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Abstract

In this paper, we investigate a class of fractional Schrödinger equations with

perturbation. By using the mountain pass theorem and Ekeland’s variational principle,

we see that such equations possess two solutions. Recent results in the literature are

generalized and significantly improved.
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1 Introduction

In this paper, we consider the following class of fractional Schrödinger equations:

(–�)αu +V (x)u = f (x,u) + λh(x)|u|p–u, x ∈R
N , (.)

where  < α < , α < N ,  ≤ p < , f ∈ C(RN × R,R), h ∈ L


–p (RN ), V ∈ C(RN ,R), and

(–�)αu is defined pointwise for x in R
N by

(–�)αu(x) = –




∫

RN

u(x + y) + u(x – y) – u(x)

|y|N+α
dy

along any rapidly decaying function u of class C∞(RN ); see Lemma . of [].

Recently, a lot of attention has been focused on the study of fractional and non-local

problems; see [–]. This may be due to its concrete applications in different fields, such

as the thin obstacle problem, optimization, finance, phase transitions, stratified materi-

als, anomalous diffusion, deblurring and denoising of images, and so on; see [, –].

For standing wave solutions of fractional Schrödinger equations in the whole space RN ,

there were also many works; see [–]. The fractional Schrödinger equation is a fun-

damental equation of fractional quantum mechanics. The fractional quantum mechanics

has been discovered as a result of expanding the Feynman path integral, from Brownian-

like to Lévy-like quantum mechanical paths. In [], Laskin formulated the fractional

Schrödinger equations as follows:

i∂tψ = (–�)αψ +V (x)ψ – |ψ |p–ψ , x ∈ R
N , t ∈R, (.)
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where  < α < , ψ is the wavefunction and V (x) denotes the potential energy. We let

ψ(x, t) = eiωtu(x) be standing waves solutions for (.). Then u is a solution of an equation

of type of (.).

For the fractional Schrödinger equations, variational methods are available. In [],

Felmer et al. studied the existence and regularity of solutions for a class of fractional

Schrödinger equations under the Ambrosetti-Rabinowitz condition, i.e., there exists θ > 

such that

 < θF(x, t)≤ tf (x, t).

In [], Secchi obtained the existence of ground state solutions of a class of fractional

Schrödinger equations under the Ambrosetti-Rabinowitz condition and the following

condition:

(V) V ∈ C(RN ), infx∈RN V (x) = V >  and lim|x|→∞ V (x) = ∞.

In [], Torres studied the existence of solutions for the following equations:

(–�)αu +V (x)u = f (u) + h(x), x ∈R
N , (.)

under the conditions of (V) and the Ambrosetti-Rabinowitz condition for f .

As far as we know, there are few works on problem (.), of which nonlinearity involves

a combination of superlinear or asymptotically linear terms and a sublinear perturbation.

Motivated by the above facts, we investigate this case in this paper.

Before stating our results we introduce some notations. Throughout this paper, we de-

note by ‖‖r the L
r-norm,  ≤ r ≤ ∞, and h± = max{±h, }. If we take a subsequence of a

sequence {un} we shall denote it again by {un}.

Now we state our main result.

Theorem . Assume that h ∈ L


–p \ {} with h+ �= , (V), and the following conditions

are satisfied:

(F) f (x, s) is a continuous function on R
N × R such that f (x, s) ≡  for all s <  and

x ∈R
N .Moreover, there exists b ∈ L∞(RN ,R+) with |b|∞ <

S

such that

lim
s→+

f (x, s)

sk
= b(x) uniformly in x ∈R

N ,

and

f (x, s)

sk
≥ b(x) ∀s >  and x ∈R

N ,

where Sr is the best constant for the embedding of X in Lr(RN ); see Lemma . and Re-

mark . in Section ;

(F) there exists q ∈ L∞(RN ,R+) with |q|∞ > c such that

lim
s→∞

f (x, s)

sk
= q(x) uniformly in x ∈R

N ,

where c is defined by (.) in Section ;
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(F) there exist two constants θ , d satisfying θ >  and  ≤ d <
S(θ–)

θ
such that

F(x, s) –


θ
f (x, s)s≤ ds

 ∀s >  and x ∈R
N ,

where F(x, s) =
∫ s


f (x, τ )dτ .

Then we have the following results:

(i) if k =  and μ <  with

μ = inf

{∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)u(x) dx

∣

∣

∣u ∈Hα
(

R
N
)

,

∫

RN
q(x)u(x) dx = 

}

,

then there exists 
 >  such that for every λ ∈ (,
), problem (.) has at least two

nontrivial solutions;

(ii) if  < k < ∗
α – , then there exists 
 >  such that for every λ ∈ (,
), problem (.)

has at least two nontrivial solutions, where ∗
α = N

N–α
.

Remark . Theorem . extends the perturbation h in [] to the case λh(x)|u|p–u and

(F) is weaker than the Ambrosetti-Rabinowitz condition. Moreover, our f is allowed to

be asymptotically linear at infinity when k = , which is not the same as that in [], where

they need lim sups→+
f (x,s)
s

< lim infs→+∞
f (x,s)
s

.

The paper is organized as follows. In Section , we present some preliminaries. In Sec-

tion , we give the proof of our main results.

2 Preliminaries

In order to prove our main results, we first give some properties of space X on which the

variational setting for problem (.) is defined. Let

H =Hα
(

R
N
)

:=

{

u ∈ L
(

R
N
)

:

∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz < ∞

}

with the inner product and the norm

〈u, v〉H =

∫

RN

∫

RN

[u(x) – u(z)][v(x) – v(z)]

|x – z|N+α
dxdz +

∫

RN
u(x)v(x)dx, ‖u‖H = 〈u,u〉



H .

Letting

X =

{

u ∈Hα
(

R
N
)

:

∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)u(x)dx < +∞

}

,

then X is a Hilbert space with the inner product

〈u, v〉 =

∫

RN

∫

RN

[u(x) – u(z)][v(x) – v(z)]

|x – z|N+α
dxdz +

∫

RN
V (x)u(x)v(x)dx
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and the corresponding norm ‖u‖ = 〈u,u〉. Note that

X ⊂Hα
(

R
N
)

and

X ⊂ Lr
(

R
N
)

for all r ∈ [, ∗
α] with the embedding being continuous. It is easy to get the following

lemma.

Lemma . Assume that the condition (V) holds. Then there exists a constant c >  such

that

∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)u dx ≥ c‖u‖H , ∀u ∈Hα

(

R
N
)

. (.)

Lemma . (see [, ]) Assume that the condition (V) holds. Then X is compactly em-

bedded in Lr(RN ) for all r ∈ [, ∗
α).

Remark . By Lemma ., we have

Sr‖u‖r ≤ ‖u‖,

where Sr is the best constants for the embedding of X in Lr(RN ).

Now we begin describing the variational formulation of problem (.). Consider the

functional J : X →R defined by

J(u) =



‖u‖ –

∫

RN
F(x,u)dx –

λ

p

∫

RN
h(x)|u|p dx. (.)

By the continuity of f , g and Lemma ., J ∈ C(X,R) and its derivative is given by

J ′(u)v =

∫

RN

∫

RN

[u(x) – u(z)][v(x) – v(z)]

|x – z|N+α
dxdz +

∫

RN
V (x)u(x)v(x)dx+

–

∫

RN
f
(

x,u(x)
)

v(x)dx – λ

∫

RN
h(x)|u|p–uvdx (.)

for all u, v ∈ X. In addition, any critical point of J on X is a solution of problem (.).

Next, we give the variant version of the mountain pass theorem which is important for

the proof of our main results.

Theorem . (see []) Let E be a real Banach space with its dual space E∗, and suppose

that I ∈ C(E,R) satisfies

max
{

I(), I(e)
}

≤ μ < η ≤ inf
‖u‖=ρ

I(u)



Yang Boundary Value Problems  ( 2015)  2015:56 Page 5 of 9

for some μ < η, ρ >  and e ∈ E with ‖e‖ > ρ . Let ĉ≥ η be characterized by

ĉ = inf
γ∈Ŵ

max
≤τ≤

I
(

γ (τ )
)

,

where Ŵ = {γ ∈ C([, ],E) : γ () = ,γ () = e} is the set of continuous paths joining  and e,

then there exists a sequence {un} ⊂ E such that

I(un) → ĉ ≥ η and
(

 + ‖un‖
)∥

∥I ′(un)
∥

∥

E∗ → , as n → ∞.

3 Proof of themain results

To prove our main results, we first give the following lemma.

Lemma . For any real number ∗
α –  > k ≥ , assume that the conditions (V), (F)-(F)

hold. Then there exists 
 >  such that for every λ ∈ (,
) there are two positive constants

ρ , η such that J(u)|‖u‖=ρ ≥ η > .

Proof For any ǫ > , it follows from the conditions (F)-(F) that there exist Cǫ >  and

∗
α > r > max{,k} such that

F(x, s)≤
|b|∞ + ǫ


s +

Cǫ

r
|s|r , ∀s ∈R. (.)

By (.) and (.), Sobolev’s inequality, and Hölder’s inequality, one has

J(u) =



‖u‖ –

∫

RN
F(x,u)dx –

λ

p

∫

RN
h(x)|u|p dx

≥



‖u‖ –

∫

RN

|b|∞ + ǫ


u(x) dx –

∫

RN

Cǫ

r
u(x)r dx –

λ

p

∫

RN
h(x)

∣

∣u(x)
∣

∣

p
dx

≥



‖u‖ –

|b|∞ + ǫ

S
‖u‖ –

Cǫ

rSrr
‖u‖r –

λS
–p


p
‖h‖ 

–p
‖u‖p

= ‖u‖p
[





(

 –
|b|∞ + ǫ

S

)

‖u‖–p –
Cǫ

rSrr
‖u‖r–p –

λS
–p


p
‖h‖ 

–p

]

(.)

for all u ∈ X. Take ǫ =
S

– |b|∞ and define

l(t) =



t–p –Cǫr

–S–rr tr–p, ∀t ≥ .

It is easy to prove that there exists ρ >  such that

max
t≥

l(t) = l(ρ) =
r – 

(r – p)

[

( – p)rSrr
(r – p)Cǫ

]

–p
r–

.

Then it follows from (.) that there exists 
 >  such that for every λ ∈ (,
) there exist

two positive constants ρ , η such that J(u)|‖u‖=ρ ≥ η > . �



Yang Boundary Value Problems  ( 2015)  2015:56 Page 6 of 9

Consider the minimum problem

μ = inf

{∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)u(x) dx : u ∈Hα

(

R
N
)

,

∫

RN
q(x)u(x) dx = 

}

. (.)

Then we have the following results.

Lemma . There exist a constant c >  and φ ∈Hα(RN ) with
∫

RN q(x)φ(x)
 dx =  such

that μ ≥ c and

μ =

∫

RN

∫

RN

|φ(x) – φ(z)|


|x – z|N+α
dxdz +

∫

RN
V (x)φ(x)

 dx, (.)

i.e. the minimum (.) is achieved.

Proof For any u ∈Hα(RN ) with
∫

RN q(x)u(x) dx = , by Lemma . and Sobolev’s embed-

ded theorem, we have

∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)u(x) dx ≥ c‖u‖H ≥ c‖u‖ ≥

c

|q|∞
> .

Therefore, there exists a constant c >  such thatμ ≥ c. Let {un} ⊂Hα(RN ) be aminimiz-

ing sequence of (.). Clearly,
∫

RN q(x)un(x)
 dx =  and {un} is bounded. Then there exist

a subsequence {un} and φ ∈ Hα(RN ) such that un ⇀ φ weakly in Hα(RN ) and un → φ

strongly in L(RN ). So it is easy to verify that
∫

RN q(x)un(x)
 dx →

∫

RN q(x)φ(x)
 dx as

n→ ∞ and
∫

RN q(x)φ(x)
 dx = . Therefore,

μ ≤

∫

RN

∫

RN

|φ(x) – φ(z)|


|x – z|N+α
dxdz +

∫

RN
V (x)φ(x)

 dx

≤ lim inf
n→∞

{∫

RN

∫

RN

|u(x) – u(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)u(x) dx

}

≤ μ. (.)

This implies that

μ =

∫

RN

∫

RN

|φ(x) – φ(z)|


|x – z|N+α
dxdz +

∫

RN
V (x)φ(x)

 dx. �

Lemma . For any real number ∗
α –  > k ≥ , assume that the conditions (V), (F)-(F)

hold. Let ρ,
 >  be as in Lemma .. Then we have the following results:

(i) If k =  and μ < , then there exists e ∈ X with ‖e‖ > ρ such that J(e) <  for all

λ ∈ (,
).

(ii) If k > , then there exists e ∈ X with ‖e‖ > ρ such that J(e) <  for all λ ∈ (,
).
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Proof (i) In case k = . Since μ < , we can choose a nonnegative function ϕ ∈ Hα(RN )

with
∫

RN q(x)ϕ(x) dx =  such that

‖ϕ‖ =

∫

RN

∫

RN

|ϕ(x) – ϕ(z)|

|x – z|N+α
dxdz +

∫

RN
V (x)ϕ(x) dx < .

Therefore, by the condition (F) and Fatou’s lemma, we have

lim
t→+∞

J(tϕ)

t
≤




‖ϕ‖ – lim

t→+∞

∫

RN

F(x, tϕ)

tϕ
ϕ dx – lim

t→+∞

λ

pt–p

∫

RN
h(x)|ϕ|p dx

≤



‖ϕ‖ –





∫

RN
q(x)ϕ dx

=




(

‖ϕ‖ – 
)

< . (.)

So, J(tϕ) → –∞ as t → +∞, then there exists e ∈ X with ‖e‖ > ρ such that J(e) <  for all

λ ∈ (,
).

(ii) In case k > . q ∈ L∞(RN ,R+) with q+ �= , we can choose a functionω ∈Hα(RN ) such

that

∫

RN
q(x)|ω|k+ dx > .

Therefore, by the condition (F) and Fatou’s lemma, we have

lim
t→+∞

J(tω)

tk+
≤

‖ω‖

tk–
– lim

t→+∞

∫

�

F(x, tω)

tk+ωk+
ϕk+ dx – lim

t→+∞

λ

ptk+–p

∫

�

ξ (x)|ω|p dx

≤ –


k + 

∫

�

q(x)ωk+ dx

< . (.)

So, J(tω) → –∞ as t → +∞; then there exists e ∈ X with ‖e‖ > ρ such that J(e) <  for

all λ ∈ (,
). �

Next, we define

β = inf
γ∈Ŵ

max
≤τ≤

J
(

γ (τ )
)

,

where Ŵ = {γ ∈ C([, ],E) : γ () = ,γ () = e}. Then by Theorem ., Lemma ., and

Lemma ., there exists a sequence {un} ⊂ X such that

J(un) → β and
(

 + ‖un‖
)∥

∥J ′(un)
∥

∥

E∗ → , as n→ ∞. (.)

Then we have the following results.

Lemma . For any real number ∗
α –  > k ≥ , assume that the conditions (V), (F)-(F)

hold. Let 
 >  be as in Lemma .. Then {un} defined by (.) is bounded in X for all

λ ∈ (,
).
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Proof For n large enough, by Hölder’s inequality and Lemma ., one has

β +  ≥ J(un) –


θ

〈

J ′(un),un
〉

=

(




–


θ

)

‖un‖
 –

∫

RN

[

F(x,un) –


θ
f (x,un)un

]

dx

– λ

(



p
–


θ

)∫

RN
h(x)|un|

p dx

≥
θ – 

θ
‖un‖

 – d

∫

RN
un dx – λ

(



p
–


θ

)∫

RN
h(x)|un|

p dx

≥
θ – 

θ
‖un‖

 –
d

S
‖un‖

 – λ

(



p
–


θ

)

S
–p
 ‖h‖ 

–p
‖un‖

p

≥

(

θ – 

θ
–
d

S

)

‖un‖
 –


(



p
–


θ

)

S
–p
 ‖h‖ 

–p
‖un‖

p, (.)

which implies that {un} is bounded in X, since  ≤ p < . �

Denote Bρ = {u ∈ X : ‖u‖ < ρ}, where ρ is given by Lemma .. Then by Ekeland’s vari-

ational principle and Lemma ., we have the following lemma, which shows that J has a

local minimum if λ is small.

Lemma . For any real number ∗
α – > k ≥ , assume that the conditions (V), (F)-(F).

Let 
 >  be as in Lemma .. Then for every λ ∈ (,
), there exists u ∈ X such that

J(u) = inf
{

J(u) : u ∈ B̄ρ

}

< ,

and u is a solution of problem (.).

Proof Since h ∈ L


–p \ {} with h+ �= , we can choose a function ψ ∈Hα(RN ) such that

∫

RN
h(x)|ψ |p dx > .

Hence, we have

J(tψ) =
t


‖ψ‖ –

∫

RN
F(x, tψ)dx –

λtp

p

∫

RN
h(x)|ψ |p dx

≤
t


‖ψ‖ –

λtp

p

∫

RN
h(x)|ψ |p dx <  (.)

for t >  small enough, which implies θ := inf{J(u) : u ∈ B̄ρ} < . By Ekeland’s variational

principle, there exists aminimizing sequence {un} ⊂ B̄ρ such that J(un) → θ and J
′(un) →

 as n → ∞. Hence Lemma . implies that there exists u ∈ X such that J ′(u) =  and

J(u) = c < . �

Proof of Theorem . From Lemma . and Lemma ., there is a ū ∈ X such that, up to

a subsequence, un ⇀ ū weakly in X, un → ū strongly in Ls(R) for s ∈ [, ∗
α). By using a

standard procedure, we can prove that un → ū strongly in X. Moreover, J(ū) = β >  and
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ū is another solution of problem (.). Thus, combining with Lemma ., we prove that

problem (.) has at least two solutions u, ū ∈ X satisfying J(u) <  and J(ū) > . �
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