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MULTIPLICITY RESULTS FOR p-KIRCHHOFF MODIFIED SCHRODINGER EQUATIONS
WITH STEIN-WEISS TYPE CRITICAL NONLINEARITY IN RV

RESHMI BISWAS, SARIKA GOYAL AND K. SREENADH

ABSTRACT. In this article, we consider the following modified quasilinear critical Kirchhoff-Schrédinger problem
involving Stein-Weiss type nonlinearity:
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where A > 0 is a parameter, N > 3, K(u) = (a+b/ |Vu|pd:c) Apu — aulp(u?) with a > 0, b > 0, 8 > 0,
RN

0<u<N,0<284+pu< N,2<qg<2p*. Herep* = 1\Irvfp is the Sobolev critical exponent and pz p = g%

is the critical exponent with respect to the doubly weighted Hardy-Littlewood-Sobolev inequality (also called Stein-
Weiss type inequality). Then by establishing a concentration-compactness argument for our problem, we show
the existence of infinitely many nontrivial solutions to the equations with respect to the parameter A\ by using
Krasnoselskii’s genus theory, symmetric mountain pass theorem and Zs>- symmetric version of mountain pass theorem
for different range of q. We further show that these solutions belong to L (RY).

1. Introduction

Our aim in this article is to study the following modified quasilinear critical Kirchhoff-Schrédinger problem
involving Stein-Weiss type critical nonlinearity:

2P . 2p% 2
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where K(u) = (a—i—b/ |Vu|pdx) Apu — aulp(u?),2<p<N,a>0,b6>0,8>0,u>00<28+pu<N,
RN

0<pj,:= %, N >3 and A > 0 is a parameter. Here 2p < g < 2p*, p* := NN—& and f(>0) € L%F= (RM).

The solutions of (1.1) involving the Schrédinger operator —A,u — ulA,(u?), are related with the solitary standing
wave solutions to the quasilinear Schrodinger equation of the form

iug = —Au+ V(z)u — hy(Jul*)u — CAhy([u)?) Ry (Ju|*)u, =€ RY, (1.2)

where V : RV — R is a continuous potential function, C' > 0 is some positive real constant, A1 and he are some
real valued functions with some appropriate assumptions. Based upon the different forms of the function hs, (1.2)
explains different phenomenon in the mathematical physics. For example, if ha(s) = s (see [18]), then (1.2) is used
in modelling the superfluid film equation in plasma physics and if he = V1 + s2 (see [34]), (1.2) represents the
self-channeling of a high-power ultra short laser in matter. Such kind of equations also have applications in the
modeling of dissipative quantum mechanics [14], plasma physics and fluid mechanics [4], etc.

The main feature of such operator is that the term uA,(u?), present in (1.1), does not let the natural energy
functional corresponding to (1.1) to be well defined for all u € DVP(RY) (defined in Section 2). Therefore, the
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standard critical point theory in variational method is inconvenient to apply directly for such problems of type (1.1).
To overcome this inconvenience, researchers have established several techniques and arguments, such as constrained

minimization technique (see [36]), the perturbation method (see [28]), change of variables (see [3, 10]). In this
article, we use the change of variable method described in Section 2. In the recent advancement on such modified
quasilinear equations, we refer the readers to [6, 11, 15, 20, 22, 35] and the cited research works there in with no

claim on completeness.

The nonlocal nonlinearity present in (1.1) is inspired by the doubly weighted Hardy-Littlewood-Sobolev inequality
(also called Stein-Weiss type inequality). Let us first recall the well-known doubly weighted Hardy-Littlewood-
Sobolev inequality (see [38]), which is stated as:

Proposition 1.1. Lett, s > 1, u >0, 9+ >0 and 0 < 9+ 58+4+u < N. Also, let %—i—%—i—% =2,9< % N B< S,,
g1 € LY(RY) and g2 € L*(RY), where t' and s' denote the Hélder conjugate of t and s, respectively. Then there
exists a constant C(N, u, 9, 8,1, ), mdependent of g1, g2 such that

()
T gy Y S O 9, 8,8, r)llgn| ey lg : 1.3
/RN /RN |x—y|ﬂ|y|19| E ( 1)l e eyllgz ) (1.3)

If ¥ = g = 0, this inequality (1.3) is the classical Hardy-Littlewood-Sobolev inequality (see [25]). S. Pekar first
stated the study of such equations in [31], where the author considered the nonlinear Schrodinger-Newton equation
of the form:

—Au+V(z)u = (K#*uz)u—k/\fl(:r,u) in RN, (1.4)

where A > 0 is a parameter, KC,, is the Riesz potential, V : RY — R is continuous potential function, f; : RV xR — R
is a Carathéodory function with some suitable assumptions and * denotes the convolution. These types of equations
are very much crucial in the application point of view in Physics to describe the Bose-Einstein condensation (see
[9]), the self gravitational collapse of a quantum mechanical wave function (see [32]), etc. With the help of the
elliptic equations of type, (1.4) P. Choquard (see [24]) managed to explain the quantum theory of a polaron at rest
and for modeling the phenomenon when an electron gets trapped in its own hole. For deeper study of Choquard
equations, we refer to the readers the research works [1, 13, 25, 26, 30] and the references therein. When S8 > 0,
then the elliptic problems involving Stein-Weiss type nonlinearities are studied in [3, 12, 40], very recently.

On the other hand, one of the main features of (1.1) is the presence of the both nonlocal Kirchhoff term in
the left-hand side and nonlocal Stein-Weiss type nonlinearity in the right-hand side of (1.1). Hence our problem
is categorized as a doubly nonlocal problem. The Kirchhoff-type models arise in various physical and biological
systems and hence, the study of the problems involving Kirchhoff operators has been quite popular in recent years.
Precisely, Kirchhoff established a model given by the following equation:

0%u ou? 0%u
P — Po + — —| dz | =5 =0,
0%t h 2L ot 0%t
which extends the classical D’Alembert wave equation by taking into account the effects of the changes in the length
of the strings during the vibrations, where the constants p, pg, h, E, L represent physical parameters of the string.

Subsequently, using the method of Nehari manifold and the concentration compactness principle Lii [29] studied
the following Kirchhoff-Choquard problem

( —a+ b/ |Vu|2da:) Au+ Va(z)u = (K, * |ul?)|u]72u in R?, (1.5)
]RS

where a > 0,b > 0, K, is the Riesz potential, V\(z) = 1+ Ag(x), A > 0 and g is a continuous potential function,

€ (2,6 — p). Later Liang et. al [19] studied (1.5) for V) = 0, ¢ = 2}, and by adding some perturbation in the
right-hand side which has sub-critical growth in the sense of Sobolev inequality. Though the literature on the
Kirchhoff equation is really vast, without attempting to provide the complete list we refer to [7, 23, 39, 16] and
references there in to the readers.

When it comes to the Kirchhoff problems involving the operator present in our problem (1.1), without the convolu-

tion term in the nonlinearity in (1.1), Liang et. al [21] studied the multiplicity results for such modified quasilinear
Kirchhoff equations. Then for p = 2 and 8 = 0 in [37], the authors studied such problem. Also, for 8 = 0, we
refer to the work in [20], which deals with the Choquard equations involving the modified quasilinear Schrodinger

operator as in (1.1), without the Kirchhoff term.



p-KIRCHHOFF PROBLEM WITH STEIN-WEISS NONLINEARITY 3

Motivated by all the aforementioned works, in this article, we consider (1.1) for 2 < p < oo and with critical
Stein-Weiss type convolution term in combination with sub-critical perturbation. The suitable Stein-Weiss type
critical exponent is set here as 2.pj  due to the Schrédinger term uA,(u?) present in the principal operator and for
the same reason the exponent ¢ also varies between 2 to 2p*. We exhibit the existence of infinitely many solutions
for (1.1) by exploiting Krasnoselskii’s genus theory and by applying a variant of Clark’s theorem (also known as Zs-
symmetric version of mountain pass theorem). One of the main contributions to this article is that we have proved
a concentration-compactness result (see Lemma 3.4) related to our problem for general 2 < p < oo, which is not
yet studied even for the equations of type (1.1) without the Schrédinger term uA,(u?). In case of p = 2, Du et al.
[12] studied such result for the equations involving Laplacian. This concentration-compactness result plays a very
crucial in the context of our problem where we face lack of compactness due to the presence of the critical exponent
as well as, the domain being whole of RV, This result will help us to analyze the behavior of the weakly convergent
sequences in the solution space D'P(R™M) (see Section 2) so that we can prove the Palaise-Smale condition for the
energy functional Zy(see (2.4)) below some critical level. Furthermore, we prove global L> regularity estimate on
the solutions to (1.1), which is applicable even for the critical Choquard equation (8 = 0) involving p-Laplacian
in the whole of R for p > 2, which is another important contribution to this article. We would like to mention
that the detailed regularity results for the critical Choquard equations involving fractional and local p-Laplacian is
first studied in [2] for the bounded domain in RY. The main difficulty we face here is due to involvement of the
Stein-Weiss type critical nonlinearity and Kirchhoff term together. This gives rise to several interactions with the
exponent ¢, p*, pj , and the parameters A, a,b, i, 8 which have effects in the multiplicity results. Depending on
this, we need to carry out delicate analysis. To the best of our knowledge the results studied in this present paper
are not available in the literature for the equation of type (1.1).

Now we state the main results in this article. Throughout this article we take the following assumptions on
the parameters:

a>0,b>0, 08>0, p>0,0<28+pu<min{2p,N}, 2<p<N. (1.6)

Theorem 1.2. Let 2 < q < 2p and let Q := {x € RY : f(z) > 0} is an open subset of RN such that
0 < meas() < oo. Then there exists \* > 0 such that for all A € (0,X*), (1.1) admits a sequence of nontrivial
weak solutions {uy} in DP(RN) N L®°(RY) with negative energy and uy, — 0 strongly in DYP(RN) as k — oo.

Theorem 1.3. Let ¢ = 2p. Then there exists positive constants a such that for all a > a and for all A €
(0, aS||f||i), (1.1) has infinitely many nontrivial weak solutions in DVP(RN) N L (RY).

p*—p
Theorem 1.4. Let 2p < q < 2p*. Then for all A > 0, (1.1) has infinitely many solutions in D*P(RN) N L (RN).

Remark 1.5. We would also like to highlight that our results are also new for the classical p-Kirchhoff equation:

{ <a+b/ |vu|de) Apu = Af(@)|u(z) |7 2u(z) + </ [uly)[P2.e dy> '“@)‘pf;"‘;*z“(z) inRY (L17)
RN R

v |z —ylHlylP

where all the parameters satisfy (1.6), p < ¢ < p* and f(>0) € L7 =4 (RY).

Notations

e The constants K, C and C;, 1 = 1,2,3,--- are positive real numbers (only depend on N,p, 8, , g, a, b, if
nothing is mentioned) which may vary from line to line.

e For any real number r > 0, B,(0) denoted the ball of radius r centered at 0 with respect to the norm

topology in DYP(RY).

For any set S, the closer of the set is denoted by S.

If A is a measurable set in RY, we the Lebesgue measure of A by meas(A).

The arrows —, — denote weak convergence, strong convergence, respectively.

The notation o, (1) means as n — 0o, o,(1) — 0.

2. Preliminaries and variational structure

First, for any 1 < p < 0o, we recall the definition of the Sobolev space

D'P(RN) = {u e L’ (RVY): / |VulPde < oo} ,
RN
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1
P
lll = ull o vy = ( / |Vu|pdx)
RN

Here p* denotes the Sobolev critical exponent and p* = Niip, if p< N and p* = o0 if N > p. By (D*?(RM))* we

denote the dual of D?(R¥™) and by (-, ) we denote the dual paring between D'?(R¥) and its dual (DV?(RY))*.
Concerning the doubly weighted Hardy-Littlewood-Sobolev inequality (1.3), if @« = v = 8 and s = r, then the

integral is
)| Ju()*
— " —dxdy
~/]RN /RN |zlP |z — yl#lyl?

is well-defined if |u|* € LI(RYN) for some ¢ > 1 satisfying 2 2+ 23% —9.
For u € D?(RY), by the Sobolev embedding theorem, we have p < tq < N—f’p. Thus

which is equipped with the norm

N
PEN-28-p) _, PN —25—p)
2N - - 2(N —p)
In this sense, we call p.g , = % the lower critical exponent and pj = % the upper critical

exponent in the sense of the weighted-Littlewood-Sobolev inequality. Also, we have 0 < pj < p* < 2pj .
Generally, for v = 8 > 0 and 28 + ¢ < N, the limit embedding for the upper critical exponent leads to the

inequality
1
5 v,
/ / fut B e fuly) 5 —dzdy ' §C/ |Vu|Pdz.
ry Jry |z]Plz — ylH]yl RN

We define the following norm

1
D) fum)Pre TR
o= ( [ | [ dudy| "
B =\ Jow S J2lPT = glilylP

/ v . (2.1)

weD a0 ) [Phos fu () P 5
/ / 3 5 dxdy
ey Jry [2lPle — ylly|

From the weighted Hardy-Littlewood-Sobolev inequality (1.3), for all u € DVP(RY), we know

Let us set

S 1=

Jul|3,, < C(N, B, p1)"5n

Then

S
Sp.pu = — >0,

C(N,B,a) 5w
where S is the best Sobolev constant for the embedding DV?(RY) into LP" (RN ) is defined as

S = inf {/ |Vu|pd3:} . (2.2)
ueDLP(RN\{O}, [Jullp» =1 [ JrN

Observe that the natural energy functional related to (1.1) is not well defined for u € D?(RY). To overcome this

difficulty, we employ the following change of variables which was introduced in [3], namely, w := g~*(u), where g is
defined by

1
"(s) = T in [0, 00),
(1420~ g(s)[P) > (2.3)

9(s) = —g(=s) in (—o0,0].
Now we state some important and useful properties of g. For the detailed proofs of such results, one can see [3, 10]
and references there in.
Lemma 2.1. The function g satisfies the following properties:

(q1) g is uniquely defined, C*° and invertible;
(92) 9(0) = 0;
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( "(s) <1 for all s € R;

( g'(s) < g(s) for all s > 0;
(g5 |s| for all s € R;

(g6 21/C0)|5|V/2 for all s € R;
(

(

(

)
)
)
)
g7) lim (5) _ 2#'
)
)
)
)

g3
g4

A |/\|/\/c;3\
V2l

s—-+00 S%
l9(s)| > g(D)ls| for [s| <1 and |g(s)| > g(1)]s["/* for |s| > 1;
g"(s) <0 when s >0 and ¢g"(s) > 0 when s < 0.
( lim ():1.
s—0 8§
(911) lg(s)g ()|<2E for all s € R;

(912) g"(s) = =277 (g(s))"~(g'(5))**P, s > 0.
After applying the change of variable w = g~!(u), we define the new functional Z : D¥?(RY) — R as

b 2
) =2 [ vapde+ ([ wpivepas)

A f@)g ! @) o)
q‘/RN f( )|g( ) 41%# RN (w/]RN |y|ﬁ|$—y|l‘ dy) |IE|5 dx. (2.4)

Note that, if w € D¥P(RY) is a critical point of the functional Zy, then for every v € DMP(RY), (Z} (w),v) = 0.
That is,

gs
99

Q

10

a / VwlP-2VwVvdz + b / 1 ()P |V [P da / (19 ()P |VwlP~2VawVo + g ()P~ 2g (w)g” ()| Vul?v) da
RN

o2 . g5\ gl Phegw)
A [ @l g(w)g (w)ed AN<AN|x_y|H|y|ﬂdy> 2wtz =0 25)

and w is a weak solution to the following problem:

—alpw — b/ g (w)P|Vw|Pdz - (lg' (w)[P~2g (w)g" (w)|Vwl” + |g' (w)|Pdiv(|Vw [~ Vw))
RN

w 2P5, w 2pp =2 w
=Af<x>|g<w>|q-2g<w>g’<w>+( [, dy> OB ) B (26)

v |z —ylHlyl?

See that the transformed problem (2.6) is equivalent to (1.1) which takes u = g(w) as its solutions. Thus, now our
aim is to find the solutions to (2.6).

3. Compactness arguments

In this section, first we recall the definition of Palais-Smale sequence.

Definition 3.1. Let 7 : X — R be ¢ C! functional on a Banach space X.

(1) For ¢ € R, a sequence {u,} C X is a Palais-Smale sequence at level ¢ (in short (PS).) in X for J if
T (un) = c+ 0n(1) and J'(urn) — 0 in X*(dual of X) as k — oc.
(2) We say J satisfies (PS). condition if for any Palais-Smale sequence {u,} in X for J has a convergent
subsequence.
Next, we state the following concentration compactness Lemms due to Lions [27].

Lemma 3.2. Let {u,} be a bounded sequence in DYP(RN) converging weakly and a.e. to u € D*P(RYN) such that
|V, [P — v, [u, [P — w in the sense of measure. Then, for at most countable set J, there exist families of distinct
points {vj 1 j € J} and {w; : j € J} in RN satisfying

v > |Vul|P + Zujézj, vj >0,

ieJ
w=[ulf + E w;jdz,, wj >0,
ieJ
L*
p
S’wj <vj

where v, w are bounded and nonnegative measures on RY and d.; 1is the Dirac mass at z;.
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Lemma 3.3. Let {u,} C DVP(RY) be a sequence in as in Lemma 3.2 and defined

Voo := lim lim [Vu,|Pde, we = lim lim [un|P dx
R—00 n—00 l2|>R R—00 n—00 lz|>R

Then it follows that
Swgép* < Vso

limsup/ |Vun|pdxzuoo+/ dv, limsup/ |un|p*dac:woo—|—/ dw
n—o00 RN RN n—oo RN RN

Now we prove the following concentration-compactness lemma related to our problem.

Lemma 3.4. Let B3>0, u>0,0<28+pu <N and2 < p < N. If {u,} is a bounded sequence in D*P(R™)
converges weakly and a.e in RN to some u € DYP(RN) asn — oo and such that |u,|?” — w and |Vu,|P — v in the

sense of measure. Assume that
/ |un )75\ Jun (2)[P2 ¢
ey [yl le —y|» ||P

weakly in the sense of measure, where ¢ is a bounded positive measure on RN and define

and

Voo 1= hm hmsup/ [Vup|Pdz, we := hm hmsup/ |un|P da.
|z|>R |z|>R

R—o0o nooo R—oo posoco

P3, P,
(oo i= hm hmsup/ / |UZ(3/)| 5 dy |“n($)!3 " da
R—=00 nooo Jiz|>R \ /RN lylP |z —y|* ||

Then there exists a countable sequence of points {z;}jcs C RY and families of positive numbers {w; : j € J},
{(G:j€J} and {vj:j € I} such that

_ July) PR\ Ju(a) PR N
<_</sz |y|6|;c—y|u> || ZCJ 2 ZC} < 00, (3.1)

jed jed
v > |Vul’ + > vl (3.2)
JjEJ
w > |u|P* + ijézj7 (33)
=
and
S N
SBMC;%’“ <wj, and VTN < C(N, B, p) 737 w;. (3.4)

where &, is the Dirac-mass of mass 1 concentrated at z € RN,
For the energy at infinity, we have

lirnsup/ |Vun|pda:—uoo—|—/ dv, lirnsup/ |un|p*d:1::woo—|—/ dw
n—o00 RN n—00 RN RN

. )15 () P
lim sup 3 5 drdy = (s + dc¢,
n—oo JRN JRN |33| |z —y|*y| RN

and
oON __2N
C(N,B,/L)iﬂv*ﬂi*“ <<>20N72B7“ S Woo (/ dw +woo> 9
]RN
__r =
SPO(N, B ) T (o < v ( / du+uoo).
RN

Proof. Let v, := u, —u. Then the sequence {v,} converges weakly to 0 in D*?(RY) and v, (z) — 0 a.e. in RY as
the bounded sequence {u,} converges weakly to u in D*?(R¥). By Lemmas 3.2- 3.3, we have

[Vo,|P = 71 = v —|Vul?,

|vn|p* Ty i=w— |u|p*,

Pp, Pp, Ps, Pp,
/ Ivz(y)l " dy Ivn(x)[L . —c— / Ivé(y)l " dy IU(x)IB "
ry Y|Pz — ylm || ry [ylPle —yl# ||
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Firstly, we show that for every ¢ € C°(RY),

A e GO e on(@)Por @) [P [ poy ()P
d — d
L. (/ Pl — ol y) o o </ [Pl — g y) [a]?

as n — oo. For this, we denote

Gva)Phr Y [ova (@) o\ @) o () P
v, = d — d .
) </ 9Pl — o1 y) EE </ PIHEETTG y) 2l

As ¢ € CX(RYN), so we have for every § > 0, there exists K > 0 such that

-0, (3.5)

/ o | ¥, (x)|dx < §, foralln>1. (3.6)

Further, we know that the Riesz potential defines a linear operator and v, (z) — 0 a.e. in RY and hence,

Ps,
/ %dyﬁ()a.e. in RV
ey |Y[Plz —y|#

Thus, we have ¥,,(z) — 0 a.e. in RY. We note that

v = [ (6%~ 6@ @ g pn ([, o piontpinay) 2

ly|%|z =yl || |z

()P0 —|¢(2)["5 s

where ®(z,y) = . Moreover, for almost all x € R, there exists some R > 0 large enough such

[ylPlz—yl*
that
[ e@lun@Piedy= [ @l -lo@pie [ LT,
RN lyI<R i [Y1P |z =yl
In [27], we noticed that ®(z,y) € L"(Bg) for each z, where r < % ifpu>1,r< % if 0 < p < 1. So, by Young’s

inequality, there exists ¢ > % such that

1
t

t
/ (/ ¢<w7y>|vn<y>|p%wdy> @] < Lollote pllioabiel, 2y, < Ll
Bk (0) Br(0)

2N —-28—pn

where K is same as in (3.6) and L:b is some positive constant that depends on ¢. Moreover, one can easily see that

for R > 0 large enough
¢ 3
Lo (o [ T gy) a) <1
B (0) wi>r WPz =yl

t i
</ (/ ‘1>(I,y)lvn(y)|”3“dy> dfl?) < Lg,
B (0) \JRN

where L and L;g( depends on ¢) are some positive constants. Thus for s = ol

and so, we have

b2V > 0 small enough, we

IN-+2Nt—tp)
obtain
14s Pg ., (1+s)
t t p*
[oow@rras ([ ([ swaloriea) a) ([ e
Bk (0) B (0) \Jr¥ Bk (0)
2Nt—2N (14s)—t(2N —28—p)(1+s)
1 2Nt
/ 2NtB(1+s) < L:i;’
Bk (0) |x|2Nt72N(1+s)7t(2N—257u)(1+3)
i 2Nt(14s) N. Using this together with W, (z) — 0 a.e. in RN hi
SINCe 5xT—aN(ITs)—taN-2F—)(1Ts) < V- Using this together wi n(T a.e. in , we achieve

/ | ¥, (x)|dz — 0 as n — oo.
Bk (0)
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Combining this with (3.6), we infer that
/ [P, (x)|dx — 0 as n — oo.
RN

Now for every ¢ € C°(RY), by the weighted Hardy-Littlewood-Sobolev inequality (1.3), we deduce

[ (] [t g, ) 100G 1y < v, o 27
AL B

v [ylPle —yl»

Thus, the equation (3.5) is proved. From equation (3.5), we get

/ |¢)(:p)|2pz§u / |vn(y)|p5’” dy |vn($)|p5# dzr < C(N, B, U)”van”ifz’“ + On(l)
RN R |‘T|B

~ [yl |z =yl
On taking the limit as n — oo, we obtain

2r5,,

[ 19@Pan < oV, .0 ( / |¢|p*drz> " (3.7)
RN RN

Further, let ¢ = x(.,}, j € J and using this in (3.7), we have

* *

Sow _pP__
G < (C(N, B ) 75w wy, forall j € J.
Now the definition of Sg,, (see (2.1)) yields that

|¢vn(y) . |(J§1}n($)|pz§u ﬁ
d d S ) |[Pda.
</ </ WPl — o y) EE ) ﬁvﬂﬁ/w V(@vn)[Fde

Also, using (3.5) and v, — 0 in L} (RY), it follows that

[ ot ([ el ) ol ) < [ 9 o).
RN ey [ylPlz —y| |z|? T Jrw

On passing the limit as n — oo in the above estimation, we achieve

([ o@ipedn) ™ s, [ jopan. (35)

Let ¢ = x{z,}, J € J and applying this in (3.8), we have

p
Spul; P <, Ve .

This completes the proof of (3.4).
Now, we prove the possible loss of mass at infinity. For R > 1, let ¢g € C>®(R") be such that ¢r = 1 for
|z| > R+ 1, ¢pr(x) =0 for |2| < R and 0 < ¢r(x) < 1 on RY. For every R > 1, we have

123 123
lim sup/ / [ ()77 fun ()25 dydx
nooo Jrv Jrv  |z|Ple —yltlyl?

. [t ()75 1 () [t ()75 [t () "5 (1 = $r ()
= lim sup / / d dx + dydzx
e ( o WP fon fen 2Pz — y[ly]? ’

= limsup/RN /RN [ ()7 () 2 ) dyd:E—I—/RN(l — ¢r)dC.

n—00 |z|% o — yl#]yl?

Letting R — oo, by Lebesgue’s dominated convergent theorem, we deduce

Pg, Pg,
limsup/ / [un ()17 fun () P2 dydzr = (s —I—/ dc.
nooo Jry Jry |zl — ylrlylP RN
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By the weighted Hardy-Littlewood-Sobolev inequatlity (1.3), we get

(oo = hm hmsup/ / [un (y)|Pen dy | Ry () [P5on i
7 L S e e = ol Tol? EE

2N —-28—pn

2N
C(N, B, ) hrn lim sup </ |t [P da:/ |o R, |P daz)
RN RN

n—roo

— oW, (et [ o)

CN, B, 1)~ 7= (T < (/
R

Similarly, using the weighted Hardy-Littlewood-Sobolev inequatlity (1.3), we obtain

(oo = hm hmsup/ / [un (y)|"5n dy | R (x)[P5.n "
* RS noeo Jry \ Jry |z —ylrly|P z]P
—2B—p

2N
* N 2N
C(N, B, ) hm lim sup </ |t |P d:v/ b rtn|? dw>
RN RN

n—oo

2N —28—pu
2N

This gives
dw + woo> .

N

*

PB.u

R—00 nooo

C(N, 3, 11)S b hm lim sup (/ |Vun|pdac/ |V(¢Run)|pd:v>
RN RN

*
PB.u
P

) "

N

= (7(]V;/37#)§;*P2,u ((VOO 4_,Aé

which implies that

__r £
SPC(N, B, n) Phu C;ﬂ,u < Vo (/ dv + VOO) .
]RN

This completes the proof. O

Lemma 3.5. Assume that 2 < q < 2p and (1.6) hold. Then any (PS). sequence for Iy is bounded in D*P(RY).

Proof. Let {w,} be a (PS). sequence in D*?(R™). Then
a b 2
c+on(l) =Ih(w,) = —/ |Vw,|Pde + — (/ |g’(wn)|p|an|pdx)
P JrN 2p \Jrw

A 1 lgCwa ()5 \ lglwn ()5
> [ s@latwn) e < e dy) ),

For any v € DP(RY), we have
on (1) [[wn || =(Z4 (wn), v)
:a/ |an|p72anVvdx—)\/ f()]g(w,) ]2 g(w)g' (w, )vda
RN RN

b / 19/ (wa) P |V P / (19 (wn) PVt P2V Vodz + g/ (wn)P2g (wn)g" (wn)| Vo Po) de
RN RN
2

|g(w,,)| 5 lg(w,)[*Pon2g(wy)
— dy g (wy)vdx.
L. </ PRI EE (vn)

Choose v,, = (1 + 2p71|g(wn)|p)%g(wn) = 5,((:[;1)) S Dl’p(RN). Then Lemma 2.1—(94) and

2~1]g(w,) [P
V n| — 1 v nis
Vol < T gtwar ) VY
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yield, ||vn|| < 2||wy||. Also, by (2.5), we have

2p 1|g(w )|p ) ( |Vw |p )2
n 1 n|l = I/ n)yUn) — / 1 - n Pd b / ~ d
(@) ( )Hw H < )\(’w ) v > a N ( + 1 2p71| (wn)|p |VU} | x + o1 2p71| (wn)|p X

- I — 9w () PPon g (wn (@) PP
s s@lgwopas- [ [ . o

||z — yl#|2l?

Now using (3.9) together with the Holder inequality, Lemma 2.1-(g4), (g6) and (2.2), we obtain

c+ on(D)||wnl|| = Zn(wy) — (T3 (wp), vy

1
4Pj. 1

1 1 or—1 n)|P
S (e 2 )
RV | P 4Pf 14 2= Hg(vn)[P

11 .
) [ r@lgwn
Popu 4 RN
q
1 1 1 1 . 2p*
>al3- g ) [ IVunlrae = (2o )l ([ latwn o)
P 2p5, ) Jry a 4P, rma \JRN
q
1 1 1 1 q q 2
>a|-—— / |Vwy|Pde — A | — — — 220 5720 || f| _2p> (/ |an|pdx)
P 205, ) Jex a 4ph, rma \JRN

1 1 1 1
— — s | allwa P = A = = —— | 25 57| f]|_spr_||wal%.
P 2p5, ¢ Apg, o

This implies {w,} is bounded, since p < pj , and 2 < ¢ < 2p. O

1 1 2
|V, [P + <2— e ) b (/ Ig’(wn)IPIanl”)
P g RY

Y

Lemma 3.6. Let ¢ = 2p and (1.6) hold. Then any (PS). sequence for Iy is bounded in DVP(RYN).

Proof. Let {w,} be a (PS). sequence for for Z, any ¢ € RY. Using the similar calculation as in Lemma 3.5, we get

¢+ o(1)[wnll = Zx(wn) — (Z\(wn), vn)

45
1 1 Aae
> (5 g | ol (0= 32570014
p 2pﬁ,,u 2 p¥—p
For all 0 < A < g=rppr—— we get {wy} is a bounded sequence. O

p*—p
Lemma 3.7. Assume that 2p < q < 2pj , and (1.6) hold. Then any (PS). sequence for I is bounded in DVP(RY).

Proof. Let {w,} be a (PS). sequence for Z, for any ¢ € R". Gathering (3.9) in combination with the Hélder
inequality, Lemma 2.1-(g4), (96) and (2.2), it follows that

¢+ 0 (1) [wnl] = Ta (wn) — §<I;<wn>,vn>

1 1 2p71|g(wn)|p )] <1 1> </ )2
=a ——— 1t T VupP4+ | ——=1b "(w,,)) [PV, |P
/]RN {p q( 1+ 20— 1[g (v, )P [Vwn] w4 o 9" (wn) [P [Vawn |
2;02;’“ sz,u
Y - / / Ig(tt;(y))l dy |g(w(:v)23| .
qa Apj,, ) Jev \Jry [ylPlz —yl# 2|
1 2 1 2
>a(5-2) [ 1vunpas= (3 -2 alw,
P4/ Jry P g

where in the last line, we used the fact that 2p < ¢ < 2p* < apg - T herefore, from the above estimation, it implies
that {w,} is bounded. This completes the proof of the Lemma. O
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Lemma 3.8. Let >0, 1 >0,0<28+pu <N and2 <p < N. Suppose {w,} is a bounded sequence in LP" (RV)
such that w, — w a.e. in RN . Then we have

/ / |/;Un|pz3,u dy |wn|p§,u do — / / |wn6_ ’LU|;DZ3,/,L dy |wn — UB)|ZDZ3,LL da
'y \Jrw Y|Pz —yl# || rv \Jry [ylPlz —y[# ||

Pg, Pp,
- / L“" gy dz (3.10)
gy \ Jry Y|Pz —y[# ||

Proof. The proof follows in a similar manner as in [12]. O

as n — o0.

Lemma 3.9. Assume that 2 < q < 2p and (1.6) hold. Let {w,} C D*?(RY) be a Palais-Smale sequence for Ty
and ¢ < 0, then there exists \* > 0 such that Iy satisfies the (PS). condition for all X € (0, \*).

Proof. Let {w,} C DVP(RY) be a (PS).-sequence for Zy. Then by Lemma 3.5, {w,} is a bounded in D%P(RY).
So, by Lemma 2.1-(g5), {g(w,)} is also bounded in D'P(R¥Y). Therefore, we can assume that w,, — w weakly in
DYP(RN), w, — w a.e in RY. Since, g € C*°, then |g?(w,)|P — [¢*(w)|P a.e in RY and |g?(w,)[P — |g%(w)[?
weakly in DVP(RY). Hence, we can assume that

: lg?(w(@))|P5e \ g(w(x))|*5
? AN

in the sense of measure. By Lemma 3.4, there exists at most countable set .J, sequence of points {z;}jc; C RV
and families of positive numbers {v; : j € J}, {¢; : j € J} and {w, : j € I} such that

lg(w) 5\ lg(uw(@))[2Ps o
<_</RN |$—y|“lwlﬂ> |x|ﬂ PG Yo <o (3.11)

Vg?(wn)[” = w,  |g*(wn)

JjeJ JjeJ
w > V@ (w)P + Y w;de, (3.12)
jedJ
v > |gw)P" + > viba, (3.13)
jed
and
o N N
Sp.ul; fr < wj, and CJ?N’M"‘ < C(N, B, p) =27k, (3.14)

where §, is the Dirac-mass of mass 1 concentrated at z € RY.
Moreover, we can construct a smooth cut-off function . ; centered at z; such that

. € . 4
0 < e j(z) <1,¢(x)=1in B (;Cj, 5) e i(z) =01in RN\B(xj,e), [Vibe ;| < .

for any € > 0 small.
Let us set

on = (1427 |g(wn)|") 7 g(wn).
Then {v,} is bounded in DVP(RY). Obviously, (Z)(wn), vatbe,j) — 0 as n — 0o. So, we have

p p—2 .
~lim lim |a / g,(w") |an|P—2vwnw€,jdx+b( / |Vfl”"| ) / 9(wn)[Vien| VonVies g,
e>0n—o0 | - Jgn g'(wn) ry 1+ 207 g(wn)P ) Jew (14 201 g(w,)|P) >

2;071 n P n p n p . i
= lim lim a/ 1+ l9(wn)l |V, [P jd + b / [Vwn| / |Vwn |Pthe,4 de
s [y U T+ 2 g | e T2 Ug(w)P ) \aw TH 20 Tglwn)P

_ )\/ f |g wn | we,]dfl: - /RN /RN wn |2pﬂu|g( ( ))|2PB’“/¢€J(1‘.) dydx‘| : (315)

|l — yl#|xl?
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Now the Holder inequality and Lemma 2.1-(g4) yield that

0 <lim lim

e—0n—o0

a/ (1+ 2p71|g(wn)|p)%g(wn)|an|p72anV¢67jdw
RN

<K lim lim (Wi |Vw, [P~V w, Vi j|dz

e>0n—o0 JpnN

p=1 1
<K lim lim l(/ |an|17d;v> Y (/ |an¢e7j|pd£C> p]
e—+0n—o0 RN RN
P N-—p
~ o o
<K lim / |V ;[N dx / |w| V=7 da
€0 B(zj,2¢) B(zj,2¢)

1
3

P
SKlim/ lwP"dz | =0, (3.16)
€0 B(zj,2¢)

Similarly, using the boundedness of {w,} and the definition of 1. ;, we have

P p—2
=0 n—o0 ry 14207 g(wn)[P RN (1 + 201 g(wy)[P) >

One can easily check that,

lim lim / f(@)|g(wn)|9%e, jdz = 0. (3.18)

e—0n—o0 RN
Now by Lemma 2.1-(g11), we have
[Vg* (wn)|” = [29(wn)g (wn) Vion [P < 2[Vw,[P. (3.19)

Plugging the relation together with (3.16), (3.17) and (3.18) in (3.15), we deduce

2p71 n P n P N p iy
0 = lim lim a/ 1+ lg(wn)| |Vwn [P jda + b / [Vwn| / |Vw,[Pye ; da
em0n=o0 [ Jpw 1+ 207t g(wn)[P ’ ryv 14207 g(wn) [P ) \Jrw 1+ 207 g(wy,)[P

Y) P50 g (wn (2))| P50 1)e 4 ()
—)\/ wy ) |4, dx—/ / I dydx
T@lgton)Wesdr = | Jox |y|6|w—y|~|w|ﬂ Y
)PP g (w () [*P50 3
> lim lim a/ Vg* (wy, p1/fe‘d117—/ / )l L dzd
e—)On%oo{ RN | g ( >| 7 RN JRN |y|'@|$ - y|H|x|B Y
> gl_l)%ili% {G/]RN Ye,jdw /RN wwdg}
2 awj _Cj'

Combining this with (3.14), it follows that

2aN_28—u\ N-25-utp
i . > P - = 0.
either w; > aSB# or w; =0
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Now we claim that the first case can not occur. Suppose not, then there exists jo € J such that w;, >
N-—-p

2N—-28—p N—-28—pu+p
(aS 5, #N -r ) . Now the Holder inequality, (2.2) and the Young inequality yield that

q

—11] 2p
q a 1 1 a 1 1 q
)\/ )| g(w)|¥dz < A\ e ST g% (w)]| 2 = i B 200114
[ r@ltwrds <Az 5 H 19w (p = )2(q = ) ()]

B,u

—17 2p—¢
2 — 1 1 2 (1 1
TR b L [ - Aot | f]| T (3.20)
2p q 4ps, )aS\p 2p;, =g

Using (3.20), we have

PTeTa <I“““)“‘é‘<fﬂum»(1+2pwgwmn%igum»>>
n—oo 4
. 1 1 2p71|g(wn)|p ) 1 1 ( , >2
= lim a - — 1+ anp+ — b / W vanp
”ﬁm{ AN[p f@aﬂ< T gt ) | V0 (55 3 ) 0 UL /(e 19wl
(1) [ r@lgtwn) s
4pz“,u q RN "
. a1 1 2 1 1
2z Vg (wp)|Pde — | = — A T wn)|4dx
nw{2<p %m>4N'g(>' <q @%) [ @t }
a
5 w) || “‘Z‘%) - <— - ) / f(@)|g(wn)|%dx
2 < jeJT q 4p/3lt

-1 2P7q
1 1 a 2p — q 1 1 2 (1 1 2p 2B
> {5 =g | gen - ol Il o S
p 2p/37u 2 2p q Pg,u ) @ p 2p/37u 2p*—q

q
PEu _ 1 _2p
> 1 1 (GSBYM)%,H*I_M 1 1 2 (1 _1 A—zij”fwg;f. (3.21)
2p App, 2p ¢ A4pp,.)aS\p 20, PR

Choose A1 > 0 so small such that for every A € (0, A1), the right hand side of (3.21) is greater than zero, which
gives a contradiction.
To obtain the possible concentration of mass at infinity, similarly, we can define a cut-off function ¥z € C=(RY)
such that g(z) =0 on |z| < R, Yr(z) =1 on |z| > R+ 1 and |[V¢r| < 2. Let

v
g

vV
O
N =

|
S
x|
S
N——

Weo 1= hm hmsup/ Vg (wp)[Pdz, Voo := hm hmsup/ lg(wn) | da
|z|>R |z|>R

R—00 nosoco R—=00 koo

2p5, 2p}.
(oo = lim_Timsup l9(wn)(¥)| " dy lg(wn)(@)[*2r
Bly — ylm B
R—oc0o npnooo |x|>R RN |y| |£C y| |(E|

Now applying Proposition 1.1, the Holder inequality and Lemma 2.1-(gg), we deduce

(oo = lim lim </RN Ig(wn)(y)lzpﬁ’“> |g(wn) () [*P5» Yr(z)de

R—o0 n—o00 ly|%la =yl |7

C.p) Jim_tim () ([ ot o) T < Kt
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Using the fact (Z4 (wy,), g’((l;z)) Ygr) — 0, we get

“tim o [ ) G 2, Vi rda P 9(wn) Vunl 2 Vun Vi, \
ng[‘éNg( S IV 2V, Ve +b(@Nm(,m|v Mcz)<AQ e )d]

op—1 n)|P 1P 1P 2 .
= lim CL/ 14 l9(w,) |Vw, [Pirdz + b / [Vn| dx / [Vn PV vada:
n—oo [ Jn 14207t g(wy)[P ry 14 2P7 g (wy)[P rv 14207 g(wy)[P

_ 94 pd — 9(wn ()5 lg(wn (@) P50 pr () o

|7l — yl#|2l?

One can easily show that

lim lim a/ (1+ 2P~ 1|g(wn)|p)% (wy)|Vw, [P~ 2Vw, Virdr = 0,
RN

R—00 n—o0

. . |Vwy,|P g(wp)|Vw, [P2Vw, Vi
lim lim |b — dz T
R—y00 n—o0 ry 1+ 2071 g(wy) [P RY (142071 g(w,)|P)7

lim lim/ f(@)|g(wn(2)|9r(x)dz = 0.

R—oon—o0 [pN

)

and

Using the above in (3.22), we obtain
or—1 n)|P n 2P, n 25,
0 tim i [ [ (1 220 i [ Bt
RN RN

R—00 n—00 1+2P_1|g(wn p |y|6|$_ylu|g‘.|'6

+b </ |Vw, [P dx) [V Pr dr | dx
ey 1+ 20 1g(w, )P Y /14201 g(w,)[P

2P%,u w, (x 2P5,4 x
© Jim T l [ 19w nda - [ 0N o) ) dydx]

R—0c0 n—o0 |y|ﬂ|5€ _y|M|x|B

P
=aweo — Kvod” (3.23)
p%u
Thus, aws < Kvod . This together with Lemma 3.4 yields that
—1 P’é,“ pgwiip
Weo > | K™7aS 7 Or Weo = 0. (3.24)

*
PB.u

p
If weo > (KlaS » )pﬁ’“ ’ , then we have

o . 1 / g(wn)
0> = Jim lin, (INW Ty (B
. . 1 1 1
> lim lim . a/ [Vw, [PYrde — | - — > / f(@)|g(wy)|?dx
R—00 n—00 p Zpﬂ)u RN q ,@
1 1 1 1
> lim lim - — — g/ Vg2 (w,)[Pdr — / f(x)]|g(wn)|Tdx
e—0 n—o0 P 2p,8 u 2 Jrw~ q

% —11 2p—q
1 1 o _=p 9y 1 1 2 (1 1 2p
e e [ e R Pl (e AT || |7 . (3.25)
Zp AP, 2p q 4pp, ) aS\p 2p;, forEart

Choose Az > 0 so small such that for every A € (0, A\2), the right hand side of (3.25) is greater than zero, which
gives a contradiction. Now from the above arguments, for any ¢ < 0, there exist A* = min{A1, A2} > 0, we have
wj =0for all j € J and we = 0 for all A € (0, A*). Hence

2pﬁ 2pﬁ 2PB 2p3,
k—oo Jpn JrN le |z — yl“lyl RN JrN le lv — yl yl
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and

lim / F@)(lgwn (@D = lg(w(@))[M)dz < [ f]|_zp=_[llg(wn(@)]” = lg(w(@))|*]| 2= = 0.

k—oo RN

Since {w,} is bounded in DYP(RY) and T} (w) = 0, the weak lower semicontinuity of the norm, Lemma 3.8 and
the Brezis-Lieb Lemma (see [5]) yield that as n — oo,

on(Dllwnll = (T4 (wn), (1 + 27 |g(wn))F g(wn) )

219 w,)|? Vo :
1 nlPd b d
/ ( T gty ) Ve T / T2 Tg(wnp ™
2pﬁu 2;02}’“
—/\/ F(@)]g(wn |‘de—/ / 9(wn (@) [P ]gCwn(y))Por )
RN JRN

leﬂlw —yllyl?

71| ;7 p 2

g(wn)[? </ [V )
|17 / Vw, |Pdr + b d
alwall” + ry 1+2P7 1|9(wn)|p| wnlfde gy 142771 g(w,)|P !

2p 2pj,
_/\/ F(2)|g(wn |qu_/ / g(wn(2))| B"|9(wn(ﬂ))| Buda:dy
w s Tyl
v
— p p q
ollhon = wl?) + ol 45 ([ o [ @l

2175” g 2P5,
[ [ e b
Ry JRN |5C| |z — y|#]y|

= affwn = wl|” + on (1) |[wl].

Y

Thus {w,} converges strongly to w in DV?(RY). This completes the proof of the Lemma. O
Lemma 3.10. Assume that ¢ = 2p and (1.6) hold. Let {wy,} be a (PS). sequence for Ty in D*P(RY) with
1 T
c< = o (aSgp,.) "5t

Then for all A € (0, aS||f|| L ) {wn} satisfies the (PS). condition.

Proof. For each w € Dl*p(R ), using Lemma 2.1-(gg), the Holder inequality and Sobolev inequality (2.2), we obtain

/ F(@)lg(w)[Pdz < S 2 () 7.
]RN

Let {wy} be a (PS). for T for ¢ < ¢*. Then {w,} is bounded from Lemma 3.6. Now using the last estimate, for
all A € (0, aS||f||i), arguing similarly as in Lemma 3.5, in substitute of (3.21), we obtain

< )
: h) [ ok e (- i) [ [, S

a 1 1
li —Nw,||P = [ — — — -1 . 2(wp)||P
nggo{2p|w n <2p 4p> NS g g (wn) | }

Y

i T p\ _ i_i -1 . 2 p
> tim { S} - (5 - 1) AL 2wl
a 1
—wiy + —(a—\S7! < g (w)]?
> L+ La = AS TSl
1 1 Thu o
> 4—pawi0 > % (aSpg,u)7en"" =",

which is absurd. Now the rest of the proof follows in similar manner as in the proof of Lemma 3.9. g
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Lemma 3.11. Let 2p < ¢ < 2p* and (1.6) hold. Suppose that {w,} is a (PS). sequence for Iy in D*P(RY) with
11 o
c<c™i=——=)(aSs,)"Br"".
(5~ 1) @)
Then {wy,} satisfies (PS). condition.

Proof. Let {wy} a (PS). for T, for ¢ < ¢**. Then by Lemma 3.7, we have {w,} is bounded. Now following the
similar arguments as in Lemma 3.5, in place of (3.21), we get

> c—= lim (Ix(wn) - 2 <I§(w")’ s >>

n— o0 g’(wn)
1 2 11 b
P q)?2 2p ¢
which is a contradiction. The rest of the proof follows as in the proof of Lemma 3.9. g

4. Proof of Theorem 1.2
In this section, we give proof of Theorem 1.2. Before proving our result, first we recall the definition of genus.
Definition 4.1. Let X be a Banach space and A be a subset of X. The set A is said to be symmetric if u € A
implies —u € A. For a closed symmetric set A which does not contain the origin, we define a genus y(A) of A by

the smallest integer k such that there exists an odd continuous mapping from A to R*\ {0}. If there does not exist
such k, we define v(A) = oo . Moreover, we set y(0) =0 .

For any k € N, let us define the set ¥ as
Yp:={A : AC X is closed symmetric ,0 ¢ A, v(A4) > k}.

Now to prove Theorem 1.2, we use a result by Kajikiya ( see [17, Theorem 1]), which is an extension of the
symmetric mountain pass theorem.

Theorem 4.2. Let X be an infinite dimensional Banach space and J € C'(X,R). Suppose that the following
hypotheses hold.

(A1) The functional J is even and bounded from below in X, J(0) = 0 and J satisfies the local Palais-Smale
condition.
(Az) For each k € N, there exists Ay, € Xy such that

sup J(u) < 0.
uEAg

Then J admits a sequence of critical points {ux} in X such that ug # 0, J(ur) < 0 for each k and ur, — 0 in X
as k — oo.

Proposition 4.3. Let (1.6) hold. If w € DYP(RY) is a nontrivial weak solution to (2.6), then w € L*(RY).
Moreover, if we consider f € L™(RY) and 2p < q < 2p*, then any nontrivial weak solution w € DVP(RY) to (2.6)
belongs to L=(RY) N CL7(Bg(0)), for all R > 0 and for some r :=r(R) € (0,1).

Proof. Let w € D¥?(RYM) be a nontrivial weak solution to (2.6). Without loss of generality let us assume w > 0.
For any real number M > 0, we define the function

vy = min{w(z), M}.
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We consider the test function v = v5?*!, k > 0. Clearly vas € DM?(RN) N L®(RY). Now using v as test function
in the weak formulation (2.5) and using Lemma 2.1-(gs), we get

a/ |Vw|P72VwVU§4d;v+b/ |g/(w)|P|Vw|de/ 19" (w) P | VwlP 2 Vw Vo de
RN - o
:_b/ 9/ ()P [Vwlde / |9 (w)[P~2g (w)g" (w)[Vw|Pvy T da

RN BN

2P5 . 2P, =2
[ s ) P ) g,
R |z

v |z —ylHyl®

o [ f@lg@ir gy wposds + [

RN

vl [ 9@t @) Vel w)ds

RN
2 [ 1@lg@)y el @de + [
RN

RN

w 21);,# w 21);’“_1
( / lg(w) dy) l9( flcw ¢ (@) (@)de.  (4.1)

v |z —ylHyl®

Now we estimate the integral expressions in the left hand side of (4.1):
Using (2.2), we get

a/ |Vw|p72VwVvlj/f+ldx:a(kp—i—l)/ (Vo [Pol?da
RN RN
k 1
:a7p+ )/ |Vv]]f4+1|pdx
RN

kp+1) (k+1)
S Plowll Gtk (4.2)

Similarly,

/ 19/ (w) PVl de / 19/ () PV 0P~ VeV dz = bllg(w) |? / |0/ ()P | wP 2V vl d
RN RN RN

(kp+ 1)

b latll” [ g/ VelPde > 0. (03)

Next, we estimate the integral expressions in the right hand side of (4.1):
Recalling Lemma 2.1-(g3), (911) and (g12), we deduce

l? [ 19/ @) Vupulf* (@)ds

< b||w||”/RN g’ (w)[P*2]g" (w) P~ g (w)[P~H [Vw|P M da

b
< ol [ VPt
27 RN

b
= ——7 M w||*P. (4.4)

Applying Lemma 2.1-(g4), (g¢) and (2.2), we obtain

A / F(@)lgw) 7 g (w7 (@)dr < A / F(@)lg(w) 702 dx
RN RN
< Azq/%/ f(@)|w| Y2 M*Pdz

< XM || zpe |l

< A29/2PMFP|| || _ape S V2 w2 (4.5)
2p* —q
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Again employing Lemma 2.1-(g4), (g6), (2.2) and recalling Proposition 1.1 and applying the Hélder inequality, we

deduce
|g(w)|2p2’“ d |g(w)|217;3,“—1 /(’I,U)’Ukp-‘rl(,f)d,f
v \Jew Tz —ylFlylP Y EE

25,4 25,4
<[(/ ) N O
ry \Jrv |2 —y|*yl |z|

*

”B (P5,,.
< 2% o, p,mnwn”“( [l
RN

p*

p* f*“
-
P,
«
PB.u

5 kp) 2 Gtk 2\ 7
=C </ |w|(pﬁ’“ P) PBu —|—/ |w|(pﬂ’“ P) "zm)
{w<r} {w>7}

* «
PB.u PB.u

<C TPEuP </ (|w|(k+l)p)%> + </ (lwlpﬂ“ plwl (k+1)p )“>
{w<r} {w>r}

o

) PB.u p,pﬁ;u
3

PBu Pau P

- p* E——
sz,u7p||w||(k+l)17 . 4 |w|(p5,u p)paM P8, de
(k+l);,§u {w>7}

<C

.
p_.PB.u
+ 3

. PBu Pou P
(k+1)p%— P
X / <|w| Nz dx
{w>7}

Pg P
P p%
<C 7PB.u~P | (k+1)p « + / wl|P” (/ w(k"—l)p*dx)
Il e {w>7}| [l
k+1 (k+1)p
= clnwngkil;ppp* + Ca(r)|wll (3 k. (4.6)

where 7 > 0 will be chosen later so that C'(7) > 0 will be sufficiently small. Now plugging (4.2),(4.3), (4.4) (4.5) in
(4.1) and letting M — oo and applying Fatou’s lemma, we get

0P < (k+1)P b
(+Dp* = g(kp+1)S1/P 2%

MR [w]|*P 4+ X292 M2 || f|_ope SVl
2p* —q

—|—C’1||w|| ppp* + Co(7)|w| k+1§p ]
pBu
(k+1)P

N . .
aS1/p {O3(M+1)(k+1)p+01||w||ikj: P +Cor )||w||( +p }, (4.7)

pp (k+1)p*

pp
pBu

where the Cs := C3(b, A\, p, N, q, ||f|| i ,JJw|) > 0 is a positive constant. Next, we can choose 7 > 0 sufficiently

large so that, by the Lebesgue domlnated convergence theorem we can find C(7) < % Therefore, using this

n (4.7), we obtain

lwl] (g41)p < CT

F7 (k 4+ 1) 0D [1 11l g gy 2| (4.8)
PB.u

where the C := C(a,b, M, \,p, N, q, || fI| 2+ ,|lw|]) > 0 is a positive constant. Since Ph., > p, we have ;*L* < p*.
2p*—q ’ B
Case I: If there exists a sequence k,, such that k,, — oo as n — oo such that

_pp* <1

||w||(;gn+1)
Phu
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then from (4.8), we can infer that ||w|e < 1.
Case II: If there is no such sequence satisfying the above condition as in Case I, then there exists kg > 0 such that

||w||(k+1)p*p_* > 1, for all k > kO-
P,

Then (4.8) yields that

[ — (CT) (k + 1) 7 ]| g , for all k > ko (4.9)

P5

Now we use standard bootstrap argument by choosing the 15 iteration as k := ki in (4.9) such that (k1 +1)p = DB

.. . . . . Py .
In a similar manner, considering the nt? iteration as k = ky, := kp_1 ‘;’“ to obtain

1

1
el e < (CF7)7 (i + )= 0l 1)

1

1 1 i 1 kj+1
= (¢ ) (T + V5|l (.10

j=1
N . o ——

where k; + 1 = (p’;“*> . Since Z);T’S > 1, we get (k; +1)V*%T > 1 for all j € N and lim;_,oo(k; + 1)V 5T = 1.

1

ki+1

Hence, there exists a constant C' > 1, independent of n, such that (k; + 1)V < C and thus, (4.10) gives
1

n 1 P n

PECSS

= k1
[ullknp < [ © ¢ [eellkop=- (4.11)

As limit n — oo, we have

I T D) o
kil p;,u w/k: +1 \/pz,u—

Thus, from (4.11), it follows that

Joll, < (€)% VP e (4.12)
where ay, := (k, + 1)p* and «,, — 00 as n — 0o. Now we claim that
w € L= (RY). (4.13)

Indeed, if not then there exists € > 0 and a subset D of RY with meas(D) > 0 such that

1 P
w(@) > (€) 5+ @V [l + 0 for v €D,

which implies that

1
lim inf (/ |w(x)|°‘”dx) " > liminf (/ |w(x |O‘"dx) '
QU —+00 RN Qi —+ 00

> liminf ((C) pﬁ“ "(C )\/m V7w ko +19> (meas(D ))a%l

Qpy —+00

= ()T @V g + 9.

This contradicts (4.12). Thus, (4.13) holds.
Now for the next part of the proposition, f € L>(R™), hence using Lemma 2.1-(g3), (g5), it follows that

F(@)|h(w)| 2 h(w)h' (w) € L= (RY).
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Moreover, following the arguments in [12] (see also [3]) in combination with Lemma 2.1-(g5), we can deduce that

oL
S 9GP g ¢ [20(RN) and thus from 2.1-(gs), it yields that

lylPlz—yl*
< / lg(w(y))|*" dy) |g<w<|z>|33| P ) € LOERN).

v [ylPle —ylm

Therefore, using elliptic regularity theory, we infer that for any R > 0 there exists r(R) € (0,1) such that w €
CY7(Bg(0)). This completes the proof of the lemma.
|

Proof of Theorem 1.2 : From the hypotheses, it follows that Zy is even and Z)(0) = 0. Also Lemma 3.9 ensures
that Z, satisfies the (PS).-condition for all ¢ < 0. But observe that, Z, is not bounded from below in D'?(RY).
So, for applying Theorem 4.2, we use a truncation technique.

Let w € DYP(RY). Using Lemma 2.1-(gs5), (gs), (2.1) and (2.2), we get

a b 2
7z w:—/ prda:+—</ ’prwpd:r>
v =8 [ e ([ i@l
) L[ (] e ) e
- — z)|g(w d dzr
g Jon NN = 3 o ( o e =)

o 1 P, P,
> E/ IVw|”da:—32%/ f(x)|w|q/2d3:——2 / / L“" gy ) dx
P JrN q RN 4p ey \Jrv [y]P|z —yl# ||

a A a 1 2p*

2wl = Z 227 [ f1] 2| 4— 7wl
q Pg.u

a Aot g 1 b T
> Sfwll? = 223 ST H | | g |lw]¥® = =275, T [P

p q By
= Chl|wl” — ACa|wl|*/? — Cy|w][*. (4.14)

Define the function ¢ : Rf — R as
0(t) = Cyt? — ACot?/? — Cst®Piun, (4.15)

Since 2 < g < 2p, we can choose )¢ sufficiently small such that for all A € (0, Ag) there exist 0 < ¢; < to so that
¢<0in (0,t1), £>0in (t1,t2) and £ < 0 in (2, 00). Therefore ¢(¢;) = 0 = £(t2). Next, we choose a non-increasing
function H € C*°([0, c0), [0, 1]) such that

B 1 ift €[0,t]
H(t)_{ 0 ift € [ta, 00).

and set TI(w) := H(]|wl||). Now we define the truncated functional Iy : DV?(RY) — R of 7, as

R b 2
I\(u) :== %/RN |[Vw|Pdx + % (/]RN |g’(w)|p|Vw|pdx> (4.16)

|g(w)[?P53.1 |g(w)|*P5.n
f(@)|g(w)|?dz — 1T / / dy dz. 4.17
/ Nlgtwl*de = Tw )4% e \Jaw TulPTz — ol EE (.17)

Then, it can be verified easily that I satisfies the following:

(1) Iy € CHD'P(RY),R), 1,(0) =
(2) I is even, coercive and bounded from below in D*?(RM).
(3) Let ¢ < 0, then there exists A\; > 0 such that for all A € (0, \1), I, satisfies the Palais-Smale condition.

(4) If In(w) <0, then ||w|| < t; and Iy (w) = T (w).
For any £ € N, we consider £ numbers of disjoint open sets denoted by V;, j = 1,2,---k with Uf Vi CQ,
where Q 75 0 is given as in Theorem 1.2. Now we choose w; € DVP(RN) N C§°(V;) \ {0}, with ||w;| = 1 for each
j=1,2,---,k. Set

Xy = span{wi,wa, -+ ,wi}.



p-KIRCHHOFF PROBLEM WITH STEIN-WEISS NONLINEARITY 21

Now we claim that there exists 0 < g < t1, sufficiently small such that
my, = max{l\(u) : u € X, |w| = ox} <0. (4.18)

Suppose that (4.18) does not hold. Then there exists a sequence {wy,} := {w,(zk)} in X}, such that

[ = 00; Ix(wn) > 0. (4.19)
Let’s set
Wy,
Upy = ———.
[l

Then u,, € DYP(RY) and ||u,|| = 1. Since X} is finite dimensional, there exists u € X}, \ {0} such that
un, — u strongly with respect to || - ||;
un(z) = u(x) ae. in RV,

Asu#_() we get |wy (z)| — oo as n — co. Thus, as n — oo,

w pﬂuw pBu w pﬁu “Plw P5,u—P
[ el gy [ [ R RO, )y
||wn|\ v Jry [@lPle = ylly| BN JRN 2P|z — y|* |yl

Using this together with Lemma 2.1-(g3), (g ) from (4 16), we obtain

: 0 b ()P [ (3PP
L(wy) < = |lwnl|? + = ||wn||?? — / / dxd
(wn) < Slhwnll” + 35wl 4% v Jow 2Pl —gplglP W

< (@ by 8 )*Phn / / | () |PPs [ (y )|pzudxdy
- p 2p aps IwnH” v Jry o |zlPle —ylelyl?

— —00

as n — 0o. This contradicts (4.19). Thus, the claim is proved. Now choose Ay := {w € X} : ||w| = or}. Clearly
v(Ar) = k and Ay, is closed and symmetric, and hence A, € ¥, and also from (4.18), sup,,c 4, I(w) < 0. Therefore,
I satisfies all the assumption in Theorem 4.2. Thus, I admits a sequence of critical points {wg} in DVP(RY) such
that wy, # 0, Ix(wy) < 0 for each k € N and |Jwg|| — 0 as k — oo. So, for t; > 0, there exists ko € N such that for

all k > ko it follows that ||w]|| < ¢; which yields that Iy (wy) = Z(wy) for all k > ko. This together with Proposition
4.3 concludes the proof of the theorem.

5. Proof of Theorem 1.3

Before proceeding into the proof of Theorem 1.3, first we recall the following Zs-symmetric version of mountain
pass theorem due to [33].

Theorem 5.1. Let X be an infinite dimensional Banach space with X =Y @& Z, where Y is finite dimensional and
let J € CYH(X,R) be an even functional with J(0) = 0 such that the following conditions hold:

(B1) there exist positive constants | > 0,k > 0 such that J(u) > K for all u € 0B;(0) N Z;

(Bz) there exists ¢* > 0 such that J satisfies the (PS), condition for 0 < ¢ < c*;

(B3) for any finite dimensional subspace X C X, there is R = R(X) > 0 such that J (u) < 0 for allu € X\ Br(0).
Assume that Y is k-dimensional and Y = span{vi,va, -+ ,v;}. For n > k, inductively choose vn11 € Y
span{vy,va,- -+ ,vn}. Let Ry, = R(Y,) and D,, = Bg, o) N Yn. Define

Gn =1{h € C(Dn,X) : hlogy, (0), his odd and h(u) = u, for all Br,(0)NY,}

and
Ty ={h(D,\S):heGu,n>j S is closed and symmetric, and y(S) <n —j}, (5.1)
where v(S) is Krasnoselskii’s genus of S. For each j € N, set
= i eI

Thus 0 < ae < ¢j < ¢jyq for 3 >k and if j > k and ¢; < c*, then we conclude that c; is the critical value of J.
Furthermore, if ¢; = cj41 =+ = Cjym = ¢ < c* for j >k, then v(K.) > m+ 1, where

K.={ueX:J(u)=cand J (u) =0}
Now we show that 7 satisfies all the hypotheses of Theorem 5.1, when ¢ = 2p.
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Lemma 5.2. Let ¢ = 2p and (1.6) hold. Then I satisfies the conditions (B1)-(Bs) of Theorem 5.1 for all
xe (0. as|f] L)

Proof. Verification of (By1) : For w € DVP(RY), arguing similarly as in (4.14), we have

1 PBu _2Pbu
- 25§, 7 25,
) 4pz§”u P By ||w|| "

w||P _
naw) = L (- as e

Now for A < aS||f||"L. , we can choose ||w|| =1 << 1 such that Z,(w) > K > 0.

p*—p

Verification of (Bz) : It follows from Lemma 3.10.

Verification of (Bs) : To show this, first claim that for any finite dimensional subspace Y of D'P(RY) there exists
Ro = Ro(Y) such that Zy(w) < 0 for all w € DVP(RN)\ Bg,(Y), where Bg,(Y) = {w € DVP(RY) : |lw|| < Ro}.
Fix ¢ € DVP(RY), ||¢|| = 1. For ¢ > 1, using Lemma 2.1-(g3), (g3), we get

w-wwwpwpiw‘%Wﬁ/ 'MWWw@
ip), v Jen Pz — ylFlylP
< Cut??|| 9|2 — Cst?hon | | 2 (5.2)

Since Y is finite dimensional all norms are equivalent on Y, which yields that there exists some constant C(Y") > 0
such that C(Y)||¢|| < ||¢]/g,.- Therefore from (5.2), we obtain

Ta(tw) < Cut? — Cy(C¥))Ph 5 | ] 5
= C4t2p — C5(C(Y))2p2,ut2p2,u - —00

as t — oo. Hence, there exists Ry > 0 large enough such that Z)(w) < 0 for all w € D?(RY) with ||w| = R and
R > Ry. Therefore T, satisfies the assertion (Bs). O

Lemma 5.3. There exists a non-decreasing sequence {s,} of positive real numbers, independent of A such that for
any A > 0, we have

A
c¢) = inf maxZ <s
" A€T, weA A(w) m

where Ty, is defined in (5.1).
Proof. Recalling the definition of ¢} and using Lemma 2.1-(g3), (gs), from (4.16), we get

b 1))% 2
< g ma |+ - S i | o,
A€Tr,, weA 2p 4p6 u
Then clearly from the definition of I';,, it follows that s, < co and s, < $p41. O
Proof of Theorem 1.3: From the hypotheses of the theorem it follows that Z, is even and we have Z,(0) = 0.
Now we argue similarly as in [33]. From the Lemma 5.3, we can choose, @ > 0 sufficiently large such that for any
a > a,
P5u

1 -
sup s, < — (aSg,,)"Br"" =",
np n 4p ( ﬂ)ﬂ)

that is,
\ 1 b
Py ——
¢, < Sp < o (aSg,u)"em " .
Hence, for all A € (0, aS||f|| "L ) and a > @, we have
p*—p
O<ci‘<c§§---<cﬁ<sn<c*.
Now by Theorem 5.1, we infer that the levels ¢} < ¢y < --- < ¢) are critical Values of 7. Therefore, if c1 <)<
- < ¢}, then T, has at least n number of critical points. Furthermore if c = c]+1 for some j =1,2,--- k—1,

then agaln Theorem 5.1 yields that A, A is an infinite set. Hence, (2.6) has 1nﬁn1te1y many solutions. Therefore, we

can conclude that (2.6) has at least n pair of solutions Since n is arbitrary, we get infinitely many solutions and
moreover, these solutions are in L>(RY) by Proposition 4.3.
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6. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 using Theorem 5.1. For that, first we show Z, verifies all the hypotheses of
Theorem 5.1, when 2p < ¢ < 2p*.

Lemma 6.1. Let 2p < g < 2p* and (1.6) hold. Then Iy satisfies the conditions (B1)-(Bs) of Theorem 5.1 for all
A>0.

Proof. Verification of (By) : Let w € DVP(RY) with ||w|| < 1. Using the similar arguments as in (4.14), we get

A 1 Phu —ou .
Taw) > Lwll? — 228 f gy 2~ 275" S o]
p a e Apg. .

Since 2p < g and p < pgw we can choose 0 < p < 1 sufficiently small so that, we obtain for all w € D*?(RY) with
[lwl| = p, Zn(w) > « > 0 for some « > 0 depending on p.

Verification of (Bz) : It follows from Lemma 3.11, since ¢** > 0.

Verification of (Bs) : The argument follows similarly as in Verification of (B3) in Lemma 5.2. O

Proof of Theorem 1.4 Using Lemma 6.1 and arguing in a similar fashion as in Lemma 5.3 and as in 5.1, we can
conclude that (2.6) has at least n pairs of distinct solutions for all A > 0. Since n is arbitrary, we have infinitely
many solutions. Now Proposition 4.3 yields that these solutions belong to L>(R™Y).
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