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MULTIPLICITY OF POSITIVE PERIODIC SOLUTIONS TO
SECOND ORDER DIFFERENTIAL EQUATIONS

JIFENG CHU, XIAONING LIN, DAQING JIANG, DONAL O ' R E G A N , R .P . AGARWAL

In this paper, we study the existence of positive periodic solutions to the equation
x" = f(t,x). It is proved that such a equation has more than one positive periodic
solution when the nonlinearity changes sign. The proof relies on a fixed point theorem
in cones.

1. INTRODUCTION

In this paper, we are concerned with the existence of single and multiple (strictly)
positive 1-periodic solutions to the equation

(1.1) x" = f(t,x),

where f(t,x) : R x (0, oo) -> R is continuous and 1-periodic in the first variable. By a
positive periodic solution of (1.1) we understand a function x e C([0,1], (0, oo)) satisfying
(1.1) and the periodic boundary condition

(1.2) *(0) = i(l), x'(0) = x'(l).

The existence of positive periodic solutions to equation (1.1) has been extensively
studied in the literature (see, for example, [1, 2, 3] and the references therein). In
these papers, the two most common techniques to establish existence are the theory of
upper and lower solutions [4] and topological degree theory [5]. On the other hand, some
fixed point theorems in cones for completely continuous operators have been extensively
employed in studying the existence of positive solutions to boundary value problems
[6]. However, for the periodic problem, a theory using cones has only recently [7] been
applied. One of the difficulties involved in discussing the periodic problem is the sign
of the Green's functions for the corresponding linear periodic problem. In [7], Torres
succeeded in overcoming this difficulty by using a new Z^-anti-maximum principle and
obtained some new existence results for problem (1.1)-(1.2) by a well known fixed point
theorem of compression and expansion of cones.

The aim of this paper is to use some of the basic results in [7] together with a
new fixed point theorem in cones to obtain the existence of single and multiple positive
periodic solutions to (1.1). The results we obtain are new.
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2. PRELIMINARIES

Let a(t) be a 1-periodic function and a € Ll(0,1). Now we consider the linear
equation

(2.1) x"+a(t)x = 0

with the periodic boundary condition (1.2). In this section, we assume conditions un-
der which the only solution to equation (2.1)-(1.2) is the trivial one. As a result, the
nonhomogeneous problem

(2.2) x" + a(t)x = h(t), x(0)=x(l), x'(0)=z'(l)

has a unique solution given by

(2.3) x(t) = (Ch)(t) := f G(t,s)h(s)ds.
Jo

Here G(t, s) is the Green function. Let us define

(2.4) A~ = {a -< 0}, A+ = {a >-0, ||a||p <K(2q) for some 1 s% p < +oo}.

Here the notation a >~ 0 means that a(t) > 0 for all t € [0,1] and a(t) > 0 for t in a subset
of positive measure, a -< 0 means that — a >- 0 and || • ||p denotes the usual ZAnorm over
(0,1) for any given exponent p € [l,oo]. The conjugate exponent of p is denoted by q:
1/p -t- \/q = 1. The explicit formula for K(q) is

where F is the Gamma function. Now we present two basic results which were established

by Torres in [7].

LEMMA 2 . 1 . ([7]) Assume that a(t) £ A", then G(t, s) < 0 for all (t, s) € [0,1]

x [0, 1].

LEMMA 2 . 2 . ([7]) Assume that a(t) 6 A+, tien G(t,s) > 0 for all (t,s) e [0,1]

x [0, 11.

REMARK 2.3. Ifp = 1, condition ||a||p < K(2q) can be weakened to ||a||i < K(oo) = 4 by
the celebrated stability criterion of Lyapunov. In case p = 00, condition ||a||p < K(2q)
reads as Halloo < K(2) = n2, which is a well known criterion for the anti-maximum
principle used in related literature. In this case, ||a||p < K(2g) can be weakened to
a(t) -< n2.

In the following, we always denote
(2.6)
m = min G(t, s), M = max G(t, s), a = m/M if a{t) € A+and a = M/m if a(t) 6 A".
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Thus M > m > 0 if a(t) 6 A+ and m < M < 0 if a(t) € A~. In either case, we have
0 < C T < 1.

In this paper we shall establish the existence of positive periodic solutions to equation
(1.1), using the following well known fixed point theorem in cones [8].

THEOREM 2 . 4 . Let X be a Banach space and K be a cone in X. Assume fij , fi2

are open subsets ofX with 0 € fii, Qi C fi2. Let

be a continuous and completely continuous operator such that

(i) ||«z|| < ||x|| for x eKndfti,

(ii) iiere exists ip € K\{0} such that x^$x + \ip forx&KC\3ft2 and A > 0.

Tien $ ias a fixed point in K D (Q2 \ ^i)-

REMARK 2.5. In Theorem 2.4, if (i) and (ii) are replaced by

(i)' ||$z|| < | | i | | forz€ A:nafi2,and

(ii)* there exists i/> e /C\{0} such that x^$x + \ip for i € tfndfti and A > 0,

then $ has also a fixed point in K n (f22 \ fii).

In applications below, we take X = C[0,1] with the supremum norm || • || and define

(2.7) K = | i e X : x(t) ^ 0 for all t and omma:(i) ^ a||x|||,

where a is as in (2.6).
One may readily verify that K is a cone in X. Suppose now that F : [0,1] x R

-> [0, oo) is a continuous function and define an operator T : X -> X by

(2.8) (Tx)(t)= f G(t,s)F(s,x(s))ds
Jo

for x € X and £ € [0,1]. It is easy to prove:

LEMMA 2 . 6 . T is well defined and maps X into K. Moreover, T is continuous
and completely continuous.

3. M A I N RESULTS

In this section we establish the existence and multiplicity of positive periodic solu-

tions to (1.1).

THEOREM 3 . 1 . Suppose that there exist a € A+ and 0 < r < R such that

f(t,x) + a(t)x 2 0, V i e [<rr,R].

Then Equation (1.1) i a s at least one positive solution if one of the following two conditions

holds
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(I) f(t,x)2 0, VxGK
(II) f(t, x) < 0, Vx G [or, r) and f{t, x) Js 0, Vi € [<JR, R).

P R O O F : The existence is established using Theorem 2.4 and Remark 2.5. To do so,
let us write equation (1.1) as

(3.1) x" + a{t)x = fit, x) + a{t)x.

Define the open sets

fir = {x € C[0,1] : ||x|| < r } and QR = {x€ C[0,1] : | | i | | < R}.

Let A" be a cone defined by (2.7) and define an operator on K by

(3.2) (*x)(t) = J G(t, s) [f (s, x(s))+ a(t)x] ds.

Clearly, $ : K D (QR \ Qr) -¥ C[0,1] is continuous and completely continuous since
/ : [0,1] x [or, R] —> R is continuous. Also we have $(K) C K.

Let us suppose that condition (I) holds (the proof for condition (II) is similar).

By the first inequality of condition (I), we have f(t, x) +a(t)x ^ a(t)x, V x € [or, r}.
Let tp = 1, so IJJ G K. Now we prove that

(3.3) x ^ $x + \ip, V x G K n dQr and A > 0.

Suppose not, that is, suppose there exist io G K D dflr and Ao > 0 such that x0

= $ x 0 + Ao^. Now since x0 G K C\ dQr, then xo(t) ^ cr||xo|| = or. Let n = minxo(t).
Then we have

xo{t) = ($xo)(*) + Ao = J G(t, s) [/(*, xo(s)) + o(t)x0(s)] ds + Ao

> / G(t,s)a(s)xo(s)ds +XQ^/J. I G(t,s)a(s)ds +Xo = n +Xo.
Jo Jo

This implies /i ^ /̂ t + Ao, a contradiction. Therefore, (3.3) holds.

On the other hand, by the second inequality of condition (I), we have

f{t, x) + ait)x ^ a{t)x, V x G [oR, R\.

Now we prove that

(3.4) ||$x|| <||x||, VxGtfndfifi.

In fact, for any x e K C\ dilR, we have

($x)(t) = / G(«,s)[/(s,x(s))+o(t)x|ds^ / G{t, s)ais)xis) ds
Jo *• * Jo
/ [ ) | /

Jo *• * Jo

I G{t, s)ais) ds • max x(i) = ||x||.
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Therefore, \\$x\\ s* ||x||, that is, (3.4) holds.

It follows from Remark 2.5, (3.3) and (3.4) that $ has a fixed point x € KC\{nR\Qr).

Clearly, this fixed point is a positive solution of (1.1) satisfying r < ||x|| < R. 0

REMARK 3.2. In [7, Theorem 3.2], it is proved that equation (1.1) has at least one
positive periodic solution provided one of the following two conditions holds for some
a{t) e A+ and 0 < r < R:

(I) ' f(t, x) + a(t)x 2 {M/m?)x, V i e [(m/M)r, r]; f(t, x) + a(t)x ^ 1/M,
V i € [R,(M/m)R];

(II)* f(t,x) + a(t)x^l/M, V i e [ (m/M)r , r ] ; f(t,x)+a{t)x > (M/m2)x,

V i e [R,(M/m)R\.

Theorem 3.1 improves the above result since we only need the sign of f(t,x) in (I) and
(II).

The following multiplicity result follows immediately from Theorem 3.1.

THEOREM 3 . 3 . Suppose that there exist a e A+ and 0 < r < p < R such that

f(t, x) + a{t)x > 0, V i e [or, R).

Then Equation (1.1) has at least two positive periodic solutions if one of the following
two conditions holds

(I) f{t,x) 2 0, Vi e \or,r); f{t,x) < 0, Vi e {ap,p\; f(t,x) > 0,

(II) f(t,x) < 0, Vi e [oT,r\; f(t,x) > 0, Vi e [cp,p\; f(t,x) $ 0,

PROOF: We only prove the result when condition (I) holds. Define flr, QR, K and
* as in Theorem 3.1 and define ftp = {i € C[0,1] : | |i | | < p).

Essentially the same reasoning as in the proof of Theorem 3.1 guarantees that

(3.5) i # $ i + Xip for V i € K n dSlT and A > 0;

(3.6) x^$x + \ip for V i e K n dQR and A > 0;

(3.7) ||$x|| < | | i | | for V i e K

Thus we can obtain the existence of two positive solutions x\ and 12 by using Theo-
rem 2.4 and Remark 2.5 once, respectively. It is easy to see that r < ||ii|| < p < ||x2|| $ R
since (3.7) holds. D

Next we consider the case of a(t) € A~. Here we only state the results and omit
their proofs since they can be proved in a similar way to that of Theorems 3.1 and 3.3.

THEOREM 3 . 4 . Suppose that there exist a e A" and 0 < r < R such that

f(t, x) + a(t)x s$ 0, V x e [or, R].
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Then Equation (1.1) has at least one positive periodic solution if one of the following two
conditions holds

(I) f(t,x)>0, Vx€[ar,r) and f(t,x)^0, Vi

(II) f{t,x)^O, Vx6[ar,r] and f{t,x)^O, Vx

THEOREM 3 . 5 . Suppose that there exist a € A~ and 0 < r < p < R such that

f(t, x) + a{t)x ^ 0, V x € [or, R).

Then Equation (1.1) has at least two positive periodic solutions if one of the following
two conditions holds

(I) f{t,x) > 0, V i e [or,r]; f(t,x) < 0, Vx £ [<7P,p]; f(t,x) > 0,
Vxe[<rR,R];

(II) f(t,x) < 0, Vx € [ar,r]; f(t,x) > 0, Vx 6 [ap,p]; f(t,x) ^ 0,
Vx € [oR, R).

REMARK 3.6 In fact, we can obtain the existence of more than two positive periodic
solutions of equation (1.1) provided f{t,x) satisfies the required inequalities.

EXAMPLE 3.7. Let us consider the following nonsingular equation

(3.8) x" + a(t)x = tib(t)(xa + x13),

where 0 <a <1< 0, a € C{0,1], b € C[0,1] is a positive function, a(t) € A+ and n > 0
is a positive parameter. Then equation (3.8) has at least two positive periodic solutions
for each 0 < fi < n', where //* is a positive constant described below.

To show this we shall apply Theorem 3.3 with f(t, x) = fj.b(t)(xa + x") - a(t)x. It is
easy to see that

(3.9) lim ^ - ^ = +oo and lim ^ - ^ = +oo
i-»0+ X z-»+oo X

since 0 < a < 1 < 0. Set
T(x) = ——•;, x > 0.

Then T(0+) = T(oo) = 0 and

T(x) ^ Tip) = sup T(x), where p = ( i — - )
i€(0,oo) Vp - 1 /

Let /i* = (rT(p)e"1, where e = max(6(t))/(o(t)). Then for x 6 [cp,p], we have

f(t, x) = M6(«)(xa + x>) - a(t)x < y.'a(t)(pa + p8) max M - a

(3.10) = CTT(p)a(t)(pa + / ) - a{t)ap = 0.
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(3.9) and (3.10) imply that condition (I) of Theorem 3.3 is satisfied, so the existence is
guaranteed.

E X A M P L E 3.8. Let us consider the following singular repulsive equation [7]

(3.11) x" --^ + k2x = e(t)
xA

with a > 0, k € (O,TT), A > 0 and e € C[0,ll. Let e* = maxe(t) and e. = min e(t).
«€[0,l] <6[0,l]

Then
(i) Equation (3.11) has at least one positive periodic solution for each e(t)

with e. ^ 0; and

(ii) Equation (3.11) has at least one positive periodic solution for each e(t)
with e. < 0 and satisfying the following inequality:

If k e (O.TT), then k e A+ and we can obtain the following explicit values (see [7])

m = — - c o t ( - ) , M = and <r = cos( - ) .
2k \2) 2ksm(k/2) V2/

Now (i) is a direct result of Theorem 3.1 since f(t,x) — a/(xx) + e(t) — k2x -¥ +co as
i ^ O and f(t, x) -> —oo a s i - > +oo.

Next we prove (ii). Condition (I)of Theorem 3.1 reduces to finding R > 0 such that

(3.13) 4- + e « ^ 0 ' Vze(0,.R]

and

(3.14) ^ + ef^k?x, Vx€

Now, we fix ii = (o/lcl)1/*, then inequality (3.13) is satisfied. By using the monotonocity
of k2x - (a/xx), then (3.14) holds if

id2)+ to
REMARK 3.9. In [7], it is proved that equation (3.11) has at least one positive periodic
solution if k € (0, TT), e G L°°[0,1], e. < 0 and the following inequality holds:

It is easy to see that our condition (3.12) is weaker than condition (3.15) since
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