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MULTIPLIER IDEALS OF MONOMIAL IDEALS

J. A. HOWALD

Abstract. In this note we discuss a simple algebraic calculation of the mul-
tiplier ideal associated to a monomial ideal in affine n-space. We indicate how
this result allows one to compute not only the multiplier ideal but also the log
canonical threshold of an ideal in terms of its Newton polygon.

Introduction

Multiplier ideals have become quite important in higher dimensional geometry,
because of their strong vanishing properties (cf. [1], [3], [4], [5], [6], [12]). They
reflect the singularity of a divisor, ideal sheaf, or metric. It is however fairly difficult
to calculate multiplier ideals explicitly, even in the simplest cases: the algebraic
definition of the multiplier ideal associated to an arbitrary ideal sheaf a requires
that we construct a log resolution of a and perform calculations on the resolved
space. In this note, we compute the multiplier ideal associated to an arbitrary
monomial ideal a. Like a, it can be described in combinatorial and linear-algebraic
terms.

We begin with some definitions. Let X be a smooth quasiprojective complex
algebraic variety. Let a ⊂ OX be any ideal sheaf. By a log resolution of a, we
mean a proper birational map f : Y → X with the property that Y is smooth and
f−1(a) = OY (−E), where E is an effective Cartier divisor, and E + exc(f) has
normal crossing support.

Definition 1. Let a ⊂ OX be an ideal sheaf in X , and let f : Y → X be a log
resolution of a, with f−1(a) = OY (−E). Let r > 0 be a rational number. We define
the multiplier ideal of a with coefficient r to be

J (r · a) = f∗OY (KY/X − brEc).
Here KY/X = KY − f∗KX is the relative canonical bundle, and b−c is the round-
down for Q−divisors. That J (r · a) is an ideal sheaf follows from the observation
that OY (KY/X − brEc) is a subsheaf of OY (KY/X): since f∗(OY (KY/X)) = OX ,
J (r · a) ⊂ OX . We write J (a) for J (1 · a).

We will now specialize to the case X = An.

Definition 2. Let a ⊂ C[x1, · · · , xn] be a monomial ideal. We will regard a as a
subset of the lattice L = Nn of monomials. The Newton polygon P of a is the
convex hull of this subset of L, considered as a subset of L ⊗ R = Rn. It is an
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unbounded region. P ∩L is the set of monomials in the integral closure of the ideal
a [7].

Notation 1. We write 1 for the vector (1, 1, . . . , 1), which is identified with the
monomial x1x2 . . . xn. The associated divisor div(1) is the union of the coordinate
axes. We use Greek letters (λ ∈ L) for elements of L or L ⊗ R, and exponent
notation xλ for the associated monomials. For any subset P of L ⊗ R, we define
rP “pointwise”:

rP = {rλ : λ ∈ P}.
We write Int(P ) for the topological interior of P , and bP c for {xbλc : λ ∈ P}.

We regard the Newton polygon “officially” as a subset of the real vector space
L ⊗ R = Rn; the interior operation Int(P ) relies on the real topology of this
vector space. However, we don’t always carefully distinguish P from the collection
of its lattice points P ∩ L, or from the collection of their associated monomials
{xλ : λ ∈ P ∩ L}.

Here is our main result:

Main Theorem. Let a ⊂ OAn be a monomial ideal. Let P be its Newton polygon.
Then J (r · a) is a monomial ideal, and contains exactly the following monomials:

J (r · a) = {xλ : λ+ 1 ∈ Int(rP ) ∩ L}.
Remark 1. The right hand side, {xλ : λ+1 ∈ Int(rP )∩L}, could instead be called
brP c. We state the theorem as we do in order to emphasize the monomial 1, which
is independently important.

Example 1. If a is generated by a single monomial, xλ, then the polygon P is the
positive orthant translated upward to λ, and

J (a) = bP c = P = a.

This is not surprising, because in this case a is already a divisor with normal
crossing support.

Example 2. Let us calculate the multiplier ideal of (x8, y6). The Newton polygon
is pictured in Figure 1. The distinguished integer vectors λ are those with the
property that λ+ 1 ∈ Int(P ). From Figure 1, we conclude that

J (x8, y6) = (x6, x5y, x4y2, x2y3, xy4, y5).

Notice that x3y2 is almost but not quite in J (x8, y6), because x4y3 lies on the
boundary, not the interior, of the Newton polygon.

Example 3. Let (ai)i∈n be positive integers, and let a = (xa1
1 , . . . , xann ). One

might call this a “diagonal ideal.” The only interesting face of the Newton polygon
P of a is defined by a single dual vector v = ( 1

a1
, . . . , 1

an
). Therefore J (a) contains

the monomials {xλ : v·(λ+1) > 1}. See [3, example 5.10] for an analytic perspective
on this same result. In this expression, the term v · 1 ( = 1

a1
+ · · · + 1

an
) may be

familiar: It is the log-canonical threshold of a (see below).

Example 4. Let g ∈ OAn be an arbitrary polynomial. One might hope that the
multiplier ideal associated to the (non-monomial) ideal (g) would be identical to
that associated to the monomial ideal ag generated by the monomials appearing
in g. This is not true. Consider g = (x + y)n in C[x, y]. By a linear change of
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Figure 1. The multiplier ideal of (x8, y6)

coordinates in which z = x+y we obtain g = zn, and can calculate J ((g)) in terms
of z. This gives J ((g)) = (g) 6= J (ag).

Notice however that for any polynomial g, (g) ⊂ ag. It is not difficult to show
that J (r · (g)) ⊂ J (r · ag) for all r. This containment is almost always strict, but
it does become an equality if both r < 1 and the coefficients of g are sufficiently
general.

These conditions guarantee that the multiplicity of the Q−divisor r · Div(g) is
less than one away from the zeroes of ag.

Example 5. Let a be a monomial ideal in An, and let P be its Newton polygon.
The log canonical threshold t of a is defined to be

t = sup{r : J (r · a) 6= OX}.

See [9] or [4] for a detailed discussion of this concept. The Main Theorem shows
that this must be equal to sup{r : 1 /∈ rP} (provided that J (r · a) is nontrivial–
the trivial case is an annoying exception). Thus the log canonical threshold is the
reciprocal of the (unique) number m such that the boundary of P intersects the
diagonal in the Rn at the point m1. In other words, in order to calculate the
threshold, we need only find where P intersects the diagonal. Arnold calls this
number m of the intersection point the “remoteness” of the polygon. In [2], he
proves that m = 1

t , in order to analyze asymptotic oscillatory integrals.

Example 6. For the “diagonal ideals” of Example 3, the intersection of the diag-
onal with the Newton polygon is easily calculated using the dual vector v. The
reader may check that its reciprocal is indeed v · 1. (If it happens that v · 1 > 1,
then the log canonical threshold is 1, and the multiplier ideal is trivial.) See [9] for
more details.
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Example 7. To illustrate these ideas, we calculate the log-canonical threshold of
a slightly more complicated ideal. Let

a = (xy4z6, x5y, y7z, x8z8).

After drawing the Newton polygon1, one sees that the diagonal in R3 intersects
the triangular face generated by the first three generators. Therefore, the fourth
generator x8z8 can be ignored. The intersection of the diagonal with the triangle
whose vertices have coordinates {(1, 4, 6), (5, 1, 0), (0, 7, 1)} is the point (m,m,m),
where m = 191

68 . The log canonical threshold of a is 1
m , or 68

191 .

The structure of the polygon P can in general be quite complicated, but it must
have a single face which intersects the diagonal. This face may not be simplicial,
but it certainly decomposes into simplices, one of which intersects the diagonal in
the same place and has no more than n vertices. This demonstrates that the log
canonical threshold of a is equal to that of a smaller ideal generated by no more
monomials than the dimension n of the space.

It has been conjectured 2 ([11],[9]) that for every dimension n the collection
Tn of all log canonical thresholds satisfies the Ascending Chain Condition (“All
subsets have maximal elements”). The restricted case of ACC for monomial ideals
follows from the fact that the partial order of all monomial ideals has no infinite
increasing sequences, nor even any infinite antichains [10]. This fact doesn’t require
any characterization of the thresholds. If ACC is true, then for any fixed dimension
n, there is a threshold tn closest to, but less than, one. We attempted to use the
characterization above to calculate tn in the monomial case, but were unsuccessful.
It is known that t1 = 1/2, t2 = 5/6, t3 = 41/42, Also, if we restrict to ideals of the
form a = (xb11 , . . . , x

bn
n ), then it is known that we can do no better than tn = an−1

an
,

where a1 = 2 and an+1 = a2
n + an. The sequence an is (2, 6, 42, 1806, . . . ). We used

a computer to calculate the log canonical threshold for large numbers of monomial
ideals, and found no evidence that the above pattern is wrong in general.

Proof of the Theorem

We will give a straightforward proof of the theorem, based on repeated blowups
of the underlying space. The basic proof structure is then an induction, but this
creates a problem: After a single such blowup f : Y → X the space of interest is
no longer An, so an inductive step doesn’t apply.

This difficulty is not a serious one, because Y is still locally An. Also, all of the
above definitions can be extended to Y and onward. For example, the “coordinate
axes” on Y should be taken to be proper transforms of those from X , together
with the exceptional divisor(s). The notion of a “monomial ideal” on X generalizes
on Y to an intersection of codimension-1 subschemes (monomials) supported on
the “coordinate axes.” These extensions are consistent with those obtained by
localizing on Y and identifying the coordinate patches with An in the obvious way.
A briefer argument can be made if one relies on the theory of toric varieties. We
will attempt to point out these connections where appropriate.

1Maple code illustrating this Newton polygon is available from the author by request. Unfor-
tunately, static 2−dimensional representations are not very helpful.

2Actually, Shokurov’s version of this conjecture is stronger than that presented here. It refers
to log canonical thresholds of effective Weil divisors on possibly singular ambient spaces.
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Definition 3. By a monomial blowup, we mean a blowup of X along the inter-
section of some coordinate hyperplanes. By a sequence of monomial blowups,
we mean a sequence of blowups, each of which is locally a monomial blowup.

Definition 4. Above we defined 1 as a divisor on X = An, but we will need a
more general notion. If Y is obtained from X by a sequence of monomial blowups,
we let 1Y be the divisor which is the sum of the proper transforms of the coordinate
axes in X , together which each exceptional divisor taken with coefficient 1. Thus 1
is the union of the “coordinate hyperplanes” of Y . We regard 1Y as an element of
the lattice LY , which must be defined as the free abelian group on the coordinate
hyperplanes in Y .

The toric picture better illustrates what’s going on here: the exceptional divi-
sors and the proper transforms of the coordinate axes are precisely those effective
divisors on Y which are invariant under the natural torus action. Hence LY is the
lattice of torically invariant divisors on Y . In general, the sum of all of the effec-
tive toric divisors (each with coefficient one) on a toric variety is the anticanonical
divisor. So 1X and 1Y are the torically natural anticanonical divisors, and LY and
LX are the lattices of torically invariant divisors.

Lemma 1. Let X be An or an intermediate blowup, and let f : Y → X be a
monomial blowup of X. Then

1Y − f∗(1X) = KY/X .

This can be seen without toric geometry by direct calculation; it is easy to pull
1X up to Y and count its multiplicity along the exceptional divisor.

Corollary 1. If f : Y → X arises by a sequence of monomial blowups, then

1Y − f∗(1X) = KY/X .

The corollary gives a convenient formula for KY/X when Y is a log-resolution
(via a sequence of monomial blowups) of the monomial ideal a. It remains to see
that such a space Y exists:

Lemma 2. Let X = An, and let a be a monomial ideal on X. Then there is a
sequence of monomial blowups f : Y → X which constitutes a log-resolution of a.

Proof. Here we must use some toric geometry. The ideal a defines a subset of the
lattice LX . The dual set of the ideal, {v ∈ L∗X : ∀λ ∈ P, 〈v, λ〉 ≥ 1}, defines a
rational polytope P ∗ in the dual lattice L∗X . To find a “monomial log resolution”
of a is to find a sequence of toric blowups which refine the polytope P ∗ in the
appropriate sense. This can be done because P ∗ is rational. The blowups required
are exactly those required torically to resolve the singularity of the space Bla(X).
Figure 2 indicates how this process might be used to resolve the cusp. See [8,
section 2.6] for more information on toric resolutions.

We now fix a monomial log-resolution f : Y → X , as in the lemma. We need to
examine the relationship between a and f−1(a). By the definition of f , f−1(a) is
a line bundle. It corresponds to a divisor whose support is contained in the proper
transforms of the coordinate axes from X and the exceptional divisors. We called
the collection of such divisors LY . To f−1(a) we may associate a single element
γ of LY , its “generator.” We may even give it a Newton polygon PY , namely the
positive orthant translated to γ.
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Figure 2. The resolution of the cusp ideal (x3, y2) via dual poly-
tope refinement. The large rectangle is the dual polytope P ∗ for
this ideal. The cusp is fully resolved because the ray representing
E3 contains the lower left corner of the dual polytope, splitting it
apart into sections without corners.

Lemma 3. Let f : Y → X resolve a by a sequence of monomial blowups. Let PX
be the Newton polygon of a, and let PY be as above. Since f∗ acts linearly on the
lattices, we may extend it to all of LX ⊗ R. When we do this,

1. f∗ takes the interior points of PX to interior points of PY .
2. f∗ takes the boundary points of PX to boundary points of PY .
3. f∗ takes the points not in PX to points not in PY .

Proof. The lemma hinges on three basic ideas. First, f∗ is certainly a map from
LX to LY , but because it is linear, f∗ extends to all of LX ⊗ R in a natural way.
As a map of real vector spaces, f∗ is continuous because it is linear. Second, for
each of the effective toric divisors, or “coordinate planes” Ei in Y ,

ordEi (f
∗(1X)) > 0.

The equality is strict because the blowups permitted are monomial. Third, we have
the standard equation f∗(OY (−E)) = ā, where ā is the integral closure of a.

We will prove the lemma by proving part 3 first for integral points λ ∈ LX ⊗R,
then for rational points, and finally for real points. We will prove part 1 by using
the strict positivity of f∗(1X). Finally, we’ll deduce part 2 by continuity.

Let λ be an integer point of LX not in PX . Then xλ /∈ ā = f∗(OY (−E)),
so f∗(λ) /∈ PY . If instead λ /∈ PX has rational coordinates, then we can clear
denominators. Let nλ be integral. nλ /∈ nP (a) = P (an), so f∗(nλ) /∈ f∗(an) =
nPY . (Here we have used the just-proved integer case, as well as the fact that the
resolution f : Y → X resolving a also resolves an.) Dividing by n gives f∗(λ) /∈ PY .
If λ /∈ PX has real coordinates, choose a rational µ ≥ λ also not in PX . Then
f∗(λ) ≤ f∗(µ) /∈ PY , so f∗(λ) /∈ PY .
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A standard convexity argument proves that if λ ∈ PX , then f∗(λ) ∈ PY . To
prove part 1 of the lemma, let λ be in the interior of PX . Choose µ ∈ PX and
ε ∈ R+ with λ = µ + ε1. Then f∗(λ) = f∗(µ) + εf∗(1). Also, f∗(µ) ∈ PY , and
εf∗(1) is strictly positive in every coordinate, so f∗(λ) is in the interior of PY .

Part 2 of the lemma follows from the continuity of the map f∗.

We can now give the proof of the main theorem. Because J (r · a) is invariant
under the natural torus action, it must be a monomial ideal. We characterize the
monomials xλ in J (r · a). By definition, xλ is in J (r · a) if and only if

div(f∗(xλ)) +KY/X − brEc ≥ 0

(recall that OY (−E) = f−1(a)). This condition simply means that

div(f∗(xλ)) +KY/X is in brPY c
(also recall that brPY c = {xbλc : λ ∈ rP}). Using the calculation of KY/X from
Lemma 1, this can be rewritten

div(f∗(xλ))− 1Y + f∗(1X) ∈ brPY c.
This is of the form {divisor}−1Y ∈ brPY c, so we rewrite it as {divisor} ∈ int(rPY ),
obtaining

div(f∗(xλ)) + f∗(1X) ∈ int(rPY ).

But this is just a condition on divisors from X . By Lemma 3, parts 1 and 2, it is
equivalent to (λ + 1X) ∈ Int(rPX ). The theorem is proved.
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