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MULTIPLICITY RESULTS FOR PERIODIC SOLUTIONS
OF SECOND ORDER ODES WITH
ASYMMETRIC NONLINEARITIES

C. REBELO AND F. ZANOLIN

Abstract. We prove various results on the existence and multiplicity of har-
monic and subharmonic solutions to the second order nonautonomous equation
x′′+ g(x) = s+w(t, x), as s→ +∞ or s→ −∞, where g is a smooth function
defined on a open interval ]a, b[⊂ R. The hypotheses we assume on the non-
linearity g(x) allow us to cover the case b = +∞ (or a = −∞) and g having
superlinear growth at infinity, as well as the case b < +∞ (or a > −∞) and
g having a singularity in b (respectively in a). Applications are given also to
situations like g′(−∞) 6= g′(+∞) (including the so-called “jumping nonlinear-
ities”). Our results are connected to the periodic Ambrosetti - Prodi problem
and related problems arising from the Lazer - McKenna suspension bridges
model.

1. Introduction

In this paper we deal with the existence and multiplicity of periodic solutions
(harmonics and subharmonics) for a nonautonomous second order scalar differential
equation depending on a real parameter s. More precisely, following [15] and [27],
we deal with an equation of the form

(E)s x′′ + g(x) = s+ w(t, x), s ∈ R,

where g : J → R and w : R × J → R are continuous functions and J ⊂ R is an
open interval. Throughout the article we assume that w(·, x) is periodic of a fixed
period T > 0, for any x ∈ J and w is also globally bounded on its domain.

In what follows, we present some results concerning the way in which a modifi-
cation of the parameter s affects the number of the periodic solutions for equation
(E)s . This scope will be achieved by assuming on g some conditions that, in the
case of J = R, imply a different behaviour at ±∞ for g(x)/x or g′(x) (the case
of so-called “jumping or asymmetric nonlinearities”). Problems of this form are
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2350 C. REBELO AND F. ZANOLIN

usually known in the literature as “of Ambrosetti - Prodi type”, due to the seminal
paper [1]. Indeed, in [1], and made more precise in [2], for J = R and g of class
C2 such that g′′ > 0 and g′(−∞) < λ1 < g′(+∞) < λ2, it was proved that for the
equation

(D)s x′′ + g(x) = sh(t)

with h(t) = sin((π/T )t) (or for a more general elliptic PDE), there is s0 such
that (D)s has no solutions, one solution, or two solutions satisfying the Dirichlet
boundary condition x(0) = x(T ) = 0, when s < s0, s = s0, or s > s0, respectively.
Note that h(t) in (D)s is the eigenfunction corresponding to the first eigenvalue
λ1 = (π/T )2 for the Dirichlet problem on the interval [0, T ].

Since the appearance of [1], a wide number of existence and multiplicity results
were obtained in the same direction and much attention has been devoted to the
case when the interval ]g′(−∞), g′(+∞)[ contains one or more higher order eigen-
values. Without mentioning various interesting theorems on the Dirichlet problem
for elliptic equations, if we confine ourselves to the case of the two-point BVP for
scalar ODEs, we can find in the literature sharp estimates concerning the number of
the solutions (see [23], [40], [29], [3], [27], [5], [30], [43] and the references therein).
In particular, we recall a recent article by Zinner [43] where, for g of class C1 on
J = R, and g′(−∞) = α ∈ R, g′(+∞) = +∞, it is proved that for any n ∈ Z+

0 (the
set of positive integers), there exists sn such that (D)s has at least 2n solutions,
satisfying the two-point boundary condition, for each s > sn.

In [15], Fabry, Mawhin and Nkashama initiated the study of the Ambrosetti
- Prodi problem with periodic boundary conditions. In this situation, the eigen-
function corresponding to the first eigenvalue λ0 = 0 is h(t) ≡ 1. Then, the general
second order equation to analyse takes the form x′′+f(t, x, x′) = s (see [15, p. 174]).
In [36], Ortega discussed the Ambrosetti - Prodi periodic problem for a damped
Duffing equation, from the point of view of the stability of the solutions. In the
present article we consider a situation which is complementary with respect to [36]
and therefore here and subsequently, we don’t consider possible dependence on x′

and confine ourselves to the investigation of the conservative case x′′ + f(t, x) = s.
This justifies our choice of (E)s for the periodic problem. Another motivation to
study (E)s with g a jumping nonlinearity comes from the interest in the analy-
sis of the harmonic and subharmonic solutions for the Lazer - McKenna model of
oscillations in suspension bridges. Indeed, we notice that in [27, p. 553], Lazer
and McKenna propose the study of the periodic solutions of an equation of the
form x′′ + g(x) = s + w(t), with g′(−∞) 6= g′(+∞). For sake of completeness, we
should mention that variants of (E)s were considered in [25] and [8], having at the
right hand side of the equation a term of the form s(1 + q(t)), with |q|∞ << 1.
However, in order to unify the presentation of our results, we discuss only the
periodic problem for (E)s, leaving to the interested reader the care of complet-
ing the missing details for possible variants. With this presentation, we can now
recall a theorem of del Pino, Manásevich and Murua in [8] where it is assumed,
for g of class C1 on J = R, the existence of positive integers k and n such that
λk−1 < α = g′(−∞) < λk ≤ λn < β = g′(+∞) < λn+1, with λj = (2π/T )2j2 the
j-th positive eigenvalue for the T -periodic problem, and the existence of at least
2(n− l) + 1 solutions of period T to (E)s, for sufficiently large positive s, is proved.
Here l denotes the integer part of (T/π)(

√
αβ/(

√
α+
√
β)).
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ODES WITH ASYMMETRIC NONLINEARITIES 2351

After this introductory presentation, we pass to the description of our main
theorems. The aim of our work is threefold:
• we extend Zinner’s result to the periodic problem and, at the same time, unify
it with the above recalled theorem of del Pino, Manásevich and Murua, allowing
the possibility that g′ be bounded or unbounded and also that it has neither limits
at ±∞, nor the same bounds as in [8];
• we provide a unique proof which is valid both to the case of bounded and
unbounded intervals. Thus, in particular, we are able to deal with the standard
case J = R previously considered by all the authors, as well as with equations
with singularities. To this end, we take advantage from an observation derived in
[18] where it is shown that, under very natural conditions, the effects of a singular
nonlinearity are the same like that of a superlinear term for the periodic problem;
• we produce a unique setting for proving the existence of harmonic solutions
(i.e. T -periodic solutions) and, for any fixed integer m, subharmonics of order m
(i.e. periodic solutions of minimal period mT in the class of the periods jT with
1 ≤ j ≤ m).

The argument of the proof is developed through some steps. First of all we write
equation (E)s as an equivalent planar system and apply the Poincaré - Birkhoff fixed
point theorem to the associated Poincaré’s map or its iterates. In order to verify
the “twist condition” (which is the crucial assumption for the application of this
theorem), we have to estimate the number of rotations of the trajectories around
some fixed point in the plane. At that moment we need to introduce suitable polar
coordinates for the evaluation of the angular gaps. Usually this is performed by
means of the classical Prüfer transformation. For our purposes, however, it would be
convenient to use at the same time different scales for small and large trajectories,
in order to take into account either the possibility of singularities or of superlinear
growths. Indeed, in these cases, a nonlinear change of variable introduced by Conti
in [4] turns out to be particularly useful in simplifying some technical estimates in
the proof, but, on the other hand, such a choice of “deformed” polar coordinates,
needs to be accompanied by a precise evaluation of the number of rotation in
terms of the standard polar coordinates. Thus, in Section 2, we describe a general
setting for a large class of change of variables and introduce some constants which
are useful for translating the information obtained within one polar coordinates
system to another one. In Section 3 we give some general results for the global
continuability of the solutions to the Cauchy problems associated to (E)s, in order
to have the Poincaré operator well defined. In this context we also provide a suitable
truncation showing that we can always reduce our domain to the cases J = (−∞, b[
(and the symmetric one J =]a,+∞)) or J = R. After the presentation of all these
preliminary technical tools, in Section 4 we are in position to prove the main results.
Precisely, we pass to the planar system

x′ = y, y′ = −(g(x)− s) + w(t, x)

and using some time mapping estimates we evaluate the rotation number of the
trajectories around the point Ps := (g−1(s), 0), where the meaning of g−1(s) will
be clear from the context. Then we can prove that solutions starting near the
point Ps rotate faster than large norm solutions and thus the twist condition is
verified. We notice that for our proof we need the uniqueness of the solutions to
the Cauchy problems associated to (E)s. This will be guaranteed by smoothness or
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local lipschitz assumptions in the x-variable. The situation in which the uniqueness
of the solutions for the initial problems is not ensured can be treated as well by
a standard approximation technique described in [11]. However, the conclusion of
some results should be slightly modified with respect to the number of the periodic
solutions we find (see Remark 5 in Section 8).

The following results can be obtained under the assumption of a locally lipschitz
property of w(t, x) and g(x) in the x-variable. We suppose also that g : J → R
is continuously differentiable in a neighbourhood of the endpoints of its domain of
definition.

Theorem 1. Let g : (−∞, b[→ R, with b ≤ +∞ and lim
x→b−

G(x) = +∞, where G

is a primitive of g, be such that

lim sup
x→−∞

g(x) < +∞, lim sup
x→−∞

g′(x) ≤ α < +∞ (α ≥ 0)

and
0 < γ ≤ lim inf

x→b−
g′(x) ≤ lim sup

x→b−
g′(x) ≤ β ≤ +∞.

Suppose that k,m ∈ Z+
0 are co-prime integers such that

2
√
α
√
β√

α+
√
β
<

2kπ

mT
<
√
γ.

Then, if β < +∞ or γ = +∞, equation (E)s has at least two solutions of minimal
period mT for each sufficiently large positive s. In the phase-plane such solutions
rotate k times around Ps in the time interval [0,mT [.

Theorem 1 follows from Theorem 7 in Section 4 using Remark 4 in Section 7.
More precise information in the case of harmonic solutions can be obtained from
the corollaries in Section 6.1.

Theorem 2. Let g :]a, b[→ R, with −∞ ≤ a < b ≤ +∞ and lim
x→b−

G(x) = +∞,

where G is a primitive of g, be such that lim sup
x→a+

g(x) = +∞ and

0 < γ ≤ lim inf
x→b−

g′(x) ≤ lim sup
x→b−

g′(x) ≤ β ≤ +∞.

Suppose that k,m ∈ Z+
0 are co-prime integers such that

0 <
2kπ

mT
<
√
γ .

Then, if β < +∞ or γ = +∞, equation (E)s has at least two solutions of minimal
period mT for each sufficiently large positive s. In the phase-plane such solutions
rotate k times around Ps in the time interval [0,mT [.

Theorem 2 follows from Theorem 8 in Section 4 using Remark 4 in Section 7.
More precise information in the case of harmonic solutions can be obtained from
the corollaries in Section 6.2.
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In both Theorem 1 and Theorem 2, as well as in the subsequent corollaries, the
case of a singularity for b < +∞ is compatible only with the assumption β = +∞,
in view of the condition G(b−) = +∞. On the other hand, if b = +∞, the condition
lim
x→b−

G(x) = +∞ is superfluous, as it follows directly from the fact that γ > 0,

which is implicitly assumed in all of our results.
The two mT -periodic solutions whose existence is asserted in Theorem 1 and

Theorem 2 do not belong to the same periodicity class, that is, they cannot be
obtained, one from the other, as a shift of iT in time, for 1 ≤ i ≤ m− 1.

As mentioned above, the minimality of the period is meant in the class of the
periods jT, with j ∈ Z+

0 . This definition of subharmonic solutions of order m
corresponds to that considered in [38] and was used in [11], [12], [13]. On the
other hand, note that this is not exactly the definition of subharmonic solutions
as considered for instance in [33]. Indeed, under our assumptions, we are not able
to prove that the mT -periodic solutions we find have mT as their minimal period.
This difficulty usually occurs also under different approaches for the solvability of
(E)s or related equations (see, e.g. [34], [20]). In these cases and in order to
guarantee the minimality of the period, some further assumption on w is usually
needed. We recall from [34] and [20] the following condition:
(W ∗) If x(t) is a periodic function with minimal period qT, with q > 0 rational
and g(x(t)) − w(t, x(t)) is a periodic function with minimal period qT, then q is
necessarily an integer.

Under (W ∗), the subharmonic solutions we find in all our results have precisely
mT as minimal period. As discussed in [34] and [20], condition (W ∗) is satisfied
under a wide choice of hypotheses on w(t, x). For example, note that if w = w(t),
is a periodic function with minimal period T > 0, then (W ∗) holds trivially. We
also observe that with respect to analogous results about subharmonics obtained
in [34], [17], [20], [19], where condition (W ∗) is assumed (at least implicitly), we
don’t require any special restriction on the integer m.

The case β = +∞ and γ < +∞ can be analysed as well and the corresponding
results are presented in Theorem 9 of Section 6 and Theorem 10 of Section 7.

In the case γ = β = +∞, Theorem 1 allows any choice of k and m co-primes
such that

k

m
>
T
√
α

π

and Theorem 2 is valid for any choice of k and m co-primes. Thus, for m = 1,
and taking into account the different numbers of rotation of the solutions in the
interval [0, T [ for different k, we immediately obtain an improved version of Zinner’s
theorem for the periodic case which reads as follows:

Corollary 1. Let g be of class C1 on (−∞, b[, with b ≤ +∞ and such that
lim
x→b−

G(x) = lim
x→b−

g′(x) = +∞. Suppose that either lim sup
x→−∞

g(x) < +∞ and

lim sup
x→−∞

g′(x) ≤ α < +∞, or lim sup
x→−∞

g(x) = +∞. Then, for each n there is a

constant sn such that for s > sn, (E)s has at least 2n harmonic solutions.

Notice that here we can deal with b < +∞ (the case of a singularity in b), while,
if b = +∞, the condition on G(x) is always satisfied (as remarked above). Under
the assumptions G(b−) = g′(b−) = +∞ of Corollary 1 we have that limx→b− g(x) =
+∞ as well. Concerning the behaviour of g at the left end of its domain, we observe
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that when lim supx→−∞ g(x) = +∞, a further negative solution can be found via
the method of upper and lower solutions as in Corollary 8. As a typical application
of this result, we have that for each n ∈ Z+

0 , there is sn > 0 such that the equation

x′′ + x2 = s+ w(t),

with w(·) a T -periodic function, has at least 2n+ 1 harmonic solutions for s > sn
(Example 1 in Section 8).

In the case β < +∞, we can compare Theorem 1 with the corresponding result
in [8, Theorem 1.2 (a)]. Indeed, our theorem for m = 1 and J = R (as considered
in [8]) reads now as follows:

Corollary 2. Let g : R→ R be of class C1 and such that lim supx→−∞ g(x) < +∞.
Assume

lim sup
x→−∞

g′(x) ≤ α < γ ≤ lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) ≤ β ≤ +∞,

with α ≥ 0 and let l be the integer part of (T/π)(
√
αβ/(

√
α+
√
β)). If there exists

an integer n > l such that λn < γ, then equation (E)s has at least 2(n− l) harmonic
solutions for each sufficiently large positive s.

This last statement corresponds to Corollary 7 in Section 6.1. In the comparison
between this result and the del Pino, Manásevich and Murua theorem, a slight
difference is evident. Actually, in [8, Theorem 1.2 (a)] one more solution appears.
This is due to the fact that in [8] the nonresonance condition γ = β 6= λj for all
j ∈ Z+

0 is assumed. Indeed, we could prove the existence of that extra solution if
we suppose that the interval [γ, β] has empty intersection with the spectrum {λj}
of the differential operator u → −u′′ with the T -periodic conditions. However we
have not required such an assumption in our theorem and, moreover, we have not
required here the existence of limits for g′(x) at ±∞ as in [8]. See Section 6 for a
more detailed discussion on this line.

From Theorem 2 with a > −∞, we can obtain a simple consequence in the case of
the double singularity. Indeed, if we assume that there is a singularity of attractive
type at x = a and of repulsive type at x = b, so that we can take γ = +∞, then
we can state a result as follows:

Corollary 3. Let g be of class C1 on the bounded interval ]a, b[ and assume that

lim sup
x→a+

g(x) = lim
x→b−

G(x) = lim
x→b−

g′(x) = +∞,

where G is a primitive of g. Then for each m,n ∈ Z+
0 , there is sm,n such that for

each s > sm,n, equation (E)s has at least 2n subharmonic solutions of order m.
Therefore, the number of m-th order subharmonics tends to infinity as s→ +∞.

This statement is a particular case of Theorem 10. Note that a similar result
holds true by interchanging suitably the role of a and b in the limits (see Section
8).

This last result has a direct application to the study of the dynamics of a charged
particle moving on a line segment at which ends one has placed two fixed charges
of different sign (Example 3 in Section 8).

Finally, as shown in Section 7, it is possible to obtain a theorem about the
existence of an arbitrarily large number of subharmonics of any sufficiently large
order. Actually we have:
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Theorem 3. Let g : (−∞, b[→ R, with b ≤ +∞ and lim
x→b−

G(x) = +∞, be such

that
lim sup
x→−∞

g(x) < +∞, lim sup
x→−∞

g′(x) ≤ α,

with α ≥ 0,
0 < γ ≤ lim inf

x→b−
g′(x) ≤ lim sup

x→b−
g′(x) ≤ β ≤ +∞

and
2
√
α
√
β√

α+
√
β
<
√
γ.

If γ < +∞, then for each k ∈ Z+
0 there exists mk such that for every m ≥ mk, (E)s

has at least 2k subharmonic solutions of order m that do not belong to the same
periodicity class, for each sufficiently large positive s. The same conclusion holds
taking γ > 0 and no restriction on α, β and g′(x) at −∞, if lim supx→−∞ g(x) =
+∞.

This result is precisely a subcase of Theorem 10 of Section 7. Sharper conclusions
can be obtained when γ = +∞. In this case, for any m > 1, we can find arbitrarily
many subharmonics of order m provided that s is large enough.

A straightforward consequence of Theorem 3 (and Theorem 10) for the case
]a, b[= (−∞,+∞) is the following:

Corollary 4. Let g : R→ R of class C1 be such that the limits

g′(−∞) = lim
x→−∞

g′(x), and g′(+∞) = lim
x→+∞

g′(x),

exist with
g′(−∞) < g′(+∞) and 0 < g′(+∞) ≤ +∞.

If g′(+∞) < +∞, then for each k ∈ Z+
0 there exists mk such that for every m ≥ mk,

(E)s has at least 2k subharmonic solutions of order m that do not belong to the same
periodicity class, for each sufficiently large positive s. If g′(+∞) = +∞, the same
conclusion holds taking mk = 1 for each k.

This result, in the case 0 < g′(−∞) < g′(+∞) < +∞, applies to the study of
the interference of the nonlinearity with the so-called “Dancer - Fučik spectrum”
(see [6], [21]). Indeed, consider, as a special case, the piecewise linear function
g(x) = µx+ − νx−, with 0 < ν < µ, where x+ = max{x, 0} and x− = max{−x, 0}.
In this connection, recall that in [26], Lazer and McKenna proved that for

(j − 1)2 < ν ≤ µ < (j + 1)2 and
2
√
µ
√
ν

√
µ+
√
ν

= j ∈ Z+
0 ,

the equation

x′′ + µx+ − νx− = A sin(jt+ θ), with A > 0, θ ∈ R,

has no bounded solutions (and therefore, no periodic solutions of any period). Now,
since the function A sin(jt + θ) is periodic of minimal period (2π/j), according to
our result, we have that the equation

x′′ + µx+ − νx− = s+A sin(jt+ θ),
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with 0 < ν < µ, has an arbitrarily large number of periodic solutions of minimal
period 2nπ for n large, as s → +∞. The fact that g(x) = µx+ − νx− is not
differentiable at x = 0 does not affect this example since Corollary 4 is true for g
locally lipschitzian in R and smooth for |x| large as well.

Note that a similar conclusion holds for ν > µ and s negative with |s| large,
according to Theorem 12 in Section 8, while there are no bounded solutions if
µ = ν is an eigenvalue (the resonance case).

Further remarks, corollaries and examples are collected in Sections 6 and 8.
Throughout the article we denote by Z+

0 and Z+ = Z+
0 ∪ {0} the sets of positive

and nonnegative integers, respectively. The same convention is used to define the
sets R+

0 and R+ of positive and nonnegative real numbers.
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2. Polar systems and rotation numbers

Let

(1) z′ = Z(t, z)

be a planar system, where Z : R × D → R2 is a continuous function with the
z-variable belonging to an open simply connected domain D ⊂ R2.

Let P ∈ D be fixed and suppose that z(·) is a solution of (1) defined on a
compact interval I, such that z(t) 6= P , for all t ∈ I. The use of suitable polar
coordinates with respect to the point P , in order to represent the variable point
z(t), is a useful tool in the study of the qualitative behaviour of the solutions. In
particular, it allows the definition of a rotation number which evaluates the number
of turns of z(t) around the point P . The most classical situation is described by
the Prüfer transformation, for D = R2 and P = O = (0, 0), via the standard
polar coordinates system. There are, however, cases in which the choice of different
coordinates yields some substantial simplifications in the computations. Examples
in this direction can be found in [4], [14], [37], [41], [42]. The aim of this section
is to present a transformation which unifies the approaches in [4], [14] and works
in the case where D =]A,B[×R is a vertical strip, P = (c, 0) and, for z = (x, y),
(1) takes the form x′ = y, y′ = −h(t, x). We use a change of variables of the form
ψ(x) = r cosφ, y = r sinφ, with ψ a suitable increasing homeomorphism. More
general transformations like ψ(x) = r cosφ, ζ(y) = r sinφ could be considered as
well without significant changes in the discussion.

Definition. We say that an increasing homeomorphism ψ from ]A,B[ onto R, with
−∞ ≤ A < B ≤ +∞, is admissible with respect to c ∈]A,B[ if ψ is of class C1 in
]A,B[\{c} with ψ(c) = 0.

In this case ψ(x)(x− c) > 0, ∀x 6= c, limx→A+ ψ(x) = −∞ and limx→B− ψ(x) =
+∞. For each function ψ :]A,B[→ R, admissible with respect to some c ∈]A,B[,
we will denote by Πψ : R+

0 × R → D \ {P} =]A,B[×R \ {P} the map defined by
Πψ(r, φ) = (ψ−1(r cosφ), r sinφ). Note that, according to [31], Eψ = (R+

0 ×R,Πψ)
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is a covering space of ]A,B[×R \ {P}. When ]A,B[= R, a typical function which
is admissible with respect to c is given by ψ(x) = x − c. In this case Πψ(r, φ) =
(c+ r cosφ, r sinφ) and thus for a point (x, y) ∈ R2 \ {P} the corresponding r and
φ are its polar coordinates with center in P.

Let ψ : ]A,B[→ R be an admissible function with respect to some c ∈]A,B[ and
consider the covering space Eψ of ]A,B[×R\{P}. Let z(·) be a continuous function
defined on a compact interval I such that z(t) ∈]A,B[×R \ {P}, ∀t ∈ I and denote
by (rψ , φψ) a lifting of z(·) to Eψ.

Let s1, s2 ∈ I. We wish to define the rotation of the function z(·) around the
point P , from t = s1 to t = s2 as the angular change in the clockwise sense for t in
the oriented interval [s1, s2]. Accordingly, we introduce the following definition.

Definition. The rotation number of z(·) from s1 to s2, with respect to the
coordinate system given by Eψ, denoted by rotψ(s2, s1; z), is

rotψ(s2, s1; z) =
φψ(s1)− φψ(s2)

2π
.

We observe that, given ψ, this number does not depend on the lifting (rψ , φψ)
chosen.

In the case that ψ(x) = x− c, we denote rotψ(s2, s1; z) by rot(s2, s1; z).

It is our interest to find some relations between the rotation numbers with re-
spect to two different systems of coordinates. To this end we will establish some
preliminary lemmas first.

In what follows, ψ1 :]A1, B1[→ R and ψ2 :]A2, B2[→ R will be admissible func-
tions with respect to the same c ∈]A1, B1[∩]A2, B2[ and Eψ1 , Eψ2 the corresponding
covering spaces of ]A1, B1[×R \ {P} and ]A2, B2[×R \ {P} respectively. Suppose
that z(·) = (x(·), y(·)) is a continuous function defined on a compact interval I,
such that z(t) ∈ D \ {P} = (]A1, B1[∩]A2, B2[) × R \ {P}, ∀t ∈ I. Consider some
liftings (rψ1(·), φψ1(·)) and (rψ2(·), φψ2(·)) of z(·) to Eψ1 and Eψ2 , respectively.

Lemma 1. Let k ∈ Z. If there are t0 ∈ I and i ∈ {1, 2} with φψi(t0) = k π2 , then

2

π
(φψ2(t0)− φψ1(t0)) ≡ 0 (mod 4).

Lemma 2. Let t0 ∈ I be such that φψ1(t0) = k π2 , for some k ∈ Z. Then we can
choose a lifting (rψ2(·), φψ2(·)) to Eψ2 such that φψ1(t0) = φψ2(t0).

The proof of Lemma 1 and Lemma 2 is an easy consequence of the definitions
and therefore it is omitted.

Lemma 3. Suppose that there exist t0 ∈ I and k ∈ Z such that φψ1(t0) = φψ2(t0) =
k π2 . Then, for any s ∈ Z and t ∈ I,

φψ1(t) = s
π

2
⇐⇒ φψ2(t) = s

π

2
.

Proof. By contradiction, suppose there exists a t 6= t0 such that φψ1(t) = sπ2 and
φψ2(t) = rπ2 for some r, s ∈ Z, r 6= s. Without loss of generality, we assume t > t0
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and left out the case t < t0 which is completely similar. Denote by t2 the minimal
of the t > t0 for which the above condition holds. Thus we have φψ1(t2) = s∗ π2 ,
φψ2(t2) = r∗ π2 for some r∗, s∗ ∈ Z, r∗ 6= s∗. Moreover, by the minimality of t2,
if for some t ∈ [t0, t2[ and for some l ∈ Z, φψ1(t) = l π2 , then φψ2(t) = l π2 too. Let

t1 ∈ [t0, t2[ be the maximal of the t ∈ [t0, t2] such that 2
πφψ1(t) = 2

πφψ2(t) ∈ Z and

set m = 2
πφψ1(t1) = 2

πφψ2(t1). Using Lemma 1 we observe that by the maximality

of t1 and the minimality of t2, we have that 2
πφψi(t) /∈ Z, for all t ∈]t1, t2[. Hence,

by the continuity of φψ1 , we conclude that s∗ = m+ 1, s∗ = m or s∗ = m− 1 and
also, by the continuity of φψ2 , we have that r∗ = m+ 1, r∗ = m or r∗ = m− 1. An
elementary analysis of all the possibilities shows that if s∗ 6= r∗, then, in any case,
s∗ 6≡ r∗ (mod 4). This contradicts Lemma 1. �

Lemma 4. We have the following properties:
i) If there exist t0 ∈ I, k ∈ Z and ε > 0 such that φψ1(t0) = k π2 and (k− 1)π2 <
φψ1(t) < k π2 , ∀t ∈]t0, t0 + ε[, then the same property is satisfied by a suitable
choice of φψ2 .

ii) If there exist t0 ∈ I, k ∈ Z and ε > 0 such that φψ1(t0) = k π2 and (k+ 1)π2 >
φψ1(t) > k π2 , ∀t ∈]t0− ε, t0[, then the same property is satisfied by a suitable
choice of φψ2 .

iii) If for some t0 ∈ I, k ∈ Z and ε > 0 we have (k − 1)π2 < φψ1(t) < k π2 , ∀t ∈
]t0, t0+ε[ and (k+1)π2 > φψ1(t) > k π2 , ∀t ∈]t0−ε, t0[, then the same property
is satisfied by a suitable choice of φψ2 .

These properties remain valid if we replace ]t0, t0 + ε[ by ]t0 − ε, t0[ and vice-versa.

Proof. Let us prove i). By Lemma 2 we can choose a lifting (rψ2(·), φψ2(·)) to
Eψ2 such that φψ2(t0) = k π2 . Let (x(t), y(t)) = Πψ1(rψ1(t), φψ1(t)). Suppose
k ≡ 1 (mod 4). Then, as (k − 1)π2 < φψ1(t) < k π2 , we have cosφψ1(t) > 0 and
sinφψ1(t) > 0 for all t ∈ ]t0, t0 + ε[. Hence

x(t) = ψ−1
1 (rψ1(t) cosφψ1(t)) > c and y(t) = rψ1(t) sinφψ1(t) > 0

from which we conclude that there exists m ∈ Z such that (k − 1)π2 + 2mπ <
φψ2(t) < k π2 + 2mπ for every t ∈]t0, t0 + ε[. The result follows now from the fact
that φψ2 is a continuous function and φψ2(t0) = k π2 . The remaining cases for k can
be treated in a similar way.

The proof of ii) is analogous to that of i). In order to prove iii) first notice that
by continuity φψ1(t0) = k π2 . Then we can apply i) and ii) and find two liftings
(rψ2(·), φψ2(·)) and (r∗ψ2

(·), φ∗ψ2
(·)) to Eψ2 satisfying φψ2(t0) = k π2 , (k − 1)π2 <

φψ2(t) < k π2 , ∀t ∈ ]t0, t0 + ε[ and φ∗ψ2
(t0) = k π2 , (k + 1)π2 > φ∗ψ2

(t) > k π2 , ∀t ∈
]t0 − ε, t0[. Two liftings of the same function that coincide at one point must
coincide, so φψ2 ≡ φ∗ψ2

and this concludes the proof.
The same argument applies if we change the role of the two intervals. �

Lemma 5. Let σ1 < σ2 with σ1, σ2 ∈ I. Suppose that there exists t0 ∈ [σ1, σ2]
such that φψ1(t0) = k π2 for some k ∈ Z and one of the following inequalities holds:

i)
(
φψ1(t)− k π2

)
(t− t0) > 0 , ∀t ∈ [σ1, σ2] \ {t0};

ii)
(
φψ1(t)− k π2

)
(t− t0) < 0 , ∀t ∈ [σ1, σ2] \ {t0}.

Then, for any admissible function ψ2 we have that rotψ2(σ2, σ1; z) < 0 when i) is
satisfied and rotψ2(σ2, σ1; z) > 0 when ii) is satisfied.
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Proof. Suppose that i) is satisfied with t0 ∈]σ1, σ2[. By the continuity of φψ1 and by
φψ1(t0) = k π2 , we can choose a sufficiently small ε > 0 such that (k−1)π2 < φψ1(t) <
k π2 , ∀t ∈]t0 − ε, t0[, and (k + 1)π2 > φψ1(t) > k π2 , ∀t ∈]t0, t0 + ε[. Let ψ2 be an
arbitrary admissible function with respect to c.We can apply Lemma 4 and conclude
the existence of a lifting of z(·) to Eψ2 , (rψ2(·), φψ2(·)) such that φψ2(t0) = k π2 ,
(k−1)π2 < φψ2(t) < k π2 , ∀t ∈]t0−ε, t0[, and (k+1)π2 > φψ2(t) > k π2 , ∀t ∈]t0, t0+ε[.
By Lemma 3, as φψ1(t) 6= k π2 , ∀t ∈ [σ1, σ2] \ {t0}, the same is true for φψ2(t) and
thus we conclude that φψ2(t) < k π2 , ∀t ∈ [σ1, t0[ and φψ2(t) > k π2 , ∀t ∈]t0, σ2].

Therefore, we finally obtain rotψ2(σ2, σ1; z) =
φψ2

(σ1)−φψ2
(σ2)

2π < 0. Note that, as
said before, the rotation does not depend on the particular lifting. The case ii) as
well as t0 = σ1 or t0 = σ2 can be treated similarly. �
Theorem 4. For each pair of admissible functions (ψ1, ψ2) there exists a constant
δ = δ(ψ1,ψ2) with 0 ≤ δ ≤ 1/4, such that for every k ∈ Z, every continuous function
z(·), with z(t) ∈ D \ {P} ∀t ∈ I and any s1, s2 ∈ I, we have

(2) rotψ1(s2, s1; z) > k + δ =⇒ rotψ2(s2, s1; z) > k

(2∗) rotψ2(s2, s1; z) > k + δ =⇒ rotψ1(s2, s1; z) > k

and

(3) rotψ1(s2, s1; z) < k − δ =⇒ rotψ2(s2, s1; z) < k

(3∗) rotψ2(s2, s1; z) < k − δ =⇒ rotψ1(s2, s1; z) < k.

Proof. For sake of conciseness we give a proof only for the cases (2),(2∗) with s1 < s2

and k ∈ Z+. Actually this is the only situation which is used in the sequel of our
paper. See [39] for all the missing details.

We prove that (2) holds with δ = 1/4. Assume rotψ1(s2, s1; z) > k + 1/4, for

some k ∈ Z+ and s1 < s2. Let b =
2φψ1

(s1)

π and a =
2φψ1

(s2)

π . By the assumption,
a < b and the interval [a, b] has length b− a > 4k + 1. Consider the set [a, b] ∩ Z,
let n be the number of its points and observe that n ≥ 4k + 1. Let i ∈ Z be
the smallest integer greater than or equal to a and take the greatest t2 ∈ [s1, s2]
such that φψ1(t2) = iπ2 . By Lemma 2, choose the lifting (rψ2(·), φψ2(·)) of z(·)
to Eψ2 such that φψ1(t2) = φψ2(t2). Let j ∈ Z be the greatest integer smaller
than or equal to b and take the least t1 ∈ [s1, s2] such that φψ1(t1) = j π2 . By
definition, [a, b] ∩ Z = [i, j] ∩ Z, so that j = i + n − 1 ≥ i + 4k. By Lemma 3,
2φψ1

(t1)

π =
2φψ2

(t1)

π = j. Hence rotψ2(t2, t1; z) = n−1
4 .

We claim that rotψ2(s2, t2; z) ≥ 0 and rotψ2(t1, s1; z) ≥ 0, with strict inequalities
if sl 6= tl. Indeed, this assertion is a consequence of the fact that if sl = tl the
rotation is zero, otherwise, as φψ1(t) < iπ/2 for t ∈]t2, s2] and φψ1(t) > jπ/2 for
t ∈ [s1, t1[, we can apply Lemma 5 in case ii) and the result follows. We can now
conclude that

rotψ2(s2, s1; z) = rotψ2(s2, t2; z) + rotψ2(t2, t1; z) + rotψ2(t1, s1; z)

≥ n− 1

4
≥ k.
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From the last inequalities, we conclude that rotψ2(s2, s1; z) > k. In fact, if we
suppose that rotψ2(s2, s1; z) = k, then we obtain n = 4k+1 and rotψ2(sl, tl; z) = 0,
for l = 1, 2. Hence by the above claim it is sl = tl and so a = i and b = j from
which b− a = 4k follows and this contradicts the assumption b− a > 4k + 1.

Notice that reversing the roles of ψ1 and ψ2 we conclude that (2∗) is satisfied for
δ = 1/4.

The constant δ(ψ1,ψ2) ∈ [0, 1/4] will be defined as the minimal δ ≥ 0 for which
(2), (2∗) and (3), (3∗) are satisfied. �
Notation. In what follows we will denote δ(ψ,x−c) by δψ.

Remark 1. In some special cases, it is possible to prove that δ(ψ1,ψ2) = 0. For
example, if ψ1(x) = µ1(x− c)+ − ν1(x− c)− and ψ2(x) = µ2(x− c)+ − ν2(x− c)−,
with µi > 0, νi > 0 for i = 1, 2, we have that δ(ψ1,ψ2) = 0. Indeed, let ψ1 and ψ2 be
as above and let z(·) be such that z(t) 6= P , ∀t ∈ I. Elementary computations show
that φψ1(t) < φψ1(s) if and only if φψ2(t) < φψ2(s), provided that |t − s| is small
enough, and φψ1(t) ≡ φψ1(s)(mod 2π) if and only if φψ2(t) ≡ φψ2(s)(mod 2π).
This latter property, in turns, implies that rotψ1(s2, s1; z) = k1 ∈ Z if and only if
rotψ2(s2, s1; z) = k2 ∈ Z. Now, from Theorem 4, we know that |k1 − k2| ≤ 1/4 and
thus k1 = k2 (actually one could easily check this fact by a direct argument without
invoking Theorem 4). Thus we find that the two rotations coincide when one of the
two takes integer values. Now, suppose by contradiction, that rotψ1(s2, s1; z) < k
and rotψ2(s2, s1; z) ≥ k for some k ∈ Z. In this case, take a maximal t ∈ [s1, s2]
such that rotψ2(t, s1; z) = k. Hence rotψ1(t, s1; z) = k as well. Clearly, if t = s2,
we are done, since a contradiction is achieved. So, let t < s2 and observe that
φψ2(s) > φψ2(t) and thus φψ1(s) > φψ1(t) for t < s ≤ s2, s − t sufficiently small.
Now, for such s, rotψ1(s, s1; z) > k > rotψ1(s2, s1; z). Then there is a further
t < t∗ < s2 such that rotψ1(t∗, s1; z) = k = rotψ2(t∗, s1; z), which contradicts the
maximality of t.

In this manner we have (3) of Theorem 4 satisfied for δ = 0. A similar argument
yields the validity of (2), (2∗) and (3∗) with δ = 0. Thus δ(ψ1,ψ2) = 0. As an
immediate consequence we have also that δψ = 0, for any ψ(x) = µ(x − c)+ −
ν(x−c)− with µ, ν > 0. This property is implicitly used in [14] and discussed in [42]
as a particular case of an action-angle transformation with positively homogeneous
potential.

Consider now the planar system

(4)

{
x′ = y

y′ = −X(t, x)

where X : R×]a, b[→ R is a continuous function, T -periodic in the first variable and
such that for each t0 ∈ R and each z0 = (x0, y0) ∈ S =]a, b[×R there is an unique
solution z(·; t0, z0) = (x(·; t0, z0), y(·; t0, z0)) of (4) satisfying the initial condition
z(t0) = z0 with z(·; t0, z0) globally defined on R. Reference to t0 will be omitted
when t0 = 0.

Let ψ : ]A,B[→ R be an admissible function with respect to c ∈]a, b[∩ ]A,B[
and let Eψ be the corresponding covering space of ]A,B[×R \ {P} where, as usual,
P = (c, 0). Fix m ∈ Z+

0 . Suppose that z(·) is a solution of (4) such that z(t) ∈
]A,B[×R\{P}, ∀t ∈ [0,mT ] and denote by (rψ(·), φψ(·)) a corresponding lifting to
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Eψ. For s1, s2 ∈ [0,mT ], we defined above rotψ(s2, s1; z). In what follows, we use
simplified notations for the rotation number in some particular cases. Namely, we
set

rotψ(mT ; z) := rotψ(mT, 0; z).

Moreover if z(t) = z(t; z0) is the solution of (4) with z(0) = z0 defined on [0,mT ],
then we set

rotψ(mT ; z0) := rotψ(mT ; z(·; z0)) = rotψ(mT, 0; z(·; z0)).

Observe that the set N = {t ∈ [0,mT ] : x(t) = c} is finite. Indeed x′(t) = y(t) 6= 0
if x(t) = c. Hence, any zero of x(·) − c is simple and also, if t ∈ [0,mT ] is such
that φψ(t) = π

2 + iπ for some i ∈ Z then (φψ(s)− φψ(t)) (s − t) < 0 for all s 6= t.
Therefore we can conclude that rotψ(s, t; z) > −1/2 for any s, t ∈ [0,mT ] with s > t.
In particular the rotation over an interval [t, s] ⊂ [0,mT ] must be nonnegative when
it is an integer. Notice that (r(·), φ(·)) is of class C1 in [0,mT ] \ N and on this set
we have

(5) −φ′ψ(t) =
ψ′(x(t))y2(t) +X(t, x(t))ψ(x(t))

ψ2(x(t)) + y2(t)
.

The next lemma concerns the rotation number of a solution z(·) of (4) between s1

and s2. We suppose s1 < s2. Using the fact that rotψ(s2, s1; z) = −rotψ(s1, s2; z),
it can be easily seen that this result is still valid, (with the appropriate changes),
in the case s1 ≥ s2.

Lemma 6. For any z(·) solution of (4) with z(·) 6= P , ∀t ∈ [s1, s2] we have

(6) rotψ(s2, s1; z) =
1

2π

∫ s2

s1

ψ′(x(t))y2(t) +X(t, x(t))ψ(x(t))

ψ2(x(t)) + y2(t)
dt.

Moreover, if rotψ(s2, s1; z) ∈ Z, then

rotψ(s2, s1; z) =
1

π

∫
{t∈[s1,s2]: x(t)>c}

ψ′(x(t))y2(t) +X(t, x(t))ψ(x(t))

ψ2(x(t)) + y2(t)
dt

=
1

π

∫
{t∈[s1,s2]: x(t)<c}

ψ′(x(t))y2(t) +X(t, x(t))ψ(x(t))

ψ2(x(t)) + y2(t)
dt.

(7)

Proof. The first part of the claim is obvious if N∩[s1, s2[= ∅. Thus, let N∩[s1, s2[=
{ti, i = 1, ..., N} and denote by t0 = s1 and tN+1 = s2. Then, by an easy
computation we have

φψ(ti)− φψ(ti+1) =

∫ ti+1

ti

−φ′ψ(t) dt, ∀i = 0, ..., N.

Hence ∫ s2

s1

−φ′ψ(t) dt =
N∑
i=0

∫ ti+1

ti

−φ′ψ(t) dt

=
N∑
i=0

(φψ(ti)− φψ(ti+1)),
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from which the first part of the lemma follows using (5).
Assume now that rotψ(s2, s1; z) = k ∈ Z. As we observed above, k ∈ Z+ and

the zeros of x(·)− c are simple. Thus, excluding the obvious situation when k = 0,
we have N = 2k and s1 = t0 ≤ t1 < ... < t2k < t2k+1 = s2.

Suppose, in order to fix the ideas, that φψ(t1) = π
2 + 2jπ, where j ∈ Z. This

means that x(t1) = c with x′(t1) = y(t1) > 0. Hence x(t) > c for t ∈]t1, t2[ and
x′(t2) < 0. Proceeding further, we have that x(t) < c for each t ∈ ]ti, ti+1[ with i
even and x(t) > c for each t ∈ ]ti, ti+1[ with i odd. Consequently we obtain

1

π

∫
{t∈[s1,s2]: x(t)>c}

−φ′ψ(t) dt =
1

π

∑
i odd

∫ ti+1

ti

−φ′ψ(t) dt

=
1

π
(kπ) = rotψ(s2, s1; z).

(8)

On the other hand

k = rotψ(s2, s1; z) =
1

2π

∫ s2

s1

−φ′ψ(t) dt =
1

2π

(
kπ +

∫
{t∈[s1,s2]: x(t)<c}

−φ′ψ(t) dt

)
,

thus
1

π

∫
{t∈[s1,s2]: x(t)<c}

−φ′ψ(t) dt = k

and the result follows. The case when φψ(t1) = 3π
2 + 2jπ for some j ∈ Z can be

treated similarly. �
Remark 1 (continued). In the case when

ψ(x) = µ(x− c)+ − ν(x− c)−, µ, ν > 0,

the second claim in Lemma 6 reads as

rotψ(s2, s1; z) =
ν

π

∫
{t∈[s1,s2]: x(t)<c}

(x(t) − c)X(t, x(t)) + y(t)2

ν2(x(t) − c)2 + y(t)2
dt

=
µ

π

∫
{t∈[s1,s2]: x(t)>c}

(x(t) − c)X(t, x(t)) + y(t)2

µ2(x(t)− c)2 + y(t)2
dt,

whenever
rotψ(s2, s1; z) ∈ Z.

From these relations, one can easily prove that when rotψ(s2, s1; z) ∈ Z, then

(9) rotψ(s2, s1; z) =
µ ν

π(µ+ ν)

∫ s2

s1

(x(t)− c)X(t, x(t)) + y(t)2

ψ2(x(t)) + y(t)2
dt.

Thus, in particular, we find that the integral

µ ν

π(µ+ ν)

∫ s2

s1

(x(t) − c)X(t, x(t)) + y(t)2

ψ2(x(t)) + y(t)2
dt

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ODES WITH ASYMMETRIC NONLINEARITIES 2363

is independent on the choice of µ, ν > 0 when it is an integer (see [14], [42] for
related results).

We are interested in finding mT -periodic solutions of (4) for some m ∈ Z+
0 .

Observe that from the T -periodicity of X(·, x), it follows that if (x, y) is a mT -
periodic solution of (4) for some m ≥ 2, then the translated function (x(· − jT ),
y(· − jT )) is a mT -periodic solution for each 1 ≤ j ≤ m − 1. We consider these
solutions as belonging to the same periodicity class.

The following version of the generalized Poincaré - Birkhoff fixed point theorem
is the main tool for the proof of our existence and multiplicity results.

Theorem 5. Let A ⊂ ]a, b[×R be a closed annular region around P = (c, 0) such
that the inner and the outer boundaries, respectively C1 and C2, are simple closed
curves. Suppose that C1 is strictly star-shaped around P . For a fixed m ∈ Z+

0 ,
assume

(10) z(t; t0, z0) 6= P, ∀ t0 ∈ [0, T [, ∀ z0 ∈ C1, ∀ t ∈ [t0,mT ].

Let ψi :]Ai, Bi[⊃ ]a, b[, i = 1, 2, be admissible functions with respect to c such that

(11) rotψ1(mT ; z0) > m1 + δψ1 , ∀z0 ∈ C1

and

(12) rotψ2(mT ; z0) < m2 − δψ2 , ∀z0 ∈ C2

with m1,m2 in Z+, m1 ≥ m2. Then for every integer k with m2 ≤ k ≤ m1,
equation

(13) x′′ +X(t, x) = 0

has at least two mT -periodic solutions not belonging to the same periodicity class,
with x(·) − c having exactly 2k zeros in the interval [0,mT [. Thus, in particular,
equation (13) has at least 2(m1 −m2 + 1) different mT -periodic solutions.

Remark that the conditions (11) and (12) are meaningful since from (10) taking
t0 = 0, the rotation numbers are defined. In our applications, (12) will be satisfied
with δψ2 = 0, by Remark 1.

Proof. Fix an integer k such that m2 ≤ k ≤ m1. For i = 1, 2, let Di be the open re-
gion bounded by Ci. Consider, on D̄2, the function Ψ defined by Ψ(z0) = z(mT ; z0).
By the assumptions concerning X we know that Ψ is a homeomorphism onto its
image, moreover by the Liouville’s theorem we have that Ψ is area-preserving.

For each point z0 = (x0, y0) ∈ S, Ψ−1(z0) = z(−mT ; z0). This is a consequence
of the uniqueness of the solutions to the Cauchy problems and the T -periodicity in
the first variable of X from which we obtain z(t; z(−mT ; z0)) = z(t−mT ; z0) and
the result follows.

We claim that
Ψ−1(P ) ∈ D1.

Indeed, suppose by contradiction that z∗ = z(−mT ;P ) /∈ D1, that is z(mT ; z∗) =
P, with z∗ /∈ D1. As P ∈ D1, we can find t1 ∈ [0,mT [, such that z1 := z(t1; z∗) ∈
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C1. Fix now a non-negative integer j such that t0 := t1 − jT ∈ [0, T [ and consider
the solution z(·; t0, z1). By the uniqueness of the Cauchy problems and the T -
periodicity of X in the first variable we know that z(t − jT ; t0, z1) = z(t; t1, z1).
Hence we obtain that for t = mT − jT , z(t; t0, z1) = z(mT ; t1, z1) = z(mT ; z∗) = P
and observe that t0 < t = mT − jT ≤ mT. This contradicts (10) and the claim is
proved.

Consider the restriction of Ψ to A that we still denote by Ψ. Arguing as
above, we have that Ψ(z) 6= P for each z ∈ A. Hence we can consider a lift-

ing of Ψ to Ex−c. We choose the lifting Ψ̃ : Ã ⊂ R0
+ × R → R0

+ × R defined by
Ψ̃(r, φ) = (f(r, φ), φ+g(r, φ)) where f(r, φ) = ‖z(mT ; Πx−c(r, φ))−P‖ and g(r, φ) =
−2π rot(mT ; Πx−c(r, φ)) + 2kπ. By (11) we have that rotψ1(mT ; Πx−c(r, φ)) >

m1 + δψ1 , for each (r, φ) ∈ Π−1
x−c(C1), and so, applying Theorem 4, we conclude

that
rot(mT ; Πx−c(r, φ)) > m1, for each (r, φ) ∈ Π−1

x−c (C1) .

Arguing in the same manner, from (12) and Theorem 4, we have that

rot(mT ; Πx−c(r, φ)) < m2 for each (r, φ) ∈ Π−1
x−c (C2) .

Thus we obtain g(r, φ) = −2π rot(mT ; Πx−c(r, φ)) + 2kπ < 0 on Π−1
x−c (C1) and

g(r, φ) > 0 on Π−1
x−c (C2).

We can apply now the W. Ding’s generalized Poincaré - Birkhoff fixed point
theorem, (see [10]), and obtain the existence of at least two geometrically distinct

fixed points (rk,i, φk,i), for i = 1, 2, of Ψ̃. For each i = 1, 2, zk,i := Πx−c(rk,i, φk,i) is
a fixed point of Ψ with zk,i ∈ A and zk,1 6= zk,2. So, each of these points corresponds
to amT -periodic solution of (4). Arguing as in an observation in [35, p. 382], we can
prove that these solutions do not belong to the same periodicity class. Moreover,
since g = 0 on the fixed points, we have rot(mT ; Πx−c(rk,i, φk,i)) = k. Hence, as
all the solutions (x(·), y(·)) of (4) with initial conditions on A satisfy x′(t) 6= 0 for
each t such that x(t) = c, we conclude that for i = 1, 2, (xk,i(·), yk,i(·)) := z(·; zk,i)
is such that xk,i(t) − c vanishes exactly 2k times on [0,mT [. As k is an arbitrary
integer greater than or equal to m2 and smaller than or equal to m1 the result
follows. �

3. Global extendability and some estimates

In order to prove our main result we have to employ the global existence in the
past and in the future of the solutions of a class of systems of the form of system
(4). More precisely we are interested in systems of the form

(14)

{
x′ = y

y′ = −f(x) + w(t, x)

where we suppose that f :]a, b[→ R is continuous and w is continuous in R×]a, b[
and T -periodic in the first variable. Moreover the function w will satisfy

(15) |w(t, x)| ≤ l(t), ∀t ∈ R, x ∈]a, b[,

for some continuous and T -periodic function l defined on R. Clearly, we could
assume l to be constant, however we prefer not to use this condition at this moment
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in order to give a proof of the next result (Theorem 6 below) which is valid for a
wider class of equations. In what follows we set

lm :=

∫ mT

0

l(t) dt,

i.e. the L1-norm of l(·) in [0,mT ]. We also denote by F (x), for x ∈]a, b[, a primitive
of f(x).

We have the following general theorem concerning global existence of solutions
of system (14).

Theorem 6. Assume (15) and suppose that there exists a constant µ ≥ 0 such
that

(16) F (x) + µx2 → +∞ for x→ a+ and for x→ b−.

Then every noncontinuable solution z(t) = (x(t), y(t)) of (14) satisfying

(17) x(t0) = x0 ∈]a, b[, y(t0) = y0

is defined for all t ∈ (−∞,+∞).

Clearly, the validity of Theorem 6 does not depend on the choice of the primitive
F.

Proof. By (16) there exists a ν ≥ 0 such that F (x)+µx2 +ν ≥ 0 for every x ∈ ]a, b[.
Define the function V : S =]a, b[×R→ R by

V (x, y) = F (x) +

(
µ+

1

2

)
x2 +

(
ν +

1

2

)
+

1

2
y2.

Claim: lim(x,y)→∂S V (x, y) = +∞.
In fact, if for some k > 0 and some (x, y), V (x, y) ≤ k, then we have 1

2x
2 + 1

2y
2 +

1
2 ≤ k and F (x) + µx2 ≤ k. Thus |y| ≤

√
2k and, by (16), there exists a compact

interval Ik ⊂ ]a, b[ such that x ∈ Ik. From this we conclude that V (x, y) > k if

(x, y) /∈ Ik × [−
√

2k,
√

2k], and the claim follows.
Let us consider now a noncontinuable solution z(·) of (14)-(17). Suppose that

(x(t), y(t)) is defined for t ∈ ]t−, t+[. Let us prove that t+ = +∞, the proof that
t− = −∞ is analogous.

Denote by v :]t−, t+[→ R the function defined by v(t) = V (x(t), y(t)). We have

v′(t) = 2µx(t)x′(t) + x(t)x′(t) + w(t, x(t))x′(t).

Hence ∀t ∈ ]t−, t+[,

|v′(t)| ≤ 2l̃(t) v(t) with l̃(t) = µ+
1

2
+
|l(t)|

2

from which we conclude

(18) v(t) ≤ v(t0) exp

(
2

∣∣∣∣∫ t

t0

l̃(τ) dτ

∣∣∣∣).
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If t+ < +∞, then (x(t), y(t)) → ∂S for t → t−+ and therefore by the previous

claim v(t) = V (x(t), y(t))→ +∞ for t→ t−+, but this contradicts equation (18). �
Remark 2. We can obtain the same result for a more general class of equations,
indeed we can consider systems of the form

(19)

{
x′ = y

y′ = −f(x) + w(t, x, y)

with w satisfying the Carathéodory assumptions, and replace (15) by the more
general condition

|w(t, x, y)| ≤ α(t) + β(t)|x| + γ(t)|y|

where α, β and γ are nonnegative functions belonging to L1
loc(R).

In the main case for our study in the following section (Theorem 7), we consider
a = −∞ and F such that

(20) lim
x→b−

F (x) = +∞.

In this situation, we can obtain global extendability of the solutions if f is bounded
from above in a neighbourhood of −∞. Actually we have:

Corollary 5. Assume (15),(20) and

(21) lim sup
x→−∞

f(x) < +∞.

Then every noncontinuable solution of system (14) is globally defined.

Proof. Let M0 > 0 and a0 < b be such that, according to (21), f(x) ≤M0, for every
x ≤ a0. Then F (x) ≥ F (a0)−M0|x−a0|, for every x ≤ a0 and so limx→−∞ F (x)+
x2 = +∞. On the other hand, from (20) we have limx→b− F (x) + x2 = +∞. Thus
equation (16) is satisfied for µ = 1 and the result follows via Theorem 6. �

If, instead of (21), we have

(22) lim sup
x→a+

f(x) = +∞,

with a = −∞ or a > −∞ and (20) holds, we can obtain global extendability
of the solutions by studying a modified problem. More precisely, we fix a point
a0 ∈]a, b[, define M = sup{f(a0), |l|∞} and denote by kM the greatest x ≤ a0 such
that f(x) = M + 1. By (22) such a kM always exists. Consider now the function

f̂ :]−∞, b[→ R defined by

(23) f̂(x) =

{
f(x) if x ≥ kM ,
M + 1 if x < kM .

Observe that, by construction of f̂ and from f(a0) < M + 1, we have f̂(x) ≤M + 1

for all x ∈ (−∞, a0]. On the other hand, if we take the primitive F̂ (x) =

∫ x

a0

f̂(ξ) dξ

of f̂ , we have F̂ (x) = F (x)−F (a0), so that limx→b− F̂ (x) = +∞ follows from (20).
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Consider now the system

(24)

{
x′ = y

y′ = −f̂(x) + w(t, x).

By Corollary 5 we know that every noncontinuable solution of (24)-(17), is de-
fined on R. The special choice of the truncation given in (23) guarantees that all
of the periodic solutions we find for (24) are periodic solutions of (14) too. In fact
we have

Lemma 7. If (x(·), y(·)) is a periodic solution of (24) then it is a periodic solution
of (14), with the same period.

Proof. Let x(·) : R → R be the first component of a periodic solution of (24). If,
by contradiction, min x = x(t?) < kM , for some t? ∈ R, we obtain

0 ≤ x′′(t?) = −f̂(x(t?)) + w(t?, x(t?)) ≤ −M − 1 + |l|∞ ≤ −1,

and the result follows. �
The same result holds on the Carathéodory setting with a slightly different proof.

Remark 3. In what follows we assume the uniqueness of solutions of the initial value
problems (14)-(17) or (24)-(17). This will be accomplished in our applications by
assuming f of class C1 and w locally lipschitzian in the x-variable. Observe that if
the truncation leading to f̂ is needed, then uniqueness is still guaranteed. Indeed, if
f is of class C1, then f̂ has bounded slope at any point of its domain. In the sequel
we denote by z(·; t0, z0) the solution of (14)-(17) and set z(·; z0) := z(·; 0, z0).

We proceed now with some technical lemmas which are useful for the construc-
tion of the inner boundary of the annulus to which we will apply the Poincaré -
Birkhoff fixed point theorem.

We choose a point c in the domain of f and consider, as a primitive of f, the
function F (x) =

∫ x
c
f(ξ) dξ. In the next result we restrict the study of the solutions

of (14) to a strip [a1, b[×R, where a1 < c < b and [a1, b[⊂ domf. We show that,
under condition (20), we can find a curve around P = (c, 0) such that solutions
starting from there do not leave the strip nor hit the point P, during the time
interval [0,mT ], provided that F (a1) is large enough.

Lemma 8. Assume (15),(20), suppose F (x) > 0 for a1 ≤ x < b, x 6= c and define

W (x, y) =
√

2F (x) + y2, for a1 ≤ x < b and y ∈ R. Let m ∈ Z+
0 and d > lm be

given. Suppose also that

(25) F (a1) ≥ 2d2.

Let z0 = (x0, y0) ∈]a1, b[×R be such that W (x0, y0) = d. Then, for any t0 ∈ [0, T [,
the solution z(t) = z(t; t0, z0) is defined in [t0,mT ] with z(t) 6= P and x(t) > a1 for
every t ∈ [t0,mT ]. Moreover

(26) d− lm ≤W (z(t)) ≤ d+ lm, ∀t ∈ [t0,mT ].

Proof. Consider the solution z(t) defined on its maximal right interval of existence
[t0, τ [. Assume by contradiction, that there is a t̃ ∈ ]t0, τ [ with t̃ ≤ mT, such that
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x(t̃) ≤ a1 or z(t̃) = P . Since the set A =] − ∞, a1] × R ∪ {P} is closed with
z0 = (x(t0), y(t0)) /∈ A, there is a first time t1 ∈ ]t0, t̃ ], such that z(t1) ∈ A and
z(t) /∈ A, ∀ t0 ≤ t < t1. Thus, in particular, a1 < x(t) < b and z(t) 6= P ,
∀ t0 ≤ t < t1.

For t0 ≤ t < t1 we evaluate ω(t) = W (z(t)), and have |ω′(t)| ≤ l(t), hence
|ω(t)− ω(t0)| ≤ lm, so that ∀t ∈ [t0, t1[,

(27) d− lm ≤W (z(t)) ≤ d+ lm

holds. Passing to the limit as t→ t−1 we have

0 < d− lm ≤W (z(t1)) ≤ d+ lm < 2d.

By the choice of t1 we have x(t1) = a1 or z(t1) = P = (c, 0). Now, if x(t1) = a1 we
find √

2F (a1) ≤
√

2F (a1) + y(t1)2 < 2d

and therefore,
F (a1) < 2d2,

a contradiction to equation (25). On the other hand, if z(t1) = (c, 0), we have

0 < d− lm ≤W (z(t1)) = W (c, 0) = 0,

a contradiction.
Thus we have seen that, either there is no t̃ as above or, if any of such t̃ exists,

then it must be t̃ > mT. In the latter case we are done. In the former case, we
conclude that z(t) ∈ ]a1, b[×R and (27) holds for all t ∈ [t0, τ [. Therefore, we have
that z(t) belongs to the set W−1([0, 2d]) (which is compact by (20)) for all the
forward time where it is defined. Hence τ = +∞ and also z(t) 6= P and x(t) > a1,
for every t ∈ [t0,+∞[.

Thus, in any case, we conclude that z(t) 6= P and x(t) > a1 for every t ∈ [t0,mT ]
and equation (26) follows now, as (27), from the fact that |ω′(t)| ≤ l(t) if z(t) ∈
[a1, b[×R \ {P}. �

The next lemma describes the geometry of the level sets of W in the strip
[a1, b[×R.
Lemma 9. Under the conditions of Lemma 8, suppose that f(c)=0 andf(x)(x−c)
> 0, for each x ∈ [a1, b[, x 6= c. Then C1 = {(x, y) ∈ [a1, b[×R : W (x, y) = d} is
a simple closed curve strictly star-shaped around P = (c, 0) contained in the strip
S1 =]a1, b[×R.

Proof. As W (P ) = 0, W (a1, y) ≥ 2d for each y ∈ R and limx→b−W (x, y) =
+∞, uniformly with respect to y, there exists a compact interval, [a∗, b∗] with
c ∈ [a∗, b∗] ⊂ ]a1, b[ such that for each (x, y) ∈ (]a1, b[\[a∗, b∗])×Rwe haveW (x, y) >
3
2d. Moreover W (x, y) ≥ |y| and so we have W (x, y) > 3

2d for every (x, y) ∈
S1 \([a∗, b∗]× [−3d/2, 3d/2]). Let θ ∈ [0, 2π] be fixed and consider the open interval
]0, Rθ[= {r > 0 : P + (r cos θ, r sin θ) ∈ S1}, with Rθ ≤ +∞.

We claim that for each θ ∈ [0, 2π], there exists a unique rθ ∈ ]0, Rθ[ such that
P + (rθ cos θ, rθ sin θ) ∈ C1. Indeed let us consider for any θ ∈ [0, 2π] the function
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ξθ :]0, Rθ[→ R given by ξθ(r) = W (P + (r cos θ, r sin θ)). Notice that ξ2π ≡ ξ0. By
direct computation we have ξ′θ(r) > 0 for each r > 0. By what we proved above we
conclude that limr→R−θ

ξθ(r) > d and, as limr→0+ ξθ(r) = 0, the result follows.

By the claim, C1 = {P + (rθ cos θ, rθ sin θ) : θ ∈ [0, 2π]} , and therefore C1 is a
simple closed curve strictly star-shaped around P and contained in S1. �

In the application of these results to equation (E)s the function f(x) will play
the role of g(x) − s and the point c in Lemma 8 and Lemma 9 will be such that
g(c) = s. Precisely, for g :]a, b[→ R and G(b−) = +∞, with G a primitive of g, we
will fix a point a1 with a < a1 < b and after this we will choose c ∈ ]a1, b[ with
g(c) = s. Then we will have that the point c moves toward b as s → +∞. For
the validity of the conditions on F in Lemmas 8 and 9, we will require g strictly
increasing in a neighbourhood of b.

We conclude the section with a consequence of the global extendability of the
solutions (cf. [18, Proposition 3.2]) whose proof is standard:

Lemma 10. Under the conditions (15) and (16), or any other set of conditions
ensuring the global continuability, we have that for every compact K ⊂ S =]a, b[×R
and each m ∈ Z+

0 there exists a compact M =M(K,m) ⊂ S such that if z0 /∈ M
then z(t; z0) /∈ K, ∀t ∈ [−mT,mT ].

4. Main results

Let g :]a, b[→ R be continuously differentiable and let w = w(t, x) : R×]a, b[→ R
be continuous, T -periodic in the t-variable and locally lipschitzian in the x-variable.
Note that we can reduce ourselves to this situation also when g is locally lipschitzian
in ]a, b[ and of class C1 only in a neighbourhood of a and b. Indeed this is just a
matter of discarding a bounded lipschitz term on w. Let G be a primitive of g on
]a, b[ and suppose that, as in Section 3,

(15) |w(t, x)| ≤ l(t), ∀t ∈ R, x ∈ ]a, b[

for some continuous and T -periodic function l defined on R. Recall also that lm =∫mT
0

l(t) dt = ml1.
Using the truncation argument previously described, it is possible to see that if

lim supx→a+ g(x) = +∞, then we can reduce the problem of the search of periodic
solutions for (E)s to an equivalent problem with g defined in (−∞, b[ and such that
lim supx→−∞ g(x) < +∞. By virtue of this remark which is explained with more
details in the proof of Theorem 8, we suppose at the beginning that

]a, b[= (−∞, b[.
Now we are in position to state and prove our first main result. To this end we
introduce some basic assumptions for the nonlinear function g, which are:

(28) lim sup
x→−∞

g(x) < +∞ and lim sup
x→−∞

g′(x) ≤ α < +∞,

with α ≥ 0,

(29) 0 < γ ≤ lim inf
x→b−

g′(x) ≤ lim sup
x→b−

g′(x) ≤ β ≤ +∞.

Recall also that λi =
(

2πi
T

)2
, for i ∈ Z+

0 , is the i-th positive eigenvalue of the
operator x 7→ −x′′ with the T -periodic boundary conditions.
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Theorem 7. Assume (28),(29). Suppose that lim
x→b−

G(x) = +∞, where G is a

primitive of g, and let k ∈ Z+
0 be such that

(
2
√
α
√
β√

α+
√
β

)2

< λk (when β = +∞, 4α <

λk). Then we have:
• If β < +∞ and λj < γ, for some integer j ≥ k, then equation (E)s has

at least 2(j − k + 1) harmonic solutions for each sufficiently large positive s.
More precisely, there is s(l1) ∈ R+ such that for each s > s(l1) and for each
integer r, with k ≤ r ≤ j, there exist two T -periodic solutions xi(·), i = 1, 2,
of (E)s, such that for each i, xi(·)−g−1(s) has exactly 2r zeros in the interval
[0, T [.

• If γ = +∞, then for each integer j ≥ k equation (E)s has at least 2(j−k+1)
harmonic solutions for each sufficiently large positive s. More precisely, there
is s(j, l1) ∈ R+ such that for each s > s(j, l1) and for each integer r, with
k ≤ r ≤ j, there exist two T -periodic solutions xi(·), i = 1, 2, of (E)s, such
that for each i, xi(·)− g−1(s) vanishes exactly 2r times in the interval [0, T [.

The meaning of g−1(s) is the following: choose 0 < γ1 < γ and note that by (29),
g′(x) ≥ γ1 > 0 for x in a left neighbourhood of b and this fact, together with
G(b−) = +∞ in the case b < +∞, implies that g(b−) = +∞. Hence for every
s > 0 sufficiently large there is a unique cs such that g(cs) = s, with cs in a left
neighbourhood of b. We set g−1(s) := cs. This conventional notation will be used
throughout.

In order to demonstrate Theorem 7 we are going to state some lemmas whose
proofs are postponed to the next section. These lemmas concern solutions of the
planar equation

(E)s

{
x′ = y

y′ = −g(x) + s+ w(t, x).

More precisely we estimate the rotation numbers, with respect to some systems of
coordinates, of the solutions of (E)s whose initial conditions lie on some curves that
we construct. The curves are different in the cases γ = +∞ and β < +∞, but
for simplicity and as no confusion arises, we use the same notations for these two
different cases. In order to perform this program we assume the uniqueness of the
solutions for the Cauchy problems associated to (E)s. Observe that the uniqueness
is guaranteed by the regularity conditions on g and w. As to the global existence,
this is not required in Lemma 11 below for which we employ Lemma 8. On the
other hand, global existence is guaranteed in next Lemma 12 where we use the
condition G(b−) = +∞ and γ > 0. Indeed, these two assumptions imply that
F (b−) = +∞, for f(x) = g(x) − s and F (x) any primitive of f(x) on the interval
(−∞, b[. Moreover, g(x) − s is bounded from above on a neighbourhood of −∞,
by the first assumption in (28), and thus Corollary 5 applies ensuring the global
extendability of the solutions.

Lemma 11. Assume (29) and suppose that limx→b− G(x) = +∞ where G is a
primitive of g.
• If β < +∞ and λj < γ, for some j ∈ Z+, then there are constants a1 < b

and s(l1) > 0 such that for each s > s(l1) there exist a strictly star-shaped
curve Cs1 ⊂ ]a1, b[×R around Ps = (g−1(s), 0), and a function ψ1 : R → R
admissible with respect to g−1(s), with δψ1 = 0, satisfying:
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i) ∀t0 ∈ [0, T [, ∀z0 ∈ Cs1: z(t; t0, z0) 6= Ps and x(t) > a1, ∀t ∈ [t0, T ],
ii) rotψ1(T ; z0) > j, ∀z0 ∈ Cs1.

• If γ = +∞, for every j ∈ Z+, there are constants aj1 < b and s(j, l1) > 0 such

that for each s > s(j, l1) there exist a strictly star-shaped curve Cs1 ⊂ ]aj1, b[×R
around Ps = (g−1(s), 0), and a function ψ2 : R→ R, admissible with respect
to g−1(s), satisfying:

i) ∀t0 ∈ [0, T [, ∀z0 ∈ Cs1: z(t; t0, z0) 6= Ps and x(t) > aj1, ∀t ∈ [t0, T ],
ii) rotψ2(T ; z0) > j + 1/4, ∀z0 ∈ Cs1.

Lemma 12. Under the assumptions of Theorem 7, for each s such that Cs1 is
defined according to the previous lemma, there exist a simple closed curve Cs2, with
Cs1 ⊂ int Cs2, and an admissible function ψ with δψ = 0, such that for every z(·)
solution of system (E)s with initial point z0 ∈ Cs2, we have rotψ(T ; z0) < k.

Proof of Theorem 7. Consider at first the case when β < +∞. By Lemma 11, for
each s > s(l1), there exists a strictly star-shaped curve Cs1 around Ps = (g−1(s), 0)
such that for each t0 ∈ [0, T [ and z0 ∈ Cs1, z(t; t0, z0) 6= Ps, ∀t ∈ [t0, T ]. Moreover,
by Lemma 11, there is an admissible function ψ1 such that for every z0 ∈ Cs1 we
have rotψ1(T ; z0) > j = j+δψ1 . Let s > s(l1) be fixed and apply Lemma 12. There
exist a simple closed curve Cs2 surrounding Cs1, i.e. Cs1 ⊂ int Cs2 and an admissible
function ψ such that for every z0 ∈ Cs2 we have rotψ(T ; z0) < k = k − δψ .

Then we can apply Theorem 5, where A is the annular region bounded by Cs1
and Cs2 and X : R×]−∞, b[→ R is given by X(t, x) = g(x) − s − w(t, x), and the
result follows.

Secondly, consider the case γ = +∞. The argument is completely similar to the
previous one with respect to the property z(t; t0, z0) 6= Ps for t ∈ [t0, T [ and the
rotation estimate for ψ on the curve Cs2. As to the rotation on Cs1, Lemma 11 now
ensures the existence of an admissible function ψ2 such that for every z0 ∈ Cs1 we
have rotψ2(T ; z0) > j + (1/4) when s > s(j, l1). Recalling Theorem 4 we conclude
that rotψ2(T ; z0) > j + δψ2 for z0 ∈ Cs1. Then the conclusion follows as above by
Theorem 5. �

The next result is a variant of Theorem 7 for the case in which condition (28) is
not satisfied. Moreover, we don’t require a = −∞ anymore. Then we have:

Theorem 8. Assume −∞ ≤ a < b ≤ +∞ and suppose

(30) lim sup
x→a+

g(x) = +∞.

If we further assume (29) and limx→b− G(x) = +∞ where G is a primitive of g,
then all the conclusions of Theorem 7 hold with k = 1.

Proof. Suppose at first β < +∞ and that λj < γ for some integer j ≥ 1. Since
(29) is assumed and limx→b− G(x) = +∞, we can apply Lemma 11 and derive the
existence of some constants a1, with a < a1 < b, and s(l1) > 0, such that for
each s > s(l1) there exist a strictly star-shaped curve Cs1 around Ps = (g−1(s), 0),
with Cs1 ⊂ ]a1, b[×R and a function ψ1 : R → R admissible with respect to g−1(s)
with δψ1 = 0, satisfying i) and ii) of the Lemma 11. Fix s > s(l1), let c = g−1(s)
and consider the function f(x) = g(x)− s. We have lim supx→a+ f(x) = +∞ and,
as γ > 0 and limx→b− G(x) = +∞, limx→b− F (x) = +∞ holds where F (x) =
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c f(ξ) dξ. Accordingly, we can apply the truncation argument exposed on Section

3 and obtain a function f̂ : ]−∞, b[→ R defined as in (23) where kM is the greatest
x with a < x < a1, such that f(x) = sup{f(a1), |l|∞}+ 1. Moreover we know that
solutions of system (24) are globally defined and periodic solutions of this modified
problem are periodic solutions of system (E)s.

Let us now study the modified problem (24) which can be written in the form

(31)

{
x′ = y

y′ = −ĝ(x) + s+ w(t, x).

with ĝ(x) = f̂(x) + s. First of all notice that ĝ = g for x ≥ a1 and recall that all
the preceding conclusions of Lemma 11 remain valid for system (31). On the other
hand ĝ satisfies all the hypothesis of Theorem 7 if we replace α by zero and take
k = 1. Then we apply Lemma 12 to system (31) and conclude with the existence of
a simple closed curve Cs2 with Cs1 ⊂ int Cs2 and an admissible function ψ with δψ = 0,
such that for every z(·) solution of system (31) with initial condition z0 ∈ Cs2 we
have rotψ(T ; z0) < 1. The result follows now from Theorem 5 taking into account
that, as we previously remarked, periodic solutions of the modified problem are
periodic solutions of (E)s.

For the case γ = +∞ the argument is similar to the one just given and therefore
it is omitted (see also the proof of the main theorem). �

5. Proofs of the auxiliary lemmas

Proof of Lemma 11. First of all notice that this lemma is valid in both of the
cases a = −∞ and a > −∞. Indeed, all of the reasoning we make on this proof
concerns the behaviour of the function g and the solutions of system (E)s on a left
neighbourhood of b.

For each c ∈]a, b[ define the function fc :]a, b[→ R by fc(x) = g(x)−g(c). Clearly
fc(c) = 0, for every c.
• Suppose β < +∞ in (29). In this case, as limx→b− G(x) = +∞, we have

b = +∞. Choose a sufficiently small constant ε > 0. A posteriori considerations

will show that a suitable choice for ε is ε = π
T

(√
γT

2π − j
)

, where the positive integer

j is such that λj < γ. We also fix two constants h and M with
√
γ > h >

√
γ−ε > 0

and M =
√
β + 1. By assumption (29), there exists an a1 with a < a1 < +∞ such

that

0 < h2 ≤ g′(x) ≤M2, for x ≥ a1.

Take d such that d > l1 + Ml1
εhT and choose a constant cj > a1 + 2d

h . Thus we can
define s(l1) := g(cj).
Note that g : [cj ,+∞) → [s(l1),+∞) is strictly increasing and onto, thus for any
s > s(l1) there is a unique c > cj with g(c) = s. In what follows, for any fixed
c > cj, we write c = g−1(s), g(c) = s, and set f := fc . With these positions, a
solution of (14)-(17) will be a solution of (E)s-(17).

With the notations in Section 3, as we have F (x) =
∫ x
c
f(ξ) dξ > 0 for x 6= c and

x ≥ a1, we can consider the level lines of the function W (x, y). We will prove that
the curve

Cs1 := {(x, y) ∈ [a1, b[×R : W (x, y) = d}
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and the function ψ1 :]−∞,+∞[→ R defined by ψ1(x) = (x−c)h, will satisfy i) and
ii) of the lemma. Notice that ψ1 is admissible with respect to c and that δψ1 = 0
by Remark 1 in Section 2.

Since lim infx→b− g
′(x) ≥ γ > 0 and b = +∞, we have that F (+∞) = +∞, so

that (20) is satisfied. Moreover, as c > cj,

F (a1) ≥ (c− a1)2h2

2
> 2d2.

Hence we can apply Lemma 9 and Lemma 8 in order to conclude that Cs1 is a
strictly star-shaped curve around (g−1(s), 0) and, for each t0 ∈ [0, T [ and each
z0 = (x0, y0) ∈ Cs1, the corresponding solution z(·) of (14)-(17) is defined on [t0, T ]
and satisfies z(t) 6= (c, 0) and x(t) > a1 for each t ∈ [t0, T ]. Therefore i) follows.

To prove ii) we preliminarly observe that

f(x)(x− c) = (f(x)− f(c))(x− c) ≥ h2(x− c)2,

and

W (x, y)2 = 2F (x) + y2 ≤M2(x− c)2 + y2 ≤ (M/h)2
(
h2(x− c)2 + y2

)
hold for every x ≥ a1 .

Let us consider now the coordinate system corresponding to ψ1 defined in Section
2. We obtain the following expression for the rotation number according to (6):

rotψ1(T ; z) =
1

2π

∫ T

0

h[y(t)2 + f(x(t))(x(t) − c)− w(t, x(t))(x(t) − c)]
h2(x(t) − c)2 + y(t)2

dt

≥ hT

2π
− 1

2π

∫ T

0

l(t)

(h2(x(t) − c)2 + y(t)2)1/2
dt.

As, by Lemma 8, solutions z(·) of (14)-(17) with t0 = 0 and z0 = (x0, y0) ∈ Cs1
satisfy x(t) > a1 and W (z(t)) ≥ d− l1 > 0 for each t ∈ [0, T ], we obtain

rotψ1(T ; z0) ≥ hT

2π
− Ml1

2πh(d− l1)

and finally, by the choice of ε, h and d we find that rotψ1(T ; z0) > j, thus proving
ii).
• Suppose γ = +∞ in (29). Let us fix a nonnegative integer j. Choose M >

2π
T

(
j + 1

4

)
. By (29), there exists an aj1 ∈ ]a, b[ such that

g′(x) > M2 for aj1 ≤ x < b.

Hence, using the fact that limx→b− G(x) = +∞, we have that the function g :

[aj1, b[→ [g(aj1),+∞) is strictly increasing and onto, thus, for any s > g(aj1) there is

a unique c ∈ ]aj1, b[ with g(c) = s. As before, we write c = g−1(s). Choose a constant

d > l1 + l1
2π

(
MT
2π − j −

1
4

)−1
.
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We claim that there exists cj ∈ ]aj1, b[ such that for every c > cj , we have

(32) Fc(a
j
1) > 2d2

where Fc(x) =

∫ x

c

fc(ξ) dξ. Indeed, integrating by parts, we find

Fc(a
j
1) =

∫ aj1

c

(g(ξ)− g(c))dξ =

∫ c

aj1

(ξ − aj1)g′(ξ) dξ.

Then, by a change of variable and using the monotonicity of g−1, we have∫ c

aj1

(ξ − aj1)g′(ξ) dξ =

∫ g(c)

g(aj1)

(g−1(η)− aj1) dη

≥
∫ g(ε+aj1)

g(aj1)

(g−1(η)− aj1) dη + ε
(
g(c)− g(ε+ aj1)

)
,

where ε > 0 is a fixed sufficiently small constant. Using limx→b− g(x) = +∞, we
can conclude the proof of the claim taking cj sufficiently near to b−.

At this moment, we define s(j, l1) := g(cj) and proceed with our argument
choosing an arbitrary but fixed c > cj and setting f := fc. With these positions, a
solution of (14)-(17) will be a solution of (E)s-(17) with s = g(c).

With the notations in Section 3, as we have F (x) =
∫ x
c
f(ξ) dξ > 0 for x 6=

c and x ∈ [aj1, b[, we can consider the level lines of the function W (x, y). Since
lim infx→b− g

′(x) ≥ γ > 0 and limx→b− G(x) = +∞, we have that F (b−) = +∞,
so that equation (20) is satisfied in both cases b < +∞ or b = +∞. Since we have
already verified (25) (see (32)), we are in position to apply Lemma 9 and Lemma
8. Consequently, for

Cs1 = {(x, y) ∈ [aj1, b[×R : W (x, y) = d},

we have, by Lemma 9, that Cs1 is a strictly star-shaped curve around the point
Ps = (g−1(s), 0) = (c, 0). On the other hand, by Lemma 8, solutions of the Cauchy
problem (14)-(17) with initial conditions t0 ∈ [0, T [ and z0 = (x0, y0) ∈ Cs1 are

defined on [t0, T ] and satisfy z(t) 6= Ps and x(t) > aj1 for each t ∈ [t0, T ]. Therefore
i) follows.

To prove ii) we preliminarly observe that applying Lagrange’s theorem, and

recalling that f ′(x) > M2 for x ≥ aj1, the following estimate

f(x)2

2F (x)
=

(f(x)− f(c))2

2(F (x)− F (c))
> M2

holds for all x ∈ [aj1, b[, where the function x→ f(x)2

2F (x) is extended by continuity at

x = c, assuming the value f ′(c).
Let ψ2 : ] − ∞, b[→ R be an admissible function with respect to c such that

ψ2(x) =
√

2F (x)sgn(x − c) for all x with aj1 ≤ x < b and consider, as in Section
2, the coordinate system corresponding to ψ2. Using the fact that solutions z(·) of
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(14)-(17) with t0 = 0 and z0 = (x0, y0) ∈ Cs1 verify x(t) > aj1 for each t ∈ [0, T ], we
obtain the following formula for the rotation number according to (6):

rotψ2(T ; z) =
1

2π

∫ T

0

(
|f(x(t))|√
2F (x(t))

− w(t, x(t))
√

2F (x(t))sgn(x(t) − c)
2F (x(t)) + y2(t)

)
dt

>
MT

2π
− 1

2π

∫ T

0

l(t)

W (x(t), y(t))
dt.

Recalling that W (x(t), y(t)) ≥ d− l1 , we finally obtain that, for solutions z(·) with
initial point z0 = (x0, y0) ∈ Cs1,

rotψ2(T ; z0) >
MT

2π
− l1

2π(d− l1)
.

Therefore, by the choice of d, we find that rotψ2(T ; z0) > j + 1
4 , thus proving ii).�

Proof of Lemma 12. Let s be any sufficiently large number so that Cs1 is defined
and let c = g−1(s) with c in a left neighbourhood of b. After having fixed s, and
hence c, for the rest of the proof, we consider the function f : (−∞, b[→ R given
by f(x) = g(x)− s. As usual, a solution of (14)-(17) will be a solution of (E)s-(17).
As γ > 0 and limx→b− G(x) = +∞, the function F (x) =

∫ x
c f(ξ) dξ satisfies (20)

in both cases: b = +∞ and b < +∞. Moreover, by the first assumption in (28),
we have lim supx→−∞ f(x) < +∞ and thus we can apply Corollary 5 and conclude
that solutions of (14)-(17) are globally defined.

Choose α1 > α ≥ 0 and β∗ > 0 such that β∗ > β if β < +∞, while β∗ = +∞ if
β = +∞, satisfying

f(x)

x− c ≤ α1, ∀x ≤ c− and
f(x)

x− c ≤ β
∗, ∀x ≥ c+

for some c− < c and c+ ∈ ]c, b[, and(
2
√
α1

√
β∗

√
α1 +

√
β
∗

)2

<

(
2πk

T

)2

.

For β = β∗ = +∞, read the last inequality as 4α1 < λk.
Let us define ψ : ]−∞,+∞[→ R by ψ(x) =

√
β1(x− c)+ −√α1(x− c)− where

β1 = β∗ if β < +∞ and β1 = 1 otherwise. The function ψ is admissible with
respect to c and thus we can consider the corresponding system of modified polar
coordinates. By Remark 1, in Section 2, we have δψ = 0.

We also observe that there exist some positive constants K and L such that

f(x)ψ(x) ≤ √α1ψ(x)2 +K, ∀x ≤ c

and if β < +∞ and, necessarily, b = +∞,

f(x)ψ(x) ≤
√
β1ψ(x)2 + L, ∀x ≥ c.
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Choose R0 sufficiently large so that

(33)
1

π

(
T max{K,L}

R2
0

+
l1
R0

)
< k −

√
α1

√
β∗ T

π(
√
α1 +

√
β
∗
)
.

We are in position now to construct the curve Cs2.
• If β < +∞ we know that b = +∞, that is, we can consider solutions of

(14)-(17) with t0 = 0 and z0 = (x0, y0) ∈ R2. Consider the compact set

K =

{
(x, y) ∈ R2 : ‖(x− c, y)‖ ≤ R0

min{√α1,
√
β1, 1}

}
.

By Lemma 10 we know that there exists a sufficiently large R such that if ‖(x0 −
c, y0)‖ ≥ R then z(t) = (x(t), y(t)) /∈ K for every t ∈ [0, T ]. We can also choose R
so large that max(x,y)∈Cs1 ‖(x− c, y)‖ < R. Setting in this case

Cs2 = {(x, y) : ‖(x− c, y)‖ = R} ,
by the choice of R we have Cs1 ⊂ int Cs2.
• Suppose now that γ = +∞, so that b < +∞ or b = +∞ are both possible,

and consider the compact set

K∗ =

{
(x, y) ∈ R2 : x ≤ c, ‖(x− c, y)‖ ≤ R0

min{√α1, 1}

}
.

By Lemma 10 we know the existence of a compact M ⊂ ] −∞, b[×R such that if
z0 = (x0, y0) /∈M, then z(t) = (x(t), y(t)) /∈ K∗ for every t ∈ [0, T ]. It suffices now
to choose as Cs2 any simple closed curve Cs2 ⊂ ]−∞, b[×R with

M∪Cs1 ⊂ int Cs2.
At this point, let us estimate the rotation number of the solutions starting from

Cs2. The evaluation of the rotation will be performed by an implicit argument. More
precisely, arguing by contradiction, we will show that the rotation cannot be larger
than or equal to k.

Assume, by contradiction, that there exists a point z0 = (x0, y0) ∈ Cs2 such that
rotψ(T ; z0) ≥ k. Thus, for some 0 < τ ≤ T we have rotψ(τ ; z0) = k. Using (7), the
upper bound for fψ and recalling the definition of K, (resp. K∗), we obtain

k =
1

π

∫
{t∈[0,τ ]:x(t)<c}

√
α1y(t)2 + f(x(t))ψ(x(t)) − w(t, x(t))ψ(x(t))

y(t)2 + ψ(x(t))2

≤
√
α1

π
meas{t : x(t) < c}+

KT

πR0
2 +

l1
πR0

.

(34)

Similarly, if β < +∞, we also get

(35) k ≤
√
β1

π
meas{t : x(t) > c}+

T max{K,L}
πR0

2 +
l1
πR0

.

In the case β = +∞, (34) contradicts the choice of R0 and the result follows. If
β < +∞, we can obtain, using (34) and (35),(√

α1 +
√
β1

)
k ≤

√
α1

√
β1T

π
+
T max{K,L}

πR0
2

(√
α1 +

√
β1

)
+

l1
πR0

(√
α1 +

√
β1

)
and this once again contradicts the choice of R0. So also in this case the result
follows. �
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6. Remarks and related results

In this section we outline some possible variants of Theorem 7 and Theorem 8
for harmonic solutions which can be obtained with minor changes in the arguments
of the preceding proofs.

First of all we describe what happens for the previous estimates when

(36) γ < β = +∞.

In this situation, we have to follow the proof of Lemma 11 in the part we have
already developed for the case γ = +∞, where we proved that rotψ2(T ; z0) > j+ 1

4

if g′(x) > M2, for x ≥ aj1, with M > 2π
T

(
j + 1

4

)
and z0 is an arbitrary point

belonging to Cs1 , a strictly star-shaped curve around (g−1(s), 0). Now, using Lemma
12 which remains unchanged, we can repeat verbatim the proofs of the main results
(Theorem 7 and Theorem 8) if

(37) 4α < (2πk/T )2 < (π(4j + 1)/2T )2 < γ

holds, with the caution of taking α = 0 for the case when (30) is satisfied.
Then the following theorem can be stated in which we assume a condition on

the eigenvalues which guarantees the validity of (37).

Theorem 9. Assume a = −∞, (28), (29) and (36). Suppose that lim
x→b−

G(x) =

+∞, where G is a primitive of g and let k, j ∈ Z+
0 be such that

4α < λk < λj+1 < γ.

Then for each integer r, with k ≤ r ≤ j, equation (E)s has at least two T -periodic
solutions xi(·), i = 1, 2, such that xi(·) − g−1(s) has exactly 2r zeros for each s
sufficiently large. The same conclusion holds, taking α = 0 and k = 1, if we
assume a ≥ −∞ and (30) instead of (28).

At this point we discuss separately the case in which g is defined on the whole
real line and the singularity cases.

6.1. The real line as a domain. Suppose that g : R → R is a continuously
differentiable function such that

lim sup
x→−∞

g′(x) := α0, γ0 := lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) := β0,

with

max{α0, 0} < γ0 ≤ β0 ≤ +∞.

Let λn be the n-th positive eigenvalue for the differential operator −u′′ with the
T -periodic boundary conditions (recall that λn = (2π/T )2n2 with n ∈ Z+). If
γ0 = β0 = +∞, then we can apply Theorem 7 with α = max{α0, 0}, γ = γ0 and
β = β0 in the case that lim supx→−∞ g(x) < +∞, or we can apply Theorem 8 if
lim supx→−∞ g(x) = +∞. Then anyway we can obtain:
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Corollary 6. Suppose that lim supx→−∞ g
′(x) < limx→+∞ g

′(x) = +∞. Then, for

each n ∈ Z+
0 with λn > 4 max{α0, 0}, there is sn such that for each s > sn, (E)s has

at least two harmonic solutions crossing 2n times the value g−1(s) in the interval
[0, T [.

Corollary 6 corresponds to an improved version of [43, Theorem 1] for the peri-
odic case. Indeed, in [43, Theorem 1] the existence of a limit for g′(x) at −∞ was
required.

If γ0 ≤ β0 < +∞, then we can apply Theorem 7 with α = max{α0, 0}, γ = γ0

and β = β0, or Theorem 8 as above, in order to have:

Corollary 7. Suppose that

lim sup
x→−∞

g′(x) = α0, 0 < γ0 = lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) = β0

and let l be the integer part of (T/π)(
√
αβ0/(

√
α +
√
β0)), with α = max{α0, 0}.

If there exists an integer n > l, such that λn < γ then equation (E)s has at least
2(n− l) harmonic solutions for each sufficiently large positive s.

Corollary 7 improves the conditions on the limits for g′(x) as x→ ±∞ considered
in [8, Theorem 1.2 (a)]. Indeed, in [8] the existence of 2(n−l)+1 harmonic solutions
for large positive s is proved under the more restrictive condition that limits for
g′(x) do exist with α0 > λk−1 for some k ≤ n. Moreover, in [8] it is required also
that λn < γ0 = β0 < λn+1. It is not difficult to see that if we also require the
“nonresonance” condition [γ0, β0] ∩ {λj : j ∈ Z+

0 } = ∅, then we can prove the
existence of a further T -periodic solution for s > 0 and large and therefore we can
obtain 2(n− l) + 1 harmonic solutions too.

If g is unbounded from above on (−∞, 0], then according to Theorem 8, the
previous results hold without any condition on α0, γ0 and β0, except γ0 > 0. In this
case, however, more precise information about the solutions can be further derived.
Indeed, in [7, Corollary II.1.9] it is proved that if g(x) → +∞ as x → −∞, then
equation (E)s has at least one (negative) T -periodic solution for s positive and
large. Such a solution is found between a constant lower solution x and a constant
upper solution x with x < x << 0. On the other hand, the solutions x(t) we find
via the Poincaré - Birkhoff fixed point theorem cross g−1(s) > 0, for large s > 0 and
therefore we can conclude that our solutions are not the same found in [7, Corollary
II.1.9]. Hence, if g(−∞) = +∞, we have another solution to add to our collection.
Thus we can state the following corollaries:

Corollary 8. Suppose that

lim
x→−∞

g(x) = lim
x→+∞

g′(x) = +∞.

Then, for each n ∈ Z+
0 , there is sn such that (E)s has at least 2n + 1 harmonic

solutions for each s > sn. Among these solutions one is negative and, for each
integer j with 1 ≤ j ≤ n, there are two solutions with x(·) − c having exactly 2j
zeros in the interval [0, T [ where g(c) = s for c > 0.
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Corollary 9. Suppose that limx→−∞ g(x) = +∞ and let n ∈ Z+
0 be such that

0 < λn < γ0 = lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) = β0 < +∞.

Then there is sn such that (E)s has at least 2n+ 1 harmonic solutions for each s >
sn. Among these solutions one is negative and, for each integer j with 1 ≤ j ≤ n,
there are two solutions with x(·) − c having exactly 2j zeros in the interval [0, T [
where g(c) = s for c > 0.

The proof of Corollaries 8 and 9 follows immediately from Theorem 8 and the
previous remark about the result in [7]. Notice that, if in Corollary 9, [γ0, β0] does
not contain eigenvalues, then a further T -periodic solution appears and thus we can
conclude with the existence of 2n+ 2 harmonic solutions like in [8, Theorem 1.1].
It is possible to check that Corollaries 8 and 9 hold true if we replace the condition
for g(x) at −∞, with lim supx→−∞ g(x) = +∞.
6.2. The singularity cases. Suppose that g : ]a, b[→ R, with ]a, b[ 6= R is a
continuously differentiable function. Let G denote a primitive of g on ]a, b[.

We concentrate our discussion on the case −∞ < a since the situation when
a = −∞ is clear from the previous theorems. Recall that for a ∈ R, we have to
assume

(38) lim sup
x→a+

g(x) = +∞

for the validity of the truncation argument. On the other hand, arguing directly on
the original equation with the method of lower and upper solutions, it is possible
to find another T -periodic solution in a right neighbourhood of a. Hence we can
restate Corollary 9 for a function g : ]a,+∞)→ R, as follows:

Corollary 10. Suppose that lim supx→a+ g(x) = +∞ and let n ∈ Z+
0 be such that

0 < λn < γ0 = lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) = β0 < +∞.

Then there is sn such that (E)s has at least 2n + 1 harmonic solutions for each
s > sn. Among these solutions one lies on a right neighbourhood of a and, for each
integer j with 1 ≤ j ≤ n, there are two solutions with x(·) − c having exactly 2j
zeros in the interval [0, T [ where g(c) = s for c > 0.

Also in this case, we can find at least 2n+ 2 harmonic solutions if there are no
eigenvalues between γ0 and β0.

For a function g : ]a, b[→ R, with b ≤ +∞, we have the following variant of
Corollaries 6 and 8.

Corollary 11. Suppose that lim supx→a+ g(x) = +∞ and

lim
x→b−

g′(x) = lim
x→b−

G(x) = +∞.

Then, for each n ∈ Z+
0 , there is sn such that (E)s has at least 2n + 1 harmonic

solutions for each s > sn. Among these solutions one lies on a right neighbourhood of
a and, for each integer j with 1 ≤ j ≤ n, there are two solutions with x(·)−c having
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exactly 2j zeros in the interval [0, T [ where g(c) = s for c in a left neighbourhood
of b.

Corollary 10 extends [8, Theorem 1.1] to the case of a singularity of “attractive
type” in a, while Corollary 11 may be seen as an improved version of Zinner’s
theorem to a periodic problem with also the possibility to treat a double singularity
when b < +∞.

We stop for the moment with the list of other possible consequences of our
main result, passing now to the discussion of the problem concerning subharmonic
solutions.

7. Existence of subharmonic solutions

In this section we are interested in the existence of other kinds of periodic solu-
tions for equation (E)s under conditions (15), (28) or (30), and (29). First of all
we observe that, according to [38], we cannot prevent the possibility that (E)s may
possess periodic solutions whose period is uncommensurable with T. However, we
note that such a situation will never occur when w takes the form of w = w(t) with
T > 0 as minimal period. In this case, it is also clear that all the possible periodic
solutions of (E)s will have periods multiple of T (subharmonics). Thus, with the
aim of obtaining a result which is applicable to the simpler case of a forcing term
w(t) independent on the x-variable, we prefer to restrict ourselves to the consid-
eration of subharmonic solutions. Following [38], we call subharmonic solution of
order m ≥ 2, a periodic solution whose minimal period in the set

{
jT : j ∈ Z+

0

}
is mT . As remarked above, this does not mean that mT is effectively the minimal
period. The minimality of the period can be guaranteed by additional assumptions
like (W ∗) considered in the introduction.

We also recall that if x(·) is a subharmonic solution of order m, then the m− 1
functions xi(·) = x(· + iT ), i = 1, ...,m − 1, are also subharmonics of order m,
pairwise distinct and distinct from x(·). We consider these translates in time as
equivalent to x(·) (they belong to the same periodicity class).

We have the following theorem that we state in the case of a function g : ]a, b[→ R
which is of class C1. Note that we take a = −∞ in the case when (28) is considered.

Theorem 10. Assume conditions (15), (28) or (30) and (29) and suppose that
limx→b− G(x) = +∞ where G is a primitive of g. Then we have:
• If γ < +∞ and

(39)
2
√
α
√
β√

α+
√
β
<
√
γ

then for each k ∈ Z+
0 there exists mk such that for every m ≥ mk, (E)s has

at least 2k subharmonic solutions of order m which do not belong to the same
periodicity class, for each sufficiently large positive s, say s > s(l1, k,m) > 0
(Read α = 0 in case we substitute (28) with (30).)

• If γ = +∞, for each m > 1, there exists an arbitrarily large number of m-th
order subharmonic solutions of equation (E)s, for sufficiently large s. More
precisely, for each m > 1, there exists nm such that for each n ≥ nm prime
with m, there is a sn = s(l1,m, n) > 0 which satisfies : for every s > sn
there exist at least two subharmonic solutions of order m to (E)s which do

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ODES WITH ASYMMETRIC NONLINEARITIES 2381

not belong to the same periodicity class. Moreover, denoting by xi(·), i = 1, 2,
these solutions, xi(·)− g−1(s) has exactly 2n zeros on the interval [0,mT [.

Proof. The proof follows a similar argument as in Theorems 7 and 8, working in the
interval [0,mT ], instead of the interval [0, T ]. We consider at first the case which is
analogous to Theorem 7 and therefore we assume (28).

Suppose at first that γ < +∞. Let us fix two positive constants A and B such
that

T
√
α
√
β

π(
√
α+
√
β)

< A < B <
T
√
γ

2π

and take a positive integer m∗ such that

(m∗)−1 <
T
√
γ

2π
−B.

Fix k ∈ Z+
0 and consider the 2k disjoint intervals

]
A+ `B−A2k , A+ (`+ 1)B−A2k

[
,

with ` = 0, ..., 2k − 1.
Claim: There exists an m∗k ∈ Z+

0 with m∗k ≥ m∗ such that for every m ≥ m∗k
and ` ∈ {0, ..., 2k− 1} even, there exists at least an integer n`, which is prime with
m and such that

n`

m
∈
]
A+ `

B −A
2k

,A+ (`+ 2)
B −A

2k

[
.

Indeed, choose an arbitrary ` as above and observe that A + `B−A2k < A +

(` + 2)B−A2k . Adapting to the present setting the argument used in [13, proof of
Th.2.3], we can prove by the “Prime Number Theorem” [24] that there exists a
constant m` ∈ Z+

0 with m` > m∗ such that for every integer m > m` there exist
two prime integers n`1(m) and n`2(m) such that

n`1(m) ∈
](
A+ `

B −A
2k

)
m,

(
A+ (`+ 1)

B −A
2k

)
m

[
and

n`2(m) ∈
](
A+ (`+ 1)

B −A
2k

)
m,

(
A+ (`+ 2)

B −A
2k

)
m

[
.

We prove that n`1(m) is prime with m or n`2(m) is prime with m for m > m`.
In fact, if this is not the case, n`1(m)n`2(m) divides m, so that n`1(m)n`2(m) ≤ m.
Moreover, we know that n`1(m)n`2(m) > (Am)2 and so we obtain a contradiction
for m sufficiently large (m > A−2). Take now m∗k > max{m` : ` = 0, . . . , 2k − 1}
with also m∗k > A−2 and, every time when m ≥ m∗k, choose as n` one of the two
numbers n`1(m) and n`2(m) which is prime with m. Hence the claim follows.

Now, let m ≥ m∗k ≥ m∗ and consider the n` given by the claim. By the original
choice of A, B and m∗, we have that

2
√
α
√
β√

α+
√
β
<

2πn`

mT
<

2π(n` + 1)

mT
<
√
γ.

Since w(·, x) which is T -periodic is also mT -periodic, then we can apply Theorem
7 (if β < +∞) or Theorem 9 (if β = +∞), for the search of mT -periodic solu-
tions. Note that the positive eigenvalues for the mT -periodic problem take the
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form (2πi/mT )2, for i ∈ Z+
0 and replace the constant l1 with lm = ml1 in all

the corresponding estimates which appear in the proofs of the auxiliary lemmas.
Therefore we can conclude that for each sufficiently large s, (say s > s(l1, k,m))
and for each ` even in {0, . . . , 2k−1}, there exist two mT -periodic solutions xi,`(·),
i = 1, 2, of equation (E)s such that xi,`(·) − g−1(s) has exactly 2n` zeros in the
interval [0,mT [.

Let us check now that mT is the minimal period of each of these functions on
the set

{
jT : j ∈ Z+

0

}
. Indeed, suppose by contradiction that xi,`(·) is jT -periodic

with 1 ≤ j < m. The number of turns (rotation number) of zi,`(·) = (xi,`(·), x′i,`(·))
around the point (g−1(s), 0) on the interval [0,mT [ is n`. Let r` be the number of
turns on the interval [0, jT [. Clearly, the number of turns of zi,`(·) on the interval
[0,mjT [ will be n`j = r`m. This last identity is a contradiction with the fact that
n` is prime with m. Hence we have proved the existence of two subharmonics of
order m for each `. By Theorem 5 we know that x1,`(·) and x2,`(·) do not belong
to the same periodicity class for each fixed `. On the other hand, solutions with
different number of zeros cannot belong to the same periodicity class. Therefore
the 2k subharmonic solutions of order m, xi,`(·), are mutually non-equivalent.

At last, suppose that γ = +∞. Let m ∈ Z+
0 be chosen arbitrarily. Take an inte-

ger nm such that 4α < (2πnm/mT )2. Let n ≥ nm be an integer prime with m. We
can apply Theorem 7 for the search of mT -periodic solutions and conclude that for
each sufficiently large s (say s > s(l1,m, n)), there exist two mT -periodic solutions
xi(·), i = 1, 2, of equation (E)s, which do not belong to the same periodicity class,
such that xi(·)− g−1(s) has exactly 2n zeros on the interval [0,mT [. As above, we
conclude that these solutions are subharmonics of order m.

It remains to consider the case in which we assume (30) instead of (28), allowing
both the possibilities: a = −∞ or a > −∞. The proof follows precisely the same
lines as above, with the only difference that now we have to invoke Theorem 8 or
Theorem 9 for the existence of mT -periodic solutions. �

Note that Theorem 10 covers Theorem 3 in the Introduction. Moreover, combin-
ing Theorem 7 with Theorem 10, we can also obtain Theorem 1 in the Introduction.

Remark 4. It seems worth noticing the following points:
• Theorem 1 and Theorem 2 in the Introduction follow immediately from

Theorem 7 and Theorem 8, respectively, arguing as in the last part of the proof
of Theorem 10. Indeed, thinking at the map w(·, x) as an mT -periodic function,
for some m > 1, we can obtain the existence of mT -periodic solutions x(·) to
(E)s provided that the hypotheses of Theorem 7 or Theorem 8 are satisfied with
respect to the new period mT. In this case, the only problem we have to discuss is
about the minimality of the period for x(·) in the class {jT : j = 1, ...,m}. From
Theorem 7 and Theorem 8 we also know that the solutions we find have a precise
number of rotation, or, equivalently, x(·) − g−1(s) has a number of zeros which
can be determined exactly. Indeed, from the above recalled theorems and under
the assumptions on the coefficients α, β, γ and k, we find two solutions xi(·) (for
i = 1, 2), of period mT and such that xi(·) − g−1(s) has precisely 2k zeros in the
interval [0,mT [. Now, arguing as in the proof of Theorem 10, we can conclude that
the minimal period of xi(·) is precisely mT, if k and m are co-prime integers.
• All the remarks in Section 6, which are pertinent to the present setting for

the search of subharmonics, can be applied as well. The only point in which we
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cannot guarantee the minimality of the period is for the supplementary solutions
which are found without the use of the Poincaré - Birkhoff theorem (like, e.g. those
we obtain using the method of lower and upper solutions).

8. Final remarks

A last point which has been left out until now is to see what happens if we
interchange the behaviour of the function g at the extreme points of its domain.
More precisely, assume that g :]a, b[→ R is of class C1 and let G be a primitive of
g. Then we have the next results which are, in some sense, dual with respect to
Theorem 7, Theorem 8 and Theorem 10.

Assume that w satisfies condition (15) and suppose that one of the following two
assumptions hold:

(40) b ≤ +∞ and lim inf
x→b−

g(x) = −∞,

or

(41) b = +∞, lim inf
x→+∞

g(x) > −∞ and lim sup
x→+∞

g′(x) ≤ α <∞,

with α ≥ 0. Assume also that

(42) 0 < γ ≤ lim inf
x→a+

g′(x) ≤ lim sup
x→a+

g′(x) ≤ β ≤ +∞.

In comparison with Theorem 7 and Theorem 8, we can state:

Theorem 11. Suppose that (42) and (40) or (41) hold. Assume lim
x→a+

G(x) =

+∞, where G is a primitive of g and let k ∈ Z+
0 be such that

(
2
√
α
√
β√

α+
√
β

)2

< λk with

the convention that 4α < λk when β = +∞ and α = 0 in case that (40) is assumed.
Then we have:
• If β < +∞ and λj < γ, for some integer j ≥ k, then equation (E)s has at

least 2(j− k+ 1) harmonic solutions for each sufficiently large |s| with s < 0.
More precisely, for each s negative with |s| large and for k ≤ r ≤ j there
exist two T -periodic solutions xi(·), i = 1, 2, of (E)s, such that for each i,
xi(·)− g−1(s) has exactly 2r zeros in the interval [0, T [.

• If γ = +∞, for each integer j ≥ k equation (E)s has at least 2(j − k + 1)
harmonic solutions for each sufficiently large |s| with s < 0. More precisely,
for each s negative with |s| large and each k ≤ r ≤ j, there exist two T -
periodic solutions xi(·), i = 1, 2, of (E)s, such that for each i, xi(·)− g−1(s)
vanishes exactly 2r times in the interval [0, T [.

Similarly to Theorem 10, we have:

Theorem 12. Suppose that (42) and (40) or (41) hold. Assume that lim
x→a+

G(x) =

+∞, where G is a primitive of g. Then we have:
• If γ < +∞ and

(43)
2
√
α
√
β√

α+
√
β
<
√
γ
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then for each k ∈ Z+
0 there exists mk such that for every m ≥ mk, (E)s has

at least 2k subharmonic solutions of order m that do not belong to the same
periodicity class, for each s negative with |s| sufficiently large. (Read α = 0
in (43) in case that (40) is assumed.)

• If γ = +∞, for each m > 1, there exists an arbitrarily large number of m-th
order subharmonic solutions of equation (E)s, for each s negative with |s|
sufficiently large. More precisely, for each m > 1, there exists nm such that
for each n ≥ nm prime with m, there are at least two subharmonic solutions
of order m to (E)s that do not belong to the same periodicity class, for s
negative with |s| large. Moreover, denoting by xi(·), i = 1, 2, these solutions,
xi(·)− g−1(s) has exactly 2n zeros in the interval [0,mT [.

Theorems 11 and 12 follow from the corresponding Theorems 7 and 10 and
Theorem 8 applied to the differential equation

(Ẽ)s u′′ + g̃(u) = (−s) + w̃(t, u),

where g̃(x) = −g(−x) and w̃(t, x) = −w(t,−x). Observe that g̃(x) and w̃(t, x) are
defined in ]− b,−a[. A straightforward computation shows that x(·) is a solution of

(E)s if and only if u(·) = −x(·) is a solution of (Ẽ)s. The same trick can be used
to have a dual version of Theorem 9.

All the results in Section 6 which were derived from Theorem 7 and Theorem 8
can be stated in the corresponding dual version. In this manner, also [8, Theorem
1.2 (b)] can be derived.

Now, putting together all the results given in Sections 4, 6, 7 and 8 with the
above ones, it is possible to derive some conclusions in which we can consider a
rather exhaustive set of hypotheses.

Corollary 12. Let G : ]a, b[→ R be a function of class C2 with G′ = g, such that

|G(a+)| = |G(b−)| = |g′(a+)| = |g′(b−)| = +∞ and g′(a+)g′(b−) < 0.

Then, for each m ∈ Z+
0 , there exists an arbitrarily large number of m-th order

subharmonic solutions of equation (E)s, for an unbounded interval of s. More pre-
cisely, for each m ≥ 1, there exists a nm such that for each n ≥ nm prime with
m, there is a sn > 0 which verifies that either for s > sn or for s < −sn, there
exist at least two subharmonic solutions of order m to (E)s which do not belong to
the same periodicity class and oscillate around g−1(s), having precisely 2n cross-
ings with g−1(s) in the interval [0,mT [. We can discriminate whether s > sn or
s < −sn, according to the fact that g′(b+) = +∞ or g′(b+) = −∞.
Corollary 13. Let g : R→ R be a function of class C1 such that the limits g′(−∞)
and g′(+∞) exist and are finite. Assume that g′(−∞) 6= g′(+∞) and suppose that
max{g′(−∞), g′(+∞)} := g∗ > 0. Then, for each k ∈ Z+

0 , there exists mk such that
for every m ≥ mk, (E)s has at least 2k subharmonic solutions of order m which
are not in the same periodicity class, for each s belonging to an unbounded interval.
We can discriminate whether the parameter s has to be chosen in a neighborhood
of +∞ or in a neighborhood of −∞, according to the fact that g′(+∞) = g∗ or
g′(−∞) = g∗.

Remark 5. We describe the conclusions which can be drawn for the case in which the
uniqueness of the solutions for the Cauchy problems is not guaranteed. Precisely,
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suppose that w(t, x) is continuous and bounded on R×]a, b[ (not necessarily locally
lipschitzian) and g : ]a, b[→ R is continuous. In this case the results concerning
the global existence of the solutions are still valid without any change. At this
point, one could use the smoothing and approximation argument described for the
same context in [11] and apply each time the Poincaré - Birkhoff theorem to the
approximating planar systems depending on a index n. Hence it is possible to prove
that each time there are two fixed points, say z1

n and z2
n for the Poincaré map (or

for its iterates in case of the search of subharmonics) and all these fixed points
belong to the same annulus, thanks to some uniformity in the estimates. Then,
passing to the limit on two subsequences of fixed points taken from (z1

n)n and
(z2
n)n, converging respectively to z∗1 and z∗2 , we can see that periodic solutions exist

also for the original equation. These periodic solutions will satisfy (x(0), x′(0)) = z∗i
(i = 1, 2). However, we have no way to guarantee that z∗1 6= z∗2 and therefore, we
can conclude just finding at least one periodic solution with initial point in the
annulus, for the given equation, whenever at least two periodic solutions previously
occurred in the smooth case. All this expensive procedure makes sense only with
respect to the benefit of relaxing some restrictions on g and w we had to consider
before. In particular, one can see that in the results of Sections 4–7 one could
assume g of class C1 only on a left neighbourhood of b and relax the assumptions

on lim sup g′(x) in (28) to lim supx→−∞
g(x)
x ≤ α. Also in (29) for the subcase

b = +∞ one can take lim supx→+∞
g(x)
x ≤ β. Similar changes can be done to

improve (41) and (42), assuming g of class C1 only in a right neighbourhood of a.
We leave to the interested reader the care of restating the corresponding corollaries
under these slightly more general assumptions taking into account the “loss” in the
resulting number of periodic solutions.

We conclude this section and the paper with a choice of examples showing the
range of applicability of our results with respect to some previous ones.

Example 11. As a starting point, we consider the equation

(44) x′′ + c(x)x′ + x2 = s+ e(t),

examined by Fabry, Mawhin and Nkashama in [15]. In [15] it is proved that, for any
continuous function c(x), (44) has at least two periodic solutions having the same
period of e(t), for s > 0 and sufficiently large. We consider now the case c(x) ≡ 0,
so that (44) takes the form

(45) x′′ + x2 = s+ e(t).

With respect to (45) we recall also a result of Lupo, Solimini and Srikanth in [29]
where, for the corresponding two-point BVP (and the slightly modified forcing
term), the number of the solutions increases as s→ +∞ (see also [43] for a recent
contribution in this direction). In this case, assuming e(·) continuous and periodic
with minimal period T > 0, we can apply Corollary 8 and conclude that for any
positive integer n, there is a constant sn such that equation (45) has at least 2n+
1 harmonic solutions for all s > sn. One of these T -periodic solutions, like in
[15] and [7], lies between a constant lower solution and a constant upper solution
which are both negative, while the remaining 2n solutions oscillate around

√
s with
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respectively 2, 4, . . . , 2n crossings of
√
s in the interval [0, T [. Moreover, according

to Theorem 10, we know that for each pair of positive integers, m and n, we
can find a constant sm,n > 0 such that equation (45) has at least 2n periodic
solutions of minimal periodmT for all s > sm,n. These solutions oscillate around

√
s

respectively 2j1, 2j2, ..., 2jn times in the interval [0,mT [, where j1 < j2 < ... < jn
is a finite sequence of integers which are prime with m.

Example 2. As a second example, we consider a case of jumping nonlinearities
for the periodically perturbed equation

(46) x′′ + g(x) = s+ e(t),

with e(·) satisfying the same conditions as above. We also assume for a ≥ −∞,
that g : ]a,+∞)→ R is a continuously differentiable function such that

g′(a+) = G(a+) = +∞,

where G is a primitive of g in the interval ]a,+∞). Suppose now that

(47) lim
x→+∞

g′(x) = λ < +∞.

If λ > 0, the above conditions permit to enter in a setting already discussed by
Figueiredo and Ruf in [16], Fabry and Habets in [14] for the case a = −∞ and by
del Pino, Manásevich and Montero in [9], for the case a = 0. As a consequence of
these quoted results, equation (46) has at least one T -periodic solution for each s,
provided that λ 6= (πk/T )2 for all positive integers k. Here we can apply Theorem
11 (second part) and find that, for each positive integer n, there is a constant sn < 0
such that for each s < sn equation (46) has at least 2n harmonic solutions (whatever
a may be). We can be even more precise: for k0 ∈ Z+

0 such that (πk0/T )2 > λ, we
have that the solutions we find oscillate, respectively 2k0, 2(k0 +1), . . . , 2(k0 +n−1)
times, around a point cs in a right neighborhood of a, such that g(cs) = s. On
the other hand, if we apply Theorem 12, we know that for each pair of positive
integers, m and n, we can find a constant sm,n < 0 such that equation (46) has at
least 2n periodic solutions of minimal period mT for all s < sm,n. These solutions
oscillate around cs respectively 2j1, 2j2, ..., 2jn times in the interval [0,mT [, where
j1 < j2 < ... < jn is a finite sequence of integers which are prime with m and with
(πj1/mT )2 > λ.

Example 3. As a third example, we reconsider a problem previously analysed in
[18] about the dynamics of a charged particle moving on a line where one has placed
one or more fixed charges at fixed positions. In [18] the case of repulsive forces was
discussed. Here we examine also the situation in which some of the forces are of
attractive type and other are of repulsive type.

Following [18] we suppose at first that an electric charge Q is fixed at a point
d ∈ R. Let q be another charge of the same sign of Q which is free to move on one
side with respect to d and denote by x(t) the position of q at the time t. Assuming
an external forcing of the form p(t) = s+e(t) with e(·) as in the previous examples,
we are led to consider the equation

(48) x′′ − κ0
x− d
|x− d|3 = s+ e(t),
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with κ0 > 0 a fixed constant (see [18]). Equation (48) presents a singularity of
repulsive type at the point x = d. It follows from a theorem of Lazer and Solimini in

[28], that (48) has a T -periodic solution if and only if es := s+ T−1
∫ T

0 e(t) dt 6= 0.
Moreover, such a solution lies in ]d,+∞) or (−∞, d[, according to the fact that
es < 0 or es > 0 (for related results see also [22], [32] and the references therein).
As a consequence of [18], equation (48) has at least one m-th order subharmonic
solution for each m sufficiently large. We see now what happens when |s| becomes
large according to our results. If the charge q moves at the left of d, then we can
apply Theorem 7 for s > 0 with b = d and α = 0 < γ = +∞, while, if we are
interested in the motion of the free charge at the right of d, we apply Theorem
11 for s < 0 with a = d and α = 0 < γ = +∞. Thus, in any case, we find that
for each positive integer n, there is a constant sn > 0 such that equation (48) has
at least 2n harmonic solutions for all s with |s| > sn. These solutions lie in the
interval ]d,+∞) if s < −sn, while they are in (−∞, d[ if s > sn. Moreover, they
oscillate around a point in a right/left neighborhood of d, respectively 2, 4, ..., 2n
times in the interval [0, T [. Furthermore, we can apply also Theorems 10 and 12 and
obtain that for each pair of positive integers, m and n, there is a constant sm,n > 0
such that equation (48) has at least 2n periodic solutions of minimal period mT
for each s with |s| > sm,n. These solutions lie in the interval ]d,+∞) if s < −sm,n ,
while they are in (−∞, d[ if s > sm,n and oscillate around a point in a right/left
neighborhood of d, respectively 2j1, 2j2, ..., 2jn times in the interval [0,mT [, where
j1 < j2 < ... < jn is a finite sequence of integers which are prime with m.

In [18, Example 4.2], the case of a particle moving between two charges of the
same sign was considered too. In that case, we cannot tell anything new with
respect to [18, Proposition 4.2]. Then we examine the case in which the charges
have opposite sign. Suppose that two electric charges Q1 and Q2 of opposite sign
are placed at the points a and b, respectively, with −∞ < a < b < +∞. Let q be
another charge which is free to move between a and b and denote by x(t) its position
at the time t. Assuming, as above, an external forcing of the form p(t) = s + e(t)
with e(·) continuous and periodic of minimal period T > 0, we are led to consider
the equation

(49) x′′ − κ1

|x− a|2 +
κ2

|x− b|2 = s+ e(t),

with κ1 and κ2 nonzero constants having the same sign of Q1q andQ2q, respectively.
Now, if κ1 < 0 < κ2 we are in the setting of Corollary 11, whence if κ1 > 0 > κ2,
a corresponding dual result from Section 8 can be applied. In the former case, we
conclude precisely as for equation (45) above and thus we have that for any positive
integer n, there is a constant sn > 0 such that equation (49) has at least 2n + 1
harmonic solutions for all s > sn. One of these solutions lies near the attractive
singularity at a, while all the other ones oscillate around a point in a neighborhood
of the repulsive singularity at b. Subharmonic solutions of any order appear by
virtue of Corollary 12, as well. The structure of the set of subharmonic solutions
is similar to that described previously for equation (45). In the latter case, when
a repulsive force acts from a and an attractive one from b, we obtain an analogous
result for s negative with |s| large.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2388 C. REBELO AND F. ZANOLIN

References

1. A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singu-
larities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-247. MR 47:9377

2. M. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ.
Math. J. 24 (1975), 837-846. MR 51:13447

3. A. Castro and R. Shivaji, Multiple solutions for a Dirichlet problem with jumping nonlinear-
ities, II, J. Math. Anal. Appl. 133 (1988), 509-528. MR 89e:34031

4. R. Conti, Soluzioni periodiche dell’equazione di Liénard generalizzata. Esistenza ed unicità,
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u′′ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem, J. Differential Equations 95
(1992), 240-258. MR 93e:34062
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