note that, if the vector field X has several invariant algebraic curves of different
degrees, the cofactors will all lie in Cd−1[x, y], the vector space of polynomials of
degree at most d−1. This allows us to reduce the problem of Darboux integrability
to one of linear algebra. The next two propositions can be found in [Christopher
and Llibre 2000].

Proposition 2.3. Let f ∈ C[x, y] and f = f n1
1 . . . f nr

r be its factorization in ir-
reducible factors. For a vector field X , f = 0 is an invariant algebraic curve
with cofactor L f if and only if fi = 0 is an invariant algebraic curve for each
i = 1, . . . , r with cofactor L fi . Moreover, L f = n1L f1 + · · · + nr L fr .

Definition 2.4. Given f, g ∈ C[x, y], we say that e = exp(g/ f ) is an exponential
factor of the vector field X of degree d if X (e)/e is a polynomial of degree at most
d −1. This polynomial is called the cofactor of the exponential factor e, which we
denote by Le. The quotient g/ f is an exponential coefficient of X .
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Proposition 2.5. If e = exp(g/ f ) is an exponential factor for the vector field X ,
then f is an invariant algebraic curve and g satisfies the equation

(2-3) X (g) = gL f + f Le,

where L f is the cofactor of f .

Example 2.6. Consider the vector field

X = x
∂

∂x
+

(
(1 + `)y + x

) ∂

∂y

with invariant algebraic curves x = 0 and x + `y = 0. As ` tends to zero, these
two curves coalesce. However, we can recover an exponential factor by taking the
limit of the Darboux function

(
(x + `y)/x

)1/`, which tends to exp(y/x).

In general, we would hope that an exponential factor exp( f/g) corresponds to
the coalescence, as ` tends to zero, of two invariant algebraic curves f = 0 and
f + `g = 0. That is, we consider exp( f/g) as

exp( f/g) = lim
`→0

(
( f + `g)/ f

)1/`
.

However, to show that this is always the case is quite difficult. The following result
is quoted in [Christopher and Llibre 1999]:

Proposition 2.7. If a vector field X has an exponential factor exp(g/ f ), where
g = 0 and f = 0 are nonsingular and have normal crossings with themselves and
the line at infinity, then the vector field is of the form

(2-4)
(
a0 f 2

−a1 f fy −a2(gy f −g fy)
) ∂

∂x
+

(
a3 f 2

+a1 f fx +a2(gx f −g fx)
) ∂

∂y
.

In particular, the exponential can be seen to be the limit of the invariant curves f
and f + εg as ε tends to zero in the family of vector fields Xε = pε∂/∂x +qε∂/∂y,
where

pε = a0 f ( f + εg) − (a1 + ε−1a2) f ( f + εg)y + ε−1a2 fy( f + εg),

qε = a3 f ( f + εg) + (a1 + ε−1a2) f ( f + εg)x − ε−1a2 fx( f + εg),

which tends to (2-4) as ε tends to zero.

The results of this paper can be seen as a direct generalization of the examples
above to multiple coalescing curves of arbitrary degree.
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2C. The line at infinity. Though we shall concentrate mainly on the affine case,
it is often helpful to consider the behavior on the line at infinity.

Consider the vector field (2-1) and write the terms of degree d in a and b as
ad and bd . If r = xbd − yad vanishes, then the system is equivalent to a vector
field (2-2) of projective degree d − 1. If r 6= 0 however, then the line at infinity is
invariant, and the zeros of r correspond to the critical points of (2-1) on the line at
infinity.

The next lemma is well known (see for example [Christopher 1994]) and can
be very useful computationally (see [Man and MacCallum 1997] for an interesting
application).

Lemma 2.8. Let X be a vector field of the form (2-1) with invariant algebraic
curve f = 0 of degree n. Each factor of the highest-order terms fn of f divides
r = xbd − yad .

If, however, we consider a vector field in the form (2-2), then the line at infinity
is no longer invariant. Nevertheless, in this case we have the next proposition.

Proposition 2.9. Suppose the vector field X is in the form (2-2), of projective
degree d, with h 6= 0.

(a) If L f is the cofactor of an invariant algebraic curve f = 0 of X , then the
degree-d terms of L f are given by deg( f )h.

(b) If Le is the cofactor of an exponential factor e = exp(g/ f ) of X , then the
degree-d terms of Le vanish.

Proof. Let f be of degree n, and denote the degree-n terms of f by fn . Using the
notation of (2-2) and Euler’s formula, the equation X ( f ) = L f f gives

a
∂ f
∂x

+ b
∂ f
∂y

+ h
(

x
∂

∂x
+ y

∂

∂y

)
( f − fk) + kh fk = L f f.

The result of part (a) follows directly from considering the degree-(n+d) terms of
this equation.

For part (b), we let ` be the degree of g, and g` the terms of degree `. It follows,
from the defining equations for an exponential factor, that

(2-5) (a + hx)
(

f
∂g
∂x

− g
∂ f
∂x

)
+ (b + hy)

(
f
∂g
∂y

− g
∂ f
∂y

)
= Le f 2.

The terms of highest degree n+`+d on the left-hand side of (2-5) can be written as

h
(

x
(

fn
∂g`

∂x
− g`

∂ fn

∂x

)
+ y

(
fn

∂g`

∂y
− g`

∂ fn

∂y

))
= (` − k)h fk g`.
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It is clear that if the degree-d terms of Le do not vanish, then the degree of the right-
hand side of (2-5) is 2n +d, thus we must have ` = k, which gives a contradiction.

�

In the projective case, therefore, the exponential exponents are always homoge-
neous of degree 0. In the affine case of (2-1) this restriction no longer holds, but,
if the degree of the numerator is greater than the degree of the denominator, then,
after a projective change of coordinates, the exponential factor will be of the form
exp

(
g/( f mk)

)
for some k > 0, where m represents the transform of the line at

infinity. Thus, this case corresponds projectively to the case where the exponential
factor is based on the line at infinity or some reducible combination of the line
at infinity with another curve. In this paper we shall only consider exponential
factors based on irreducible algebraic curves in the finite plane, thus the degrees of
the numerators of the exponential coefficients must be less than their denominators.
The line at infinity can be considered in this manner if a projective transformation
is performed first to bring it into the finite plane.

2D. Integrating factors and first integrals. One of the main applications of in-
variant algebraic curves is in constructing first integrals and integrating factors of
Darboux type; that is, functions which are expressible as products of invariant
algebraic curves and exponential factors. We recall a few definitions.

Definition 2.10. Let P/Q be a rational function in x and y, with P and Q coprime;
its degree is the maximum of the degrees of P and Q.

Definition 2.11. A (multivalued) function is said to be Darboux if it is of the form

(2-6)
r∏

i=1

f li
i

s∏
j=1

exp(gj/hj ),

where the fi , gj and hj are polynomials, and the li are complex numbers. The set
of such functions is precisely the set of exponentials of integrals of closed rational
1-forms in x and y ([Christopher 1999]).

Definition 2.12. Let U be an open subset of C2. We say that a nonconstant (multi-
valued) function H :U → C is a first integral of a vector field X on U if and only if

X |U (H) = 0.

When H is the restriction of a rational (respectively, Darboux) function to U then
we say that H is a rational (respectively, Darboux) first integral.

Definition 2.13. We say that a nonconstant (multivalued) function R : U → C is
an integrating factor of a vector field X on U if and only if

X (R) = − div X · R
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on U , where div denotes the divergence of the vector field.

If we know an integrating factor, we can compute by quadrature a first integral
of the system, up to a constant. Reciprocally, if H is a first integral of the vector
field (2-1), then there is a unique integrating factor R satisfying

(2-7) Ra =
∂ H
∂y

and Rb = −
∂ H
∂x

.

Such an R is called the integrating factor associated to H .
A theorem of Singer [1992] shows that, if H is a Liouvillian function, then the

integrating factor is Darboux. In an earlier work, Prelle and Singer [1983] show
that if H is an elementary function, then the integrating factor is the N -th root of
a rational function.

The idea behind the Darboux method is to use the invariant algebraic curves
of the system to find an integrating factor of the form (2-6). This, in turn, from
Proposition 2.3, is purely a matter of linear algebra, as all the cofactors lie in
Cd−1[x, y]. A simple introduction to these things can be found in [Christopher
and Llibre 1999].

For example, we can find a Darboux first integral (2-6) if we can find constants
li and mi such that r∑

i=1
li L fi +

s∑
j=1

mj Lej = 0,

where the L fi and Lej represent the cofactors of fi and exp(gj/hj ), respectively.
In particular, this will always happen if there are more than d(d +1)/2 such curves
or exponential factors.

In practice, the number of curves needed may be much less than this, and the
method can be refined by considering critical points where the curves fi do not
vanish.

Proposition 2.14. Let p be a critical point of the vector field X. If f is an invariant
algebraic curve of X which does not vanish at p, then its cofactor L f must vanish
at p. Furthermore, if e = exp(g/ f ) is an exponential factor of X , then Le must
vanish at p too.

Proof. This follows directly from the equations X ( f ) = L f f and X (g) = L f g +

Le f . �

We shall generalize these results to multiple curves in Section 3B.

2E. Formal normal forms for elementary critical points. If p is a noncritical
point of an analytic vector field, then it is well known that there is an analytic
change of coordinates in a neighborhood of p which brings the vector field into
the form X = ∂/∂x . If p is a critical point, however, the analytic classification is
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much harder. In this paper we shall only want to consider the formal classifica-
tion of elementary singularities. That is, critical points with at least one nonzero
eigenvalue.

The following formal normal forms for elementary singularities are well known
[Poincaré 1891; 1897].

Theorem 2.15. Let X be a vector field with an isolated critical point at the origin.
There is a formal analytic change of coordinates at the origin which brings X to
one of the following forms, after multiplication by a unit in CJx, yK:

(a) A linearizable critical point (λ 6= 0),

(2-8) X = x
∂

∂x
+ λy

∂

∂y

(b) A resonant node (k ∈ Z+),

(2-9) X = x
∂

∂x
+ (ky + xk)

∂

∂y

(c) A resonant saddle (p, q, k ∈ Z+, a ∈ C),

(2-10) X = x(1 + auk)
∂

∂x
−

p
q

y
(
1 + (a − 1)uk) ∂

∂y
, u = x p yq

(d) A saddle-node (k ∈ Z, a ∈ C),

(2-11) X = x(1 + ayk)
∂

∂x
+ yk+1 ∂

∂y

In each of these cases, the only irreducible invariant algebroid (formal analytic)
branches through the origin are x =0 (all cases), y =0 (all cases except the resonant
node), and x p

− cyq for some constant c (for the linearizable critical point with
λ = p/q ∈ Q+).

The reason for considering only elementary singularities is that any other sin-
gularity of the vector field can be transformed into a collection of elementary
singularities after a finite number of blow-ups (see [van den Essen 1979]). In
what follows we do not need to work over the more general algebraic surfaces
that arise after blowing up a critical point: we only need to know the behavior
in a collection of affine charts which describe it, and these can be obtained very
simply by a succession of affine transformations and transformations of the form
(u, v) = (x, y/x).

3. Infinitesimal multiplicity

We give our main definition of multiplicity for an invariant algebraic curve f =0 of
degree n. We shall assume throughout that the algebraic curve f =0 is reduced and
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irreducible (that is, f is an irreducible polynomial). We shall also assume that X
is a vector field of (affine) degree d which acts nontrivially on f = 0, by which we
mean that the restriction of X to f = 0 does not vanish identically (equivalently, f
is not a factor of both a and b in (2-1)). This implies in particular that, if X (g) = 0
on f = 0 for some function g, then g must be constant on f = 0.

In Section 3B we deduce some elementary bounds on the infinitesimal multi-
plicity from the type of singularities through which the curve passes. These bounds
are similar to the ones given in [Żoła̧dek 1992].

3A. Definition of infinitesimal multiplicity.

Definition 3.1. Let f = 0 be an invariant algebraic curve of degree n of a polyno-
mial vector field X of degree d. We say that

(3-1) F = f0 + f1ε + · · · + fk−1ε
k−1

∈ C[x, y, ε]/(εk)

defines a generalized invariant algebraic curve of order k based on f = 0 if f0 =

f, . . . , fk−1 are polynomials in C[x, y] of degree at most n, and F satisfies the
equation

(3-2) X (F) = F LF ,

for some polynomial

(3-3) LF = L0 + L1ε + · · · + Lk−1ε
k−1

∈ C[x, y, ε]/(εk),

which must necessarily be of degree at most d−1 in x and y. We call LF the
cofactor of F . Equivalently, (3-2) can be written as

(3-4) X ( fi ) = fi L0 + fi−1L1 + · · · + f0L i , i = 0, . . . , k−1.

Note that, at the moment, we do not make any assumption that the fi are nonzero
for i > 0. If we want to make the role of ε explicit, we shall use the notation F(ε).
The choice of notation in Definition 3.1 will be assumed in the rest of the paper,
unless otherwise stated. We shall also use the notation O(ε2), etc., in the obvious
sense.

Example 3.2. A generalized invariant algebraic curve of order 2 is given by two
polynomials f0 and f1 satisfying the equations

X ( f0) = f0L0 and X ( f1) = f1L0 + f0L1,

for some polynomials L0 and L1 in x and y. These define an invariant algebraic
curve f0 and an exponential factor exp( f1/ f0) of X with cofactors L0 and L1,
respectively.
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Given a generalized invariant algebraic curve F of order k, and an element `

of C[ε]/(εk), it follows directly from (3-2) that `F is also a generalized invariant
algebraic curve of order k. Also, if h is a polynomial over C with h(ε)= ε+O(ε2),
then it follows that h(ε)k

= 0, and (3-2) implies that F ′(ε) = F(h(ε)) also defines
a generalized invariant algebraic curve of order k.

We would like to measure the multiplicity of an invariant algebraic curve f = 0
by considering the maximum order of all the generalized invariant algebraic curves
which are based on f . However, given a generalized curve F of order k, we
can form a new generalized curve F ′ of order kq by taking F ′(δ) = F(δq) ∈

C[x, y, δ]/(δkq). To exclude these cases, we need to make another definition.

Definition 3.3. A generalized algebraic curve F based on f is called nondegener-
ate if the polynomial f1 from Definition 3.1 is not a multiple of f . Otherwise, we
say that the curve is degenerate.

In fact, this definition turns out to exclude only the cases mentioned above, as
the next proposition shows. Note that the degree bounds on the fi are needed in
the proof.

Proposition 3.4. Let F be a generalized invariant algebraic curve of order k based
on f . If F is not a multiple of f , then there exist elements

` = 1 + O(ε) and h = ε + O(ε2)

of C[ε] and a nondegenerate generalized invariant algebraic curve F ′ such that

`(ε) F
(
h(ε)

)
= F ′(εq)

over C[x, y, ε]/(εk) for some integer q > 0.

Proof. By multiplying F by a suitable element of C[ε]/(εk), we can first remove
all the fi which are multiples of f0. If F is not a multiple of f0 = f , there is some
q > 0 such that fq is the first nonzero fi after f0 in F(ε). If q = 1, then we are
done, so we assume that q > 1. Now, if all the nonzero fi have i a multiple of q ,
then we are also finished, so we shall suppose that there exists some fr such that
r is the first nonmultiple of q with fr nonzero, and proceed by induction on r .

From (3-4) we find that

X ( fq) = L0 fq + Lq f0 and X ( fr ) = L0 fr + Lr f0,

from which we deduce that X ( fq/ fr ) = 0 on f0 = 0. Since f0 = 0 is an irreducible
curve on which X is a nontrivial vector field, we see that fq =a fr for some constant
a on f0 = 0. Comparing degrees, we find that fq = a fr + b f0 for some constant
b. Taking ` = 1 − bεr and h = ε − aεr−q+1, we can replace F by `(ε) F(h(ε)),
which coincides with F up to the term in εr−1 and has no term in fr . We repeat
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the above procedure until all remaining terms are of the form fiq . The resulting
transformation of F is clearly of the prescribed form. �

Definition 3.5. Let f = 0 be an invariant algebraic curve of degree n in a polyno-
mial vector field X of degree d . We say that f = 0 is of infinitesimal multiplicity
m with respect to X if m is the maximal order of all nondegenerate generalized
invariant algebraic curves of X based on f . If no such maximum exists, then the
infinitesimal multiplicity is said to be infinite.

It will follow from the results in Section 5 that, if the vector field has an invariant
algebraic curve f = 0 of degree n which has infinite infinitesimal multiplicity, then
the vector field has a rational first integral of degree n. In fact, we can choose it
to be of the form g/ f , for some polynomial g of degree at most n. Conversely, a
rational first integral g/ f of degree n will give a curve f =0 of infinite infinitesimal
multiplicity by taking the generalized invariant algebraic curve F = f + εg with
cofactor LF = L f (1 + ε) which satisfies (3-2) up to arbitrary order of ε.

Question 3.6. It not clear to what extent Proposition 2.3 can be generalized to
multiple curves. For example, if F = F1 F2 is a generalized invariant algebraic
curve of order k (with factorization over C[x, y, ε]/(εk)), can we conclude that
each of the Fi have order k too?

We shall, however, give the following weak version of Proposition 2.3, which
will be useful in the next section.

Proposition 3.7. Let F be a generalized invariant algebraic curve of order k and
suppose that F factorizes into F1 F2 over C[x, y, ε]/(εk). If F1 is an invariant
algebraic curve of order at least k, then so is F2.

Proof. We have
F LF = X (F) = F1LF1

F2 + F1 X (F2),

whence
F1

(
X (F2) − (LF − LF1

)F2
)
= 0,

and the result follows directly. �

Note that we do not impose that F1 be nondegenerate.
We can consider the generalized curve F as an infinitesimal family of curves

defined over the base space T = Spec
(
C[ε]/(εk)

)
with f the fibre over 0. F is

therefore an infinitesimal deformation of f over T . We do not pursue this algebraic
geometric language here, however.

3B. Local bounds on multiplicity. It is an interesting feature of the algebraic the-
ory of vector fields that most of the action seems to happen at the critical points.
We give some simple bounds on the infinitesimal multiplicity of a curve, depending
only on the formal classification of the critical points it passes through. A similar



MULTIPLICITY OF INVARIANT CURVES IN POLYNOMIAL VECTOR FIELDS 77

criterion was given by Żoła̧dek in his definition of multiplicity [Żoła̧dek 1992]. We
start, however, with a couple of simple propositions which will be useful later.

We shall say that a generalized invariant algebraic curve F = f0 + O(ε) passes
through a point p if f0(p) = 0. In the proofs that follow we will mainly want to
work locally around a point p. To do so, we can assume without loss of generality
that p is at the origin and work over CJx, yK[ε]/(εk). The analogous definitions
of (generalized) invariant algebroid curve of order k and the corresponding trans-
lation of (3-2) and the preceding propositions to this context are left to the reader.

Clearly, a generalized algebraic curve of order k passing through the point p
gives rise to a generalized algebroid curve of order k at p. However, in general we
need to be careful that, although we are assuming that the curve f0 =0 is irreducible
and reduced over C[x, y], it may split into a number of algebroid branches over
CJx, yK, though none of these branches can be multiple.

Proposition 3.8. Let F = f0 +ε f1 + O(ε2) be a nondegenerate generalized invari-
ant algebraic curve of a vector field X. If p is a noncritical point of X for which
f0(p) = 0, then p is a nonsingular point of f0 = 0 and f1 does not vanish on p.

Proof. Without loss of generality, we can assume that p lies at the origin; we
perform a local (formal) change of coordinates in CJx, yK which brings X to the
form ∂/∂x . If f0(p) = 0, then y must be a factor of f0 = 0. In this case, we let
f ′

0 = f0/y and consider the invariant algebroid curve f ′

0 = 0. If f ′

0(p) = 0, then
once again y divides f ′

0, which contradicts the fact that f0 = 0 is reduced. Hence,
f ′

0 is a unit and f0 is nonsingular at p.
Continuing to work in the transformed coordinates, we find that X ( f1) = ξ f1 on

y = 0, for some ξ ∈ CJxK, and hence, if f1(p) = 0, then y must also divide f1 = 0.
Transforming back to the original coordinates, and recalling that f0 is irreducible,
we see that f0 must divide f1, and hence F is degenerate. �

Proposition 3.9. If F is a generalized invariant algebraic curve and p a critical
point of X through which F does not pass, then all the terms L i of the cofactor LF
must vanish at p.

Proof. This is a very simple induction, using (3-4). This result generalizes the one
given in Proposition 2.14. �

If we are working locally in CJx, yK[ε]/(εk), then we can multiply F by a
unit h ∈ CJx, yK[ε]/(εk), changing LF to LF + X (h)/h in (3-2). If F is locally
nondegenerate (that is, f1 is not a multiple of f0 locally) and of order k, then the
same will clearly be true for hF .

Proposition 3.10. Suppose that F is a generalized invariant algebraic curve based
on a curve f = 0, which passes through a critical point p. If the critical point is a
resonant node, then the order of F is at most two. If the critical point is a resonant
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saddle or a saddle-node, then F can have order at most k + 1, where k is given by
the formal normal forms of these points: (2-10) or (2-11). In particular, in these
cases we obtain a bound for the multiplicity of the curve f = 0.

Proof. With an eye toward Proposition 3.13 below, we prove a slightly stronger
version of this proposition. We shall relax our assumption that f0 = f is irre-
ducible, and merely impose that one of the branches through the critical point has
multiplicity one and that f1 does not vanish identically on this branch. Without
loss of generality, we can assume that the critical point is at the origin and work
locally over CJx, yK[ε]; hence, we can assume that, after a change of coordinates,
the vector field is in one of the forms (2-9), (2-10) or (2-11). We consider each
case separately to find the maximal value of n such that (3-2) holds modulo εn .

Resonant node (2-9). In this case, the only possible branch through the origin is
x = 0, and so f0 = x`, where `(0) 6= 0. We can therefore divide through by
`, assume that f0 = x , and hence L0 = 1. We multiply F by a suitable unit in
CJx, yK[ε] to remove all monomials which are multiples of x from the remaining
fi , i > 0. Now X ( f1) = f1 + x L1, which restricted to x = 0 gives ky∂ f1/∂y = f1,
and hence f1 = c1 yk for some constant c1. This implies that k = 1, and c1 must
be nonzero to ensure that f1 does not vanish on x = 0. From (3-2) we find that
L1 = c1. If the curve has multiplicity greater than two, we need to be able to solve
X ( f2) = f2 + c2

1 y + x L2. However, restricting this equation to x = 0 we find that
there is no f2 ∈ CJyK which satisfies this equation for c1 6= 0. The multiplicity is
therefore at most two.

Resonant saddle (2-10). In this case, by symmetry, we can choose x = 0 to be
the branch with multiplicity one, and take f0 = xym`, with `(0) 6= 0. We divide
through by ` as before, and assume f0 = xym with

L0 = (1 + auk) − m(p/q)
(
1 + (a − 1)uk).

Now (3-2) gives
y
∂ f1

∂y
=

(
m −

q
p

)
f1,

on x = 0, which implies that f1 = cym−q/p on x = 0 for some constant c 6= 0 (since
x cannot divide f1, by assumption). Thus we need p = 1 and m ≥ q .

Now, since y is a (degenerate) invariant algebraic curve of infinite order, by
Proposition 3.7 we can divide F by any power of y common to all the fi , to leave
a generalized invariant algebraic curve of the same order as F . Therefore, we can
assume without loss of generality that all factors y of F have been removed, and
take fr to be the first of the fi which is not divisible by y. Then (3-2) implies that

x
∂ fr

∂x
=

(
1 − m

p
q

)
fr
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on y = 0. As before, we need 1 − mp/q to be a nonnegative integer, and this
implies that q divides m; since m ≥ q, we see that m = q. However, this implies
that f0 = xyq ; from the previous discussion, f1 = c on x = 0, and L0 = uk .

Now, on y = 0 we have

x
∂ f1

∂x
=

(
1 − m

p
q

)
f1,

so f1 is just a constant on y = 0, and hence f1 = c mod (xy). Let h(x) yr, r > 0,
be the first nonzero term in the expansion of f1 − c in terms of y. If r < q = m,
then we have

x
∂h
∂x

=

(
1 − (m − r)(p/q)

)
h,

which is impossible. Thus, f1 = c mod (xyq), and, by multiplying F by some
suitable unit in CJx, yK[ε], we can take f1 = c 6= 0 and L1 = −cuk−1.

Now, by induction, we can show from (3-4) with i = 0, . . . , k that all the other
fi for i = 2, . . . , k can also be chosen to be constants after multiplication by a
suitable unit, and that L i = (−c)i uk−i

+ O(uk−i+1). However, when i = k +1, it is
not possible to satisfy (3-4), as the right hand side has a constant term (−c)k , and
hence the multiplicity is at most k + 1.

Saddle-node (2-11). In this case we operate similarly to the saddle case. Let f0 =

xr ys`, and divide F through by ` as before; we have L0 = r + (s + ar)yk . Let ft

be the first of the fi which is not divisible by x (as above, we assume without loss
of generality that a power of x common to all the fi has been removed), then (3-2)
on x = 0 implies that

yk+1 ∂ ft

∂y
=

(
r + (s + ar)yk) ft .

Thus, we have r = 0 and hence s = 1 (as, by hypothesis, the branch must be
reduced) which gives L0 = yk . Since f0 = y, we can multiply F by a suitable unit
in CJx, yK[ε] so that all the fi , i > 0, are just functions of x alone. On y = 0,
(3-2) gives

x
∂ f1

∂x
= r f1 = 0,

and hence f1 = c on x = 0 for some constant c 6= 0 (by the nondegeneracy assump-
tion). Let F ′ be result of setting x = 0 in F . It is clear that F ′ still satisfies (3-2)
up to the same order in ε as F , if we also substitute x = 0 in the cofactor. Thus, F ′

defines a nondegenerate generalized invariant algebroid curve of at least the same
order as F . Hence, we can assume that all the fi are in fact constants. It is easy
now to show by induction that the L i = (−c)i yk−i

+ O(yk−i+1) for i > 0, and that
(3-2) can only be satisfied up to terms in εk . �

Remark 3.11. Note that in these three cases, if f =0 is irreducible, we have shown
that, after a change of coordinates in CJx, yK, the generalized algebraic curve F
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factorizes as G F0 over CJx, yK[ε]/(εk), where G is a unit in CJx, yK[ε]/(εk), and
F0 is given by:

• F0 = x + cy + O(ε2), c 6= 0, for a node;

• F0 = xy + cε + O(ε2), c 6= 0, for a resonant saddle;

• F0 = y +
(
c + O(x)

)
ε + O(ε2), c 6= 0, for a saddle-node.

Furthermore, it is clear from Proposition 3.8 that, away from a critical point on
f = 0, we can also factorize F after a change of coordinates in CJx, yK to get
F = G F0 with

• F0 = y +
(
c + O(x)

)
ε + O(ε2), c1 6= 0, for a noncritical point on f = 0.

The next corollary will justify our choice of conditions imposed in Section 7 in
the case of holonomic multiplicity.

Corollary 3.12. Suppose that f = 0 is a nonsingular curve, and F a generalized
algebraic curve based on f = 0 of order m > 1. The only elementary critical points
through which the curve F can pass are:

• A linearizable critical point with an integral ratio of eigenvalues n. When
brought to the form (2-8), if the curve corresponds to the line y = 0, then
λ = n.

• A resonant node with ratio of eigenvalues equal to unity. If one occurs, then
m is at most two.

• A saddle node. When brought to the form (2-11), the curve must correspond
to the line y = 0 (the strong manifold of the saddle-node), and m ≤ k + 1.

Proof. Apart from the three cases considered in Theorem 2.15, we only need to
consider the case of a linearizable critical point, which is easily deduced from the
same type of argument as above. �

Proposition 3.13. Let F be a generalized invariant algebraic curve, and p a criti-
cal point through which it passes. After a finite number of blow-ups, we can resolve
the critical point into a number of elementary singularities. If p is a critical point
which lies on the strict transform of the curve f = 0, then the order of F , and hence
the multiplicity of f = 0, is bounded by 2, if the critical point is a resonant node,
and by k + 1, if the critical point is a resonant saddle or a saddle-node (where k is
obtained from the formal normal forms (2-10) and (2-11)).

Proof. The only thing we need to check is that generalized invariant algebraic
curves are taken to generalized invariant algebraic curves in each chart of each
successive blow-up, which is easily done. The only complication is that, under the
blow-up, exceptional divisors will appear in the expression for F . However, the
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strict transform of f = 0 always appears with multiplicity one, so that we can still
apply the proof of Proposition 3.10 as before. �

4. Integrable multiplicity

Integrable multiplicity deals with the number of exponential factors associated to
the invariant algebraic curve. In accordance with our policy to consider only the
‘generic’ case of an irreducible and reduced curve f = 0, we shall restrict the
exponential coefficients we consider to ones whose denominators are just powers
of f . We also assume that X acts nontrivially on f = 0 (otherwise, we divide X
by an appropriate power of f ).

4A. Definition of integrable multiplicity.

Definition 4.1. We say that an exponential factor associated to an invariant alge-
braic curve f = 0 is of order k if it can be written in the form

h = exp(g/ f k)

where f does not divide g and the degree of g is at most k times the degree of f .
Any such f and g must obey the equations

(4-1) X ( f ) = f L f and X (g) = kgL f + f k Lh,

for some polynomial Lh of degree at most d −1. We call g/ f k the exponential
coefficient of the exponential factor.

If we have two exponential factors of the same order associated to the same
curve, exp(g/ f k) and exp(g′/ f k) say, then X (g′/g) = 0 on f = 0 from (4-1). If
f is of degree n, then g and g′ are of degree at most kn, by definition. Since f is
irreducible and X acts nontrivially on f = 0, g′/g must be equal to some constant
c on f = 0, and hence g′

= cg + f g′′ for some polynomial g′′ of degree at most
(k−1)n. We can therefore replace the second exponential factor by an exponential
factor exp(g3/ f k−1) of order k−1. Repeating this process, we can replace any set
of exponential factors by ones with strictly increasing orders. In general, there may
be gaps in the sequence of the orders of these exponential factors.

Definition 4.2. We shall say that the invariant algebraic curve f = 0 has integrable
multiplicity m with respect to X if m is the largest integer for which the following
is true: there are m−1 exponential factors exp(gj/ f j ), j = 1, . . . , m−1, with
deg gj ≤ j deg f , such that each gj is not a multiple of f .

If g/ f is a rational first integral with deg g ≤deg f , then the integrable multiplic-
ity is infinite, taking exp(gi/ f i ) as the exponential factors. The converse follows
from Theorem 5.3 and the equivalence of integrable and algebraic multiplicity
shown in Section 5 below.
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4B. Multiplicity and integrable multiplicity. We show that the integrable multi-
plicity of a curve is the same as its (infinitesimal) multiplicity. We use the as-
sumption that the curve f = 0 is irreducible and reduced in an essential way. The
generalization of these results, and the ones in the following sections, to reducible
curves is still an open and interesting problem.

Theorem 4.3. Let X be a polynomial vector field and f = 0 an irreducible and re-
duced invariant algebraic curve. The integrable multiplicity and the (infinitesimal)
multiplicity of the curve are the same.

Proof. This follows from Propositions 4.4 and 4.5. �

Proposition 4.4. The integrable multiplicity is at least as great as the multiplicity.

Proof. Suppose the vector field X has a nondegenerate invariant algebraic curve of
order k,

F = f0 + ε f1 + · · · + εk−1 fk−1,

based on f ; by definition, f0 = f and f1/ f0 is a nonconstant function. Let

LF = L0 + εL1 + · · · + εk−1Lk−1

be the cofactor of F . A simple calculation shows that the logarithm of F can be
written as

log F = log f0 + ε
g1

f0
+ . . . εk−1 gk−1

f k−1
0

for some polynomials gj of degree at most j deg f0.
(Note that our use of logarithmic terms is mainly formal: if we need an analytic

expression, we can take any branch of log f0 as an analytic function to represent
this; but we will mainly consider log f0 as an element in some appropriate differen-
tial field extension of C(x, y). Similarly, log F will denote a quantity in K [ε]/(εk),
where K is some differential extension of C(x, y) satisfying δ(log F) = δF/F , for
δ = d/dx or d/dy.)

In addition, the polynomials gj can be expressed as polynomials of the fi for
i = 0, . . . , j :

(4-2) gj = Pj ( f0, . . . , fj ) =
(−1) j−1

j
f j
1 + f0 Qj ( f0, . . . , fj )

for some polynomials Pj and Qj . In particular, the polynomials gj and f0 are
coprime. Now, X (log F)= LF , and it follows directly that the functions exp(gi/ fi ),
i = 1, . . . , k−1, are exponential factors of X whose cofactors are just the L i . �

Proposition 4.5. The multiplicity is at least as great as the integrable multiplicity.

Proof. Suppose that there exists polynomials g1, . . . , gm−1 such that exp(gj/ f j )

are exponential factors of order j for j = 1, . . . , m−1. We wish to find fi , for
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i = 1, . . . , m−1 such that F = f0 + ε f1 + · · · + εm−1 fm−1 ∈ C[x, y, ε]/(εm) is a
nondegenerate generalized invariant algebraic curve of order m based on f .

When m = 2 the proposition follows directly by taking f1 = g1. We proceed
by induction, supposing that the proposition holds for m = k and wishing to prove
the statement for m = k + 1. In fact, we take a stronger statement as our inductive
hypothesis: there exist constants αi j such that

(4-3) F = exp
(

log f0 + ε
g̃1

f0
+ . . . εk−1 g̃k−1

f k−1
0

)
is a generalized invariant algebraic curve of order k, with g̃i =

∑i
j=1 αi j f i− j

0 gj

and αi i 6= 0 for all 0 < i < k.
Without loss of generality, by the inductive hypothesis we can replace the gj by

the g̃j , j = 1, . . . , k−1, as this takes exponential factors to exponential factors of
the same order. Thus, there are polynomials fi , i = 0, . . . , k−1, of degree at most
n satisfying (3-4) for some polynomials L i ; the gi are given by (4-3).

Suppose now that we have an exponential factor exp(gk/ f k) with gk coprime to
f . We set

F ′
= f0 + ε f1 + · · · + εk−1 fk−1,

which satisfies X (F ′) = F ′L F ′ mod εk+1, with

L F ′ = L0 + εL1 + · · · + εk−1Lk−1 + εk L ′

k and L ′

k = −

k−1∑
i=1

fi Lk−i

f0
.

We calculate the logarithm of F ′, as before, to get

log F ′
= log f0 + ε

g1

f0
+ . . . εk−1 gk−1

f k−1
0

+ εk g′

k

f k
0

,

for some polynomial g′

k of order at most k deg f0, which must satisfy

(4-4) X (g′

k) = kL0 g′

k + f k
0 L ′

k = kL0 g′

k − f k−1
0

k−1∑
i=1

fi Lk−i .

From (4-2) we know that g′

k = (−1)k−1 f k
1 /k on f0 =0, and hence X (gk/ f k

1 )=0
on f0 = 0. It follows that gk = ck f k

1 on f0 = 0 for some constant ck . By hypothesis,
ck 6= 0, otherwise f would divide gk . Thus, gk = ck(−1)k−1k(g′

k + f0g′

k−1) for
some polynomial g′

k−1 of degree at most (k−1)d . We can then show that

X (g′

k−1) = (k − 1)L0 g′

k−1 + f k−2
0

( k−1∑
i=1

fi Lk−i + (−1)k−1 f0 Mk/ckk
)
,

where Mk is the cofactor of exp(gk/ f k).
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Now, we find that X (g′

k−1/ f k−1
1 ) = 0 on f0 = 0, and so

g′

k−1 = ck−1(−1)k−2(k−1)gk−1 + f0 g′

k−2

for some constant ck−1, where g′

k−2 is a polynomial of degree at most (k−2)d
which satisfies

(4-5) X (g′

k−2) = (k − 2)L0 g′

k−2

+ f k−3
0

( k−1∑
i=1

fi Lk−i + (−1)k−1 f0 Mk/ckk − ck−1(−1)k−2(k−1) f0Lk−1

)
.

It is clear that we can repeat this last step until we get to g′

1 of degree d satisfying

(4-6) X (g′

1) = L0g′

1 +

k−1∑
i=1

fi Lk−i

+ f0

(
(−1)k−1 Mk/ckk − ck−1(−1)k−2(k−1)Lk−1 − · · · − c2(−1)2 L2

)
.

Thus, we can take fk = g′

1 to get a generalized invariant algebraic curve

F̃ = f0 + ε f1 + · · · + εk fk

of order k+1, taking

Lk = (−1)k−1 Mk/ckk − ck−1(−1)k−2(k−1)Lk−1 − · · · − c2(−1)2 L2

in the cofactor. The proof follows by induction and a chase through the defining
equations for the g′

i . �

Remark 4.6. It follows directly from this proof that the span of the cofactors of
the exponential factors is equal to the span of the L i of the generalized curve F .

5. Algebraic multiplicity

The definitions and results of this section come from [Pereira 2001]. We state
and prove simplified versions adapted to the complex plane. In fact, the notion
of extactic curves already appears in the work of Lagutinskii (for more details see
[Dobrovol’skii et al. 1998]).

5A. Definition. As usual, we assume that the vector field X is reduced.

Definition 5.1. If X is a vector field on C2, the n-th extactic curve of X , En(X), is
given by the equation

(5-1) det


v1 v2 . . . vl

X (v1) X (v2) . . . X (vl)
...

... . . .
...

X l−1(v1) X l−1(v2) . . . X l−1(vl)

 ,
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where v1, v2, . . . , vl is a basis of Cn[x, y], the C-vector space of polynomials in
C[x, y] of degree at most n, and we take l = (n + 1)(n + 2)/2, X0(vi ) = vi , and
X j (vi ) = X j−1(X (vi )). A point where En(X) = 0 is called an n-inflection point
of the vector field X .

Observe that the definition of an extactic curve is independent of the chosen
basis of Cn[x, y]. A 1-inflection point is either a critical point of the vector field or
the trajectory at that point has an inflection point in the usual sense, that is, it has a
triple intersection point with some line. In general, given a trajectory of a generic
vector field at a nonsingular point, we can find a curve of degree n which will have
an n(n+3)/2-fold intersection with the trajectory at that point (that is, the number
of effective parameters of a general plane curve of degree n). An n-inflection point
is either a critical point of the vector field or a point where the vector field has an
tangency with a curve of degree n at that point which is greater than n(n+3)/2.
This can be clearly seen if we consider the Taylor series expansion for the time
evolution of a function of x and y along the trajectory starting at the point (x0, y0):

(5-2) F(x(t), y(t)) = F(x0, y0) + X (F)|(x0,y0) t + X2(F)|(x0,y0) t2/2 + . . . .

In our case, the function F is a curve of degree n, and hence a linear combination
of the first row of the extactic matrix at the point (x0, y0). In fact, it is clear that the
other coefficients of the Taylor series (5-2) are given by the same linear combina-
tion of the other rows of the extactic matrix at (x0, y0). Thus, the determinant of the
extactic matrix vanishes at (x0, y0) if and only if we can find a linear combination
of its columns which is zero, and this is the same as finding a linear combination
of monomials of degree n or less for which the first (n+1)(n+2)/2 terms in the
series (5-2) vanish.

Proposition 5.2. Every algebraic curve of degree n invariant by the vector field X
is a factor of En(X).

Proof. Let f be an invariant algebraic curve of degree n. As it was observed, the
choice of the basis of the C-vector space plays no role in the definitions of extactic
curve, and therefore we can take v1 = f . Since X i ( f ) is divisible by f for all i , it
is clear that f must be a factor of En(X), since it divides every element in the first
column of its corresponding matrix. �

Theorem 5.3. Let X be a vector field on C2. We have En(X) = 0 and En−1(X) 6= 0
if and only if X admits a rational first integral of exact degree n.

Proof. The theorem will follow from the simpler statement that the vanishing of
En(X) is equivalent to the existence of a rational first integral of degree at most
n. Clearly, if such a first integral exists, then the level curves of the first integral
are just curves of degree at most n, and hence invariant. By Proposition 5.2, these
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must factor out of the extactic En(X). Since there are an infinite number of these
curves, we have En(X) ≡ 0.

Conversely, if En(X) ≡ 0, then the rows of the extactic matrix are linearly de-
pendent, and hence there are rational functions αi ∈ C(x, y) such that

(5-3) Nj :=
k∑

i=1
αi X j (vi ) = 0, j = 0, . . . , k−1,

when k = (n+1)(n+2)/2. Now, take k to be the smallest value such that there exist
rational functions αi for i =1, . . . , k, not all zero, and vi ∈Cn[x, y] for i =1, . . . , k
linearly independent over C, such that (5-3) holds. From the discussion above, we
must have k ≤ (n+1)(n+2)/2, and it is also clear that k > 1. Without loss of
generality, we can also assume that αk = 1.

Now,

X (Nj ) − Nj+1 =

k∑
i=1

X (αi ) X j (vi ) = 0, j = 0, . . . , k−2,

and so, from the minimality of k, we see that the terms X (αi ) must all vanish.
Hence, each of the αi are either rational first integrals or constants. However, if all
the αi are constants, then N0 = 0 is a nontrivial relationship on x and y, which is
not possible. Thus, at least one of the αi must give a rational first integral of the
vector field X .

Finally, we note that, since the αi are constant on each trajectory, with at least
one of the αi not identically zero, then for almost all trajectories N0 gives a non-
trivial polynomial of degree at most n which vanishes on that trajectory.

Therefore, if r(x, y)/s(x, y) is a rational first integral of minimal degree greater
than n, then its level curves r(x, y) − λs(x, y) = 0 must factorize into curves of
degree at most n for almost all λ. By Bertini’s second theorem (see for example
[Kleiman 1998]), we can find polynomials u(x, y) and v(x, y) such that

r(x, y) − λs(x, y) = φ1
(
u(x, y), v(x, y)

)
− λφ2

(
u(x, y), v(x, y)

)
,

where φ1 and φ2 are homogeneous nonlinear polynomials of the same degree.
Thus,

r/s = φ1(u/v, 1)/φ2(u/v, 1),

and it is easy to see that u/v defines a rational first integral of smaller degree
than r/s. By repeating this argument, we eventually find a rational first integral of
degree at most n. �

Definition 5.4. An invariant algebraic curve f of degree n for the vector field X
has algebraic multiplicity k when k is the greatest positive integer such that the
k-th power of f divides En(X).
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Example 5.5. Consider the 2-parameter family of vector fields which appears in
[Schlomiuk and Vulpe 2004]:

X(t,b) =
(
2t2

− 2x2) ∂

∂x
+

(
b − 4xy − 2t3 y2) ∂

∂y
.

The extactic curve E1(X) of X(t,b) is

y(x − t)(x + t)
(

x + t3 y − t

√
2+bt

2

)(
x + t3 y + t

√
2+bt

2

)
= y l(1)

t l(2)
t l(3)

t l(4)
t .

It follows from Proposition 5.2 that every invariant straight line must be contained
in the first extactic curve. It can be easily verified that y is not invariant by any
vector field of the form X(t,b) with b 6= 0, and that, for every i ∈ {1, 2, 3, 4}, l(i)t
is an invariant straight line for X(t,b). When t = 0, the line x = 0 therefore has
algebraic multiplicity 4.

The extactic curve for a line in a quadratic vector field has degree at most 5.
However, a computational search shows that there is no nontrivial quadratic vector
field with a line of multiplicity 5. Interestingly, the vector field

x(1 − x)
∂

∂x
+ y(1 − y)

∂

∂y

has 5 invariant lines, which means that there is no nontrivial degeneracy of the
family of vector fields with 5 invariant lines so that all the lines coalesce. Of
all quadratic vector fields with five lines (counting multiplicity) the only other
combination which seems possible is given by the vector field

x(1 − x)
∂

∂x
+ y(1 − 2x)

∂

∂y
,

with x = 0 and x = 1 of multiplicity two and y = 0 of multiplicity one.

5B. Multiplicity and algebraic multiplicity. We now want to show that algebraic
multiplicity is the same as the infinitesimal multiplicity. The proof is fairly in-
volved, since it is not obvious a priori how to construct a generalized invariant alge-
braic curve from the extactic. For example, if we consider the line x =0 in Example
5.5 when t = 0, there is a generalized invariant algebraic curve F = x +ε+ε2 2y/b
of order four (that is, f3 = 0 in this case).

Theorem 5.6. Let X be a polynomial vector field and f = 0 an irreducible and re-
duced invariant algebraic curve. The algebraic multiplicity and the (infinitesimal)
multiplicity of the curve are the same.

Proof. This follows from Propositions 5.7, 5.8, and 5.10 below. �
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If S is an element of C[x, y, ε] or C[x, y, ε]/(εk), then we shall use the notation
Si or [S]i to denote the coefficient of εi .

Proposition 5.7. Under the conditions in Theorem 5.6 above, the algebraic multi-
plicity is at least as great as the multiplicity.

Proof. Let F be a nondegenerate generalized invariant algebraic curve of order k
based on f0 = 0, with cofactor LF , and let {v1, . . . , vl}, l = (n+1)(n+2)/2, be a
basis for Cn[x, y] such that v1 = f0. If we express each fi as ai f0 + f ′

i , where f ′

i
lies in the span of the vj for j > 1, then we can write

F = p(ε) f0 +

k−1∑
i=1

f ′

i ε
i , p(ε) = 1 +

k−1∑
i=1

aiε
i

Without loss of generality, we can replace F by (1/p(ε))F and assume that each
of the fi lie in the span of the vj , j > 1.

We define
Fa

= f k
0 F−1

= f k−1
0 + ε f k−2

0 h1 + · · · + εk−1hk−1

for some polynomials hj of degree at most j deg f . Clearly,

X (Fa) = (kL0 − LF )Fa.

We also define
Sr

= Fa F (r), where F (r)
= X r (F).

Under this notation,

(5-4) X (Sr ) = Sr+1
+ (kL0 − LF )Sr .

Therefore, if f m
0 divides St , then it also divides St+1. Since S0

= Fa F = f k
0 , we

see that f k
0 divides all Sr , r ≥ 0. As above, we let Sr

k−1 denote the coefficient of
εk−1 in Sr ; then,

(5-5) Sr
k−1 = Fa

k−1 X r ( f0) +

k−1∑
i=1

Fa
k−i−1 X r ( fi ).

But a simple calculation from the definition of Fa shows that Fa
k−1 can be written

as (− f1)
k−1

+ f0rk−1 for some polynomial rk−1. In particular, it is not a multiple
of f0. Now, (5-5) shows that

(5-6) Fa
k−1 X r f0 +

l∑
i=2

αi X rvi ∈ f kC[x, y]

for all r ≥ 0, where the αi are polynomials derived from Fa
j , j = 0, . . . , k−2.

Finally, we consider the extactic determinant (5-1). If we add αi/Fa
k−1 times the

vi -column to the v1-column for each i = 2, . . . , l, then, by (5-6), the first column
is divisible by f k , which finishes the proof. �
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Proposition 5.8. Let f = 0 be an irreducible invariant algebraic curve of degree
n of the polynomial vector field X of degree d, with cofactor L. If f appears as a
multiple factor of En , then there exists a polynomial g of degree at most n, not a
multiple of f , for which exp(g/ f ) is an exponential factor of X.

Proof. Let En represent the matrix from which En is obtained. We assume, as
always, that X does not act trivially on f = 0. Let m f represent the ideal f C[x, y];
X descends to a derivation δ on the ring Of =C[x, y]/m f and hence to the quotient
field K f . Let l = (n + 1)(n + 2)/2, as before.

Consider the matrix En , where we choose the basis {v1, . . . , vl} of Cn[x, y] so
that v1 = f . We have X rv1 = f (X + L)r 1, where we consider L as the operator
given by multiplication by L (which therefore does not commute with X ). Thus,
En = f det E ′

n , where E ′
n is obtained from En by removing the factor f from the

first column.
If there is another factor of f in En , then we have det E ′

n = 0 on f = 0. We now
reduce this condition modulo m f and work over the field K f . We have det Ē ′

n = 0,
where the bar represents reduction modulo m f .

Since the determinant of Ēn is zero, we have elements α1, α2, . . . , αl of K f , not
all zero, such that

(5-7) Ar
:= α1(δ + L̄)r 1 +

l∑
i=2

αiδ
r v̄i = 0,

for r = 0, . . . , l−1.

Lemma 5.9. If α1 = 0, there are no solutions of (5-7) for r = 0, . . . , l−2.

Proof. Take q to be the smallest integer such that there exist elements αi1, . . . , αiq

of K f , not all zero, with

(5-8) Br
:=

q∑
j=1

αij δ
r v̄ij = 0, r = 0 . . . q−1.

One of the αik must be nonzero, and, by scaling (5-8), we can assume that αik = 1.
It is clear that there are no nontrivial solutions of (5-8) for q = 1. If q > 1, we

find from (5-8) that

δBr
− Br+1

=

q∑
j=1

δαij δ
r v̄ij = 0, r = 0 . . . q − 2.

and hence all the δαij must vanish by the minimality of q (since δαik = 0). Hence,
all the αij lie in C. However, it is not possible for a linear combination (over C) of
the v̄i , i = 2, . . . , l, to vanish on f = 0. This is because the corresponding linear
combination of the vi , i = 2, . . . , l, would give a polynomial of degree n which
vanished on f = 0. However, since f is irreducible as a polynomial and of degree
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n, g must be a constant multiple of f , and hence { f, v2, . . . , vl} would not be a
basis for Cn[x, y]. �

From this proof of Lemma 5.9, we must have an α1 6= 0 and elements α2, . . . , αl

of K f such that (5-7) holds. Scaling (5-7), we can assume that α1 = 1 without loss
of generality. Clearly, one of the αi , i > 1, must be nonzero also; we will call this
value αk . Now, (5-7) implies that

(δ + L̄)Ar
− Ar+1

=

l∑
i=2

(L̄αi + δαi )δ
r v̄i = 0,

for r =0, . . . l−2. Thus, from Lemma 5.9, L̄αi +δαi =0 for each i >1. Therefore,
δ(αi/αk)= 0 for each i > 1, which means that αi = qi αk for some constants qi ∈ C.

Finally, we take g to be the polynomial

(5-9) g = −

l∑
i=2

qivi ,

and ḡ the image of g in K f . Since qk = 1, g is not a multiple of f . The first two
equations of (5-7) now give

(5-10) 1 − αk ḡ = 0 and L − αkδḡ = 0.

Thus,

(5-11) X (g) − gL = f M

for some polynomial M which must be of degree at most d −1. �

Theorem 5.10. Let f = 0 be an irreducible invariant algebraic curve of degree n
of the polynomial vector field X of degree d. If f appears with multiplicity m as
a factor of En , then there exists a nondegenerate generalized invariant algebraic
curve F of order m based on f .

Proof. We proceed by induction. Proposition 5.8 proves the case m = 2. We
assume that we have found a nondegenerate generalized invariant algebraic curve
of order k,

F = f0 + ε f1 + · · · + εk−1 fk−1,

with f1 not a multiple of f0 and with cofactor

LF = L0 + εL1 + · · · + εk−1Lk−1,

and try to construct one of order k+1 if f k+1 divides En . We follow the pro-
cess described in the first paragraph of the proof of Proposition 5.7, take a basis
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{ f, v2, . . . , vl} for Cn[x, y] and divide F by an appropriate unit in C[ε]/(εk) so
that, without loss of generality, we can assume that

(5-12) F = f0 +

l∑
i=2

εq i (ε)vi ,

for some polynomials
q i

=

k−2∑
j=0

q i
j ε

j ,

and hence,
fj =

l∑
i=2

q i
j−1vi , j = 1, . . . , k−1.

As in Proposition 5.8, we want to work over K f (or, more generally, K f [ε]).
To simplify notation, any calculations taken over K f [ε] rather than C[x, y] will be
denoted by “mod ( f0)”, and we shall drop the bars employed previously.

We define F̃ by
F̃ = f1 + ε f2 + · · · + εk−2 fk−2.

It follows from (3-2) that we have

(5-13) X F̃ = F̃ LF mod ( f0, ε
k−1).

We also take
M̃r

= F̃−1 F̃ (r),

which satisfies the equation

(5-14) X (M̃r ) = M̃r+1
− LF M̃r mod ( f0, ε

k−1).

Thus,
M̃0

= 1 and M̃1
= LF mod ( f0, ε

k−1).

Once again, we denote the coefficient of εi in some expression S by Si or, for
more complex expressions, by [S]i . Thus, from (5-14) we get

(5-15) M̃r+1
q = X M̃r

q +(LF M̃r )q = X M̃r
q +L0 M̃r

q +· · ·+Lq M̃r
0 mod ( f0, ε

k−1),

for q < k − 1.
From the proof of Proposition 5.7, we know that f k

0 divides Sr for each r , and
so we can define a sequence of polynomials

Mr
=

1
f k
0

Sr
= F−1 F (r),

which satisfy

(5-16) X (Mr ) = Mr+1
− LF Mr , M0

= 1, M1
= LF .

Comparing (5-16) with (5-14), we see that

Mr+1
− M̃r+1

= X (Mr
− M̃r ) + LF (Mr

− M̃r ) mod ( f0, ε
k−1),
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and hence, by induction,

(5-17) Mr
= M̃r mod ( f0, ε

k−1).

The proof now follows along similar lines to Proposition 5.8. We know that

(5-18) Sr
k−1 = Fa

k−1 f (r)
0 +

k−1∑
i=1

Fa
k−i−1 X r ( fi ).

Since Fa
k−1 = (− f1)

k−1 mod ( f0), we have Fk−1 ∈ K ∗

f .
Thus, assuming that the matrix En is expressed with respect to the basis { f,

v2, . . . , vl}, we can post-multiply En by
Fa

k−1
a2 1 0

a3 0
. . .

...
...

. . . 1

al 0 . . . 0 1


without changing the multiplicity of f0 appearing in its determinant. We call this
new matrix E ′

n . If we take

ai =

k−1∑
j=1

Fa
k− j−1q i

j−1,

then it is clear from (5-18) that the first column of E ′
n is given by Sk−1

r while the
other columns remain the same. If f k+1

0 divides En , then it must also divide det E ′
n .

However, there is a factor f k
0 in every term in the first column of E ′

n . We therefore
divide this first column by f k

0 and get a new matrix E ′′
n , whose first column is

given by the elements Mr
k−1 and which has at least one factor of f0 dividing its

determinant.
Working over K f , since the determinant of E ′′

n is zero, we can find nonzero
elements αi in K f , for i = 1, . . . , l, such that

(5-19) Cr
:= α1 Mr

k−1 +

l∑
i=2

αiδ
kvi = 0 mod ( f0), r = 0, . . . , l−1.

We know from Lemma 5.9 that α1 cannot be zero, and so, without loss of generality,
we take it to be 1.

Now, by differentiating (5-19) we get

Cr+1
− (δ + L0)C

r

= L1 Mr
k−2 + L2 Mr

k−3 + . . . Lk−1 Mr
0 −

l∑
i=2

(δαi + L0αi )δ
kvi = 0 mod ( f0),
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for r = 0, . . . , l−2. However, Mr
i = M̃r

i mod ( f0) for i < k − 1, and so

f1
(
L1 M̃r

k−2 + L2 M̃r
k−3 + . . . Lk−1 M̃r

0
)
−

l∑
i=2

δ( f1αi )δ
kvi = 0 mod ( f0),

for r = 0, . . . , l−2. The first term in this expression can be seen to be

f1
[
(LF − L0)M̃r ]

k−1.

Now, from (5-12), F̃ =
∑l

i=2 q i (ε)vi mod ( f0), and so

l∑
i=2

δ( f1αi )δ
rvi = f1

[
(LF − L0)M̃r ]

k−1(5-20)

=
[
(LF − L0)F̃−1 f1

l∑
i=2

q i (ε)δrvi
]

k−1 mod ( f0),

which gives

l∑
i=2

(
δ( f1αi ) −

[
(LF − L0)F̃−1 f1q i (ε)

]
k−1

)
δrvi = 0 mod ( f0),

for r = 0, . . . , l−2. Lemma 5.9 thus gives

δ( f1αi ) =
[
(LF − L0)F̃−1 f1q i (ε)

]
k−1 mod ( f0), i = 2, . . . , l.

We write q i
0 = q i (0), and so q̃ i (ε) = q i

0 − q i (ε). From (5-13), we get

δ
(
F̃−1 f1q̃ i (ε)

)
= F̃−1 f1(L0 − LF )q̃ i (ε) mod ( f0).

Thus,

δ
(

f1αi +
[
F̃−1 f1q̃ i (ε)

]
k−1

)
=

[
F̃−1 f1(L0 − LF )q i

0
]

k−1 mod ( f0).

Since, by hypothesis, F is nondegenerate, one of the q i
0’s must be nonzero. Without

loss of generality, we shall assume it to be ql
0. Then,

δ
(

f1

(
αi −

q i
0

ql
0
αl

)
+

[
F̃−1 f1

(
q̃ i (ε) −

q i
0

ql
0

q̃l(ε)
)]

k−1

)
= 0 mod ( f0).

So, there exist constants ci
k such that

f1

(
αi −

q i
0

ql
0
αl

)
+

[
F̃−1 f1

(
q̃ i (ε) −

q i
0

ql
0

q̃l(ε)
)]

k−1
= ci

k mod ( f0).
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We set fk = −
∑l

i=2 ci
kvi . Equation (5-19) gives

Mr
k−1 = −

l∑
i=2

αiδ
rvi

=

l∑
i=2

(
−

ci
k

f1
−

q i
0

ql
0
αl +

[
F̃−1

(
q̃ i (ε) −

q i
0

ql
0

q̃l(ε)
)]

k−1

)
δrvi

=
f (r)
k

f1
−

αl

ql
0

f (r)
1 +

[
F̃−1

(
F̃ (r)

−
q̃l(ε)

ql
0

f (r)
1

)]
k−1

mod ( f0),

for r = 0, . . . , l−2, where f (r)
i = δr fi . Taking the cases r = 0 and r = 1 in the

previous equation, we get

0 =
fk

f1
−

αl

ql
0

f1 +

[
F̃−1

(
F̃ −

q̃l(ε)

ql
0

f1

)]
k−1

mod ( f0),

Lk−1 =
δ fk

f1
−

αl

ql
0

L0 f1

+

[
F̃−1

(
LF F̃ − [LF F̃]k−1ε

k−1
−

q̃l(ε)

ql
0

L0 f1

)]
k−1

mod ( f0),

which we rearrange to give

Lk−1 =
δ fk − L0 fk

f1
+

[
LF − L0 − F̃−1

[LF F̃]k−1ε
k−1]

k−1 mod ( f0).

Thus,
δ fk = L0 fk + L1 fk−1 + · · · + Lk−1 f1 mod ( f0).

It follows that there exists a polynomial Lm , necessarily of degree at most d −1,
such that

X ( fk) = L0 fk + L1 fk−1 + · · · + Lk−1 f1 + Lk f0.

Thus, it is clear that

F ′
= f0 + ε f1 + ε2 f2 + · · · + εk fk,

is a generalized invariant algebraic curve of order k+1. This completes the induc-
tion. �

6. Geometric multiplicity

6A. Definition. Let X be a polynomial vector field of degree d, and f = 0 an
invariant algebraic curve of degree n which is irreducible and reduced.

Definition 6.1. An invariant algebraic curve f = 0 of degree n of the vector
field X has geometric multiplicity m if m is the largest integer for which there
exists a sequence of vector fields (X i )i>0 of bounded degree, converging to h X , for
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some polynomial h, not divisible by f , such that each Xr has m distinct invariant
algebraic curves, fr,1 = 0, . . . , fr,m = 0, of degree at most n, which converge to
f = 0 as r goes to infinity. If we set h = 1 in the definition above, then we say that
the curve has strong geometric multiplicity m.

By convergence of invariant algebraic curves or vector fields we mean the con-
vergence in the parameter space of the coefficients of their defining polynomials.

The condition that the fr,i are also polynomials of degree n is the same as asking
that the curves defined by them tend to the curve f = 0 alone, and not to a multiple
of f = 0 or to a product f g = 0 with some other algebraic curve.

Note that the definition of geometric multiplicity a priori allows that it take the
value infinity. If this is the case, however, it will follow from the equivalence
of geometric and algebraic multiplicity that the vector field X has a rational first
integral of degree n.

We were not able to answer this interesting question:

Question 6.2. Does the strong geometric multiplicity represent a restriction on the
definition of geometric multiplicity?

We shall show that the definition above allows us to find a family of curves
parameterized by a continuous variable.

Proposition 6.3. Let f = 0 be an algebraic curve of degree n invariant by the
vector field X. If the geometric multiplicity of f = 0 is m, there exists an analytic
1-parameter family of polynomial vector fields X̃ t of fixed degree, with t ∈ (−ε, ε)

and analytic in t , such that, for each t ∈ (−ε, ε) \ {0}, X̃ t has m distinct invariant
algebraic curves f̃t,1, . . . , f̃t,m , of degree at most n, converging to f as t tends to
zero, and X̃0 = h X.

Proof. Let d ′ be the maximum degree of the Xr , and take the parameter space
consisting of all the coefficients of a general vector space of degree d ′ together
with m general polynomials of degree n (to represent the curves) and m general
polynomials of degree d ′

−1 (to represent the cofactors). The condition for all
m curves to be invariant is given by a number of quadratic relations between the
coefficients. We let X represent the resulting algebraic variety.

The conditions that all the curves are distinct and that the curves and the vector
field are nontrivial gives a subvariety Y of X. The hypothesis of the theorem there-
fore tells us that the point p ∈ Y, representing the vector field X0 and m copies of
the curve f , lies in the closure of X \ Y. An infinite number of the Xr must lie in
at least one irreducible component X0 of X of dimension d > 0. We must therefore
have p ∈ Y0, where Y0 = Y ∩ X̄0 has at dimension at most d −1. If d > 1, we
can reduce this dimension by restricting our interest to the intersection of X0 with
a general hypersurface through p. If we repeat this procedure, we end up with a
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variety V passing through p such that X0 ∩ V is of dimension one and Y0 is of
dimension zero. We can thus find a uniformizing parameter for a neighborhood of
p in X0 ∩ V , and hence an analytic parametrization of the associated vector fields.

�

In the following sections, we shall show that geometric multiplicity is the same
as multiplicity, under the usual assumptions that the algebraic curve f = 0 is ir-
reducible and reduced. In Section 6B we show that the multiplicity is as least as
great as the geometric multiplicity. The final two sections show the converse. In
Section 6C we give a description of all families of polynomial vector fields with
prescribed generalized algebraic curves. This is a result of general interest, but will
be used in a simple form in the final Section 6D, where we show how to generate
a perturbation of the vector field which generates a number of invariant algebraic
curves from the curve f = 0 which is at least as great as the multiplicity of f = 0.
In general we only show that the perturbation is in the class of rational vector fields,
but, under some genericity conditions, we show that the perturbation can be chosen
to be polynomial, and hence in these cases the integrable multiplicity equals the
strong geometric multiplicity.

6B. Multiplicity and geometric multiplicity. We first show that geometric multi-
plicity is at least as great as the multiplicity. The most direct method is via algebraic
multiplicity, using the equivalence established in Section 5B.

Proposition 6.4. The algebraic multiplicity of a curve is at least as great as the
geometric multiplicity.

Proof. Suppose that the degree of f is n, and let Xk be a sequence of vector fields
of degree d ′ converging to X0 = h X , with m distinct invariant algebraic curves
fk,1, . . . , fk,m converging to f . By Proposition 5.2, the product fk,1 . . . fk,m must
divide En(Xk), and so f m divides En(X0) in the limit. But the (r+1)-th row of
En(X0) is given by

(h X)r (v1, . . . , vl) = hr X r (v1, . . . , vl) +

r−1∑
j=0

mj (h)X j (v1, . . . , vl)

where l = (n+1)(n+2)/2 and mj (h) is a polynomial in h and its derivatives X i (h)

for i < r . Thus, the extactic matrix associated to En(X0) can be obtained from
the extactic matrix associated to En(X) by premultiplying by a lower-triangular
matrix with diagonal terms 1, h, h2, . . . , hl−1. Taking determinants, we find that
En(X0) = hl(l+1)/2 En(X), and hence f m divides En(X) also. �

We present an alternative proof of this proposition, which shows in a direct way
how exponential factors arise from the coalescence of invariant algebraic curves.
We will use this again in Section 8 to discuss the completion of the Darboux theory
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of integrability to limits of families of Darboux first integrals or integrating factors.
We use the notation of Proposition 6.3, apart from dropping the tilde over the X .

Proposition 6.5. Let X t , t ∈ (−ε, ε), be an analytic 1-parameter family of vector
fields of degree d such that, for each t 6= 0, X t has m distinct invariant algebraic
curves ft,i = 0, i = 1, . . . , m, of degree n, varying analytically with t and, as
t tends to 0, converging to an irreducible and reduced curve f = 0 of degree n.
There exist analytic functions `i, j (t), i = 1, . . . , m, j = 1, . . . , m−1, and integers
nj such that, as t tends to 0, the functions

(6-1)
1

tnj

r∑
i=1

`i, j log ft,i , j = 1, . . . , m−1

tend to exponential coefficients of X0 of order j .
The equivalent statement in terms of formal power series in t is also true if

we replace the idea of a family of invariant algebraic curves by elements ft,i of
CJtK[x, y] satisfying X ( ft,i ) = L t,i ft,i for some L t,i ∈ CJtK[x, y], and take the
logarithms in a formal sense as mentioned before.

Remark 6.6. If the cofactors of the ft,i are denoted by L t,i , then the cofactors of
the corresponding exponential factors will be given by

L j = lim
t→0

1
tnj

r∑
i=1

`i, j L t,i , j = 1, . . . , m−1.

Choosing ε small enough, the subspace σt ⊂ Cd−1[x, y] spanned by the cofac-
tors L t,i for t 6= 0 is of fixed dimension, say N . If we consider the space of
N -dimensional subspaces of Cd−1 (parameterized by the Grassmannian), then the
space σ0 generated by the L j , j = 1, . . . , m−1, and the cofactor of f must lie in
the limit of the σt as t tends to 0.

Proof. The proof for the analytic and formal cases are entirely equivalent, so we
only present the formal proof. From the hypothesis, there exist polynomials f (k)

i ∈

C[x, y] of degree at most n such that

ft,i = f + t f (1)
1 + t2 f (2)

2 + . . .

We write
log ft,i = log f +

∑
k>0

g(k)
i

f k ,

where the g(k)
i are polynomials of degree at most kn.

It is sufficient to show that, via (6-1), we can generate m−1 linearly indepen-
dent exponential coefficients of order at most m−1, as the conclusion will follow
directly from the arguments after Definition 4.1.

Consider the quantity
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M =

m∑
i=1

`i Ki d ft,i

K
,

where

K =

m∏
i=1

ft,i , Ki =
∏
j 6=i

ft, j ,

and `i ∈ CJtK, and where d ft,i represents the differential of ft,i with respect to x
and y but not t . That is, it is an element of CJtK ⊗ �mn , where �k is the space of
differentials a(x, y)dx + b(x, y)dy with a and b in Ck−1[x, y]. Since

M =

m∑
i=1

`i
d ft,i

ft,i
= d

n∑
i=1

`i log ft,i =

n∑
i=1

`i

(
log f +

∑
k>0

g(k)
i

f k

)
,

the quantity M is the differential of a function in CJtK ⊗ C(x, y) if and only if∑
`i = 0.
If

∑m
i=1 `i Ki d ft,i = 0, then, from the fact that CJtK[x, y] is a unique factoriza-

tion domain, we see that, if `i is nonzero for some i , then ft,i divides d ft,i . This
is impossible, as it implies that f divides d f , by setting t = 0. Thus, the module
spanned by the Ki d ft,i in CJtK⊗�mn is a free module of dimension m over CJtK,
and the submodule of those elements that are of the form

∑m
i=1 `i Ki d ft,i with∑m

i=1 `i = 0 form a free submodule of dimension m−1.
Suppose we can choose a basis {v1, . . . , vm−1} for this latter space such that,

when the vi are expressed in the form

vi = tni vi,0 + O(tni +1),

the vi,0 are linearly independent over C. Then there exist series `i, j ∈ CJtK with∑m
i=1 `i, j = 0 such that

1
tnj

vj

K
=

m∑
i=1

`i, j Ki d ft,i

K
,

whose value at t = 0 is vj,0/ f m . By our choice of space, this element is the
differential of a rational function in C(x, y), and it is clear this must be of the form
wj/ f m−1 for some polynomial wj ∈ C[x, y] of degree at most (m−1)n. It is also
clear that the wj must be linearly independent, since the vj,0 are, and that they must
be exponential factors, since

X
( wj,0

f m−1

)
= X

(
lim
t→0

1
tnj

r∑
i=1

`i, j log ft,i

)
= lim

t→0

1
tnj

r∑
i=1

`i, j L t,i .

It remains to show that the choice of basis can be made. However, this is not
hard to achieve. At each step, we order the vi according to their respective values
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of ni . If vk,0 depends linearly on vi,0 for i < k, then we have

vk,0 =
∑
i<k

mivi,0

for some constants mi ∈ C, and we can replace vk by

vk −
∑
i<k

mivi tnk−ni .

Thus, at each step of the process we increases the value of
∑m

i=1 ni . If we can
show that this sum is bounded above, then we can only repeat this process a finite
number of times until we find a basis with the desired property.

Now, take a basis {r1, . . . , rp} of �mn and consider the (m−1)× p matrix whose
(i, j)-th entry is the coefficient of rj in vi (an element of CJtK). The determinants of
the (m−1)×(m−1) minors of this matrix are not all zero (since the vi are linearly
independent); so, we can choose one nonzero determinant and write it in the form
ct N

+ O(t N+1), for some integer N and nonzero constant c ∈ C. Clearly, N is an
upper bound for

∑m
i=1 ni and, furthermore, the reduction process above does not

alter this value of N . Hence, our process must terminate after a finite number of
steps. �

Example 6.7. Consider the 2-parameter family X(t,b) given in Example 5.5. For
t 6= 0, the vector field has exactly four invariant straight lines lt,i , for i = 1, . . . , 4.
We compute

lim
t→0

log lt,2 − log lt,1

t
=

2
x
,

lim
t→0

log lt,4 + log lt,3 − log lt,2 − log lt,1

t3 =
4xy − b

2x2 ,

lim
t→0

lt,4 − lt,3 + (b2t2/32 − bt/4 − 1)(log lt,2 − log lt,1)

t4 =
3b3x2

−384xy + 64b
192x3 ,

giving us, when t = 0, three exponential factors

exp 2
x
, exp 4xy−b

2x2 , and exp 3b3x2
−384xy+64b
192x3 ,

in addition to the invariant curve x = 0.

6C. Polynomial systems with prescribed invariant algebraic curves. In this sec-
tion we want to study the set of vector fields which have a fixed set of generalized
algebraic curves. The results given in this section generalize the results in [Christo-
pher et al. 2002] and bear similarities with the work of Walcher [2000] for vector
fields with one invariant curve.
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Given a generalized invariant algebraic curve F of order m, we can realize it
concretely in the space of m × m matrices by taking

ε =



0 1 0 . . . 0

0 1
...

. . . 1 0
0 0 1

0

 ,

so that

(6-2) F = f0 + f1ε + · · · + fm−1ε
m−1

=


f0 f1 . . . . . . fm−1

f0
. . .

...

. . .
. . . ...

0 f0 f1

f0

 .

In the same way we can define LF as a matrix, and (3-2) becomes a matrix equation.
It turns out that this concrete realization of F will give a very convenient notation
for the work in this section.

The next lemma shows how to ‘unfold’ F as a matrix.

Lemma 6.8. Given a generalized invariant algebraic curve F , considered as a
matrix (6-2), we form the polynomials

(6-3) f̃j =

j∑
k=0

j !
( j − k)!

fkη
k,

where η is an independent variable, and define the matrix A = exp(ε/η). If we set

F̃ = diag( f̃m−1, . . . , f̃0),

then the upper-triangular matrix F ′
:= A−1F̃ A = (bi, j ) is given by

(6-4) bi, j =
(m − j)!

(m − i)! ( j − i)!

( d
dη

) j−i
f̃m−i .

In particular, as η tends to zero, F ′ tends to F.

Proof. We first show that the bi, j satisfy the equation

(6-5) bi, j − bi+1, j+1 = ( j − i + 1)ηbi, j+1, bi,i = f̃0.

From the expansion of A = exp(ε/η), we have

F ′
=

∑
i, j

1
i !

1
j !

εi F̃ε j (−1)i

ηi+ j =

∑
k

Bk,
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where
Bk =

∑
j+i=k

1
i !

1
j !

εi F̃ε j (−1)i

ηi+ j .

A simple rearrangement of this formula gives

(6-6) Bkε − εBk = (k + 1)Bk+1η.

Since post-multiplying by ε has the effect of shifting the entries of a matrix to the
right by one column, while premultiplying by ε moves all the entries up by one
row, we see that Bk is just the terms in the k-th diagonal of F ′, and the equation
(6-5) follows directly from (6-6).

Now we show by induction that the bi, j are given by (6-4). Clearly, this is true
when i = j . Furthermore, after some manipulation, the right-hand sides of (6-4)
satisfy the recurrence relations (6-5), as the bi, j — and so the two expressions for
bi, j — must coincide. �

Again, given a generalized invariant algebraic curve as above, we define

|F | = det F = f m
0 and Fi = [log F]i

(and not Fi = fi ). Thus, F0 = log f0 and Fi is rational for i > 0. We also let {A, B}

denote the Poisson bracket of A and B; that is,

{A, B} =
∂ A
∂x

∂ B
∂y

−
∂ A
∂y

∂ B
∂x

.

We shall denote the vector field { f, · } by X f . Since the denominator of Fi for i > 0
is at worst f i

0 , |F | X Fi = |F |{Fi , · } is a polynomial vector field. For i = 0 it is
just the vector field f m−1

0 X f0 .
Where no confusion can result, the notation Sx will mean the derivative of S with

respect to x . If applied to a vector, it denotes taking the derivatives component-
wise.

We will use the previous Lemma 6.8 to show that |F |{Fs, Ft } is also a polyno-
mial for each pair of integers r and s. We define the matrices

B =
(

fm−1, . . . , f0
)T and B ′

=
(
Fm−1, . . . , F0

)T
,

and also the matrices

D =
(
{ fm−i , fm− j }

)
and D′

=
(
{Fm−i , Fm− j }

)
.

Then B ′
x = F−1 Bx (this follows directly from post-multiplying by (0, . . . , 0, 1)T

the identity log(F)x = F−1 Fx ) and D′
= F−1 D F−1T . The last identity follows

from

(6-7) D = Bx BT
y − By BT

x .
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and the similar equation for D′ and B ′.

Lemma 6.9. Using the previous notation, the entries of |F | D′ are all polynomials
in x and y.

Proof. We introduce another matrix

(6-8) B̃ =

( 1
ηm−1(m − 1)!

f̃m−1, . . . ,
1

η0 0!
f̃0

)T
= AB,

with associated matrix

D̃ =

( 1
η2m−i− j (m − i)!(m − j)!

{
f̃m−i , f̃m− j

})
.

These satisfy an equation analogous to (6-7) above, and hence D̃ = AD AT . Now,

(6-9) F ′−1 DF ′−1T
= A−1 F̃−1 AD AT F−1T A−1T

= A−1 F̃−1 D̃ F̃−1T A−1T .

But the left-hand side of equation (6-9) tends to D′ as η → 0, and the right-hand
side is of the form A−1 D∗ A−1T , where D∗ has entries

1
η2m−i− j (m − i)!(m − j)!

{ f̃m−i , f̃m− j }

f̃m−i f̃m− j
.

Thus, the denominator of the entries on the right-hand side of (6-9) can be at most
the product of the f̃i . Thus, in the limit, as η → 0, the denominator of D′ is at
worst f m

0 . �

Remark 6.10. In fact, the proof above shows that the denominator of {Fi , Fj } can
be no worse than f k

0 , where k = max(i, j) + 1.

In the final part of this section, we want to consider the problem of finding all
polynomial vector fields X which have generalized invariant algebraic curves

F(i) = fi,0 + εi fi,1 + · · · + ε
mi −1
i fi,mi −1

of order mi , for i = 1, . . . , r . We assume, as usual, that each of the fi,0 are irre-
ducible.

In order not to overburden the notation, we shall drop any parentheses in the
subscripts, and take the first subscript to refer to the number of the generalized
curve. Otherwise, the notation is similar to the case of one curve.

Each of the Fi defines a matrix as before, and we take the matrix F to be the
block-diagonal matrix with the matrices Fi as its blocks. We take |F | to be the
determinant of F .

As in the case of one curve, each Fi yields a family of curves f̃i, j = 0, and we
get block-diagonal matrices F ′ and F̃ with blocks F ′

i and F̃i , respectively.
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Let S be the set of pairs of integers (i, j) with 1 ≤ i ≤ r and 0 ≤ j ≤ mi−1,
which we order linearly as

(1, m1−1), . . . , (1, 0), (2, m2−1), . . . , (r, 0).

Using this ordering, we can define vectors B, B ′ and B̃, with entries fi, j , Fi, j =

[log Fi ]j and f̃i, j , respectively.
Furthermore, using the ordering on S, we can define the matrices D, D′ and

D̃ with entries { fs, ft }, {Fs, Ft } and { f̃s, f̃t } respectively. (Note that these are not
block-diagonal matrices.)

Finally, we take the ideal I ⊂ C[x, y] to be the ideal generated by{
|F |

}
∪

⋃
s∈S

{
|F |Fsx

}
∪

⋃
s∈S

{
|F |Fsy

}
∪

⋃
s,t∈S

{
|F |{Fs, Ft }

}
.

The final term of this expression consists of polynomials; this is clear when s and
t refer to different Fi , and otherwise by Lemma 6.9.

Remark 6.11. When the curves all have multiplicity one and the union of the
curves fi,0 = 0, i = 1, . . . , r , form a divisor with normal crossings (each curve
is smooth and all crossings are of nodal type), this ideal is just C[x, y]. In general
dimC C[x, y]/I represents the departure of the union of the curves from being a
normal-crossing divisor.

In the case of a generalized invariant algebraic curve f + εg of order 2, I

is generated by f 2, f fx , f fy , fx g − f gx , fyg − f gy and fx gy − fygx . The
condition that f and g be nonsingular and intersect transversally is sufficient to
guarantee that 1 ∈ I . This explains the hypotheses of Proposition 2.7.

Let |Fi | = det Fi and Ki = |F |/|Fi |. We have

|F |
∂ Fi,mi −1

∂x
=

(−1)mi Ki f mi −1
i,1

mi − 1
∂ fi,0

∂x
mod ( fi,0).

If Fi is nondegenerate or is a curve of order one, then this term is not divisible by
fi,0 but is divisible by all the other fj,0 with j 6= i . Taking a sum of such terms we
can find elements in I which are not divisible by any of the fi,0.

Finally, we take Fa
= |F | F−1 to be the adjugate matrix of F ; its entries are

polynomials.

Theorem 6.12. If a polynomial vector field X has r generalized invariant algebraic
curves as above, then for any polynomial h in the ideal I we can find a polynomial
vector field X̄ and polynomials Cs ∈ C[x, y], s ∈ S, such that

(6-10) h X = |F | X̄ + (C1,m1−1, . . . , Cr,0) Fa(X1,m1−1, . . . , Xr,0)
T ,

where Xs , s ∈ S, represents the vector field X fs = fsx ∂/∂y − fsy ∂/∂x.
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Proof. It clearly suffices to show that we can choose X̄ and the Cs for h equal to
each of the generators of I. For general h, the result follows by the linearity of
(6-10) over C[x, y]. We suppose that X = P ∂/∂x + Q ∂/∂y.

For h = |F |, the result is trivial (just take X̄ = X and all the Cs to be zero). For
the other generators, we note that the condition that the Fi are generalized invariant
algebraic curves is the same as saying

(6-11) X (Fs) = Ls, s ∈ S,

where the Ls are the corresponding terms in the cofactors L Fi of Fi . The equation
arises from applying X to log Fi .

Now, (6-10) is equivalent to

(6-12) h X = |F | X̄ + (C1,m1−1, . . . , Cn,0)(X ′

1,m1−1, . . . , X ′

r,0)
T ,

where X ′
s , s ∈ S, represents the vector field

|F |{Fs, · } = |F | Fsx ∂/∂y − |F | Fsy ∂/∂x .

If h = |F | Fsx , we can take X̄ = Ls ∂/∂x , Cs = Q and C ′
s = 0 for all s ′

6= s.
From (6-11), this gives a representation of X in the form (6-10).

Finally, if h = |F |{Fs, Ft } for some s and t , then from (6-11) we have

P Fsx + Q Fsy = Ls, P Ft x + QFt y = L t .

Solving these equations simultaneously for P and Q, and comparing with (6-12),
we find that

{Fs, Ft }X = L t X ′

s − Ls X ′

t ,

which is clearly of the form (6-12). �

Remark 6.13. If L is the vector of cofactors (L1,m1−1, . . . , Lr,0)
T so that X (B) =

F L (or, alternatively, X (B ′) = L), then

(6-13) hL = Fa X̄(B) − F D′C,

where C = (C1,m1−1, . . . , Cr,0)
T . In particular, we can read off the cofactors L Fi

directly from this expression. The proof of (6-13) follows easily from (6-12), since

h X
(
B ′T )

= F X̄
(
BT )

F−1T
+

(
C1,m1−1, . . . , Cr,0

)
F D′,

and thus

hF−1 X (B) = h X (B ′) = Fa X̄(B) − F D′(C1,m1−1, . . . , Cr,0)
T ,

which implies
h X (B) = F

(
Fa X̄(B) − F D′C

)
.



MULTIPLICITY OF INVARIANT CURVES IN POLYNOMIAL VECTOR FIELDS 105

6D. Integrable multiplicity implies geometric multiplicity. Having proved The-
orem 6.12 in the previous section, it is very simple to establish the following
unfolding of a collection of multiple algebraic curves Fi . Let f̃s , s ∈ S, be defined
as in (6-3) for each curve Fi .

Theorem 6.14. Let X be a vector field with generalized invariant algebraic curves
Fi of order mi , and let h be a polynomial in the ideal I defined in the previous
section. There exists a family of polynomial vector fields Xη, of bounded degree
and with algebraic curves f̃s , s ∈ S, such that Xη tends to h X as η tends to zero.

Proof. By Theorem 6.12 we have

h X = |F | X̄ + CT Fa(X1,m1−1, . . . , Xr,0)
T ,

for some choice of X̄ and Cs . Take Xη to be the vector field

Xη = |F ′
| X̄ + CT F ′a(X1,m1−1, . . . , Xr,0)

T .

Now, Xη tends to h X as η tends to 0. Let A be the block-diagonal matrix whose
blocks are the matrices Ai associated with each curve Fi . From Lemma 6.8, |F ′

|=

|F̃ |, and we can write

Xη = |F̃ | X̄ + CT A−1 F̃a A(X1,m1−1, . . . , Xr,0)
T .

If we take X̃ i, j to be the vector field given by (η j j !)−1
{ f̃i, j , · }, then we have

Xη = |F̃ | X̄ + CT A−1 F̃a(X̃1,m1−1, . . . , X̃r,0)
T .

It is now clear that this vector field has the curves f̃s as invariants. In fact, since
the matrix F̃a is diagonal, we can remove the factors (η j j !)−1 from the X̃ i, j into
the vector CT A−1, and then the system is of the form (6-10). �

Corollary 6.15. If a vector field X has an algebraic curve of integrable multiplicity
m, then the geometric multiplicity of the curve is at least m.

Corollary 6.16. If I = (1), then the perturbation can be chosen to be in the class
of polynomial vector fields.

We give one simple case where we can show that this is the case without calcu-
lating I directly.

Proposition 6.17. Suppose f = 0 is an invariant algebraic curve of multiplicity
m. If f is nonsingular and all the critical points on f = 0 are elementary (have at
least one nonzero eigenvalue), then I = (1); we can therefore perturb the vector
field polynomially to produce m distinct invariant algebraic curves.
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Proof. It is sufficient to prove this locally, because, if the image of I is (1) in each
local ring CJx − x0, y − y0K, then I = (1) by the Nullstellensatz. We can assume,
without loss of generality, that the local ring is at the origin. Furthermore, a formal
change of coordinates will not affect the fact that I = 1 in CJx, yK. Now, according
to Remark 3.11, after a change of coordinates we can write F = G F0 with G a unit
in CJx, yK[ε]/(εk). Therefore, |F | = |G||F0| and log F = log G + log F0. Thus, in
the expression of I all the terms which involve derivatives of G are multiplied by
|F0|, and so the image of the ideal I in CJx, yK is the same as the ideal in CJx, yK,
but calculated from F0 instead of F . If we look at the forms given in Remark 3.11
and Corollary 3.12, we see that I is therefore equal to (1) in CJx, yK. �

Question 6.18. Given multiple curves fi = 0, under what conditions on the fi and
the critical points which lie on them can we guarantee that I = (1)?

7. Holonomic multiplicity

In contrast to the previous definitions, our last definition of multiplicity seems to
be genuinely weaker, and will require some extra assumptions before we can show
its equivalence to the previous ones.

Consider, as in the previous section, a family of m algebraic curves coalescing
to a single curve which is irreducible and reduced. From an analytic standpoint,
it is intuitively clear that every element of the monodromy group on this limiting
curve must be of the form x 7→ x + O(xm). Conversely, if the monodromy group
has terms of the form x 7→ x + kxm

+ . . . , with k 6= 0, then we expect that we can
bifurcate m leaves of the foliation from the curve by perturbation.

Unfortunately monodromy considerations alone do not seem to be strong enough
to show that we can actually bifurcate this number of algebraic curves. In order to
show that any bifurcating leaves are algebraic (via Chow’s theorem, for example)
we would need to stop the leaves from escaping at the critical points (for example,
consider the pattern of leaves close to one of the separatrices of a saddle).

Thus, in what follows, we need to make some additional assumptions on the
types of critical points which lie on the curve. We shall also assume that the curve
is nonsingular. Fortunately, from the proof of Proposition 3.10, there are obvious
assumptions we can make on the types of critical points, which also have the ad-
vantage that they can be easily checked for any given system with an algebraic
curve.

We assume, as always, that f = 0 is irreducible and reduced and that X acts
nontrivially on f = 0.

7A. Some definitions. Given an algebraic curve f =0 in the plane and an analytic
family of transversals on each point of the curve that is not in the set S of singular
points of the curve and the vector field, it is possible to define a map from the
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fundamental group of { f = 0} \ S to the group of local diffeomorphisms of C

fixing 0 by locally lifting the paths on the curve to the leaves of the foliation via
the family of transversals. Up to conjugacy, this map does not depend on the base
point of the fundamental group, nor on the family of transversals chosen. For more
details, see for example [Mattei and Moussu 1980]. The image of this map is called
the monodromy group or holonomy group of the curve.

Definition 7.1. A curve f = 0 is said to have holonomic multiplicity m, if the
monodromy group of the curve lies in Am

\ Am+1, where Am is the set of all germs
of diffeomorphisms φ such that φ(x) − x = O(xm).

As stated above, we shall assume that the curve f = 0 is nonsingular (over the
projective plane) and obeys some additional conditions on the critical points which
lie on the curve. These properties are based on Corollary 3.12.

Definition 7.2. Given a nonsingular invariant algebraic curve f = 0 of a vector
field X , a critical point which lies on f = 0 is said to be regular with respect to
f = 0 if it is either hyperbolic and its ratio of eigenvalues is positive, or is a saddle
node and the eigenvalue associated to the direction tangent to f = 0 is the nonzero
one.

7B. Multiplicity and holonomic multiplicity. We show that the holonomic multi-
plicity is at least as large as the multiplicity, and that, when f = 0 is a nonsingular
curve (over the projective plane) and all the singular points on the curve, including
the ones at infinity, are regular, then the two multiplicities coincide. Recall that, if
the curve is multiple, the singular points on the curve are regular by Proposition
3.10, so the assumptions we make are reasonable.

Theorem 7.3. Let f = 0 be an invariant algebraic curve which is nonsingular as
a projective curve, and suppose that all the singular points which lie on the curve
are regular with respect to f = 0 (including the points at infinity). The holonomic
multiplicity of f = 0 is the same as its (infinitesimal) multiplicity. If the curve is
only irreducible and reduced, then the holonomic multiplicity is at least as great
as the multiplicity, with no assumptions on the critical points.

Proof. This follows directly from the Propositions 7.4, 7.7 and 7.8 below. �

Proposition 7.4. If f = 0 is an invariant algebraic curve of multiplicity m, then
the holonomic multiplicity of f = 0 is at least m.

Proof. If the multiplicity of f = 0 is m, then there is a generalized invariant
algebraic curve F of order m. Let z be an independent variable, define an analytic
function h(x, y, z)= F(z), and let `(x, y, z)= LF (z). From (3-2), we have X (h)=

`h + O(zm).
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We know from Proposition 3.8 that f1(p) 6= 0 when p ∈ { f = 0}\S. Thus, given
an analytic family of transversals to the curve f = 0, we see that we can define an
analytic parametrization of these transversals on a neighborhood of { f = 0} \ S by
choosing it to be the value of z such that h(x, y, z) = 0 (existence follows from the
implicit function theorem). Clearly, the curve f = 0 corresponds to z = 0.

Now, by differentiating h = 0 with respect to time, we have

X (h) +
∂h
∂z

ż = h` + O(zm) +
(

f1 + O(z)
)
ż = 0,

which means that ż = O(zm) on any trajectory sufficiently close the curve f = 0,
and so the holonomy lies in Am . �

Remark 7.5. It follows that we can bound the multiplicity of a curve by looking
at the monodromy of the critical points. We thus obtain an easy route to some of
the results of Proposition 3.10 and Corollary 3.12. For a curve of nonzero genus,
the holonomic multiplicity will contain more information than just the behavior at
the critical points, as we also need to consider the holonomy about a set of curves
generating the homology group.

We now set about to prove the converse, with the assumptions mentioned in the
previous section. We first need a lemma to simplify the calculations a bit.

Lemma 7.6. Let X be a vector field of degree d (or a vector field in the form
(2-2) of projective degree d). The vector field obtained from X by performing the
projective transformation (x ′, y′) = (`1/`3, `2/`3) is of the form `1−d

3 X ′, where X ′

is a polynomial vector field in the form (2-2) of projective degree d. It is in the
form (2-1) with degree d if an only if `3 = 0 is an invariant algebraic curve of the
system. If F is a generalized invariant algebraic curve of degree n and order k
such that f0 and `3 are coprime, then its transform is `−n

3 F ′, where F ′ is also a
generalized invariant algebraic curve of degree n and order k.

Proof. The first part follows directly from calculations, and is more or less well
known. For the second, let the transform of LF be `1−d

3 L ′

F for some polynomial
L ′

F ∈ C[x, y, ε]. The equation X (F) = F LF thus transforms to

`1−d
3 X ′(`−n

3 F ′) = `−n+1−d
3 F ′L ′

F ,

which simplifies to
`3 X ′(F ′) = nF ′

(
X ′(`3) + L ′

F
)
.

Hence, `3 divides the term in brackets on the right-hand side, and the lemma is
proved. �

Proposition 7.7. If f = 0 is a regular invariant algebraic curve of a polynomial
vector field X with holonomic multiplicity at least two (that is, the linear part of
the holonomy group of the curve is trivial), then the multiplicity is also at least two.
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Proof. From the previous lemma, we first perform a projective transformation so
that the vector field is of the form (2-2) with h nonzero. We can also assume, by
an appropriate choice of `3, that the curve intersects the line at infinity at distinct
places which are not critical points on CP(2). It is easy to show that the critical
points at infinity for (2-2) correspond to the intersection at infinity of the curves
xb − ya = 0 and h = 0.

Suppose that a family of transversals have been defined on U = { f = 0}\ S, and
parameterize them by z = f (x, y). If L f is the cofactor of f , we can calculate the
linear term of the monodromy about f = 0 by differentiating with respect to time
as before. Now, ż = X ( f ) = f L f = zL f , and so, given a path γ on f = 0, the
linear term of the monodromy is given by

(7-1) Mγ = exp
(∫

γ

L f dt
)
.

If Mγ = 1 for all curves γ on U , then, fixing a point x0 ∈ U , the function

φ = exp
(∫ p

p0

L f dt
)

is independent of the path chosen from p0 to p in U , and therefore gives a well-
defined analytic function on U (the form dt being well defined and nonsingular
away from the singularities on f = 0). We want to show that, under the hypothesis
of the proposition, φ is in fact the restriction of a polynomial g to f = 0. If so, then
on f = 0 we have X (g)= L f g, and hence X (g)= L f g+Le f for some polynomial
Le. This means that exp(g/ f ) is an exponential factor, and from Proposition 2.9
we can deduce that the degree of g is in fact the same as the degree of f , and
thus prove the result. The generalized invariant algebraic curve f + εg must be
nondegenerate, since, if g is a multiple of f , then f must divide L f , and f + ε is
a nondegenerate invariant algebraic curve for the system.

It only remains, therefore, to show that φ is the restriction of a polynomial to
f = 0; we can do this if we know that it is bounded as p → s ∈ S and has at most
polynomial growth as p → ∞.

From Theorem 6.12, since f = 0 is nonsingular, there exist polynomials A, B
and D such that

(7-2) X = (A f − D fy)
∂

∂x
+ (B f + D fx)

∂

∂y
,

with L f = A fx + B fy . The critical points which lie on f = 0 correspond to the
zeros of D on f = 0, so that D does not vanish away from S. Thus

(7-3) φ = exp
(∫ p

p0

A dy − B dx
D

)
.
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For the rest of this proof, we let T i represent the terms of degree i in the expres-
sion T . If k = max(deg A, deg B, deg D−1), then k ≥ d +1−n. If k > d +1−n,

Ak f n
− Dk+1 f n

y = 0, Bk f n
+ Dk+1 f n

x = 0.

Since we have assumed that the branches of f = 0 at infinity are distinct, f n and
f n
x are coprime, as are f n and f n

y . Thus,

Ak
= R f n

y , Dk+1
= R f n, and Bk

= −R f n,

for some homogeneous polynomial R. Replacing A, B and D by A−R fy , B+R fx

and D − R f , respectively, we find that (7-2) is still satisfied, but we have reduced
max(deg A, deg B, deg D−1). Thus, by iterating this process, we can assume that

k = max(deg A, deg B, deg D−1) = d + 1 − n.

Now, from (2-2),

Ak f n
− Dk+1 f n

y = xh, Bk f n
+ Dk+1 f n

x = yh,

and so, eliminating h and applying Euler’s formula, we get

(7-4) x Bk
− y Ak

+ nDk+1
= 0.

This also gives

(7-5) h = (Ak f n
x + Bk f n

y )/n,

in accordance with Proposition 2.9.
Now, the critical points at infinity are given by the intersection of h = 0 and

xb − ya = 0. However,

xbd
− yad

= x(Bk−1 f n
+ Bk f n−1

+ Dk f n
x + Dk+1 f n−1

x )

− y(Ak−1 f n
+ Ak f n−1

− Dk f n
y − Dk+1 f n−1

y )

= (x Bk−1
− y Ak−1

+ nDk) f n
+

(
x Bk

− y Ak
+ (n − 1)Dk+1) f n−1.

If f n
= 0, then this expression vanishes if and only if h = 0; this follows from

Euler’s formula and (7-4) and (7-5). Thus, the condition that there are no critical
points on the branches of f = 0 at infinity reduces to the single condition that h
and f n must be coprime.

We now want to examine the growth at infinity. Without loss of generality,
we can assume that a rotation has been made so that the branch corresponds to
a factor x in f n . Therefore, the condition on the critical points at infinity means
that x does not divide h, which implies, from (7-5), that it does not divide Ak . Let
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x = a0 + a−1 y−1
+ a−2 y−2

+ . . . be a parameterization of this branch as y → ∞.
Then, Ak(x(y), y) = αyk

+ O(yk−1) with α 6= 0, and

Dk+1(x(y), y) = −(x Bk
− y Ak)/n = αyk+1/n + O(yk),

so that, on this branch,

Ady − Bdx
D

=

( n
y

+ O(y−2)
)

dy.

Hence, φ grows like yn as y → ∞.
Finally, we consider the finite critical points on f = 0. The problem is purely

local, so we can perform a local analytic change of coordinates and, from the fact
that the curve is regular, we can assume that the critical point is of the form

(7-6) X =
(
x + o(x, y)

) ∂

∂x
+ y

(
λ + O(x, y)

) ∂

∂y
.

where the curve f = 0 corresponds to the line y = 0. Now, let f = yh with
h(0, 0) 6= 0; we have

L f = λ + O(x, y) +
X (h)

h
,

and on y = 0 we have
L f dt =

( λ

x
+ O(x)

)
dx,

which shows that φ must be bounded as p tends to any singularity in S. �

Proposition 7.8. If f = 0 is a regular irreducible invariant algebraic curve of a
polynomial vector field X with holonomic multiplicity m, then the multiplicity of
the curve is also m.

Proof. We first perform a projective change of coordinates as in Proposition 7.7.
The proof is by induction. Let F be a nondegenerate generalized invariant algebraic
curve of order k, and assume that the holonomy group of the curve lies in Ak+1.
We want to show that F can be extended to a generalized invariant algebraic curve
of order k+1. The case k = 1 has been proved in Proposition 7.7, so we take k > 1.

We set h(x, y, z) = F(z) and `(x, y, z) = LF (z), as in Proposition 7.4. From
(3-2), we have

X (h) = `h − zk( fk−1L1 + · · · + f1Lk−1) + O(zk+1).

Since k > 1, F is a nondegenerate generalized invariant algebraic curve and, as in
Proposition 7.4, we can parameterize the transversals of U by the value of z which
makes h = 0. Differentiating, we get

X (h) +
∂h
∂z

ż = h` − zk( fk−1L1 + · · · + f1Lk−1) + O(zm+1) + ( f1 + O(z))ż = 0,
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and so, recalling that f1 cannot vanish on U , we find that the holonomy is in Ak+1

if and only if ∫
γ

( fk−1L1 + · · · + f1Lk−1)

f1
dt = 0

around any closed path γ in U .
Thus, as in Proposition 7.7, we can fix a point p0 ∈ U and define a function

φ = f1

∫ p

p0

( fk−1L1 + · · · + f1Lk−1)

f1
dt,

which is well defined and analytic in U . On f = 0 we have

X (φ) = φL0 + fk−1L1 + · · · + f1Lk−1.

If we can show that φ is in fact the restriction of a polynomial fn to f0 = f = 0,
then we have

(7-7) X ( fn) = fn L0 + fk−1L1 + · · · + f1Lk−1 + f0Lk,

for some polynomial Lk . Then we have finished, once we realize that the degree of
the polynomial fn can be at most n; this follows directly from an argument similar
to Proposition 2.9, considering that the highest-order terms of (7-7) involve only
the terms in fn and f0.

Clearly, the growth of φ at infinity can be at most polynomial, so we are left to
consider the growth as p tends to a point s ∈ S. Again, we can assume that the
critical point is in the form (7-6) with f = 0 corresponding to the line y = 0. Then,
on y = 0 we can assume that f1 = αxq

+ O(xq+1) with α 6= 0, which gives

( fk−1L1 + · · · + f1Lk−1)

f1
dt =

O(1)

αxq+1 dx .

However, there can be no logarithmic terms in the integral of φ, since it is single
valued on U . Hence, when integrated, the differential gives at worst a pole of
order q , and this is canceled by the multiplication by f1 in the definition of φ.
Thus, φ is bounded as p tends to s ∈ S, and has polynomial growth as p tends to
infinity. Therefore, it can be represented as the restriction of a polynomial function
to f = 0. �

Question 7.9. To what extent can these results be generalized to singular curves,
using the corresponding results of Proposition 3.13?

8. Darboux integrability

We finish this paper with a brief application of multiplicity to the method of Dar-
boux integrability in the case where there are multiple curves. The next result,
without taking into account the exponential factors, was proved by Darboux [1878];
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this later improvement was made in [Christopher and Llibre 1999; 2000]. Its proof
follows from straightforward computations; for more details see [Christopher and
Llibre 2000].

Proposition 8.1. Let X be a vector field. If X admits p distinct invariant algebraic
curves fi = 0, for i = 1, . . . , p, and q independent exponential factors ej , for
j = 1, . . . , q , then:

(a) There are λi , ρj ∈ C not all zero such that
p∑

i=1
λi L fi +

q∑
j=1

ρj Lej = 0

if and only if the (multivalued) function f λ1
1 . . . f λp

p eρ1
1 . . . eρq

q is a first integral
of the vector field X.

(b) There are λi , ρj ∈ C not all zero such that
p∑

i=1
λi L fi +

q∑
j=1

ρj Lej = − div(X)

if and only if the function f λ1
1 . . . f λp

p eρ1
1 . . . eρq

q is an integrating factor of X.

The problem of finding first integrals or integrating factors is thus reduced to a
question of linear algebra on the set of cofactors. In order to reduce the dimension
of this space, we introduce the following concepts [Chavarriga et al. 1997]:

Definition 8.2. Let X be a vector field of degree d , and S ⊂ C2 a finite set of points
(possibly empty). The restricted cofactor space with respect to S, 6S , is defined
by

6S =
⋂
p∈S

m p ∩ Cd−1[x, y],

where m p is the maximal ideal of C[x, y] corresponding to the point p.
If S consists of q points, then we say that they are independent with respect to

Cd−1[x, y] if

σ := dim 6S = dim Cd−1[x, y] − q =
1
2(d + 1)(d + 2) − q.

With this notation, it is easy to prove:

Theorem 8.3. Let X be a vector field of degree d. Assume that X has r distinct
invariant algebraic curves fi = 0, i = 1, . . . , r (all irreducible and reduced)
of multiplicity mi , and let N =

∑
i mi . Suppose, furthermore, that there are q

critical points p1, . . . , pq which are independent with respect to Cd−1[x, y], and
fj (pk) 6= 0 for j = 1, . . . , q and k = 1, . . . , r . We have:

(a) If N ≥ σ + 2, then X has a rational first integral.

(b) If N ≥ σ + 1, then X has a Darboux first integral.
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(c) If N ≥ σ and div(X) vanishes at the pi , then X has either a Darboux first
integral or a Darboux integrating factor.

Proof. Each curve of multiplicity mi gives mi−1 exponential factors. It is easy to
see that, given that the curves fi are distinct and irreducible, any Darboux func-
tion constructed from them is nontrivial. The proof of (b) and (c) follows from
counting dimensions and applying Proposition 8.1. One has just to observe that,
by Proposition 3.9, all possible cofactors are contained in 6S .

When N is at least σ +2, from (b) we can obtain two independent Darboux first
integrals, say H1 and H2. We can see easily that the integrating factor Ri associated
to log Hi is a rational function. Since the quotient of two integrating factors is a
first integral, the statement (a) follows from the independence of H1 and H2. �

Our final theorem is probably the most useful one for real applications of Dar-
boux integrability to specific families of vector fields.

Theorem 8.4. Suppose we have an algebraic family of vector fields X t , with t lying
in a neighborhood of t = 0, such that the vector fields have a collection of invariant
algebraic curves of constant degree varying analytically with t and which give a
Darboux integrating factor (respectively, first integral) as in Proposition 8.1 for
t 6=0. Suppose, furthermore, that at t =0 all of these curves remain irreducible and
reduced, though they are allowed to coalesce. Then X0 also possesses a Darboux
integrating factor (respectively, first integral).

Proof. Since the problem is analytic, we can restrict attention to a sufficiently small
neighborhood of t = 0 so that, for all t 6= 0, we have a fixed number of invariant
algebraic curves, say N , and the degree of X t is bounded by some constant, say d .
By Proposition 6.5, we still have N curves and exponential factors when t = 0.

Let 6t ⊂ Cd−1[x, y] be the space of cofactors (including the cofactors of the
exponential factors when t = 0) of these curves, and denote its dimension by Nt .
Restricting t to a smaller neighborhood of 0 if necessary, we can assume that Nt

is a constant for t 6= 0.
The 6t are just the sum of the subspaces σt given in Remark 6.6 for each distinct

curve at t = 0. From that remark we know that the limit of the spaces 6t (in the
space of N -dimensional subspaces of Cd−1[x, y]) must contain 60. Thus, N0 ≤ Nt

for t 6= 0.
We consider only those curves which appear in the Darboux integrating factor

or first integral. In the case where there is a Darboux first integral for t 6= 0, the
number of curves N is greater than Nt for t 6= 0, and hence, in the limit, the number
of curves and exponential factors (also N ) must be greater than the dimension of
the space of their cofactors N0. This gives us a Darboux first integral at t = 0.

In the case of a Darboux integrating factor for t 6= 0, we define Dt to be the
one-dimensional subspace of Cd−1[x, y] generated by the divergence of the vector
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field X t . We also define 6̃t to be the sum of 6t and Dt . Its limit must contain the
sum of the space D0 and the space of cofactors of the invariant algebraic curves
and their exponential factors. Arguing as above, the number of invariant algebraic
curves for t 6= 0 must be greater than the dimension of 6̃t for t 6= 0, and hence,
when t = 0, the number of curves and exponential factors must be greater than
the dimension of the space generated by their cofactors and the divergence of the
vector field. This gives us either a Darboux integrating factor or first integral for
t = 0 (and, in the latter case, trivially an integrating factor). �

Question 8.5. How do these results extend to the case where the invariant curves
may be reducible or nonreduced?

9. Final remarks

Although we studied vector fields in the complex plane, we suspect that many
of the results remain valid in the case of real vector fields [Man and MacCallum
1997], or codimension-1 foliations on CP(n) [Jouanolou 1979].

Our main desire, however, is to see how these results extend to multiple curves
based on reducible or nonreduced curves. We hope to return to this problem in a
later paper.
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22460-320 RIO DE JANEIRO, RJ
BRASIL

jvp@impa.br




