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ABSTRACT 

Several path following algorithms based on the combination of three smooth 
penalty functions, the quadratic penalty for equality constraints and the quadratic 
loss and log barrier for inequality constraints, their modern counterparts, augmented 
Lagrangian or multiplier methods, sequential quadratic programming, and predictor- 
corrector continuation are described. In the first phase of this methodology, one 
minimizes the unconstrained or linearly constrained penalty function or augmented 

A homotopy path generated from the functions is then followed to 

steps are asymptotic to those taken b sequential quadratic programming which can 

robust, and a competitive alternative to sequential quadratic programming. 

optima Lagranf ity an using efficient predictor-corrector continuation methods. The continuation 

Numerica i test results show the method to be efficient, be used in the final steps. 
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1. Introduction 

Path following algorithms for the solution of constrained optimization have been 
revitalized in recent years, due in no small part to the claims and success of the 
Karmarkar algorithm in linear programming. The ones presented here can be viewed 
as a combination of various elements and techniques in nonlinear programming: three 
smooth penalty functions (quadratic penalty for equality constraints, quadratic loss 
and log barrier for inequality constraints), their more modern counterparts, 
augmented Lagrangian or multiplier met hods, sequential quadratic programming 
Newton's method), and predictor-corrcctor continuation methods for efficient path 

lollowing . The objective in this work then is to describe this class of algorithms and 
to present numerical evidence of their efficiency, robustness, and potential. 

One view (ref. 1) of these algorithms starts with the three aforementioned 
smooth penalty functions. One first performs an unconstrained or linearly constrained 
optimization of the penalty function. The minimizer then satisfies a set of first order 
necessary conditions (the gradient of the penalty function is zero when all constraints 
are incorporated into the penalty function) from which one can define an equivalent 
system of parameterized nonlinear equations. This system represents a perturbation of 
the Karush-Kuhn-Tucker first order necessary conditions, and the solution is followed 
to optimality using efficient predictor-corrector continuation methods. The simplest 
predictor-corrector steps are asymptotic to ' those taken in sequential quadratic 
programming, and thus the local convergence rates are the same as those of 
sequential quadratic programming. When shifts and weights are added to these three 
penalty functions and are adaptively chosen or updated during the optimization 
phase, one has the class of multiplier or augmented Lagrangian methods. 
Theoretically, one can expect a shorter path through the use of augmented 
Lagrangians (ref. 2, Theorem 12.2.1), which suggests that the use of these updates in 
the weights, scales, and shifts may be used to generate good paths to optimality. 

A different perspective of these algorithms evolves from sequential quadratic 
programming (SQP) itself. These SQP methods perform exceptionally well in 
minimizing function evaluations, but may be slow since the combinatorial complexity 
of the inequality constraints is reflected in the subproblems at each step. 
Furtlmmore, they are currently restricted to small to medium size problems with 
promise for large scale applications (refs. 2 and 3). Augmented Lagrangian methods, 
on the other hand, are currently used effectively for large scale problems with 
structured sparsity arising, for example, from discretized partial differential equations. 
Also, augmented Lagrangians are often used as merit functions for globalizing 
sequential quadratic programming. However, the minimizer of the augmented 
Lagrangian at any given stage is not a solution of the original problem, and thus the 
homotopy between the minimizer of the augmented Lagrangian and sequential 
quadratic programming may be viewed as an intermediate globalization technique. 
We find this to be very efficient. I 

In the sections to follow, we briefly outline the methodology and present in 
section seven the results of our preliminary numerical testing. 



2. Background and General Results 

For expendiency and convenience of presentation, we present i n  this 
sect ion the f i r s t  order necesssary and second order suff ic ient  conditions fo r  
the mathematical programming problem 

(2 .1 )  Min { f (x)  I h(x) = 0,  g(x) 1 0) 

where f Rn + R1, h: Rn -+ Rq and g: IRn -+ RP are assumed to be twice continuously 
differentiable in an open set R containin the feasible region 5i! = { x I h(x) = 0, 

the presence of a constraint qualification, there exist multiplier vectors X and p such 
that 

g(x) 1 0 }. The Karush-Kuhn-Tucker P irst order necessary conditions state that in 

T xs) T T where = f - h X - g p, M = diag(p), p = (pl )..., ,up) , X = (XI )...) . 

THEOREM 2.1 (ref. 4). Let (xo,Xo,p& be a solution o f  F(x,X,p) = 0. Assume j g 
and h are twice continuously differentiable in a neighborhood of xo and define two 

index sets 2 and A and a corresponding tangent space !i' b y  
A = {i: 1 _< i _< p ,  gi(xJ = O } ,  

T = { y  E Rn: Dxh(xJy = 0, Dgi(x&y = 0 (i E A)} .  
A = { i  E 2: ,uy # 0} ,  

F(zo,Xo,,uJ be nonsingular is (X,X,P) Then a necessary and sufficient condition that D 
that each of the following three conditions hold: 

(a) 2 = A; 

(b) { { V s i ( x d }  iE 2 U { Vxhj(zd}g=l} is a linearly independent collection of 

q + 
(c) the Hessian of the Lagrangian VxL is nonsingular on the tangent space T 

Furthermore, if (b) remains valid, po 1 0, g(x& 2 0, and (a) and (c) are 

(a') 

vectors where 121 denotes the cardinality o f  2; 
2 

at (xo,Xo,cld. 

replaced b y  
p% > o for all i E A, 
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‘ V2LAx - DxhTAx - DxgTAx + VL 

(3.1) F(x+Ax,X+AX,p+Ap) = DxhAx + h 

(M + AM)(DxgAx + g) . 

2 T T V LAX - Dxh AX - Dxg AX = -VL 
DxhAx + h = 0 
(M + AM)(DxgAx + g) = 0, 

+ O(A2) 

which, if p + Ap 2 0 is imposed, represent the first order optimality conditions for 
the quadratic programming subproblem 

T 2  MIN f + VfTAx + (1/2)Ax V LAX 
(3.2) ST DxhAx + h = 0 

DxgAx + g 2 0. 
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Second order information for both the constraints and the objective function are built 
into the quadratic programming subproblem through the appearence of V L. The 
generic Newton's method with no safeguards is as follows: 

ALGORITHM [NEWTON'S METHOD FOR NONLINEAR PROGRAMMING] 

2 

Initialize x = x 
For k = O J , . . . ,  until satisfied, do (a), (b), 

X = X , and p = p 
07 0 0 

(a) Compute f = f(xk), h = h Xk) ,  g = g(xk), Vf = Vf(xk), 
2 2 

r"' 
Dxh Dxh(xk), Dxg = Dxg(xk), v = v L(xk7Xk,&)7 

(b) Solve (3.2) for the correction Ax in x k and the multipliers 
4 + Ap 2 0 and Xk + Ax, 

(c) Update: X k + l  = X k  + AX, Xk+l = Xk + Ax, h+l = /hk+AP. 

The quadratic convergence of Newton's method for nonlinear equations is preserved 
for the nonlinear programming problem under conditions similar to those in nonlinear 
equations: 

Theorem 3.1 [Convergence of Newton's Method] Let 5 be a local solution of the 
nonlinear programming problem, assume that j g, and h are 3 functions whose 
second derivatives are Lipschitz continuous in a neighborhood of i, and suppose that 
the linear independence constraint qualijcation (condition (b)  in Theorem 2.1) is 
satisjed. Then there exist multipliers A and b 20 for which the l'arush-I'uhn-Tuc~ei. 
conditions (2.2) are valid. I f  conditions (a') and (b') in Theorem 2.1 are satisfied, 
then there is a neighborhood N of @,A$) such that if (xo,Xo,pJ is in N, then the 

iterates (xkXk,pd are dejined, remain in N and converge quadratically to (?,A$). 

As with Newton's method for nonlinear equations, there are the questions of 
linear algebra, updating techniques for quasi-Newton steps, and globalization methods. 
These questions are discussed, for example, in the review paper of Stoer (ref. 3),  the 
book of Fletcher (ref. 2), and the references therein. Two commonly used merit 
functions for globalization are the L1 penalty function 

P = vf + ( l / r )  C lhi(x)I + ( l / r )  C gj(x)- 

and the augmented Lagrangian 

2 La(x,X,p,r) = f + (1/2r) C (hi(x) - r i i )2  + (1/2r) [(g.(x) - rb.)- ] J J 
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where g-(x) = Min { g.(x), 0 }, r is the penalty parameter, and i and ,!i are the 
J J 

shifts or approximate multipliers. The use of the L1 penalty function as a merit 
function for sequential quadratic programming has proved to be highly successful for 
small to medium problems. Augmented Lagrangians on the other hand have as their 
domain of application large scale problems such as those that appear in discretized 
partial differential equations; however, the function evaluation count on small to 
medium problems is not nearly as favorable as that of sequential quadratic 
programming (ref. 5 ) .  On the other hand, sequential quadratic programming may be 
slow in comparison to augmented Lagrangian methods, primarily due to the 
combinatorial complexity of the inequality constraints which persists in the quadratic 
subprograms. we combine both approaches by using a few steps of 
augmented Lagrangians followed by a homotopy phase, and then sequential quadratic 
programming. 

4. 

In this work 

Homotopy Methods for Constrained Optimization 

The idea of a homotopy method is to embed a difficult problem into a 
parameterized set of problems such that at one parameter value the problem is 
"easy" to solve and at another value one recovers the "difficult" problem. One then 
continues the solution of this parameterized system from the easy problem to the 
desired one. For nonlinear e uations F 

are easy to solve, w ile at t = 1 one recovers the original problem. These 
homotopy methods tend to be quite robust, but currently are not as efficient as the 
use of merit functions with a modified or quasi-Newton method. The homotopy 
methods discussed here are generally very efficient, but the the easy problem is not as 
easy as the above ones for nonlinear equations in that the "easy" problem requires 
the solution of an unconstrained or linearly constrained optimization problem. 

To illustrate the idea and for later numerical comparisons, we first consider the 
mixed quadratic penalty-log barrier function 

= 0, two commonly used homotopies are 

= tF(x) + (1-t (x-a) (the homotopy). Indeed, at t = 0 these 
= tF(x) + i-t)(Fgx) - F ) (the global Newton homotopy) and 

P(x,r) = f + (1/2r) C hf(x) - r C ln(g.(x)) 
(4.1) J 

or in the more general form 

P(x,v,&p,a,w,6,r) = vf + (1/2r) C ai(ryihi(x) - rai -1 Xi) 2 
( 4 4  

- r C w. ln(g.(x) + rS.) 
J J J 

wherein weights ai and w., scales v and yi, and shifts Ai and Ji have been 
introduced. The homotopy generated from this penalty function depends on the 
system parameters, which can be adaptively chosen during the optimization phase. 

J 

To explain how one can derive a homotopy, we consider the simpler form 
(4.1). At r = ro, a minimizer, x of this penalty function satisfies 

0' 
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VP = Vf + C Vhi(hi/r) - C (r/g.)Vg. = 0, 

which along with the definitions Xi = -hi/r and pj = r/gj yield an equivalent 
system of parameterized nonlinear equations 

J J  

VL = 0, L = f - h  T X - g b  T 

(4.3) 
- .  

h + rX’= 0, 
Mg - re = 0, T M = diag(p), e = (1 ,..., 1) . 

A solution to this parameterized system at r = ro is given by X = -h(xo)/r and 
p = r/g(xo), componentwise. Furthermore, these equations represent the first order 
necessary conditions at r = 0 since p(r) > 0 for r > 0. Once the Optimization 
phase is complete, continuation techniques can be used to track the solution to 
optimality at r = 0. Further discussion of this homotopy can be found in the work 
of Poore and Al-Hassan (ref. 1). 

Another homotopy can be based on the quadratic penalty-loss function 

P(x,r) = f + (1/2r) C hi (x)  2 + (1/2r) C [gj(x)l2 (4.4) 

or more generally, the augmented Lagrangian function, 

(4.5) 
-1 * 2 

La(x,v,A,ji,o,$,~,p,r) = vf + (l /2r)  C oi(cyihi(x) - rai Xi)  

where g-(x) = Min { g.(x), 0 }, weights v, ai and $., shifts Ai and h., and scales ri 
and 0. have been introduced. These parameters can again be adaptively chosen 
during the optimization phase. 

J J J J 
J 

At a minimizer of the augmented Lagrangian La 

( 4 4  VLa = vVf + ( l / r )  C V(cyihi)(oicyihi(x) - rXi) 

+ (1/r) C V(p.g.)[($.P.g.(x) - rLL.)- ] = 0. 
J J  J J J  J 

The definitions X = -(Srh - r i ) / r  and p = -(@Bg - rj!i)-/r along with this equation 
yield the equivalent system 
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(4.7) 

T T VL = 0, L = vf - ( r h )  X - (Bg) ,U 

I'h + S-lr(X - i) = 0 S = diag(a) 

~ 

where S = diag (a) and @ = diag (4) represent the weights and I' = diag (y) and 
B = diag (0) the scales. The usual updates for the multipliers j\ and b (refs. 2 
and 3) can be used in the optimization phase. Note that the use of different scales, 
weights, and updated multiplier approximations all change the homotopy path, and 
thus may be used to generate "good" paths. Furthermore, the ill-conditioniiig 
present in the penalty method is no longer present in the homotopies generated from 
these penalty functions. A final important modification to these homotopies is the 
normalization of the mulitpliers (ref. 1) to prevent multipliers tending to infinity, 
which happens generically when the linear independence constraint qualification is 
violated. 

I 5. Continuation Methods 

! The system of parameterized equations posed in the previous section can be 
written as G(z,r) = 0 where r is the homotopy parameter and is arranged so that it goes 
from r > 0 to 0. The primary objective of this section is to briefly describe the 
methodology of traversing the path from ro = ro to optimality at r = 0. The idea 

is to generate a sequence of points {(zi,ri)}i=o with ro = r To get 

fmm ( Z i J i )  to ( Z i + 1 + + 1 ) ,  one first predicts a new point (zy+l,ry+l) near the curve 
and then corrects back to the curve to obtain the desired (zi+l,ri+l). Prediction is 
based on extrapolation of current and previous information about the solution. The 
extrapolation via polynomial interpolation of the solution values has been used for 
some time, but extrapolation of the tangents to the curve as is used here appears to 
be numerically more robust and efficient. A brief explanation of this methodology is 
iven in the remainder of this section, but a more comprehensive explanation can be 

found in the works of Keller (ref. 6) and Shampine and Gordon (ref. 7). 

A formal differentiation of G(z,r) = 0 with respect to a third variable s yields 
Davidenko differential equation 

0 

n and rn = 0. 
0 

dr + Dr 5 = 0, DZG 

I where s can be chosen to be arclength by adding the normalization 

dz 2 dr 2 IIZII + l G l  - 1 = o *  
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Once an orientation, ie dr is positive or negative, is known and if DZG is 
nonsingular, then one can write this system as the differential equation 

Thus given a point (Wk'sk) on the curve, the diffential equation can be integrated to 
obtain 

where f(w) denotes the tangent to the curve at the point w(s). 
'k,m 
predicted solution is taken to be 

If a polynomial 
of degree at most m is used to interpolate f at (wk-j,sk_j) for j = 0, ..., m, the 

Given an error tolerance, once can vary the order of this formula to achieve the 
largest stepsize, As, possible. This method varies from the standard 
Adams-Bashforth technique in that the stepsize and order are varied at each step. 

Once a predicted point is obtained the correction back to the curve can be 
obtained in several wa s. Two popular ones are the vertical correction, wherein the 
system of equations G&,r) = 0 is solved with r fixed at the predicted value, and the 
correction in a hyperplane orthogonal to the predictor direction. In this latter 
method one solves the augmented system of equations 

N w  = O  = O 

T P where N(w) = D (w - w k  ) represents the plane orthogonal to the predictor +1 
direction and passing the predicted point wfS1 and w = (z,r). 

6. Relation to Sequential Quadratic Programming 

The predictor+orrector method of the previous section ives steps toward the 

quadratic programming. The continuation phase may thus be viewed as a method 
for globalizin Newton's method. To explain the connection between the continuation 

our attention in this section to the the homotopy generated by the quadratic 
penalty-log barrier function, ie. 

optimal solution and is, in fact, asymptotic to those o a tained by sequential 

phase with t a ese two homotopies and sequential quadratic programming, we confine 
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T T VL = 0, L = v f - h  X - g p  
h + r X = O  
Mg - re = 0 M = diag(p). 

The result is that a Newton step as defined from the solution of (3.2) is asymptotic 
to a vertical correction plus an Euler prediction as r tends to 0. More precisely, if 
A = (Ax, Ax, Ap) denotes the Newton step as defined by the quadratic 
programming subproblems (3.2), A, = (Ax,, AX,, Ap,), the Euler predictor or 
tangent to the curve with Ar = -r, and A2 = (Ax,, AX2, Ap,) the vertical 
correction with Ar = 0, then 

A = A, + A2 + O(rllAX211, llA1I2) as r -t 0 and A + 0. 

A similar result applies for the quadratic penalty-loss function with the slight 
modification 

1 A = A, + A2 + O(rllAX2,Ap211) as r -t 0. 

This suggests that as soon as the predicted value reac'hes r = 0, one could just as 
effectively switch to sequential quadratic programming without a globalizer. 

7. Numerical Examples 

In this section we consider two approaches to constrained optimization based on 
the quadratic penalty-log barrier function and the augmented Lagrangian or shifted 
quadratic penalty-quadratic loss function. For the former we have previously 
compared the numerics and briefly summarize some of their properties (ref. 1). For 
the augmented Lagrangian approach we present some of our recent testing on some 
nontrivial test problems (ref. 5) to demonstrate the robustness, efficiency, and 
pot en t ial for the methodology . 

For the quadratic penalty-log barrier function we first use the loss function 
(g ) g to generate a point k at which g(k) > 0 or is at least close to feasible 
region { x : g(x). 2 0 } and then define a 6 so that g(k) + 6 > 0. Then we use a 
quasi-Newton with a BFGS update to minimize the penalty function P 

function P(x,r) = f(x) + h (x)h(x) / (2r )  - rC ln(gi(x) + rbi/r0) at some value of 
the penalty parameter, say ro, at which the problem is reasonably well conditioned. 
A quadratic-cubic line search and a Armijo stopping criterion (ref. S), modified to 

method. Once the minimization problem is solved, continuation techniques are used 
to track the solution to optimality at r = 0. The initial value of ro = .1 has been 
used in the numerical experiments reported in the table below under the heading 
PENCON, but scaling has not been used. Additional information can be found in  
(ref. 1). 

- T  - 

, T 

I maintain feasibility (g(x) + 6 > 0) has been used to globalize the quasi-Newton 



For the quadratic penalty-loss function, scaling and adaptive choices of the 
weights and scales have been used. For this penalty function, one does not need an 
initial feasible point for the inequality constraints. Again the BFGS update has been 
used, but the line search has been modeled after that of Fletcher (ref. 2). 

To get some estimation of the relative performance of this algorithm, we have 
solved several test problems from the book by W. Hock and K. Schittkowski (ref. 5 )  
and give a comparative summary of the number of function evaluations in the table 
below. codes other than PENCON and LOSSCON 
are taken from (ref. 5). Consistent with those function evaluation counts, we count 
the evaluation of a p dimensional vector as p function evaluations; however, we do 
not count upper and lower bounds on variable since they are handled directly in the 
code and gradient evaluations of linear constraints are counted only once. The 
approximation of the Hessian of the Lagrangian in the continuation phase is based on 
finite differences (ref. 8). 

CODE AUTHOR METHOD 

VF02AD Powell Quadratic Approximat ion 
OPRQP Bart holomew-Biggs Quadratic Approximat ion 
GRGA Abadie Generalized Reduced Gradient 
VFOlA Fletcher Mu1 t i p l  i e r  
FUNMIN Kraft Multiplier 
FMIN Kraft , Loot sma Penalty 
PENCON Al-Hassan, Poore Penalty-Cont inuat ion 
LOSSCON Lundberg , Poore, Yang Loss Funct ion-Cont i n u a t  ion 

CODE: VF02AD OPRQP GRGA VFOlA FUNMIN FMIN PENCON LOSSCON 
PROB. NO.  

5 16 16 86 32 38 200 26 16 
10 48 126 678 280 554 687 88 63 
12 48 132 277 300 492 306 130 68 
13 180 300 192 565 928 4,178 269 209 
14 36 126 108 192 726 838 107 91 
15 30 165 508 377 496 2,464 113 
19 78 1,785 314 838 3,339 66 1 423 304 
20 160 200 102 383 728 4,094 282 104 

206 646 421 482 414 155 162 29 52 

The function evaluation for the 

** ** ** 2,804 118 ** 1,800 3,857 

FUNCTION EVALUATION COUNT **indicates f a i l u r e  

Comparisons from this table illustrate that these penalty-continuation algorithms 
currently come in second and occaSionally first and third; however, the methodology 
is quite robust, primarily because of the robustness of penalty paths leading to 
optimality and the robustness of the continuation methodology. The answers given 
by PENCON and LOSSCON have approximately twelve digits of accuracy on a 14+ 
digit CDC machine, whereas the remaining answers listed above are computed on a 
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10 digit machine (ref. 5 )  and those for VF02AD are generally to low accuracy. 
Furthermore, the quadratic penalty-loss function tends to  perform a little better than 
the quadratic penalty - log barrier function with the current implementations. 
Scaling yields a significant improvement in some problems by reducing the number of 
function evaluations required in the unconstrained optimization phase and can reduce 
the number of steps taken in the continuation phase. The use of multiplier updates 
can also significantly reduce the length of the homotopy path but currently requires 
more function evaluations due to the reoptimization required after an update. These 
updates, however, may be useful for the large scale problems. 

8. Summary and Conclusion 

One of the objectives in this work has been to examine homoto y methods 

constraints and the log barrier and quadratic loss function for inequality constraints, 
and their modern counterparts, augmented Lagrangian or multiplier methods. We 
have shown that these methods are asymptotic to sequential quadratic programming 
and are competitive with these methods. However, considerable work will be 
required on large scale problems to assess their full potential, 

The robustness and efficiency of this class of algorithms based on these smooth 
penalty functions, augmented Lagrangians, the derived homotopy, and 
predictor-corrector continuation techniques have been illustrated in Section 7. The 
methodology shows considerable promise and potential for solving constrained 
optimization problems; however, as with any method a word of caution is 
appropriate. One can construct simple examples illustrating the following situations 
for penalty paths: given 6 > 0 a penalty path may exist only for the penalty 
parameter r 2 6 or only for r 5 6 ,  may not exist at  all, may diverge, or may exist 
for r > 0 but the limit point at r = 0 is not a local minimum of the original 
problem. (When this last situation occurs, the Karush-Kuhn-Tucker equations have 
a singularity.) In spite of these examples penalty path following is a mathematically 
robust method of solving constrained optimization problems as is illustrated by the 
examples in Hock and Schittkowski (ref. 5 ) ,  and these homotopy methods appear to 
make them efficient and a Competitive alternative to the early stages of sequential 
quadratic programming. 

generated by three smooth penalty functions, the quadratic penalty P or equality 
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