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MULTIPLIER-FREE HALF-BAND FILTERS

e This pile of lecture notes shows how to design

half-band FIR filters without general multipliers.

e These filters can be used as building blocks for
constructing multiplier-free superresolution deci-

mators and interpolators.

e They have been used in the article (a copy of

this article as well as the conference talk are in-

cluded):

e T. Saramaki, T. Karema, T. Ritoniemi, and H.
Tenhunen, ”Multiplier-free decimator algorithms
for superresolution oversampled converters,” in
Proc. 1990 IEEE International Symposium on
Circuits and Systems (New Orleans, Louisiana),

pp. 3275-3278, May 1990.
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What Are Half-Band FIR Filters?

e For a half-band FIR filter, the transfer function
is of the form
2M
H(z) =Y _hln]z™", h[2M —n] = hn],
where M 1s oT(L;dO.
e For these filters,
h[M]=1/2
h[M+2r]=0 for r==1,%£2,...,£(M —1)/2.
o A filter satisfying these conditions can be gener-

ated in two steps by starting with a Type II (M

is odd) transfer function

G(z) =) g[nlz™", gln]=g[M —n].

e In the first step, zero-valued impulse-response val-
ues are inserted between the g[n]’s [see Figures
(a) and (b) in the following transparency|, giv-
ing the following Type I transfer function of or-

der 2M:
F(z) =Y fln)= = G() = Y glnle™"
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Generation of the Impulse Response of a Half-
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e The second step is then to replace the zero-valued
impulse-response value at n = M by 1/2 [see Fig-
ure (c¢) in the previous transprency|, resulting in

the desired transfer function

Z hn]z™" = —z_M+F “M+Z gln]z""",

e This gives h[M]| = 1/2, h[n] = g[n/2] for n even,
and hln] =0 for n odd and n # M, as is desired.



Filter Design

e The zero-phase frequency responses of H(z), F(z),
and G(z) are related through

Hw)=1/2+ F(w) =1/2 + G(2w).

e Based on these relations, the design of a low-
pass half-band filter with passband edge at w,
and passband ripple of 6 can be accomplished by
determining G(z) such that G(w) oscillates within
1/2+6 on [0,2w,] [see Figure (a) in the following

transprency].

e Since G(z) is a Type II transfer function, it has

one fixed zero at z = -1 (w =m).

e (G(z) can be designed directly with the aid of the
Remez algorithm wusing only one band [0, 2w,
D(w)=1/2, and W(w) = 1.

e Since G(z) has a single zero at z = —1, G(w) is
odd about w = .

e Hence, G(27 — w) = —G(w) and G(w) oscillates
within —1/2 £ 6 on [27m — 2wy, 27].
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Design of A Lowpass Half-Band Filter
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The corresponding F(w) = G(2w) stays within
1/24+6 on [0,w,] and within —1/2+4 on |[7—w,, 7|
[see Figure (b) in the previous transparency].

Finally, H(w) approximates unity on [0,w,] with
tolerance § and zero on [r — w,, ] with the same
tolerance 0 [see Figure (c) in the previous trans-

parency|.

For the resulting H(w), the passband and stop-
band ripples are thus the same and the passband
and stopband edges are related through w; = m —
Wp.

In general, H(w) satisfies
Hw)+ H(m—w)=1.

This makes H(w) symmetric about the point w =
n/2 such that the sum of the values H(w) at
w=wy < /2 and at w = ™ —wy > 7/2 is equal
to unity [see Figure (c) in the previous trans-

parency].
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Subfilter Approach for Designing Half-Band
Filters

e According to the previous discussion, a half-band
filter transfer function of order 2M with M odd

1s expressible as

1
H(z) = iz"M + G(2?),
where G(z) is a Type II transfer function of odd

order M (having allways a zero at z = —1).

e Furthermore, the design of H(z) in such a way
that H(w) approximates on [0,w,| unity with de-
viation § and on |7 — w,, m| zero with the
same deviation o0 can be converted into the de-
sign of G(z) such that G(w) approximates 1/2 on
0, 2w,] with deviation 4.

e In order to construct such a transfer function
without general multipliers also for a small value

of §, we generate G(z) as follows:

G(z) =) az "R [F()", (A)
[=0



Here, F'(z) is a Type II transfer function of odd
order K.

The order of G(z) is thus (2L + 1)K and the de-
lay of each term in the summation of Eq. (A) is
(2L+1)K/2, as is desired to guarantee the linear-

phase performance.

Efficient implementations of the proposed overall
filter for decimation and interpolation purposes

are depicted in the following transparency.

The zero-phase frequency response of the above

G(z) is expressible as

where
(K-1)/2

Flw)=2 Z FIK —1)/2 —n]cos[(n+1/2)w].

n=0
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Implentations of the Proposed Half-Band Fil-
ters for Sampling Rate Alteration by a Factor

of Two

e The first and second figures show the decimator

and interpolator structures for L =3 and K = 21.

e These are commutative structures where delay

terms have been shared (F(z) = F3(z)).
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Simple Design Technique

Here, we concentrate on the cases with L = 1,
L =2, and L = 3.
For L = 3,

G(2) = agF(2) + a1[F(2)]> + as[F (2)]° + as[F(2)]"
and
G(w) = agF(w) + a1[F(w)]? + ax[F (w)]® + as[F(w)]".

For L =2, a3 =0 and for L =1, a3 = ay = 0.
Assume that F'(w) oscillates within 1 —¢; and 1+
€2 with €; > 0 and €2 > 0 on [0, 2w,].

Then, we state the following problem: Given L
and 0, find the adjustable parameters a; as well
as €; and e such that G(w) oscillates within
1/2£6 on [0, 2w,).

If the value of F(w) is 1 + ¢, where € is either

positive or negative, then the corresponding value

of G(w) is

G(w) = ag[l + €] + ai[l + €* + ay[1 + € + as[1 + €],
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where
(14 €’ =14 3¢+ €,
[1+ €]’ =1+ 5¢+ 10€® + 10€® + €,

and
(14 €]" =1+ 7e+ 21 + 35¢° + 35¢*
+21° + TP + €
For L = 1, the selection

ag =3/4, a;=—1/4
gives
Gw) =1/2+ A,

where

A= —(3/4)€ + ¢,

that is, the constant coefficient is equal to 1/2

and the coeflicient of € is zero.

For L = 2, the selection
ag — 15/16, a; — —10/16, CL2:3/16

gives

Gw)=1/2+ A,
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where
A= —(5/4) + (15/16)e* 4+ (3/16)€”,

that is, the constant coefficient is equal to 1/2

and the coeflicients of ¢ and €% are zero.

For L = 3, the selection
ag = 35/32, a1 = —35/32, ay =21/32, a3 = —5/32

gives

Gw)=1/2+ A,
where
A = —(35/16)e* — (21/8)e® — (35/32)e® — (5/32)¢’,

that is, the constant coefficient is equal to 1/2

2

and the coefficients of €, €2, and € are zero.

In all the above cases, the variation of G(w)
around 1/2, denoted by A, is significantly smaller

than the variation of F'(w) around unity, e.

In the following, we consider two cases. In the
first case, referred to as Case A, it is required

that —0.001 < A < 0.001. In the second
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case, referred to as Case B, it is required that

—0.000001 < A < 0.000001.

e In Cases A and B, the stopband attenuations of
the overall half-band filters are 60 dB and 120
dB, respectively.
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L=1,ap0=214272q, =-272

In this case, the deviation of G(w) from 1/2, de-
noted by A, is related to the deviation of F(w)
from unity, denoted by €, through the equation

A= —(3/4)® + €.

The following two transparencies give plots of the
above equation for both Case A (|JA] < 0.001)
and Case B (|A| < 0.000001).

It is seen that in Case A F'(w) is allowed to vary

within the limits 1 —¢; and 1 + €9, where
e; = 0.0367405, €3, = 0.0362959,

to satisfy —0.001 < A < 0.001.

In Case B, F(w) is allowed to vary within the

limits 1 — ¢; and 1 4 €5, where
€1 = 0.00115492, e, = 0.00115447,

to satisty —0.000001 < A < 0.000001.

The disadvantage of the above selections of ag

and a; 1s that the maximum value of A is zero.
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e Better results, that is, both ¢ and €3 become
larger, is obtained by changing a;. This is con-

sidered next.
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Case A: L=1,ay=2"142"2, gy =-2"242710

e In this case,
A=—(3/4)e* + e+ 27101 + ¢)°.

e As seen from the following transparency, in this

case

e; = 0.0499145, €y = 0.0529520.
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Case B: L=1, qp=2"14+22, g, =—-2"242"2

e In this case,
A=—(3/4)+ &+ 271 +¢).

e As seen from the following transparency, in this

case

er = 0.00161249, e, = 0.00161544.
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L=2,a0=2"-2"% aq;=-21-273, qp =23+4+274

e In this case,
A= —(5/4) + (15/16)e* + (3/16)€°.

e As seen from the following two transparencies, in

Case A,
€1 = 0.0951037, €, = 0.0907807,

whereas in Case B,

e; = 0.00930483, €y = 0.00926174.

e In these cases, A takes both positive and nega-

tive values.
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L=3a=2"+2%4+27 aq = 20 —27% - 275,
ay=2"14274+27% g3 =—-27% - 27

e In this case,
A = —(35/16)e* — (21/8)€® — (35/32)€® — (5/32)€".

e As seen from the following two transparencies, in

Case A,
€1 = 0.153309, €, = 0.140341,

whereas in Case B,

e; = 0.0262086, €y = 0.0258028

e The disadvantage of the above selections of aq,
a1, as, and ag is that the maximum value of A

1S zero.
e Better results, that is, both €¢; and €3 become
larger, is obtained by changing a3. This is con-

sidered next.
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Case A: L =3, ag=2"+2"44+2"°, q; = —20—274—
2_59 Ao = 2714273 4 2_5, as = —9=3 _ 975 4+ o1

e In this case,
A = —(35/16)e* — (21/8)€® — (35/32)€"
— (5/32)" + 271 (1 + ¢)".
e As seen from the following transparency, in this

case

€; = 0.158884, €3 = 0.174905.
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Case B: L =3, a9 =24+2"%4+275, q; = —20—274—
270 a4y =2"1427 427, g3 =-279—-27° 4272

e In this case,
A =—(35/16)e* — (21/8)€® — (35/32)€°
— (5/32)€" +2720(1 + €)".
e As seen from the following transparency, in this

case

€1 = 0.0302632, €, = 0.0313141.
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Example

e It is desired to design a half-band decimator in

such a way that

1) the sampling rate reduction ratio is 2 and the

output sampling rate is 44.1 kHz.

2) Components alising into the band from 0 Hz
to 20 kHz are attenuated at least 120 dB.

e In this case the problem is to design G(z) such
that the deviation of its zero-phase frequency re-

sponse G(w) from 1/2 is at most 0.000001 in the
passband.

e The passband edge is at

2w, = [20/(44.1/2)]7 = 0.90703.

o We select L =3, ag =2 +2% 4275 g = —-20 —
274 — 270 ay =271+ 2734+ 27° and a3 = —27° —
275+ 2720,

e In this case, the problem is to design an odd or-
der F'(z) such that its zero-phase frequency re-

sponse F(w) stays within the limits 1 — ¢ and



- 24 -

1+ € on [0, 2w,| with

e; = 0.0302632, € = 0.0313141.

The design can be accomplished with the aid
of the Remez algorithm by using a single band
[0, 2w,]. The desired function is (2 — €; + €) =
1.00052545, whereas the allowable deviation is 1+
eo — 1.00052545 = 0.03078865.

The given criteria are met by F(z) of order 21

and having the impulse-response coefficient values
flo] = fl21] =27° f[1] = f[20] = —27" - 27",
fl2 = f[19] =27° f[3] = f[18] =27° — 277,

fl4] = fl17) = 27", f[5] = f[16] = —27° —27"—27",

fl6] = f[15] = 27%—27%, f[7] = f[14] = —27*-27°-27",

f[8] = f18] = 27°=27%, f[9] = fl12] = —2724+27°+277,

f[10] = fl11] =27t +273 4277

These values have been obtained by first round-

ing the coefficients of F(z) to 8 fractional bits.



g
This rounding gives f[10] = f[11] = 163 -27° and
fI9] = f[12] = —53 - 27% which are not express-
ible as three powers of two. Therefore, they are
rounded to the nearest three powers-ot-two resp-
resentations, giving f[10] = f[11] = 162273 and
f19] = f[12] = —54 - 278,

In the following, there are six transparencies illus-
trating the chracteristics of F'(z), G(z), and the
resulting overall half-band FIR filter H(z) with
passband and stopband edges at w, = 0.4535157
and ws; = 7 — w, = 0.5464857 and a 120-dB atten-

uation in the stopband.

In addition, there are two Matlab-files, halquan.m
and half.m. The first file finds the above F'(z),
whereas the second file plots the responses for
F(z), G(z), and H(z).

In the very end of these lecture notes there are
the following article as well as the corresponding

conference talk:

T. Saramaki, T. Karema, T. Ritoniemi, and H.
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Tenhunen, ”Multiplier-free decimator algorithms
for superresolution oversampled converters,” in
Proc. 1990 IEEE International Symposium on

Circuits and Systems (New Orleans, Louisiana),

pp. 3275-3278, May 1990.
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Details for H(z) in the Passband [0, 0.4535pi]
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% Matlab-file halquan.m for designing

% the example F(z)

% can be found in SUN's: ~ts/matlab/sldsp

close all;clear all
N=21;e1=0.0302632;e2=0.0313141;

fo=[0 20/(44.1/2) ];

des=(2-e1+e2)/2;mo=[des des];

w=[1];

h = remez(N,fo,mo,w);

nbit=8;

hs=round(h*2/nbit)/(2*nbit);

%

% hs(10)*2/8=hs(13)*2/8=-53

% hs(11)*2/8=hs(12)*2"8=-53

% cannot be expressed as three powers of two
% therefore, hs(10)=hs(13)=-54*2/(-8)

% hs(11)=hs(12)=162*2/(-8)
hs(10)=-54"2/7(-8);hs(13)=hs(10);
hs(11)=162*2/(-8);hs(12)=hs(11);

figure(1)

[H,W]=zeroam(h,.0,1.,2000);
[H1,W1]=zeroam(hs,.0,1.,2000);
plot(W/pi,20*log10(abs(H)),"- -',W/pi,20*log10(abs(H1)));
axis([0 1 -90 10]);grid;

ylabel('Amplitude in dB'); xlabel('Angular frequency omega/pi');
title('Solid and dashed lines for quantized and ideal filters');
[H,W]=zeroam(h,fo(1),fo(2),2000);
[H1,W]=zeroam(hs,fo(1),fo(2),2000);

figure(2)

subplot(211)

plot(W/pi,H);grid

xlabel('Angular frequency omega/pi');
title('Passband: Ideal response H(omega)");
subplot(212)

plot(W/pi,H1-H);

grid;

ylabel(' Zero-phase frequency response’);
xlabel('Angular frequency omega/pi');
title('Passband: Quantization error E_b(omega)");
figure(3)

plot(W/pi,H,"- -,W/pi,H1);



title('Passband: Solid and dashed lines for quantized and ideal
filters");

ylabel('Zero-phase frequency response');

xlabel('Angular frequency omega/pi');



% Matlab-file half.m for plotting the responses
% for the example half-band FIR filter

% can be found in SUN's: ~ts/matlab/sldsp
clear all

close all

f(11)=162;f(10)=-54,f(9)=31;
f(8)=-21;{(7)=15;f(6)=-11;
f(5)=8;f(4)=-6;{(3)=4;

f(2)=-3;f(1)=4;

f=f*(2)\(-8);

for k=1:11

f(23-k)=f(k);end

figure(1)

[F,om]=zeroam(f,.0,2.,20000);
plot(om/pi,F);title('F(z)");

axis([0 1 0 1.05]);grid;
ylabel('F(omega)'),xlabel('omega/pi’);
figure(2)

plot(om/pi,F);

title('Details for F(z) in the Passband [0, 0.907pi] ');
axis([0 0.90703 1-.03 1+.03]);grid;
ylabel('F(omega)'),xlabel('omega/pi');

x=F;

a1=2M0)+2/N-4)+2/\(-5);
a2=-2"N0)-2/(-4)-2/(-5);
a3=2MN(-1)+2/(-3)+2/(-5);
a4=-2/\(-3)-2\(-5)+2/(-20);

F1i=x;

F2=F1.*F1;

F3=F1."F2;

F5=F3."F2;

F7=F5."F2;
G=a1*F1+a2*F3+a3*F5+a4*F7;

figure(3)

plot(om/pi,G);title('G(z)");

axis([0 1 0 .55]);grid;
ylabel('G(omega)'),xlabel(‘'omega/pi');
figure(4)

plot{om/pi,G-1/2);

title('Details for G(z) in the Passband [0, 0.907pi] ");
axis([0 0.90703 -.000001 .000001]);grid;
ylabel('G(omega) - 1/2'),xlabel('omega/pi’);



figure(5)
plot(om/(2*pi),20*log10(abs(G+1/2)));title('H(z));
axis([0 1 -160 10]);grid;

ylabel('Amplitude in dB'),xlabel('omega/pi’);

figure(6)

plot(om/(2*pi),G-1/2);

title('Details for H(z) in the Passband [0, 0.4535pi] );
axis([0 0.4535 -.000001 .000001]);grid;
ylabel('H(omega) - 1'),xlabel('omega/pi');
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OVERSAMPLING & DECIMATION

* Quantization noise attenuation
* Antialias filtering at input
* Pass band control

-with 44.1 kHz final sampling rate band pass edge at

20 kHz
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REQUIREMENTS FOR THE DECIMATOR

1+6, < |H(2/MB)) <1-6, for 0<f<a

@M <6, for (2-a)lt< f<md

fs
2

b

8, = 0.0001 and & = 0.000001 (120-dB attenuation).
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EQUIVALENT SINGLE-STAGE H(z)

H(z) = Ha() Ha(M) B2 ()G 2),
-4 L

]

- _pl—2z
G(Z)=2 P[l_z—l

K =M/8

P=LlogK
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DESIGN STRATEGIES

e Linear-phase = FIR design

* Several oversampling ratios

* Elimination of general multipliers
¢ Regular structures

¢ Minimal silicon area

HOW TO ACHIEVE?

* Multistage design
¢ Recursive running sum filter for the first stage
¢ Special half-band designs for last decimation

stages: Tapped cascaded interconnection of ider.-

tical subfilters

* Special equalizer for compensating the distortion
caused by the running sum filter

e The passband ripple of each half-band filter

is so small (6 =107 that no equalization

is required



WHY A TAPPED CASCADED INTERCON-
NECTION OF IDENTICAL SUBFILTERS?

General rules of thumb:

¢ The number of decimal bits required by FIR fil-
ter coefficients is decreased by one when the al-

lowable quantization error is doubled.

¢ One bit is saved when the filter order is made

one fourth
This fact is exploited:

The tap coefficients can be determined in a

straightforward manner such that
¢ They have simple representation forms

¢ The allowable variation for the subfilter be-

comes huge.
— The subfilter coeffic’2nts can be determinea
e Quantize the coefficients to few decimal bits

e Select the nearest simple representation form



RUNNING SUM G(z)

S L
G(Z) = 2 P{l _ z...l]

K =M/8
- P = LloggK

* sinct filter, efficient. anti-alias filter with high attenuation on
high frequencies

*  Straightforward efficient implementation on Si using
recursive and non-recursive sections

* no multipliers

* no overfolow problems in modulo arithmetic

* Decimation by factor 8 because

-only weak monotonic distortion caused at pass band

edges -
-with sinc® 120 dB stop band attenuation cannot

achieved for higher decimation ratios



RUNNING SUM G(z)
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FILTER Hi(z)

Required ripples: 6, = 6, = 0.000001

Hi(z) = 27127% + Hy(2%),
where
By(2) = R@)[@ +272)27% + (-2 + 27O [Fy(2)]]
with
Fi(z) =(-274-27" =271 + z7%)
(@27t 270 + 27,

Required ripple for Fj(z) is 0.0016.



COMPARISON WITH CONVENTIONAL
DIRECT-FORM HALF-BAND FILTER

Hi(z) = 271277 + Hy(2%)
o Hi(2) is of order 7
e 22 decimal bits are required compared to 11
bits
e The overall order is 20 percent lower .

e Longer filter has to be implemeted instead of

several copies of a low-order subfilter



AMPLITUDE IN dB

FILTER Ho(z)
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FILTER Hy(z)

Required ripples: ¢, = 65 = 0.000001

Hy(z) = 91,21 4 ﬁg(zz),

where
Hy(2) =Fp(2)[(2° + 274 + 275)2°
+ (——20 -4 2“5)2:"6[F2(z)]2
+ (271 + 27+ 2792 [Ry(2)])f
+(—27° - 27+ 270)[Ry(2)]°]
with

Fo(z) =(—27* = 2791 + z73)
+ @ +27t 4270 (7 4 27,

Required ripple for F3(z) is 0.031.



COMPARISON WITH CONVENTIONAL
DIRECT-FORM HALF-BAND FILTER

Hg(z) =92 17 4 ﬁz(zz)

o Hy(z) is of order 15
e 21 decimal bits are required compared to 5 bits
e The overall order is 30 percent lower

e Long filter has to be implemeted instead of sev-

eral copies of a low-order subfilter



AMPLITUDE IN dB

FILTER Hs(2)
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FILTER Hj(z)

Required ripples: 6, = s = 0.000001

Hs(z) = 2712717 4 Hy(2?)

where
Hy(2) =F3(2)[(2° + 27 + 27°)z™®°
+ (_20 _ 2-—4 _ 2—5)z—42[F3(z)]2
(2 4278 + 275 A F(2))"
+(=27% = 275 + 27)[F3(2)]]
with -

Fy(z) =271 +27) + (=277 =279z +277)
+275(272 + 27 + (—276 — 27 (=% + z718)

+275 + 27+ (=275 —27" - 2“8)(2'—5 + 2719
@2t (2 -2 2 Y
+ @2+ (22 2T )
+ (214278 + 20+ )

Required ripple for F3(z) is 0.031.



COMPARISON WITH CONVENTIONAL
DIRECT-FORM HALF-BAND FILTER

Hy(z) = 271278 + Hy(2%)
o Hj(z) is of order 81
e 24 decimal bits are required compared to 8 bits

e The overall order is 40 percent lower

e Long filter has to be implemeted instead of sev-

eral copies of a low-order subfilter

~



EQUALIZER Hy(z)

Hy(z) = 277 + (275 + 2710 Hy(2),
where |

ﬁ4(z) —=(—278 — 271 (1 + z71)
+ (2"8 +279 427 + 2719
+(—2 728427 ) (2 + 2~12)
+ (28 +278 4279z + 271)
+ (-2 27— 278z + 271
4'_‘(2-—3 — 976 _ 9-8y( 25 4 279
b2l r 2t 420z 0 + 278
+(2l+272-27%"

The equalizer is implemented in the above form
based on the fact the central impulse response value
is very close to unity and the other values are very

small



EQUALIZER Hy(2)

AMPLITUDE IN dB
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5TH ORDER DECIMATED NOISE
SPECTRA IN BASEBAND

* Aliased quantization noise from Sth order Sigma Delta
modulator after decimation by 64
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CONCLUSIONS
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Multiplier-Free Decimator Algorithms for
Superresolution Oversampled Converters

Tapio Saramiki, Teppo Karema, Tapani Ritoniemi, and Hannu Tenhunen

Signal Processing Laboratory
Tampere University of Technology
P. O. Box 527, SF-33101 Tampere, Finland

Abstract — This paper introduces a class of efficient linear-phase
FIR decimators for attenuating the out-of-band noise generated by
a high-order sigma-delta analog-to-digital modulator. The stop-
band attenuation of these decimators is more than 120 dB. The
decimators contain no general multipliers and a few data mem-
ory locations, thereby making them easily VLSI-realizable. This is
achieved by using several decimation stages with each stage con-
taining a small number of delays and arithmetic operations. Some
of the stages have been constructed using low-order building blocks
which are combined to give a selective filter using a few additional
tap coefficients and adders. The output sampling rate of these dec-
imators is the minimum possible one and the proposed decimators
can be used. with very slight changes. for many oversampling ra-
tios. Futhermore. these decimators attenuate highly the undesired
out-of-band signal components of the input signal. thus significantly
relaxing the anti-aliasing prefilter requirements.

I. INTRODUCTION

Efficient high resolution analog-to-digital conversion is obtained by
using oversampled sigma-delta modulation with one-bit quantization.
Modulation together with oversampling moves most of the quantization
noise out of the baseband. The noise lying out of the baseband can
then be reduced by using a decimator.

The bottleneck in superresolution sigma-delta A/D conversion has
been so far the analog sigma-delta modulator. A high-order noise shap-
ing is needed to achieve both a high resolution and a wide baseband [1],
[2]. The main problem with high-order modulators is their stability,
which seems to be solved in few years resulting modulator structures
that will reach the technology limits [3]. It is obvious that high-quality
digital decimators are needed in such systems. In order to effectively
attenuate the out-of-band noise and to simulatenously serve as a selec-
tive anti-alias filter. the stopband attenuation of the decimator must
be high. This results in a high filter order.

Recently, the authors have proposed a class of high performance
linear-phase FIR decimator structures which can be easily integrated
in a small area [4], [5]. Similar structures for efficient interpolators
have been given in [6]. The proposed decimators have been designed
to work at the output of a second-order sigma-delta modulator. In
order to optimize both the decimator performance (noise, baseband
frequency) and the VLSI realizability (circuit area. power, speed), the
proposed decimators have been designed to consist of several stages
with each stage requiring a small number of arithmetic operations.
The optimization is performed in such a way that no general multipli-
ers are required. To achieve this goal. some of the filter stages are con-
structed as a tapped cascaded interconnection of low-order subfilter.
The overall filter is constructed using a fixed part and an adjustable
part. With slight changes in the adjustable filter part, the overall filter
can be used for many oversampling ratios. Moreover. the output sam-
pling rate is the minimum possible one and the proposed decimators
attenuate highly the undesired input signal components lying out of
the baseband. thereby relaxing the anti-aliasing prefilter requirements.

In this paper, we show how ideas similar to those given in [4]~[6] can
be used for designing very selective decimators for high-order sigma-
delta modulators which have enhanced noise shaping characteristics.
If the resolution of the overall converter is desired to be at least 20 bits,
then it is advisable to have at least a 120-dB stopband attenuation.
whereas the maximum passband deviation from unity for the ampli-
tude response is desired to be less than 0.0001. In such cases. conven-

9 | 81GMA - DELTA | Wn)
N

LINEAR - PHABE ‘“ yin)

fs

Fig. 1. Block diagram for the A/D converter consisting of an over-
sampled sigma-delta modulator and a decimator filter.

tional FIR filters require very many bits for coefficient representations
but the proposed decimator algorithm can still be determined such
that no general multipliers are needed. This makes the proposed filter
structures even more attractive in cases where very high selectivity is
needed.

1. STATEMENT OF THE PROBLEM

The block diagram for the overall system is depicted in Fig. 1. The
output sampling rate of the sigma-delta modulator is M times the
final sampling rate fs. We state the amplitude requirements for the
decimator in the form

14 6p < |H(S¥/MD) <18 for 0< f< aé (1a)
B < by tor 2 - B < pamBam

When these specifications are satisfied. then the signal components
aliasing into the passband [0, a fs/2] are attenuated at least by 1/4s.
We consider the following criteria:

ép = 0.0001. &5 = 0.000001, o = 0.907.

In this case, the stopband attenuation is at least 120 dB. a has been
selected such that the passband edge becomes 20 kHz for the final
output sampling rate of fs = 44.1 kHz.

III. PROPOSED ('LASS OF DECIMATORS

To reduce the arithmetic complexity of the decimator, it is preferred
to construct it using several low-order stages. instead of one high-order
stage (see. e.g., [7]). A multistage implementation of the proposed
decimator is given in Fig. 2. The transfer function of the single-stage
equivalent can be written in the form

H(z) = Hy(M M)y M 1 MG, (20
where il K L
= =2P==] . (2b)
K = M/8, 20)
and
P=Llogyg K. (2d)

In Fig. 2. L = 5. By changing A". the same decimator structure can
be used for many decimation ratios Af. G(z) as given by Eq. (2b) is
the transfer function from the overall filter input to the input of Hj(z)
in the case where the sampling rate reduction by A is not performed.
The term in the parentheses in Eq. (2b) can be rewritten in the form

r=

CH2868-8/90/0000-3275$1.00 © 1990 IEEE
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Fig. 2.

Implementation of the proposed decimator.

Thus this term corresponds to linear-phase FIR filters. Linear-phase
filters with transfer functions consisting of the above recursive terms
have been used for sampling rate alteration in [8] and [9]. Using the
techniques proposed in these papers, we can implement G{z) using the
substructures shown in Fig. 2. We note that when the feedforward term
1—:7 N is transfered after the sampling rate reduction by a factor of A",
it becomes 1—z"1. It should be noted also that if 1’s or 2’s complement
arithmetic (or modulo arithmetic in general) and the worst-case scaling
are used, the output values of the filter G(z) implemeted as shown in
Fig. 2 are correct even though there may occur internal overflows in
the feedback loops realizing the term 1/(1 — =1y, The proofs of this
fact can be found in [9] and [10]. Also, under the above conditions,
the effect of temporary miscalculations vanishes from the output in
finite time and initial resetting is not necessarily needed. The scaling
constant 2~ has been selected according to the worst-case scaling.

The design criteria stated in the previous section can be optimally
met by selecting five terms in G(z). The explanation to this will be
given in the next section. In the following section. we shall show how
the filter parts Hj(z), Hy(z), H3(z), and Hy(z) can be properly de-
signed in such a way that they contain no general multipliers and the
overall filter meets the given criteria.

IV. DESIGN OF SUBFILTERS

To avoid the use of general multipliers, the subfilters H1(z), Ho(z),
Hj(z),and Hy(z) have been designed to be special tailored filters. The
transfer functions are

Hi(z)=2"179 4 {(52). (3a)
where
A=) = AT 42723 4 (272 1 270 R ) (30)
with
R =(-27t -2 T2 4 273
PR S Rl ) (3¢)
Hy(z) = 27172 4 fiy(s2). (@)
where
Hy(z) =Rz )20 + 274 4 275):79
+(=20 - 274 273 Sy
+ 27 4273 1275 e
+(=273 = 275 4 972 By (59 (46)
with
Fy(z)=(-274 —27%) (14273
+ 2t oty o2, (4¢)
Hy(z) = 2717147 fo(:2), (5a)
where
(=) =F3(2)[(20 + 274 4 +75): 03
+(=20— 27 2752y 2
+ @7 273 270 A e
+(=273 =275 4 270 [Fy (2] (56)
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Fig. 3. Amplitude response for the overall decimator.

with
Fy(s)= 278014+ 572 4 (27T = 278)s7 1 4 720
+2700:7 24 s (270 - 2R 4 )
+278 T I (25— 2T - 2P 4 16y
U R e P e NI e o e T
+@3 2R ) (27 2 2T 47
+7 4273404 ), (5¢)

—14)

Hy(z) = 277+ (270 4 9710)f5(2), (6a)

where
Hy(z)=(-278 27y 4 71

+2 8270 427 e 4 718

Fe2mT o2 8 pamllym2 4 12

+27 04278 273 4 7

+(=278 -2t 1)

+73 2027 P 4279

TN R R i Eat R

422 o975 (6b)

The amplitude response of the overall design is depicted in Fig. 3 for
M = 64. The subfilters H{(z). Hy(z). and H3(z) are special half-band
filters which can be implemeted effectively using a polyphase structure
based on the commutative model [11]. The structures resulting by
properly sharing the delays between the two branches are shown in
Fig. 4. Fig. 4(a) gives the structure for Hy(z). Fig. 4(b) for Hy(z).
and Fig. Hc) for H3(z). The tap coefficients are a; = 214 Q_f.
ag = =272 42720 p = 20 L 9= 405 gy = 20 _ 94 95,
by =21 +273 4275 and by =273 +275 1 220, Note that the tap
coefficients are the same for Hy(z) and H3(z). One of the branches for
all the three filters is a pure delay term. For Hy(z), the other branch is
a tapped cascaded interconnection of three identical subfilters of order
3. for Ha(z), the other branch cousists of seven identical subfilters of
order 3, and. for H3(z). seven identical subfilters of order 21.
Hg(=) has been designed to provide for the overall response at least

a 120-dB attenuation on [(2 — o) fs/2. fs]. Because of the periodicity
of the response of H;;i:‘"/z) [cf. Eq. (2a)]. the desired attenuation
is simultaneously achieved also elsewhere on [0..M fs/ 2] except for the
“extra” passbands of H3(:M/2) centered at the frequencies 4k fs/2
for k = 1,2,....M/4. This is illustrated in Fig. 5. where the solid
line gives the response of H3(:‘”/2) in the interval [0.32f5/2]. The
second periodic half-band filter H-z(:‘”/“) attenuates the first extra
passband and some other passbands. The response of this filter is
depicted by the dashed line in Fig. 5. It leaves the passbands centered
at 8kfs/2 for k = 1,2,....] M /8. The role of the third periodic filter
H](:M/g) (the response is given by a dash-dotted line in Fig. 5) is
to attenuate some of the remaining extra passbands. It leaves the

3276
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Fig. 4. Efficient implementations for the half-band subfilters. (a)
Hy(z). (b) Hy(z). (c) H3(=).
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Fig. 5. Amplitude responses for H3(3M/2) (solid line), ]12(;1”/4)
(dahed line). and Hl(:M/S) (dash-dotted line) in the interval
[0.32f5/2].

passband centered at 16k fs/2 for k = 1,2,...,M/16. The remaining
passbands are then attenuated by G(z). This is illustrated in Fig. 6,
where the thicker and thinner lines give the responses of G(z) and
114(:;\1 )H3(ZAI/2)H2(3A[/4 )Hl(:M/8)e respectively. When five terms
are used in G(z), the lowest attenuation of the peak just before the
frequency f = 16f5/2 is just 120 dB (see Fig. 3).

The last filter H4(z) has been designed to equalize the passband
response within the given limits. Since the passband ripples of the
half-band subfilters are very small, it can concentrate on equalizing the
distortion caused by G(z). Figure 7 gives the responses for G(z) (dash-
dotted line). H4(:M) (dashed line), and G(:)H4(:M) (solid line) in
the passband [0,0.907 fs/2]. It should be noted that the performance
" of the overall filter remains in the low frequencies practically the same
as M is varied, enabling us to use the same four fixed filters for various
values of M. Only the decimation ratio A needs to be changed.

The actual design of Hy(z). Hy(z). and Hs(z) has been accom-
plished by properly modifving the methods proposed in [12] for op-
timally designing FIR filters as a tapped cascaded interconnection of
identical subfilters. The decription of the resulting synthesis technique
falls outside of the scope of this paper (this will be a subject of another
paper).
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Fig. 6. Amplitude responses for G(z) (thicker line) and for
Hy(zM)H3(:M/2)Hy(=M/4) [, (:M/3) (thinner line).

0.3 T T T T T T T

0.2 ,/L
) -
© 4 - L
Z 0.1+ - -
w
8 o] '
g oo
= ] L
S -0.1 S B
< i e

-0.2 - "\.\_E

0.3 TS T S R R B S i

0 01 02 03 04 05 0.6 0.7 0.8 0.907

FREQUENCY IN FS/2

Fig. 7. Amplitude responses for for G(z) (dash-dotted line),
H4(:M) (dashed line), and G(:)H4(:M) (solid line) in the passband
[0.0.907 fs/2).

The main advantage of using identical subfilters lies in the fact
that it enables us to find an overall filter in such a way that there
are no general multipliers. If conventional half-band filters are used
for implementing Hy(z). Hy(z). and H3(z), the required orders of the
direct-form filters fll(:). ﬁg(:), and ﬁg(s) [ef. Egs. (3b), (4b), and
(5b)] are 7. 15. and 81, respectively. The delay terms in Egs. (3a),
(4a), and (5a) are in theses cases =0, 15 and ;781 respectively. If
direct rounding is used, the minimum number of decimal bits required
for the coefficient representations are for these designs 22, 21, and 24,
respectively. Because of a large silicon area required for implemeting a
long general multiplier, the overall area for the VLSI-implementation
of these filters is significantly more than that for the proposed design.

V. FILTER ARCHITECTURE

The filter structures described above lead directly to a very effi-
cient VLSI implementation for the overall decimator. If a fourth or
fifth order sigma-delta modulator is used, then an overall decimation
ratio of M = 64 is enough to achieve a 20-bit resolution. This is
illustrated in Fig. 8, where the dot-dashed and solid lines give the sim-
ulated baseband spectra at the output of a fifth-order modulator [3]
and after filtering and decimation, respectively. As seen from this fig-
ure, the contribution of the aliased components to the overall noise is
negligible.

For the decimation ratio of M = 64, the first filter stage G(z) re-
duces the sampling rate by A" = 8. This filter stage can be realized
by using a mixed bit-parallel and bit-serial architecture for maximum
layout compactness and speed. The layout is generated automatically
from the system level specifications using parametrized layout gener-
ators (for details, see [13]). In this case, a 16-bit wordlength is re-
quired and the serial FIR modules must operate at the rate which is
two times the modulator’s sampling rate. For the remaining filters,
an efficient circuit implementation can be achived if a dynamic one-
transistor RAM can be used for data memory locations. Since com-
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Fig. 8. Noise spectra in the baseband [0, fs/2] for a fifth-order sigma-

delta modulator [3]. The solid line gives the spectrum at the overall
system consisting the modulator and the proposed decimator and the
dot-dashed line gives the spectrum at the output of the modulator.

plicated multiplication operations have been eleminated by the filter
design. a simple dedicated filter processor [13] can be adapted with
one-transistor RAM structures. Because of the constant data flow in
RAM, no special refreshing circuitry is needed. The multiplication
operations in the proposed filter algorithm can be implemented using
three parallel shifters and one three-input adder/subtracter. A four-
word FIFO buffer is needed at the processor's input in order to get the
maximum throughput. The processor must operate at speed being 8
times higher (22.5 MHz) than that of the modulator. The processor’s
memory is addressed by three register: The ofl and of2 registers form
a pointer inside the subfilter and the seg register determines the base
address which this pointer is added to. The physical RAM location to
be addressed is:

address = seg + [(of1 — [of2/k1]) mod kq],

1 for Hy(z)
ky = {2 for Hy(z)

4 for Hg(z) and Hy(z).

where

4 for Fy(z) and Fy(z)
kg = {22 for I':g(:)
15 for Hy(z).

and [x] stands for integer part of z. In this way, the of2 register cre-
ates a ring buffer that is incremented correctly in spite of the decima-
tion. The proposed addressing mechanism provides an efficient usage
of RAM because only 3 additional memory locations are needed for the
stack. The ROM is also very compact because the decimators Hq(z),
Ho(z) and H3(z) repeat calls to the same subfilter subprogram. More-
over, the ALU is very small compared to a conventional multiplier that
would require at least 24-bits operating at the same rate. As a whole,
the area for the filter processor is dominated by the RAM and ROM
modules. For the proposed algorithm, the RAM is 224 20-bit words,
the ROM is about 100 20-bit words and the ALU has a 32-bit internal
accuracy.

VI. CONCLUSION

An efficient linear-phase FIR filter structure has been proposed for
eliminating the out-of-band noise generated by a high-order sigma-
delta analog-to-digital converter. The main advantages of the proposed
filter structure are:

1. It can be easily implemented in CMOS VLSI.

2. The quantization noise generated by the sigma»delta. modulator

is effectively attenuated.

3. Input signal components, such as possible sinusoidal compo-
nents, aliasing into the passband are highly attenuated, thus
relaxing the anti-aliasing prefilter requirements.

4. The same structure can be used for many oversampling ratios.

5. The overall filter structure contains no general multipliers. This
enables us to implement the filter using a simple and small-area
processor architecture.
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