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MULTIPLICITY RESULTS FOR p-KIRCHHOFF MODIFIED SCHRÖDINGER EQUATIONS

WITH STEIN-WEISS TYPE CRITICAL NONLINEARITY IN R
N

RESHMI BISWAS, SARIKA GOYAL AND K. SREENADH

Abstract. In this article, we consider the following modified quasilinear critical Kirchhoff-Schrödinger problem
involving Stein-Weiss type nonlinearity:

{

K(u) = λf(x)|u(x)|q−2u(x) +

(

∫

RN

|u(y)|2p
∗
β,µ

|x− y|µ|y|β
dy

)

|u(x)|
2p∗β,µ−2

u(x)

|x|β
in R

N

where λ > 0 is a parameter, N ≥ 3, K(u) =

(

a + b

∫

RN
|∇u|pdx

)

∆pu − au∆p(u2) with a > 0, b ≥ 0, β ≥ 0,

0 < µ < N , 0 < 2β+µ < N , 2 ≤ q < 2p∗. Here p∗ = Np
N−p

is the Sobolev critical exponent and p∗
β,µ

:= p
2

(2N−2β−µ)
N−2

is the critical exponent with respect to the doubly weighted Hardy-Littlewood-Sobolev inequality (also called Stein-
Weiss type inequality). Then by establishing a concentration-compactness argument for our problem, we show
the existence of infinitely many nontrivial solutions to the equations with respect to the parameter λ by using
Krasnoselskii’s genus theory, symmetric mountain pass theorem and Z2- symmetric version of mountain pass theorem
for different range of q. We further show that these solutions belong to L∞(RN ).

1. Introduction

Our aim in this article is to study the following modified quasilinear critical Kirchhoff-Schrödinger problem
involving Stein-Weiss type critical nonlinearity:

{

K(u) = λf(x)|u(x)|q−2u(x) +

(

∫

RN

|u(y)|2p∗
β,µ

|x− y|µ|y|β dy
)

|u(x)|
2p∗β,µ−2

u(x)
|x|β in R

N (1.1)

where K(u) =

(

a+ b

∫

RN

|∇u|pdx
)

∆pu − au∆p(u
2), 2 ≤ p < N , a > 0, b ≥ 0, β ≥ 0, µ > 0, 0 < 2β + µ < N ,

0 < p∗β,µ := p(2N−2β−µ)
2(N−p) , N ≥ 3 and λ > 0 is a parameter. Here 2p < q < 2p∗, p∗ := Np

N−p and f(≥ 0) ∈ L
2p∗

2p∗−q (RN ).

The solutions of (1.1) involving the Schrödinger operator −∆pu − u∆p(u
2), are related with the solitary standing

wave solutions to the quasilinear Schrödinger equation of the form

iut = −∆u+ V (x)u − h1(|u|2)u − C∆h2(|u|2)h′2(|u|2)u, x ∈ R
N , (1.2)

where V : RN → R is a continuous potential function, C > 0 is some positive real constant, h1 and h2 are some
real valued functions with some appropriate assumptions. Based upon the different forms of the function h2, (1.2)
explains different phenomenon in the mathematical physics. For example, if h2(s) = s (see [18]), then (1.2) is used

in modelling the superfluid film equation in plasma physics and if h2 =
√
1 + s2 (see [34]), (1.2) represents the

self-channeling of a high-power ultra short laser in matter. Such kind of equations also have applications in the
modeling of dissipative quantum mechanics [14], plasma physics and fluid mechanics [4], etc.

The main feature of such operator is that the term u∆p(u
2), present in (1.1), does not let the natural energy

functional corresponding to (1.1) to be well defined for all u ∈ D1,p(RN ) (defined in Section 2). Therefore, the
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standard critical point theory in variational method is inconvenient to apply directly for such problems of type (1.1).
To overcome this inconvenience, researchers have established several techniques and arguments, such as constrained
minimization technique (see [36]), the perturbation method (see [28]), change of variables (see [8, 10]). In this
article, we use the change of variable method described in Section 2. In the recent advancement on such modified
quasilinear equations, we refer the readers to [6, 11, 15, 20, 22, 35] and the cited research works there in with no
claim on completeness.

The nonlocal nonlinearity present in (1.1) is inspired by the doubly weighted Hardy-Littlewood-Sobolev inequality
(also called Stein-Weiss type inequality). Let us first recall the well-known doubly weighted Hardy-Littlewood-
Sobolev inequality (see [38]), which is stated as:

Proposition 1.1. Let t, s > 1, µ > 0, ϑ+β ≥ 0 and 0 < ϑ+β+µ < N. Also, let 1
t +

µ+ϑ+β
N + 1

s = 2, ϑ < N
t′ , β <

N
s′ ,

g1 ∈ Lt(RN ) and g2 ∈ Ls(RN ), where t′ and s′ denote the Hölder conjugate of t and s, respectively. Then there
exists a constant C(N,µ, ϑ, β, t, s), independent of g1, g2 such that

∫

RN

∫

RN

g1(x)g2(y)

|x− y|µ|y|ϑ|x|β dxdy ≤ C(N,µ, ϑ, β, t, r)‖g1‖Lt(RN )‖g2‖Ls(RN ). (1.3)

If ϑ = β = 0, this inequality (1.3) is the classical Hardy-Littlewood-Sobolev inequality (see [25]). S. Pekar first
stated the study of such equations in [31], where the author considered the nonlinear Schrödinger-Newton equation
of the form:

−∆u+ V (x)u = (Kµ ∗ u2)u+ λf1(x, u) in R
N , (1.4)

where λ > 0 is a parameter, Kµ is the Riesz potential, V : RN → R is continuous potential function, f1 : RN×R → R

is a Carathéodory function with some suitable assumptions and ∗ denotes the convolution. These types of equations
are very much crucial in the application point of view in Physics to describe the Bose-Einstein condensation (see
[9]), the self gravitational collapse of a quantum mechanical wave function (see [32]), etc. With the help of the
elliptic equations of type, (1.4) P. Choquard (see [24]) managed to explain the quantum theory of a polaron at rest
and for modeling the phenomenon when an electron gets trapped in its own hole. For deeper study of Choquard
equations, we refer to the readers the research works [1, 13, 25, 26, 30] and the references therein. When β > 0,
then the elliptic problems involving Stein-Weiss type nonlinearities are studied in [3, 12, 40], very recently.

On the other hand, one of the main features of (1.1) is the presence of the both nonlocal Kirchhoff term in
the left-hand side and nonlocal Stein-Weiss type nonlinearity in the right-hand side of (1.1). Hence our problem
is categorized as a doubly nonlocal problem. The Kirchhoff-type models arise in various physical and biological
systems and hence, the study of the problems involving Kirchhoff operators has been quite popular in recent years.
Precisely, Kirchhoff established a model given by the following equation:

ρ
∂2u

∂2t
−
(

p0

h
+

E

2L

∫ L

0

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dx

)

∂2u

∂2t
= 0,

which extends the classical D’Alembert wave equation by taking into account the effects of the changes in the length
of the strings during the vibrations, where the constants ρ, p0, h, E, L represent physical parameters of the string.
Subsequently, using the method of Nehari manifold and the concentration compactness principle Lü [29] studied
the following Kirchhoff-Choquard problem

(

− a+ b

∫

R3

|∇u|2dx
)

∆u+ Vλ(x)u = (Kµ ∗ |u|q)|u|q−2u in R
3, (1.5)

where a > 0, b ≥ 0, Kµ is the Riesz potential, Vλ(x) = 1 + λg(x), λ > 0 and g is a continuous potential function,
q ∈ (2, 6 − µ). Later Liang et. al [19] studied (1.5) for Vλ = 0, q = 2∗µ and by adding some perturbation in the
right-hand side which has sub-critical growth in the sense of Sobolev inequality. Though the literature on the
Kirchhoff equation is really vast, without attempting to provide the complete list we refer to [7, 23, 39, 16] and
references there in to the readers.

When it comes to the Kirchhoff problems involving the operator present in our problem (1.1), without the convolu-
tion term in the nonlinearity in (1.1), Liang et. al [21] studied the multiplicity results for such modified quasilinear
Kirchhoff equations. Then for p = 2 and β = 0 in [37], the authors studied such problem. Also, for β = 0, we
refer to the work in [20], which deals with the Choquard equations involving the modified quasilinear Schrödinger
operator as in (1.1), without the Kirchhoff term.
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Motivated by all the aforementioned works, in this article, we consider (1.1) for 2 ≤ p < ∞ and with critical
Stein-Weiss type convolution term in combination with sub-critical perturbation. The suitable Stein-Weiss type
critical exponent is set here as 2.p∗β,µ due to the Schrödinger term u∆p(u

2) present in the principal operator and for
the same reason the exponent q also varies between 2 to 2p∗. We exhibit the existence of infinitely many solutions
for (1.1) by exploiting Krasnoselskii’s genus theory and by applying a variant of Clark’s theorem (also known as Z2-
symmetric version of mountain pass theorem). One of the main contributions to this article is that we have proved
a concentration-compactness result (see Lemma 3.4) related to our problem for general 2 ≤ p < ∞, which is not
yet studied even for the equations of type (1.1) without the Schrödinger term u∆p(u

2). In case of p = 2, Du et al.
[12] studied such result for the equations involving Laplacian. This concentration-compactness result plays a very
crucial in the context of our problem where we face lack of compactness due to the presence of the critical exponent
as well as, the domain being whole of RN . This result will help us to analyze the behavior of the weakly convergent
sequences in the solution space D1,p(RN ) (see Section 2) so that we can prove the Palaise-Smale condition for the
energy functional Iλ(see (2.4)) below some critical level. Furthermore, we prove global L∞ regularity estimate on
the solutions to (1.1), which is applicable even for the critical Choquard equation (β = 0) involving p-Laplacian
in the whole of RN for p ≥ 2, which is another important contribution to this article. We would like to mention
that the detailed regularity results for the critical Choquard equations involving fractional and local p-Laplacian is
first studied in [2] for the bounded domain in R

N . The main difficulty we face here is due to involvement of the
Stein-Weiss type critical nonlinearity and Kirchhoff term together. This gives rise to several interactions with the
exponent q, p∗, p∗β,µ and the parameters λ, a, b, µ, β which have effects in the multiplicity results. Depending on
this, we need to carry out delicate analysis. To the best of our knowledge the results studied in this present paper
are not available in the literature for the equation of type (1.1).

Now we state the main results in this article. Throughout this article we take the following assumptions on
the parameters:

a > 0, b ≥ 0, β ≥ 0, µ > 0, 0 < 2β + µ < min{2p,N}, 2 ≤ p < N. (1.6)

Theorem 1.2. Let 2 < q < 2p and let Ω := {x ∈ R
N : f(x) > 0} is an open subset of R

N such that
0 < meas(Ω) < ∞. Then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗), (1.1) admits a sequence of nontrivial
weak solutions {uk} in D1,p(RN ) ∩ L∞(RN ) with negative energy and uk → 0 strongly in D1,p(RN ) as k → ∞.

Theorem 1.3. Let q = 2p. Then there exists positive constants â such that for all a > â and for all λ ∈
(0, aS‖f‖−1

p∗

p∗−p

), (1.1) has infinitely many nontrivial weak solutions in D1,p(RN ) ∩ L∞(RN ).

Theorem 1.4. Let 2p < q < 2p∗. Then for all λ > 0, (1.1) has infinitely many solutions in D1,p(RN ) ∩ L∞(RN ).

Remark 1.5. We would also like to highlight that our results are also new for the classical p-Kirchhoff equation:
{

(

a+ b

∫

RN

|∇u|pdx
)

∆pu = λf(x)|u(x)|q−2u(x) +

(

∫

RN

|u(y)|p∗
β,µ

|x− y|µ|y|β dy
)

|u(x)|
p∗β,µ−2

u(x)
|x|β

in R
N (1.7)

where all the parameters satisfy (1.6), p < q < p∗ and f(≥ 0) ∈ L
p∗

p∗−q (RN ).

Notations

• The constants K, C and Ci, 1 = 1, 2, 3, · · · are positive real numbers (only depend on N, p, β, µ, q, a, b, if
nothing is mentioned) which may vary from line to line.

• For any real number r > 0, Br(0) denoted the ball of radius r centered at 0 with respect to the norm
topology in D1,p(RN ).

• For any set S, the closer of the set is denoted by S.
• If A is a measurable set in R

N , we the Lebesgue measure of A by meas(A).
• The arrows ⇀, → denote weak convergence, strong convergence, respectively.
• The notation on(1) means as n→ ∞, on(1) → 0.

2. Preliminaries and variational structure

First, for any 1 < p <∞, we recall the definition of the Sobolev space

D1,p(RN ) =

{

u ∈ Lp∗

(RN ) :

∫

RN

|∇u|pdx <∞
}

,
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which is equipped with the norm

‖u‖ := ‖u‖D1,p(RN ) =

(∫

RN

|∇u|pdx
)

1
p

.

Here p∗ denotes the Sobolev critical exponent and p∗ = N
N−p , if p < N and p∗ = ∞ if N ≥ p. By (D1,p(RN ))∗ we

denote the dual of D1,p(RN ) and by 〈·, ·〉 we denote the dual paring between D1,p(RN ) and its dual (D1,p(RN ))∗.
Concerning the doubly weighted Hardy-Littlewood-Sobolev inequality (1.3), if α = γ = β and s = r, then the
integral is

∫

RN

∫

RN

|u(x)|t|u(y)|t
|x|β |x− y|µ|y|β dxdy

is well-defined if |u|t ∈ Lq(RN ) for some q > 1 satisfying 2
q + 2β+µ

N = 2.

For u ∈ D1,p(RN ), by the Sobolev embedding theorem, we have p ≤ tq ≤ Np
N−p . Thus

p(2N − 2β − µ)

2N
≤ t ≤ p(2N − 2β − µ)

2(N − p)

In this sense, we call p∗β,µ = p(2N−2β−µ)
2N the lower critical exponent and p∗β,µ = p(2N−2β−µ)

2(N−p) the upper critical

exponent in the sense of the weighted-Littlewood-Sobolev inequality. Also, we have 0 < p∗β,µ < p∗ < 2p∗β,µ.
Generally, for γ = β ≥ 0 and 2β + µ ≤ N , the limit embedding for the upper critical exponent leads to the
inequality

(

∫

RN

∫

RN

|u(x)|p∗
β,µ |u(y)|p∗

β,µ

|x|β |x− y|µ|y|β dxdy

)
1

p∗
β,µ

≤ C

∫

RN

|∇u|pdx.

We define the following norm

‖u‖β,µ =

(

∫

RN

∫

RN

|u(x)|p∗
β,µ |u(y)|p∗

β,µ

|x|β |x− y|µ|y|β dxdy

)
1

2.p∗
β,µ

.

Let us set

Sβ,µ := inf
u∈D1,p(RN )\{0}

∫

RN

|∇u|pdx
(

∫

RN

∫

RN

|u(x)|p∗
β,µ |u(y)|p∗

β,µ

|x|β |x− y|µ|y|β dxdy

)
p

2.p∗
β,µ

. (2.1)

From the weighted Hardy-Littlewood-Sobolev inequality (1.3), for all u ∈ D1,p(RN ), we know

‖u‖2β,µ ≤ C(N, β, µ)
1

p∗
β,µ ‖u‖pp∗ .

Then

Sβ,µ ≥ S

C(N, β, α)
1

p∗
β,µ

> 0,

where S is the best Sobolev constant for the embedding D1,p(RN ) into Lp∗
(RN ) is defined as

S = inf
u∈D1,p(RN )\{0},‖u‖p∗=1

{∫

RN

|∇u|pdx
}

. (2.2)

Observe that the natural energy functional related to (1.1) is not well defined for u ∈ D1,p(RN ). To overcome this
difficulty, we employ the following change of variables which was introduced in [8], namely, w := g−1(u), where g is
defined by







g′(s) =
1

(1 + 2p−1|g(s)|p) 1
p

in [0,∞),

g(s) = −g(−s) in (−∞, 0].

(2.3)

Now we state some important and useful properties of g. For the detailed proofs of such results, one can see [8, 10]
and references there in.

Lemma 2.1. The function g satisfies the following properties:

(g1) g is uniquely defined, C∞ and invertible;
(g2) g(0) = 0;
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(g3) 0 < g′(s) ≤ 1 for all s ∈ R;
(g4)

1
2g(s) ≤ sg′(s) ≤ g(s) for all s > 0;

(g5) |g(s)| ≤ |s| for all s ∈ R;
(g6) |g(s)| ≤ 21/(2p)|s|1/2 for all s ∈ R;

(g7) lim
s→+∞

g(s)

s
1
2

= 2
1
2p ;

(g8) |g(s)| ≥ g(1)|s| for |s| ≤ 1 and |g(s)| ≥ g(1)|s|1/2 for |s| ≥ 1;
(g9) g

′′(s) < 0 when s > 0 and g′′(s) > 0 when s < 0.

(g10) lim
s→0

g(s)

s
= 1.

(g11) |g(s)g′(s)| < 1

2
p−1
p

for all s ∈ R;

(g12) g
′′(s) = −2p−1(g(s))p−1(g′(s))2+p, s > 0.

After applying the change of variable w = g−1(u), we define the new functional Iλ : D1,p(RN ) → R as

Iλ(w) =
a

p

∫

RN

|∇w|pdx+
b

2p

(∫

RN

|g′(w)|p|∇w|pdx
)2

− λ

q

∫

RN

f(x)|g(w)|qdx− 1

4p∗β,µ

∫

RN

(

∫

RN

|g(w(y))|2p∗
β,µ

|y|β|x− y|µ dy

)

|g(w(x))|2p∗
β,µ

|x|β dx. (2.4)

Note that, if w ∈ D1,p(RN ) is a critical point of the functional Iλ, then for every v ∈ D1,p(RN ), 〈I ′
λ(w), v〉 = 0.

That is,

a

∫

RN

|∇w|p−2∇w∇vdx + b

∫

RN

|g′(w)|p|∇w|pdx
∫

RN

(

|g′(w)|p|∇w|p−2∇w∇v + |g′(w)|p−2g′(w)g′′(w)|∇w|pv
)

dx

− λ

∫

RN

f(x)|g(w)|q−2g(w)g′(w)vdx −
∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|x− y|µ|y|β dy
)

|g(w)|2p∗
β,µ−2g(w)

|x|β g′(w)vdx = 0 (2.5)

and w is a weak solution to the following problem:

− a∆pw − b

∫

RN

|g′(w)|p|∇w|pdx ·
(

|g′(w)|p−2g′(w)g′′(w)|∇w|p + |g′(w)|pdiv(|∇w|p−2∇w)
)

= λf(x)|g(w)|q−2g(w)g′(w) +

(

∫

RN

|g(w)|2p∗
β,µ

|x− y|µ|y|β dy
)

|g(w)|2p∗
β,µ−2g(w)

|x|β g′(w) in R
N (2.6)

See that the transformed problem (2.6) is equivalent to (1.1) which takes u = g(w) as its solutions. Thus, now our
aim is to find the solutions to (2.6).

3. Compactness arguments

In this section, first we recall the definition of Palais-Smale sequence.

Definition 3.1. Let J : X → R be a C1 functional on a Banach space X.

(1) For c ∈ R, a sequence {un} ⊂ X is a Palais-Smale sequence at level c (in short (PS)c) in X for J if
J (un) = c+ on(1) and J ′(un) → 0 in X∗(dual of X) as k → ∞.

(2) We say J satisfies (PS)c condition if for any Palais-Smale sequence {un} in X for J has a convergent
subsequence.

Next, we state the following concentration compactness Lemms due to Lions [27].

Lemma 3.2. Let {un} be a bounded sequence in D1,p(RN ) converging weakly and a.e. to u ∈ D1,p(RN ) such that

|∇un|p ⇀ ν, |un|p
∗
⇀ ω in the sense of measure. Then, for at most countable set J , there exist families of distinct

points {νj : j ∈ J} and {ωj : j ∈ J} in R
N satisfying

ν ≥ |∇u|p +
∑

i∈J

νjδzj , νj > 0,

ω = |u|p∗

+
∑

i∈J

ωjδzj , ωj > 0,

Sω
p
p∗

j ≤ νj ,

where ν, ω are bounded and nonnegative measures on R
N and δzj is the Dirac mass at zj.
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Lemma 3.3. Let {un} ⊂ D1,p(RN ) be a sequence in as in Lemma 3.2 and defined

ν∞ := lim
R→∞

lim
n→∞

∫

|x|>R

|∇un|pdx, ω∞ = lim
R→∞

lim
n→∞

∫

|x|>R

|un|p
∗

dx

Then it follows that
Sωp/p∗

∞ ≤ ν∞

and

lim sup
n→∞

∫

RN

|∇un|pdx = ν∞ +

∫

RN

dν, lim sup
n→∞

∫

RN

|un|p
∗

dx = ω∞ +

∫

RN

dω

Now we prove the following concentration-compactness lemma related to our problem.

Lemma 3.4. Let β ≥ 0, µ > 0, 0 < 2β + µ < N and 2 ≤ p < N . If {un} is a bounded sequence in D1,p(RN )

converges weakly and a.e in R
N to some u ∈ D1,p(RN ) as n→ ∞ and such that |un|p

∗
⇀ ω and |∇un|p ⇀ ν in the

sense of measure. Assume that
(

∫

RN

|un(y)|p
∗
β,µ

|y|β|x− y|µ

)

|un(x)|p
∗
β,µ

|x|β ⇀ ζ

weakly in the sense of measure, where ζ is a bounded positive measure on R
N and define

ν∞ := lim
R→∞

lim sup
n→∞

∫

|x|≥R

|∇un|pdx, ω∞ := lim
R→∞

lim sup
n→∞

∫

|x|≥R

|un|p
∗

dx.

ζ∞ := lim
R→∞

lim sup
n→∞

∫

|x|>R

(

∫

RN

|un(y)|p
∗
β,µ

|y|β |x− y|µ dy
)

|un(x)|p
∗
β,µ

|x|β dx.

Then there exists a countable sequence of points {zj}j∈J ⊂ R
N and families of positive numbers {ωj : j ∈ J},

{ζj : j ∈ J} and {νj : j ∈ I} such that

ζ =

(

∫

RN

|u(y)|p∗
β,µ

|y|β |x− y|µ

)

|u(x)|p∗
β,µ

|x|β +
∑

j∈J

ζjδzj ,
∑

j∈J

ζ

1
p∗
β,µ

j <∞, (3.1)

ν ≥ |∇u|p +
∑

j∈J

νjδzj , (3.2)

ω ≥ |u|p∗

+
∑

j∈J

ωjδzj , (3.3)

and

Sβ,µζ

p
2p∗

β,µ

j ≤ νj , and ζ
N

2N−2β−µ

j ≤ C(N, β, µ)
N

2N−2β−µωj. (3.4)

where δz is the Dirac-mass of mass 1 concentrated at z ∈ R
N .

For the energy at infinity, we have

lim sup
n→∞

∫

RN

|∇un|pdx = ν∞ +

∫

RN

dν, lim sup
n→∞

∫

RN

|un|p
∗

dx = ω∞ +

∫

RN

dω

lim sup
n→∞

∫

RN

∫

RN

|u(y)|p∗
β,µ |u(x)|p∗

β,µ

|x|β |x− y|µ|y|β dxdy = ζ∞ +

∫

RN

dζ,

and

C(N, β, µ)−
2N

2N−2β−µ ζ
2N

2N−2β−µ
∞ ≤ ω∞

(∫

RN

dω + ω∞

)

,

SpC(N, β, µ)
− p

p∗
β,µ ζ

p
p∗
β,µ

∞ ≤ ν∞

(∫

RN

dν + ν∞

)

.

Proof. Let vn := un − u. Then the sequence {vn} converges weakly to 0 in D1,p(RN ) and vn(x) → 0 a.e. in R
N as

the bounded sequence {un} converges weakly to u in D1,p(RN ). By Lemmas 3.2- 3.3, we have

|∇vn|p ⇀ τ1 := ν − |∇u|p,
|vn|p

∗

⇀ τ2 := ω − |u|p∗

,
(

∫

RN

|vn(y)|p
∗
β,µ

|y|β|x− y|µ dy
)

|vn(x)|p
∗
β,µ

|x|β ⇀ τ3 := ζ −
(

∫

RN

|u(y)|p∗
β,µ

|y|β|x− y|µ dy
)

|u(x)|p∗
β,µ

|x|β .
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Firstly, we show that for every φ ∈ C∞
c (RN ),

∣

∣

∣

∣

∣

∫

RN

(

∫

RN

|φvn(y)|p
∗
β,µ

|y|β|x− y|µ dy
)

|φvn(x)|p
∗
β,µ

|x|β −
∫

RN

(

∫

RN

|vn(y)|p
∗
β,µ

|y|β |x− y|µ dy
)

|φ(x)|p∗
β,µ |φvn(x)|p

∗
β,µ

|x|β

∣

∣

∣

∣

∣

→ 0, (3.5)

as n→ ∞. For this, we denote

Ψn(x) :=

(

∫

RN

|φvn(y)|p
∗
β,µ

|y|β|x− y|µ dy
)

|φvn(x)|p
∗
β,µ

|x|β −
(

∫

RN

|vn(y)|p
∗
β,µ

|y|β |x− y|µ dy
)

|φ(x)|p∗
β,µ |φvn(x)|p

∗
β,µ

|x|β .

As φ ∈ C∞
c (RN ), so we have for every δ > 0, there exists K > 0 such that

∫

|x|≥K

|Ψn(x)|dx < δ, for all n ≥ 1. (3.6)

Further, we know that the Riesz potential defines a linear operator and vn(x) → 0 a.e. in R
N and hence,

∫

RN

|vn(y)|p
∗
β,µ

|y|β|x− y|µ dy → 0 a.e. in R
N .

Thus, we have Ψn(x) → 0 a.e. in R
N . We note that

Ψn(x) =





∫

RN

(

|φ(y)|p∗
β,µ − |φ(x)|p∗

β,µ

)

|vn(y)|p
∗
β,µ

|y|β|x− y|µ dy





|φvn(x)|p
∗
β,µ

|x|β :=

(∫

RN

Φ(x, y)|vn(y)|p
∗
β,µdy

) |φvn(x)|p
∗
β,µ

|x|β ,

where Φ(x, y) = |φ(y)|
p∗
β,µ−|φ(x)|

p∗
β,µ

|y|β|x−y|µ
. Moreover, for almost all x ∈ R

N , there exists some R > 0 large enough such

that
∫

RN

Φ(x, y)|vn(y)|p
∗
β,µdy =

∫

|y|≤R

Φ(x, y)|vn(y)|p
∗
β,µdy − |φ(x)|p∗

β,µ

∫

|y|≥R

|vn(y)|p
∗
β,µ

|y|β |x− y|µ dy.

In [27], we noticed that Φ(x, y) ∈ Lr(BR) for each x, where r <
N

β+µ if µ > 1, r ≤ N
µ if 0 < µ ≤ 1. So, by Young’s

inequality, there exists t > 2N
µ such that





∫

BK(0)

(

∫

BR(0)

Φ(x, y)|vn(y)|p
∗
β,µdy

)t

dx





1
t

≤ Lφ‖Φ(x, y)‖r‖|vn|p
∗
β,µ‖ 2N

2N−2β−µ
≤ L′

φ,

where K is same as in (3.6) and L′
φ is some positive constant that depends on φ. Moreover, one can easily see that

for R > 0 large enough




∫

BK(0)

(

|φ(x)|p∗
β,µ

∫

|y|≥R

|vn(y)|p
∗
β,µ

|y|β|x− y|µ dy
)t

dx





1
t

≤ L,

and so, we have
(

∫

BK(0)

(∫

RN

Φ(x, y)|vn(y)|p
∗
β,µdy

)t

dx

)
1
t

≤ L′′
φ,

where L and L′′
φ( depends on φ) are some positive constants. Thus for s = tµ−2N

2(2N+2Nt−tµ) > 0 small enough, we

obtain

∫

BK(0)

|Ψn(x)|1+sdx ≤
(

∫

BK(0)

(∫

RN

Φ(x, y)|vn(y)|p
∗
β,µdy

)t

dx

)
1+s
t
(

∫

BK(0)

|φvn|p
∗

dx

)

p∗β,µ(1+s)

p∗

(

∫

BK(0)

1

|x|
2Ntβ(1+s)

2Nt−2N(1+s)−t(2N−2β−µ)(1+s)

)

2Nt−2N(1+s)−t(2N−2β−µ)(1+s)
2Nt

≤ L′′
φ,

since 2Ntβ(1+s)
2Nt−2N(1+s)−t(2N−2β−µ)(1+s) < N. Using this together with Ψn(x) → 0 a.e. in R

N , we achieve
∫

BK(0)

|Ψn(x)|dx → 0 as n→ ∞.
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Combining this with (3.6), we infer that
∫

RN

|Ψn(x)|dx → 0 as n→ ∞.

Now for every φ ∈ C∞
c (RN ), by the weighted Hardy-Littlewood-Sobolev inequality (1.3), we deduce

∫

RN

(

∫

RN

|φvn(y)|p
∗
β,µ

|y|β |x− y|µ dy
)

|φvn(x)|p
∗
β,µ

|x|β dx ≤ C(N, β, µ)‖φvn‖
2p∗

β,µ

p∗ .

Thus, the equation (3.5) is proved. From equation (3.5), we get

∫

RN

|φ(x)|2p∗
β,µ

(

∫

RN

|vn(y)|p
∗
β,µ

|y|β |x− y|µ dy
)

|vn(x)|p
∗
β,µ

|x|β dx ≤ C(N, β, µ)‖φvn‖
2p∗

β,µ

p∗ + on(1).

On taking the limit as n→ ∞, we obtain

∫

RN

|φ(x)|2p∗
β,µdτ3 ≤ C(N, β, µ)

(∫

RN

|φ|p∗

dτ2

)

2p∗β,µ
p∗

. (3.7)

Further, let φ = χ{zj}, j ∈ J and using this in (3.7), we have

ζ

p∗

2p∗
β,µ

j ≤ (C(N, β, µ))
p∗

2p∗
β,µ ωj , for all j ∈ J.

Now the definition of Sβ,µ (see (2.1)) yields that

(

∫

RN

(

∫

RN

|φvn(y)|p
∗
β,µ

|y|β|x− y|µ dy
)

|φvn(x)|p
∗
β,µ

|x|β dx

)
p

2p∗
β,µ

Sβ,µ ≤
∫

RN

|∇(φvn)|pdx.

Also, using (3.5) and vn → 0 in Lp
loc(R

N ), it follows that

(

∫

RN

|φ(x)|2p∗
β,µ

(

∫

RN

|vn(y)|p
∗
β,µ

|y|β |x− y|µ dy
)

|vn(x)|p
∗
β,µ

|x|β dx

)
p

2p∗
β,µ

Sβ,µ ≤
∫

RN

φp|∇vn|pdx + on(1).

On passing the limit as n→ ∞ in the above estimation, we achieve

(
∫

RN

|φ(x)|2p∗
β,µdτ3

)
p

2p∗
β,µ

Sβ,µ ≤
∫

RN

|φ|pdτ1. (3.8)

Let φ = χ{zj}, j ∈ J and applying this in (3.8), we have

Sβ,µζ

p
2p∗

β,µ

j ≤ νj , ∀ j ∈ J.

This completes the proof of (3.4).
Now, we prove the possible loss of mass at infinity. For R > 1, let φR ∈ C∞(RN ) be such that φR = 1 for

|x| > R+ 1, φR(x) = 0 for |x| < R and 0 ≤ φR(x) ≤ 1 on R
N . For every R > 1, we have

lim sup
n→∞

∫

RN

∫

RN

|un(y)|p
∗
β,µ |un(x)|p

∗
β,µ

|x|β |x− y|µ|y|β dydx

= lim sup
n→∞

(

∫

RN

∫

RN

|un(y)|p
∗
β,µ |un(x)|p

∗
β,µφR(x)

|x|β |x− y|µ|y|β dydx+

∫

RN

∫

RN

|un(y)|p
∗
β,µ |un(x)|p

∗
β,µ (1− φR(x))

|x|β |x− y|µ|y|β dydx

)

= lim sup
n→∞

∫

RN

∫

RN

|un(y)|p
∗
β,µ |un(x)|p

∗
β,µφR(x)

|x|β |x− y|µ|y|β dydx+

∫

RN

(1− φR)dζ.

Letting R → ∞, by Lebesgue’s dominated convergent theorem, we deduce

lim sup
n→∞

∫

RN

∫

RN

|un(y)|p
∗
β,µ |un(x)|p

∗
β,µ

|x|β |x− y|µ|y|β dydx = ζ∞ +

∫

RN

dζ.
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By the weighted Hardy-Littlewood-Sobolev inequatlity (1.3), we get

ζ∞ = lim
R→∞

lim sup
n→∞

∫

RN

(

∫

RN

|un(y)|p
∗
β,µ

|x− y|µ|y|β dy
)

|φRun(x)|p
∗
β,µ

|x|β dx

≤ C(N, β, µ) lim
R→∞

lim sup
n→∞

(∫

RN

|un|p
∗

dx

∫

RN

|φRun|p
∗

dx

)
2N−2β−µ

2N

= C(N, β, µ)

(

(ω∞ +

∫

RN

dω)ω∞

)
2N−2β−µ

2N

.

This gives

C(N, β, µ)−
2N

2N−2β−µ ζ
2N

2N−2β−µ
∞ ≤ ω∞

(∫

RN

dω + ω∞

)

.

Similarly, using the weighted Hardy-Littlewood-Sobolev inequatlity (1.3), we obtain

ζ∞ = lim
R→∞

lim sup
n→∞

∫

RN

(

∫

RN

|un(y)|p
∗
β,µ

|x− y|µ|y|β dy
)

|φRun(x)|p
∗
β,µ

|x|β dx

≤ C(N, β, µ) lim
R→∞

lim sup
n→∞

(
∫

RN

|un|p
∗

dx

∫

RN

|φRun|p
∗

dx

)
2N−2β−µ

2N

≤ C(N, β, µ)S−p∗
β,µ lim

R→∞
lim sup
n→∞

(∫

RN

|∇un|pdx
∫

RN

|∇(φRun)|pdx
)

p∗β,µ
p

= C(N, β, µ)S−p∗
β,µ

(

(ν∞ +

∫

RN

dν)ν∞

)

p∗β,µ
p

,

which implies that

SpC(N, β, µ)
− p

p∗
β,µ ζ

p
p∗
β,µ

∞ ≤ ν∞

(∫

RN

dν + ν∞

)

.

This completes the proof. �

Lemma 3.5. Assume that 2 < q < 2p and (1.6) hold. Then any (PS)c sequence for Iλ is bounded in D1,p(RN ).

Proof. Let {wn} be a (PS)c sequence in D1,p(RN ). Then

c+ on(1) = Iλ(wn) =
a

p

∫

RN

|∇wn|pdx +
b

2p

(∫

RN

|g′(wn)|p|∇wn|pdx
)2

− λ

q

∫

RN

f(x)|g(wn)|qdx− 1

4p∗β,µ

∫

RN

(

∫

RN

|g(wn(y))|2p
∗
β,µ

|y|β|x− y|µ dy

)

|g(wn(x))|2p
∗
β,µ

|x|β dx.

For any v ∈ D1,p(RN ), we have

on(1)‖wn‖ =〈I ′
λ(wn), v〉

=a

∫

RN

|∇wn|p−2∇wn∇vdx− λ

∫

RN

f(x)|g(wn)|q−2g(w)g′(wn)vdx

+ b

∫

RN

|g′(wn)|p|∇wn|pdx
∫

RN

(

|g′(wn)|p|∇wn|p−2∇wn∇vdx+ |g′(wn)|p−2g′(wn)g
′′(wn)|∇wn|pv

)

dx

−
∫

RN

(

∫

RN

|g(wn)|2p
∗
β,µ

|x− y|µ|y|β dy
)

|g(wn)|2p
∗
β,µ−2g(wn)

|x|β g′(wn)vdx.

Choose vn = (1 + 2p−1|g(wn)|p)
1
p g(wn) =

g(wn)
g′(wn)

∈ D1,p(RN ). Then Lemma 2.1-(g4) and

|∇vn| =
(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|,
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yield, ‖vn‖ ≤ 2‖wn‖. Also, by (2.5), we have

on(1)‖wn‖ = 〈I ′
λ(wn), vn〉 = a

∫

RN

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|pdx+ b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)2

− λ

∫

RN

f(x)|g(wn)|qdx−
∫

RN

∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µ

|y|β|x− y|µ|x|β dydx. (3.9)

Now using (3.9) together with the Hölder inequality, Lemma 2.1-(g4), (g6) and (2.2), we obtain

c+ on(1)‖wn‖ = Iλ(wn)−
1

4p∗β,µ
〈I ′

λ(wn), vn〉

= a

∫

RN

[

1

p
− 1

4p∗β,µ

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(vn)|p
)

]

|∇wn|p +
(

1

2p
− 1

4p∗β,µ

)

b

(∫

RN

|g′(wn)|p|∇wn|p
)2

+

(

1

4p∗β,µ
− 1

q

)

λ

∫

RN

f(x)|g(wn)|qdx

≥ a

(

1

p
− 1

2p∗β,µ

)

∫

RN

|∇wn|pdx−
(

1

q
− 1

4p∗β,µ

)

λ‖f‖ 2p∗

2p∗−q

(∫

RN

|g(wn)|2p
∗

dx

)
q

2p∗

≥ a

(

1

p
− 1

2p∗β,µ

)

∫

RN

|∇wn|pdx− λ

(

1

q
− 1

4p∗β,µ

)

2
q
2pS− q

2p ‖f‖ 2p∗

2p∗−q

(∫

RN

|∇wn|pdx
)

q
2p

≥
(

1

p
− 1

2p∗β,µ

)

a‖wn‖p − λ

(

1

q
− 1

4p∗β,µ

)

2
q
2pS− q

2p ‖f‖ 2p∗

2p∗−q
‖wn‖

q
2 .

This implies {wn} is bounded, since p < p∗β,µ and 2 < q < 2p. �

Lemma 3.6. Let q = 2p and (1.6) hold. Then any (PS)c sequence for Iλ is bounded in D1,p(RN ).

Proof. Let {wn} be a (PS)c sequence for for Iλ any c ∈ R
N . Using the similar calculation as in Lemma 3.5, we get

c+ o(1)‖wn‖ = Iλ(wn)−
1

4p∗β,µ
〈I ′

λ(wn), vn〉

≥
(

1

p
− 1

2p∗β,µ

)

‖wn‖p
(

a− λ

2
2S−1‖f‖ p∗

p∗−p

)

.

For all 0 < λ < a
S−1‖f‖ p∗

p∗−p

, we get {wn} is a bounded sequence. �

Lemma 3.7. Assume that 2p < q < 2p∗β,µ and (1.6) hold. Then any (PS)c sequence for Iλ is bounded in D1,p(RN ).

Proof. Let {wn} be a (PS)c sequence for Iλ for any c ∈ R
N . Gathering (3.9) in combination with the Hölder

inequality, Lemma 2.1-(g4), (g6) and (2.2), it follows that

c+ on(1)‖wn‖ = Iλ(wn)−
1

q
〈I ′

λ(wn), vn〉

= a

∫

RN

[

1

p
− 1

q

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(vn)|p
)]

|∇wn|p +
(

1

2p
− 1

q

)

b

(∫

RN

|g′(wn)|p|∇wn|p
)2

+

(

1

q
− 1

4p∗β,µ

)

∫

RN

(

∫

RN

|g(w(y))|2p∗
β,µ

|y|β|x− y|µ dy

)

|g(w(x))|2p∗
β,µ

|x|β dx

≥ a

(

1

p
− 2

q

)∫

RN

|∇wn|pdx =

(

1

p
− 2

q

)

a‖wn‖p,

where in the last line, we used the fact that 2p < q < 2p∗ < 4p∗β,µ. Therefore, from the above estimation, it implies

that {wn} is bounded. This completes the proof of the Lemma. �



p-KIRCHHOFF PROBLEM WITH STEIN-WEISS NONLINEARITY 11

Lemma 3.8. Let β ≥ 0, µ > 0, 0 < 2β + µ < N and 2 ≤ p < N . Suppose {wn} is a bounded sequence in Lp∗
(RN )

such that wn → w a.e. in R
N . Then we have

∫

RN

(

∫

RN

|wn|p
∗
β,µ

|y|β |x− y|µ dy
)

|wn|p
∗
β,µ

|x|β dx−
∫

RN

(

∫

RN

|wn − w|p∗
β,µ

|y|β|x− y|µ dy
)

|wn − w|p∗
β,µ

|x|β dx

→
∫

RN

(

∫

RN

|w|p∗
β,µ

|y|β|x− y|µ dy
)

|w|p∗
β,µ

|x|β dx (3.10)

as n→ ∞.

Proof. The proof follows in a similar manner as in [12]. �

Lemma 3.9. Assume that 2 ≤ q < 2p and (1.6) hold. Let {wn} ⊂ D1,p(RN ) be a Palais-Smale sequence for Iλ
and c < 0, then there exists λ∗ > 0 such that Iλ satisfies the (PS)c condition for all λ ∈ (0, λ∗).

Proof. Let {wn} ⊂ D1,p(RN ) be a (PS)c-sequence for Iλ. Then by Lemma 3.5, {wn} is a bounded in D1,p(RN ).
So, by Lemma 2.1-(g5), {g(wn)} is also bounded in D1,p(RN ). Therefore, we can assume that wn ⇀ w weakly in
D1,p(RN ), wn → w a.e in R

N . Since, g ∈ C∞, then |g2(wn)|p → |g2(w)|p a.e in R
N and |g2(wn)|p ⇀ |g2(w)|p

weakly in D1,p(RN ). Hence, we can assume that

|∇g2(wn)|p ⇀ ω, |g2(wn)|p
∗ → ν,

(

∫

RN

|g2(w(y))|p∗
β,µ

|x− y|µ|x|β

)

|g(w(x))|2p∗
β,µ

|x|β ⇀ ζ

in the sense of measure. By Lemma 3.4, there exists at most countable set J , sequence of points {xj}j∈J ⊂ R
N

and families of positive numbers {νj : j ∈ J}, {ζj : j ∈ J} and {ωj : j ∈ I} such that

ζ =

(

∫

RN

|g(w(y))|2p∗
β,µ

|x− y|µ|x|β

)

|g(w(x))|2p∗
β,µ

|x|β +
∑

j∈J

ζjδxj ,
∑

j∈J

ζ

1
p∗
β,µ

j <∞, (3.11)

ω ≥ |∇g2(w)|p +
∑

j∈J

ωjδxj (3.12)

ν ≥ |g(w)|2p∗

+
∑

j∈J

νjδxj (3.13)

and

Sβ,µζ

p
2p∗

β,µ

j ≤ ωj , and ζ
N

2N−2β−µ

j ≤ C(N, β, µ)
N

2N−2β−µ νj , (3.14)

where δx is the Dirac-mass of mass 1 concentrated at x ∈ R
N .

Moreover, we can construct a smooth cut-off function ψǫ,j centered at xj such that

0 ≤ ψǫ,j(x) ≤ 1, ψǫ,j(x) = 1 in B
(

xj ,
ǫ

2

)

, ψǫ,j(x) = 0 in R
N \B(xj , ǫ), |∇ψǫ,j| ≤

4

ǫ
,

for any ǫ > 0 small.
Let us set

vn := (1 + 2p−1|g(wn)|p)
1
p g(wn).

Then {vn} is bounded in D1,p(RN ). Obviously, 〈Iλ(wn), vnψǫ,j〉 → 0 as n→ ∞. So, we have

− lim
ǫ→0

lim
n→∞

[

a

∫

RN

g(wn)

g′(wn)
|∇wn|p−2∇wn∇ψǫ,jdx+ b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

)∫

RN

g(wn)|∇wn|p−2∇wn∇ψǫ,j

(1 + 2p−1|g(wn)|p)
1
p

dx

]

= lim
ǫ→0

lim
n→∞

[

a

∫

RN

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|pψǫ,jdx+ b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

)(∫

RN

|∇wn|pψǫ,j

1 + 2p−1|g(wn)|p
dx

)

− λ

∫

RN

f(x)|g(wn)|qψǫ,jdx−
∫

RN

∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µψǫ,j(x)

|y|β |x− y|µ|x|β dydx

]

. (3.15)
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Now the Hölder inequality and Lemma 2.1-(g4) yield that

0 ≤ lim
ǫ→0

lim
n→∞

∣

∣

∣

∣

a

∫

RN

(1 + 2p−1|g(wn)|p)
1
p g(wn)|∇wn|p−2∇wn∇ψǫ,jdx

∣

∣

∣

∣

≤K lim
ǫ→0

lim
n→∞

∫

RN

|wn|∇wn|p−2∇wn∇ψǫ,j|dx

≤K lim
ǫ→0

lim
n→∞

[

(∫

RN

|∇wn|pdx
)

p−1
p
(∫

RN

|wn∇ψǫ,j |pdx
)

1
p

]

≤K lim
ǫ→0

(

∫

B(xj ,2ǫ)

|∇ψǫ,j |Ndx
)

p
N
(

∫

B(xj ,2ǫ)

|w| Np
N−p dx

)
N−p
Np

≤K lim
ǫ→0

(

∫

B(xj ,2ǫ)

|w|p∗

dx

)
1
p∗

= 0, (3.16)

Similarly, using the boundedness of {wn} and the definition of ψǫ,j , we have

lim
ǫ→0

lim
n→∞

[

b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)

(

∫

RN

g(wn)|∇wn|p−2∇wn∇ψǫ,j

(1 + 2p−1|g(wn)|p)
1
p

dx

)]

= 0. (3.17)

One can easily check that,

lim
ǫ→0

lim
n→∞

∫

RN

f(x)|g(wn)|qψǫ,jdx = 0. (3.18)

Now by Lemma 2.1-(g11), we have

|∇g2(wn)|p = |2g(wn)g
′(wn)∇wn|p ≤ 2|∇wn|p. (3.19)

Plugging the relation together with (3.16), (3.17) and (3.18) in (3.15), we deduce

0 = lim
ǫ→0

lim
n→∞

[

a

∫

RN

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|pψǫ,jdx+ b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

)(∫

RN

|∇wn|pψǫ,j

1 + 2p−1|g(wn)|p
dx

)

− λ

∫

RN

f(x)|g(wn)|qψǫ,jdx−
∫

RN

∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µψǫ,j(x)

|y|β|x− y|µ|x|β dydx

]

≥ lim
ǫ→0

lim
n→∞

{

a

∫

RN

|∇g2(wn)|pψǫ,jdx−
∫

RN

∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µψǫ,j

|y|β|x− y|µ|x|β dxdy

}

≥ lim
ǫ→0

lim
n→0

{

a

∫

RN

ψǫ,jdω −
∫

RN

ψǫ,jdζ

}

≥ aωj − ζj .

Combining this with (3.14), it follows that

either ωj ≥
(

aS
2N−2β−µ

N−p

β,µ

)
N−p

N−2β−µ+p

or ωj = 0.
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Now we claim that the first case can not occur. Suppose not, then there exists j0 ∈ J such that ωj0 ≥
(

aS
2N−2β−µ

N−p

β,µ

)
N−p

N−2β−µ+p

. Now the Hölder inequality, (2.2) and the Young inequality yield that

λ

∫

RN

f(x)|g(w)|qdx ≤ λ‖f‖ 2p∗

2p∗−q
S− q

2p ‖g2(w)‖ q
2 =











(

1

p
− 1

2p∗β,µ

)

a

2

(

1

q
− 1

4p∗β,µ

)−1




q
2p

‖g2(w)‖ q
2

















(

1

p
− 1

2p∗β,µ

)

a

2

(

1

q
− 1

4p∗β,µ

)−1




−q
2p

λ‖f‖ 2p∗

2p∗−q
S− q

2p







≤
(

1

p
− 1

2p∗β,µ

)

a

2

(

1

q
− 1

4p∗β,µ

)−1

‖g2(w)‖p

+
2p− q

2p





(

1

q
− 1

4p∗β,µ

)

2

aS

(

1

p
− 1

2p∗β,µ

)−1




q
2p−q

λ
2p

2p−q ‖f‖
2p

2p−q

2p∗

2p∗−q

. (3.20)

Using (3.20), we have

0 > c = lim
n→∞

(

Iλ(wn)−
1

4p∗β,µ

〈

I′
λ(wn), (1 + 2p−1|g(wn)|

p)
1
p g(wn)

〉

)

= lim
n→∞

{

a

∫

RN

[

1

p
−

1

4p∗β,µ

(

1 +
2p−1|g(wn)|

p

1 + 2p−1|g(vn)|p

)

]

|∇wn|
p +

(

1

2p
−

1

4p∗β,µ

)

b

(
∫

RN

|g′(wn)|
p|∇wn|

p

)2

+

(

1

4p∗β,µ

−
1

q

)

λ

∫

RN

f(x)|g(wn)|
q
dx

}

≥ lim
n→∞

{

a

2

(

1

p
−

1

2p∗β,µ

)

∫

RN

|∇g
2(wn)|

p
dx−

(

1

q
−

1

4p∗β,µ

)

λ

∫

RN

f(x)|g(wn)|
q
dx

}

≥

(

1

p
−

1

2p∗β,µ

)

a

2

(

‖g2(w)‖p +
∑

j∈J

ωj

)

−

(

1

q
−

1

4p∗β,µ

)

λ

∫

RN

f(x)|g(wn)|
q
dx

≥

(

1

p
−

1

2p∗β,µ

)

a

2
ωj0 −

2p− q

2p

[(

1

q
−

1

4p∗β,µ

)

2

aS

(

1

p
−

1

2p∗β,µ

)−1]
2p

2p−q

λ
2p

2p−q ‖f‖
2p

2p−q

2p∗

2p∗−q

≥

(

1

2p
−

1

4p∗β,µ

)

(aSβ,µ)

p∗β,µ
p∗
β,µ

−1
−

2p− q

2p

[(

1

q
−

1

4p∗β,µ

)

2

aS

(

1

p
−

1

2p∗β,µ

)−1]
q

2p−q

λ
2p

2p−q ‖f‖
2p

2p−q

2p∗

2p∗−q

. (3.21)

Choose λ1 > 0 so small such that for every λ ∈ (0, λ1), the right hand side of (3.21) is greater than zero, which
gives a contradiction.

To obtain the possible concentration of mass at infinity, similarly, we can define a cut-off function ψR ∈ C∞(RN )
such that ψR(x) = 0 on |x| < R, ψR(x) = 1 on |x| > R+ 1 and |∇ψR| ≤ 2

R . Let

ω∞ := lim
R→∞

lim sup
n→∞

∫

|x|≥R

|∇g2(wn)|pdx, ν∞ := lim
R→∞

lim sup
k→∞

∫

|x|≥R

|g(wn)|2p
∗

dx

ζ∞ := lim
R→∞

lim sup
n→∞

∫

|x|>R

(

∫

RN

|g(wn)(y)|2p
∗
β,µ

|y|β |x− y|µ dy

)

|g(wn)(x)|2p
∗
β,µ

|x|β dx.

Now applying Proposition 1.1, the Hölder inequality and Lemma 2.1-(g6), we deduce

ζ∞ = lim
R→∞

lim
n→∞

(

∫

RN

|g(wn)(y)|2p
∗
β,µ

|y|β |x− y|µ

)

|g(wn)(x)|2p
∗
β,µ

|x|β ψR(x)dx

≤ C(N, β, µ) lim
R→∞

lim
n→∞

|g2(wn)|
p∗
β,µ

p∗

(∫

RN

|g(wn(x))|2p∗ψR(x)dx

)

p∗β,µ
p∗

≤ Kν

p∗β,µ
p∗

∞ .
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Using the fact 〈I ′
λ(wn),

g(wn)
g′(wn)

ψR〉 → 0, we get

− lim
n→∞

[

a

∫

RN

g(wn)

g′(wn)
|∇wn|p−2∇wn∇ψRdx+ b

(∫

RN

|g′(wn)|p|∇wn|pdx
)

(

∫

RN

g(wn)|∇wn|p−2∇wn∇ψR

(1 + 2p−1|g(wn)|p)
1
p

dx

)

dx

]

= lim
n→∞

[

a

∫

RN

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|pψRdx+ b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)(∫

RN

|∇wn|p−2∇wn∇ψR

1 + 2p−1|g(wn)|p
dx

)

− λ

∫

RN

f(x)|g(wn)|qψRdx−
∫

RN

∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µψR(x)

|y|β |x− y|µ|x|β dydx

]

. (3.22)

One can easily show that

lim
R→∞

lim
n→∞

a

∫

RN

(1 + 2p−1|g(wn)|p)
1
p g(wn)|∇wn|p−2∇wn∇ψRdx = 0,

lim
R→∞

lim
n→∞

[

b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)

(

∫

RN

g(wn)|∇wn|p−2∇wn∇ψR

(1 + 2p−1|g(wn)|p)
1
p

)]

= 0,

and

lim
R→∞

lim
n→∞

∫

RN

f(x)|g(wn(x))|qψR(x)dx = 0.

Using the above in (3.22), we obtain

0 = lim
R→∞

lim
n→∞

[

a

∫

RN

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|pψRdx −
∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µψR(x)

|y|β |x− y|µ|x|β dydx

+b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)

(

∫

RN

|∇wn|pψR
√

1 + 2p−1|g(wn)|p
dx

)

dx

]

≥ lim
R→∞

lim
n→∞

[

a

∫

RN

|∇g2(wn)|pψRdx−
∫

RN

|g(wn(y))|2p
∗
β,µ |g(wn(x))|2p

∗
β,µψR(x)

|y|β |x− y|µ|x|β dydx

]

=aω∞ −Kν

p∗β,µ
p∗

∞ . (3.23)

Thus, aω∞ ≤ Kν

p∗β,µ
p∗

∞ . This together with Lemma 3.4 yields that

ω∞ ≥
(

K−1aS
p∗β,µ

p

)
p

p∗
β,µ

−p

or ω∞ = 0. (3.24)

If ω∞ ≥
(

K−1aS
p∗β,µ

p

)
p

p∗
β,µ

−p

, then we have

0 > c = lim
R→∞

lim
n→∞

(

Iλ(wn)−
1

4p∗β,µ

〈

I ′
λ(wn),

g(wn)

g′(wn)

〉

)

≥ lim
R→∞

lim
n→∞

{(

1

p
− 1

2p∗β,µ

)

a

∫

RN

|∇wn|pψRdx −
(

1

q
− 1

4p∗β,µ

)

∫

RN

f(x)|g(wn)|qdx
}

≥ lim
ǫ→0

lim
n→∞

{(

1

p
− 1

2p∗β,µ

)

a

2

∫

RN

|∇g2(wn)|pdx −
(

1

q
− 1

4p∗β,µ

)

∫

RN

f(x)|g(wn)|qdx
}

≥
(

1

2p
− 1

4p∗β,µ

)

(aS)

p∗
β,µ

p∗
β,µ

−p
K

−p
p∗
β,µ

−p − 2p− q

2p





(

1

q
− 1

4p∗β,µ

)

2

aS

(

1

p
− 1

2p∗β,µ

)−1




q
2p−q

λ
2p

2p−q ‖f‖
2p

2p−q

2p∗

2p∗−q

. (3.25)

Choose λ2 > 0 so small such that for every λ ∈ (0, λ2), the right hand side of (3.25) is greater than zero, which
gives a contradiction. Now from the above arguments, for any c < 0, there exist λ∗ = min{λ1, λ2} > 0, we have
ωj = 0 for all j ∈ J and ω∞ = 0 for all λ ∈ (0, λ∗). Hence

lim
k→∞

∫

RN

∫

RN

|g(wn(x))|2p
∗
β,µ |g(wn(y))|2p

∗
β,µ

|x|β |x− y|µ|y|β dxdy =

∫

RN

∫

RN

|g(w(x))|2p∗
β,µ |g(w(y))|2p∗

β,µ

|x|β |x− y||y|β dxdy.
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and

lim
k→∞

∫

RN

f(x)(|g(wn(x))|q − |g(w(x))|q)dx ≤ ‖f‖ 2p∗

2p∗−q
‖|g(wn(x))|q − |g(w(x))|q‖ 2p∗

q
= 0.

Since {wn} is bounded in D1,p(RN ) and I ′
λ(w) = 0, the weak lower semicontinuity of the norm, Lemma 3.8 and

the Brezis-Lieb Lemma (see [5]) yield that as n→ ∞,

on(1)‖wn‖ =
〈

I ′
λ(wn), (1 + 2p−1|g(wn)|p)

1
p g(wn)

〉

= a

∫

RN

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(wn)|p
)

|∇wn|pdx+ b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)2

− λ

∫

RN

f(x)|g(wn)|qdx−
∫

RN

∫

RN

|g(wn(x))|2p
∗
β,µ |g(wn(y))|2p

∗
β,µ

|x|β |x− y|µ|y|β dxdy

= a‖wn‖p + a

∫

RN

2p−1|g(wn)|p
1 + 2p−1|g(wn)|p

|∇wn|pdx + b

(∫

RN

|∇wn|p
1 + 2p−1|g(wn)|p

dx

)2

− λ

∫

RN

f(x)|g(wn)|qdx−
∫

RN

∫

RN

|g(wn(x))|2p
∗
β,µ |g(wn(y))|2p

∗
β,µ

|x|α|x− y|µ|y|β dxdy

≥ a(‖wn − w‖p) + a‖w‖p + b

(∫

RN

|∇w|p
1 + 2p−1|g(w)|p dx

)2

− λ

∫

RN

f(x)|g(w)|qdx

−
∫

RN

∫

RN

|g(w(x))|2p∗
β,µ |g(w(y))|2p∗

β,µ

|x|β |x− y|µ|y|β dxdy

= a‖wn − w‖p + on(1)‖w‖.
Thus {wn} converges strongly to w in D1,p(RN ). This completes the proof of the Lemma. �

Lemma 3.10. Assume that q = 2p and (1.6) hold. Let {wn} be a (PS)c sequence for Iλ in D1,p(RN ) with

c < c∗ :=
1

4p
(aSβ,µ)

p∗β,µ
p∗
β,µ

−1
.

Then for all λ ∈ (0, aS‖f‖−1
p∗

p∗−p

), {wn} satisfies the (PS)c condition.

Proof. For each w ∈ D1,p(RN ), using Lemma 2.1-(g6), the Hölder inequality and Sobolev inequality (2.2), we obtain
∫

RN

f(x)|g(w)|2pdx ≤ S−1‖f‖ p∗

p∗−p
‖g2(w)‖p.

Let {wn} be a (PS)c for Iλ for c < c∗. Then {wn} is bounded from Lemma 3.6. Now using the last estimate, for
all λ ∈ (0, aS‖f‖−1

p∗

p∗−p

), arguing similarly as in Lemma 3.5, in substitute of (3.21), we obtain

c∗ > c = lim
n→∞

(

Iλ(wn)−
1

4p

〈

I ′
λ(wn),

g(wn)

g′(wn)

〉)

= lim
n→∞

{

a

∫

RN

[

1

p
− 1

4p

(

1 +
2p−1|g(wn)|p

1 + 2p−1|g(vn)|p
)]

|∇wn|p +
(

1

2p
− 1

4p

)

b

(∫

RN

|g′(wn)|p|∇wn|p
)2

+

(

1

4p
− 1

2p

)

λ

∫

RN

f(x)|g(wn)|qdx+

(

1

4p
− 1

4p∗β,µ

)

∫

RN

∫

RN

|g(w(x))|2p∗
β,µ |g(w(y))|2p∗

β,µ

|x|β |x− y|µ|y|β dxdy

}

≥ lim
n→∞

{

a

2p
‖wn‖p −

(

1

2p
− 1

4p

)

λS−1‖f‖ p∗

p∗−p
‖g2(wn)‖p

}

≥ lim
n→∞

{

a

4p
‖g2(wn)‖p

}

−
(

1

2p
− 1

4p

)

λS−1‖f‖ p∗

p∗−p
‖g2(w)‖p

≥ a

4p
wi0 +

1

4p
(a− λS−1‖f‖ p∗

p∗−p
)‖g2(w)‖p

≥ 1

4p
awi0 ≥ 1

4p
(aSβ,µ)

p∗β,µ
p∗
β,µ

−1 := c∗,

which is absurd. Now the rest of the proof follows in similar manner as in the proof of Lemma 3.9. �
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Lemma 3.11. Let 2p < q < 2p∗ and (1.6) hold. Suppose that {wn} is a (PS)c sequence for Iλ in D1,p(RN ) with

c < c∗∗ :=

(

1

2p
− 1

q

)

(aSβ,µ)

p∗β,µ
p∗
β,µ

−1
.

Then {wn} satisfies (PS)c condition.

Proof. Let {wn} a (PS)c for Iλ for c < c∗∗. Then by Lemma 3.7, we have {wn} is bounded. Now following the
similar arguments as in Lemma 3.5, in place of (3.21), we get

c∗∗ > c = lim
n→∞

(

Iλ(wn)−
1

q

〈

I ′
λ(wn),

g(wn)

g′(wn)

〉)

≥
(

1

p
− 2

q

)

a

2
wi0 ≥

(

1

2p
− 1

q

)

(aSβ,µ)

p∗β,µ
p∗
β,µ

−1 := c∗∗,

which is a contradiction. The rest of the proof follows as in the proof of Lemma 3.9. �

4. Proof of Theorem 1.2

In this section, we give proof of Theorem 1.2. Before proving our result, first we recall the definition of genus.

Definition 4.1. Let X be a Banach space and A be a subset of X. The set A is said to be symmetric if u ∈ A

implies −u ∈ A. For a closed symmetric set A which does not contain the origin, we define a genus γ(A) of A by
the smallest integer k such that there exists an odd continuous mapping from A to Rk \ {0}. If there does not exist
such k, we define γ(A) = ∞ . Moreover, we set γ(∅) = 0 .

For any k ∈ N, let us define the set Σk as

Σk := {A : A ⊂ X is closed symmetric , 0 6∈ A, γ(A) ≥ k}.

Now to prove Theorem 1.2, we use a result by Kajikiya ( see [17, Theorem 1]), which is an extension of the
symmetric mountain pass theorem.

Theorem 4.2. Let X be an infinite dimensional Banach space and J ∈ C1(X,R). Suppose that the following
hypotheses hold.

(A1) The functional J is even and bounded from below in X, J (0) = 0 and J satisfies the local Palais-Smale
condition.

(A2) For each k ∈ N, there exists Ak ∈ Σk such that

sup
u∈Ak

J (u) < 0.

Then J admits a sequence of critical points {uk} in X such that uk 6= 0, J (uk) ≤ 0 for each k and uk → 0 in X

as k → ∞.

Proposition 4.3. Let (1.6) hold. If w ∈ D1,p(RN ) is a nontrivial weak solution to (2.6), then w ∈ L∞(RN ).
Moreover, if we consider f ∈ L∞(RN ) and 2p < q < 2p∗, then any nontrivial weak solution w ∈ D1,p(RN ) to (2.6)
belongs to L∞(RN ) ∩ C1,r(BR(0)), for all R > 0 and for some r := r(R) ∈ (0, 1).

Proof. Let w ∈ D1,p(RN ) be a nontrivial weak solution to (2.6). Without loss of generality let us assume w ≥ 0.
For any real number M > 0, we define the function

vM := min{w(x), M}.
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We consider the test function v = v
kp+1
M , k ≥ 0. Clearly vM ∈ D1,p(RN ) ∩ L∞(RN ). Now using v as test function

in the weak formulation (2.5) and using Lemma 2.1-(g3), we get

a

∫

RN

|∇w|p−2∇w∇vkMdx+ b

∫

RN

|g′(w)|p|∇w|pdx
∫

RN

|g′(w)|p|∇w|p−2∇w∇vkp+1
M dx

= −b
∫

RN

|g′(w)|p|∇w|pdx
∫

RN

|g′(w)|p−2g′(w)g′′(w)|∇w|pvkp+1
M dx

+ λ

∫

RN

f(x)|g(w)|q−2g(w)g′(w)vMdx+

∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|x− y|µ|y|β dy
)

|g(w)|2p∗
β,µ−2g(w)

|x|β g′(w)vkp+1
M dx

≤ b‖w‖p
∫

RN

|g′(w)|p−1g′′(w)|∇w|pvkp+1
M (x)dx

+ λ

∫

RN

f(x)|g(w)|q−1g′(w)vkp+1
M (x)dx +

∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|x− y|µ|y|β dy
)

|g(w)|2p∗
β,µ−1

|x|β g′(w)vkp+1
M (x)dx. (4.1)

Now we estimate the integral expressions in the left hand side of (4.1):
Using (2.2), we get

a

∫

RN

|∇w|p−2∇w∇vkp+1
M dx = a(kp+ 1)

∫

RN

|∇vM |pvkpM dx

= a
(kp+ 1)

(k + 1)p

∫

RN

|∇vk+1
M |pdx

≥ a
(kp+ 1)

(k + 1)p
S1/p‖vM‖(k+1)p

(k+1)p∗ . (4.2)

Similarly,

∫

RN

|g′(w)|p|∇w|pdx
∫

RN

|g′(w)|p|∇w|p−2∇w∇vkp+1
M dx = b‖g(w)‖p

∫

RN

|g′(w)|p|∇w|p−2∇w∇vkp+1
M dx

= b
(kp+ 1)

(k + 1)p
‖g(w)‖p

∫

RN

|g′(w)|p|∇vk+1
M |pdx ≥ 0. (4.3)

Next, we estimate the integral expressions in the right hand side of (4.1):
Recalling Lemma 2.1-(g3), (g11) and (g12), we deduce

b‖w‖p
∫

RN

|g′(w)|p−1g′′(w)|∇w|pvkp+1
M (x)dx

≤ b‖w‖p
∫

RN

|g′(w)|p+2|g′(w)|p−1|g(w)|p−1|∇w|pMkp+1dx

≤ b

2
(p−1)2

p

‖w‖p
∫

RN

|∇w|pMkp+1dx

=
b

2
(p−1)2

p

Mkp+1‖w‖2p. (4.4)

Applying Lemma 2.1-(g4), (g6) and (2.2), we obtain

λ

∫

RN

f(x)|g(w)|q−1g′(w)vkp+1
M (x)dx ≤ λ

∫

RN

f(x)|g(w)|qvkpM dx

≤ λ2q/2p
∫

RN

f(x)|w|q/2Mkpdx

≤ λ2q/2pMkp‖f‖ 2p∗

2p∗−q
‖w‖q/2p∗

≤ λ2q/2pMkp‖f‖ 2p∗

2p∗−q
S−q/2p‖w‖q/2. (4.5)
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Again employing Lemma 2.1-(g4), (g6), (2.2) and recalling Proposition 1.1 and applying the Hölder inequality, we
deduce

∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|x− y|µ|y|β dy
)

|g(w)|2p∗
β,µ−1

|x|β g′(w)vkp+1
M (x)dx

≤
∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|x− y|µ|y|β dy
)

|g(w)|2p∗
β,µ

|x|β wkp(x)dx

≤ 2
p∗β,µ

p C(N, p, µ, β)‖w‖p
∗
β,µ

p∗

(∫

RN

|w|(p
∗
β,µ+kp) p∗

p∗
β,µ

)

p∗
β,µ
p∗

:= C

(

∫

{w≤τ}

|w|(p
∗
β,µ+kp) p∗

p∗
β,µ +

∫

{w>τ}

|w|(p
∗
β,µ+kp) p∗

p∗
β,µ

)

p∗β,µ
p∗

≤ C






τp

∗
β,µ−p

(

∫

{w≤τ}

(|w|(k+1)p)
p∗

p∗
β,µ

)

p∗β,µ
p∗

+

(

∫

{w>τ}

(|w|p∗
β,µ−p|w|(k+1)p)

p∗

p∗
β,µ

)

p∗β,µ
p∗







≤ C

[

τp
∗
β,µ−p‖w‖(k+1)p

(k+1) pp∗

p∗
β,µ

+







∫

{w>τ}

(

|w|(p
∗
β,µ−p) p∗

p∗
β,µ

)

p∗β,µ
p∗
β,µ

−p

dx







p∗β,µ−p

p∗
β,µ

·
p∗β,µ
p∗

×







∫

{w>τ}

(

|w|(k+1)p p∗

p∗
β,µ

)

p∗β,µ
p

dx







p
p∗
β,µ

·
p∗β,µ
p∗
]

≤ C

[

τp
∗
β,µ−p‖w‖(k+1)p

(k+1) pp∗

p∗
β,µ

+

(

∫

{w>τ}

|w|p∗

)

p∗β,µ−p

p∗ (∫

RN

‖w|(k+1)p∗

dx

)
p
p∗
]

:= C1‖w‖(k+1)p

(k+1) pp∗

p∗
β,µ

+ C2(τ)‖w‖(k+1)p
(k+1)p∗ , (4.6)

where τ > 0 will be chosen later so that C(τ) > 0 will be sufficiently small. Now plugging (4.2),(4.3), (4.4) (4.5) in
(4.1) and letting M → ∞ and applying Fatou’s lemma, we get

‖w‖(k+1)p
(k+1)p∗ ≤ (k + 1)p

a(kp+ 1)S1/p

[

b

2
(p−1)2

p

Mkp+1‖w‖2p + λ2q/2pMkp‖f‖ 2p∗

2p∗−q
S−q/2p‖w‖q/2

+ C1‖w‖(k+1)p

(k+1) pp∗

p∗
β,µ

+ C2(τ)‖w‖(k+1)p
(k+1)p∗

]

≤ (k + 1)p

aS1/p

[

C̃3(M + 1)(k+1)p + C1‖w‖(k+1)p

(k+1) pp∗

p∗
β,µ

+ C2(τ)‖w‖(k+1)p
(k+1)p∗

]

, (4.7)

where the C̃3 := C̃3(b, λ, p,N, q, ‖f‖ 2p∗

2p∗−q
, ‖w‖) > 0 is a positive constant. Next, we can choose τ > 0 sufficiently

large so that, by the Lebesgue dominated convergence theorem we can find C(τ) < aS1/p

2(k+1)p . Therefore, using this

in (4.7), we obtain

‖w‖(k+1)p∗ ≤ C̃
1

(k+1)p (k + 1)
1

(k+1)

[

1 + ‖w‖(k+1) pp∗

p∗
β,µ

]

, (4.8)

where the C̃ := C̃(a, b,M, λ, p,N, q, ‖f‖ 2p∗

2p∗−q
, ‖w‖) > 0 is a positive constant. Since p∗β,µ > p, we have pp∗

p∗
β,µ

< p∗.

Case I: If there exists a sequence kn such that kn → ∞ as n→ ∞ such that

‖w‖
(kn+1) pp∗

p∗
β,µ

≤ 1,
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then from (4.8), we can infer that ‖w‖∞ ≤ 1.
Case II: If there is no such sequence satisfying the above condition as in Case I, then there exists k0 > 0 such that

‖w‖
(k+1) pp∗

p∗
β,µ

> 1, for all k ≥ k0.

Then (4.8) yields that

‖w‖(k+1)p∗ ≤
(

C̃
1

k+1

)
1
p

(k + 1)
1

k+1 ‖w‖ (k+1)pp∗

p∗
β,µ

, for all k ≥ k0. (4.9)

Now we use standard bootstrap argument by choosing the 1st iteration as k := k1 in (4.9) such that (k1+1)p = p∗β,µ.

In a similar manner, considering the nth iteration as k = kn := kn−1
p∗
β,µ

p to obtain

‖w‖(kn+1)p∗ ≤
(

C̃
1

kn+1

)
1
p

(kn + 1)
1

kn+1 ‖w‖(kn−1+1)p∗

=
(

C̃
∑n

j=1
1

kj+1

)
1
p





n
∏

j=1

(kj + 1)

√

1
kj+1





√

1
kj+1

‖w‖k0p∗ , (4.10)

where kj + 1 =
(

p∗
µ,s

p

)j

. Since
p∗
µ,s

p > 1, we get (kj + 1)

√

1
kj+1 > 1 for all j ∈ N and limj→∞(kj + 1)

√

1
kj+1 = 1.

Hence, there exists a constant C > 1, independent of n, such that (kj + 1)

√

1

kj + 1
< C and thus, (4.10) gives

‖u‖knp∗ ≤











C̃

n
∑

j=1

1

kj + 1











1
p

C

n
∑

j=1

√

1

kj + 1
‖u‖k0p∗ . (4.11)

As limit n→ ∞, we have
∞
∑

j=1

1

kj + 1
=

p

p∗β,µ − p
;

∞
∑

j=1

1
√

kj + 1
=

√
p

√

p∗β,µ −√
p
.

Thus, from (4.11), it follows that

‖w‖αn ≤
(

C̃
)

1
p∗
β,µ

−p

(C)

√
p√

p∗
β,µ

−
√

p ‖w‖k0p∗ , (4.12)

where αn := (kn + 1)p∗ and αn → ∞ as n→ ∞. Now we claim that

w ∈ L∞(RN ). (4.13)

Indeed, if not then there exists ǫ > 0 and a subset D of RN with meas(D) > 0 such that

w(x) >
(

C̃
)

1
p∗
β,µ

−p

(C)

√
p√

p∗
β,µ

−
√

p ‖w‖k0p∗ + ϑ for x ∈ D,

which implies that

lim inf
αn→∞

(∫

RN

|w(x)|αndx

)
1

αn

≥ lim inf
αn→∞

(∫

S

|w(x)|αndx

)
1

αn

≥ lim inf
αn→∞

(

(

C̃
)

1
p∗
β,µ

−p

(C)

√
p√

p∗
β,µ

−
√

p ‖w‖k0p∗ + ϑ

)

(meas(D))
1

αn

=
(

C̃
)

1
p∗
β,µ

−p

(C)

√
p√

p∗
β,µ

−
√

p ‖w‖k0p∗ + ϑ.

This contradicts (4.12). Thus, (4.13) holds.
Now for the next part of the proposition, f ∈ L∞(RN ), hence using Lemma 2.1-(g3), (g5), it follows that

f(x)|h(w)|q−2h(w)h′(w) ∈ L∞(RN ).
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Moreover, following the arguments in [12] (see also [3]) in combination with Lemma 2.1-(g5), we can deduce that
∫

RN

|g(w(y))|
2p∗β,µ

|y|β |x−y|µ
dy ∈ L∞(RN ) and thus from 2.1-(g3), it yields that

(

∫

RN

|g(w(y))|2p∗
β,µ

|y|β |x− y|µ dy

)

|g(w(x))|2p∗
β,µ

|x|β g′(w) ∈ L∞(RN ).

Therefore, using elliptic regularity theory, we infer that for any R > 0 there exists r(R) ∈ (0, 1) such that w ∈
C1,r(BR(0)). This completes the proof of the lemma.

�

Proof of Theorem 1.2 : From the hypotheses, it follows that Iλ is even and Iλ(0) = 0. Also Lemma 3.9 ensures
that Iλ satisfies the (PS)c-condition for all c < 0. But observe that, Iλ is not bounded from below in D1,p(RN ).
So, for applying Theorem 4.2, we use a truncation technique.
Let w ∈ D1,p(RN ). Using Lemma 2.1-(g5), (g6), (2.1) and (2.2), we get

Iλ(w) =
a

p

∫

RN

|∇w|pdx+
b

2p

(∫

RN

|g′(w)|p|∇w|pdx
)2

− λ

q

∫

RN

f(x)|g(w)|qdx− 1

4p∗β,µ

∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|y|β|x− y|µ dy
)

|g(w)|2p∗
β,µ

|x|β dx

≥ a

p

∫

RN

|∇w|pdx− λ

q
2

q
2p

∫

RN

f(x)|w|q/2dx − 1

4p∗β,µ
2

p∗β,µ
p

∫

RN

(

∫

RN

|w|p∗
β,µ

|y|β|x− y|µ dy
)

|w|p∗
β,µ

|x|β dx

≥ a

p
‖w‖p − λ

q
2

q
2p ‖f‖ 2p∗

2p∗−p
‖w‖q/2p∗ − 1

4p∗β,µ
2

p∗β,µ
p ‖w‖2p

∗
β,µ

β,µ

≥ a

p
‖w‖p − λ

q
2

q
2pS− q

2p ‖f‖ 2p∗

2p∗−p
‖w‖q/2 − 1

4p∗β,µ
2

p∗
β,µ
p S

−
2p∗β,µ

p

β,µ ‖w‖2p∗
β,µ

:= C1‖w‖p − λC2‖w‖q/2 − C3‖w‖2p
∗
β,µ . (4.14)

Define the function ℓ : R+
0 → R as

ℓ(t) = C1t
p − λC2t

q/2 − C3t
2p∗

β,µ . (4.15)

Since 2 < q < 2p, we can choose λ0 sufficiently small such that for all λ ∈ (0, λ0) there exist 0 < t1 < t2 so that
ℓ < 0 in (0, t1), ℓ > 0 in (t1, t2) and ℓ < 0 in (t2,∞). Therefore ℓ(t1) = 0 = ℓ(t2). Next, we choose a non-increasing
function H ∈ C∞([0,∞), [0, 1]) such that

H(t) =

{

1 if t ∈ [0, t1]

0 if t ∈ [t2,∞).

and set Π(w) := H(‖w‖). Now we define the truncated functional Îλ : D1,p(RN ) → R of Iλ as

Îλ(u) :=
a

p

∫

RN

|∇w|pdx+
b

2p

(∫

RN

|g′(w)|p|∇w|pdx
)2

(4.16)

−Π(w)
λ

q

∫

RN

f(x)|g(w)|qdx−Π(w)
1

4p∗β,µ

∫

RN

(

∫

RN

|g(w)|2p∗
β,µ

|y|β|x− y|µ dy
)

|g(w)|2p∗
β,µ

|x|β dx. (4.17)

Then, it can be verified easily that Î satisfies the following:

(1) Îλ ∈ C1(D1,p(RN ),R), Îλ(0) = 0.

(2) Îλ is even, coercive and bounded from below in D1,p(RN ).

(3) Let c < 0, then there exists λ1 > 0 such that for all λ ∈ (0, λ1), Îλ satisfies the Palais-Smale condition.

(4) If Îλ(w) < 0, then ‖w‖ ≤ t1 and Îλ(w) = Iλ(w).
For any k ∈ N, we consider k numbers of disjoint open sets denoted by Vj , j = 1, 2, · · ·k with ∪k

j=1Vj ⊂ Ω,

where Ω 6= ∅ is given as in Theorem 1.2. Now we choose wj ∈ D1,p(RN ) ∩ C∞
0 (Vj) \ {0}, with ‖wj‖ = 1 for each

j = 1, 2, · · · , k. Set
Xk = span{w1, w2, · · · , wk}.
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Now we claim that there exists 0 < ̺k < t1, sufficiently small such that

mk := max{Îλ(u) : u ∈ Xk, ‖w‖ = ̺k} ≤ 0. (4.18)

Suppose that (4.18) does not hold. Then there exists a sequence {wn} := {w(k)
n } in Xk such that

‖wn‖ → ∞; Îλ(wn) ≥ 0. (4.19)

Let’s set
un =

wn

‖wn‖
.

Then un ∈ D1,p(RN ) and ‖un‖ = 1. Since Xk is finite dimensional, there exists u ∈ Xk \ {0} such that

un → u strongly with respect to ‖ · ‖;
un(x) → u(x) a.e. in R

N .

As u 6≡ 0, we get |wn(x)| → ∞ as n→ ∞. Thus, as n→ ∞,

1

‖wn‖2p
∫

RN

∫

RN

|wn(x)|p
∗
β,µ |wn(y)|p

∗
β,µ

|x|β |x− y|µ|y|β dxdy =

∫

RN

∫

RN

|wn(x)|p
∗
β,µ−p|wn(y)|p

∗
β,µ−p

|x|β |x− y|µ|y|β |un(x)|p|un(y)|pdxdy → ∞.

Using this together with Lemma 2.1-(g3), (g8), from (4.16), we obtain

Îλ(wn) ≤
a

p
‖wn‖p +

b

2p
‖wn‖2p −

(g(1))4p
∗
β,µ

4p∗β,µ

∫

RN

∫

RN

|wn(x)|p
∗
β,µ |wn(y)|p

∗
β,µ

|x|β |x− y|µ|y|β dxdy

≤ ‖wn‖2p
(

(
a

p
+

b

2p
)− (g(1))4p

∗
β,µ

4p∗β,µ

1

‖wn‖2p
∫

RN

∫

RN

|wn(x)|p
∗
β,µ |wn(y)|p

∗
β,µ

|x|β |x− y|µ|y|β dxdy

)

→ −∞
as n → ∞. This contradicts (4.19). Thus, the claim is proved. Now choose Ak := {w ∈ Xk : ‖w‖ = ̺k}. Clearly

γ(Ak) = k and Ak is closed and symmetric, and hence Ak ∈ Σk and also from (4.18), supw∈Ak
Îλ(w) < 0. Therefore,

Îλ satisfies all the assumption in Theorem 4.2. Thus, Îλ admits a sequence of critical points {wk} in D1,p(RN ) such

that wk 6= 0, Îλ(wk) ≤ 0 for each k ∈ N and ‖wk‖ → 0 as k → ∞. So, for t1 > 0, there exists k0 ∈ N such that for

all k ≥ k0 it follows that ‖w‖ < t1 which yields that Îλ(wk) = Iλ(wk) for all k > k0. This together with Proposition
4.3 concludes the proof of the theorem.

5. Proof of Theorem 1.3

Before proceeding into the proof of Theorem 1.3, first we recall the following Z2-symmetric version of mountain
pass theorem due to [33].

Theorem 5.1. Let X be an infinite dimensional Banach space with X = Y ⊕Z, where Y is finite dimensional and
let J ∈ C1(X,R) be an even functional with J (0) = 0 such that the following conditions hold:

(B1) there exist positive constants l > 0,K > 0 such that J (u) ≥ K for all u ∈ ∂Bl(0) ∩ Z;
(B2) there exists c∗ > 0 such that J satisfies the (PS)c condition for 0 < c < c∗;

(B3) for any finite dimensional subspace X̂ ⊂ X, there is R = R(X̂) > 0 such that J (u) ≤ 0 for all u ∈ X̃\BR(0).

Assume that Y is k-dimensional and Y = span{v1, v2, · · · , vk}. For n ≥ k, inductively choose vn+1 6∈ Yn :=
span{v1, v2, · · · , vn}. Let Rn = R(Yn) and Dn = BRn(0) ∩ Yn. Define

Gn = {h ∈ C(Dn, X) : h|∂BRn (0), h is odd and h(u) = u, for all BRn(0) ∩ Yn}
and

Γj = {h(Dn \ S) : h ∈ Gn, n ≥ j, S is closed and symmetric, and γ(S) ≤ n− j}, (5.1)

where γ(S) is Krasnoselskii’s genus of S. For each j ∈ N, set

cj := inf
A∈Γj

max
u∈A

J (u).

Thus 0 < α ≤ cj ≤ cj+1 for j > k and if j > k and cj < c∗, then we conclude that cj is the critical value of J .
Furthermore, if cj = cj+1 = · · · = cj+m = c < c∗ for j > k, then γ(Kc) ≥ m+ 1, where

Kc = {u ∈ X : J (u) = c and J ′(u) = 0}.
Now we show that Iλ satisfies all the hypotheses of Theorem 5.1, when q = 2p.



22 RESHMI BISWAS, SARIKA GOYAL AND K. SREENADH

Lemma 5.2. Let q = 2p and (1.6) hold. Then Iλ satisfies the conditions (B1)-(B3) of Theorem 5.1 for all
λ ∈ (0, aS‖f‖−1

p∗

p∗−p

).

Proof. Verification of (B1) : For w ∈ D1,p(RN ), arguing similarly as in (4.14), we have

Iλ(w) ≥
‖w‖p
p

(

a− λS−1‖f‖ p∗

p∗−p

)

− 1

4p∗β,µ
2

p∗β,µ
p S

−
2p∗β,µ

p

β,µ ‖w‖2p∗
β,µ

Now for λ < aS‖f‖−1
p∗

p∗−p

, we can choose ‖w‖ = l << 1 such that Iλ(w) ≥ K > 0.

Verification of (B2) : It follows from Lemma 3.10.

Verification of (B3) : To show this, first claim that for any finite dimensional subspace Y of D1,p(RN ) there exists
R0 = R0(Y ) such that Iλ(w) < 0 for all w ∈ D1,p(RN ) \ BR0(Y ), where BR0(Y ) = {w ∈ D1,p(RN ) : ‖w‖ ≤ R0}.
Fix φ ∈ D1,p(RN ), ‖φ‖ = 1. For t > 1, using Lemma 2.1-(g3), (g8), we get

Iλ(tφ) ≤
a

p
tp‖φ‖p + t2p

b

2p
‖φ‖2p − 1

4p∗β,µ
(g(1))4p

∗
β,µt2p

∗
β,µ

∫

RN

∫

RN

|φ(x)|p∗
β,µ |φ(y)|p∗

β,µ

|x|β |x− y|µ|y|β dxdy

≤ C4t
2p‖φ‖2p − C5t

2p∗
β,µ‖φ‖2p

∗
β,µ

β,µ (5.2)

Since Y is finite dimensional all norms are equivalent on Y , which yields that there exists some constant C(Y ) > 0
such that C(Y )‖φ‖ ≤ ‖φ‖β,µ. Therefore from (5.2), we obtain

Iλ(tw) ≤ C4t
2p − C5(C(Y ))2p

∗
β,µ t2p

∗
β,µ‖φ‖2p∗

β,µ

= C4t
2p − C5(C(Y ))2p

∗
β,µ t2p

∗
β,µ → −∞

as t → ∞. Hence, there exists R0 > 0 large enough such that Iλ(w) < 0 for all w ∈ D1,p(RN ) with ‖w‖ = R and
R ≥ R0. Therefore Iλ satisfies the assertion (B2). �

Lemma 5.3. There exists a non-decreasing sequence {sn} of positive real numbers, independent of λ such that for
any λ > 0, we have

cλn := inf
A∈Γn

max
w∈A

Iλ(w) < sn,

where Γn is defined in (5.1).

Proof. Recalling the definition of cλn and using Lemma 2.1-(g3), (g8), from (4.16), we get

cλn ≤ inf
A∈Γn

max
w∈A

[

a

p
‖wn‖p +

b

2p
‖wn‖2p −

(g(1))4p
∗
β,µ

4p∗β,µ
‖w‖2p

∗
β,µ

β,µ

]

:= sn

Then clearly from the definition of Γn, it follows that sn <∞ and sn ≤ sn+1. �

Proof of Theorem 1.3: From the hypotheses of the theorem it follows that Iλ is even and we have Iλ(0) = 0.
Now we argue similarly as in [33]. From the Lemma 5.3, we can choose, â > 0 sufficiently large such that for any
a > â,

sup
n
sn <

1

4p
(aSβ,µ)

p∗β,µ
p∗
β,µ

−1 := c∗,

that is,

cλn < sn <
1

4p
(aSβ,µ)

p∗β,µ
p∗
β,µ

−1
.

Hence, for all λ ∈ (0, aS‖f‖−1
p∗

p∗−p

) and a > â, we have

0 < cλ1 ≤ cλ2 ≤ · · · ≤ cλn < sn < c∗.

Now by Theorem 5.1, we infer that the levels cλ1 ≤ cλ2 ≤ · · · ≤ cλn are critical values of Iλ. Therefore, if cλ1 < cλ2 <

· · · < cλn, then Iλ has at least n number of critical points. Furthermore, if cλj = cλj+1 for some j = 1, 2, · · · , k − 1,

then again Theorem 5.1 yields that Acλj
is an infinite set. Hence, (2.6) has infinitely many solutions. Therefore, we

can conclude that (2.6) has at least n pair of solutions Since n is arbitrary, we get infinitely many solutions and
moreover, these solutions are in L∞(RN ) by Proposition 4.3.
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6. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 using Theorem 5.1. For that, first we show Iλ verifies all the hypotheses of
Theorem 5.1, when 2p < q < 2p∗.

Lemma 6.1. Let 2p < q < 2p∗ and (1.6) hold. Then Iλ satisfies the conditions (B1)-(B3) of Theorem 5.1 for all
λ ≥ 0.

Proof. Verification of (B1) : Let w ∈ D1,p(RN ) with ‖w‖ < 1. Using the similar arguments as in (4.14), we get

Iλ(w) ≥
a

p
‖w‖p − λ

q
2

q
2pS− q

2p ‖f‖ 2p∗

2p∗−p
‖w‖q/2 − 1

4p∗β,µ
2

p∗β,µ
p S

−
2p∗β,µ

p

β,µ ‖w‖2p∗
β,µ .

Since 2p < q and p < p∗β,µ, we can choose 0 < ρ < 1 sufficiently small so that, we obtain for all w ∈ D1,p(RN ) with

‖w‖ = ρ, Iλ(w) ≥ α > 0 for some α > 0 depending on ρ.

Verification of (B2) : It follows from Lemma 3.11, since c∗∗ > 0.

Verification of (B3) : The argument follows similarly as in Verification of (B3) in Lemma 5.2. �

Proof of Theorem 1.4 Using Lemma 6.1 and arguing in a similar fashion as in Lemma 5.3 and as in 5.1, we can
conclude that (2.6) has at least n pairs of distinct solutions for all λ > 0. Since n is arbitrary, we have infinitely
many solutions. Now Proposition 4.3 yields that these solutions belong to L∞(RN ).
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