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Abstract 

We apply the passivity theorem with appropriate choice of multipliers to develop suf- 

ficient conditions for stability of the general anti-windup bumpless transfer (AWBT) 

framework presented in [24]. For appropriate choices of the multipliers, we show that 

these tests can be performed using convex optimization over linear matrix inequalities 

(LMIs). We show that a number of previously reported attempts to analyze stability 

of AWBT control systems, using such well-known and seemingly diverse techniques as 

the Popov, Circle and Off-Axis Circle criteria, the optimally scaled small-gain theorem 

(generalized p upper bound) and describing functions, are all special cases of the gen- 

eral conditions developed in this paper. The sufficient conditions are complemented by 

necessary conditions for internal stability of the AWBT compensated system. Using 

an example, we show how these tests can be used to analyze the stability properties of 

a typical anti-windup control scheme. 

1 Introduction 

All real world control systems must deal with constraints. Of special interest are systems 

with control input constraints in an otherwise linear system. The most common example 

of an input constraint is actuator saturation. Typically, a valve controlling the flow rate of 
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the coolant to  a reactor can only operate between fully open and fully closed. We will refer 

to  such a constraint as a plant input limitation. In addition, to satisfy multiple objectives, 

commonly encountered control schemes use overrides or selectors which switch between a 

"bank" of linear controllers, each of which is designed to achieve a specific objective. We 
will refer to  such a mode switch as a plant input substitution. As a result of substitutions 

and limitations, the actual plant input will be different from the output of the controller. 

Thus the controller output does not drive the plant and hence the states of the controller 

are wrongly updated. This effect is called controller windup. 
As is commonly the case, if the linear controller is designed ignoring these actuator 

nonlinearities, the adverse effect of controller windup is in the form of significant performance 

degradation, large overshoots in the output and sometimes even instability. In addition, 

during controller mode switches, the difference between the outputs of different controllers 

results in a bump discontinuity in the plant input. This, in turn, causes undesirable bumps 

in the controlled variables. What is required is a smooth transition or bumpless transfer 
between the different operating modes. 

The problem of control system analysis and controller synthesis for the general class of 

linear time-invariant (LTI) systems subject to plant input limitations and substitutions is 

referred to  as the anti-windup bumpless transfer (AWBT) problem. All known LTI AWBT 

schemes adopt the following two-step design paradigm: 

Design first the linear controller ignoring control input nonlinearities and then add AWBT 
compensation to minimize the adverse eflects of any control input nonlinearities on closed- 
loop performance. 
Optimal control strategies, such as model predictive control (MPC), which explicitly ac- 

count for both input and output constraints are well-known, but computationally expen- 

sive. However, AWBT compensation schemes of the type described above provide a simpler, 

computationally cheaper alternative for modifying or "retro-fitting" existing unconstrained 

controllers to  account for input nonlinearities, particularly in systems where the effect of 

control input constraints is not expected to  be critical. This has been the motivation for a 

number of AWBT schemes which have been reported in the literature, dating back to  the 

early work of Fertik and Ross (1967) [16] on anti-reset windup. Most of these schemes are 

somewhat ad-hoc and tailored to specific problems based on spurts of engineering ingenuity. 

Recently, Kothare et al. (1994) [24] presented a general AWBT framework based on the two- 

step design concept mentioned above, and, for the first time, established a firm theoretical 

basis for AWBT control. The resulting AWBT scheme in [24] was shown to unify all known 

LTI AWBT schemes in terms of two matrix parameters. This significantly clarified the ba- 

sic underlying concept of AWBT and simplified the problem of comparing and contrasting 

various previously reported heuristically based AWBT methodologies. 

A necessary step in the further development of a complete AWBT theory is the develop- 

ment of tools for analyzing stability of AWBT control systems with or without plant model 

uncertainty. Below, we summarize the existing literature in this area: 

a Glattfelder et al. [19, 20, 211 analyzed the stability of single input single output (SISO) 

anti-reset windup PI controllers using the Popov and Circle criteria. 

Kapasouris and Athans (1985) [22] applied a multivariable version of the Circle Crite- 



rion to  analyze stability of their multivariable nonlinear anti-reset windup scheme. 

Zheng et al. (1994) [34] used the Off-axis Circle Criterion to  establish stability of their 
anti-windup scheme for internal model control (IMC). 

Astrom and Rundqwist (1989) [2] suggested the use of describing function theory to 

analyze stability of the observer-based anti-windup scheme. 

Doyle et al. (1987) [15] analyzed the stability of their modified anti-windup (MAW) 
scheme by using extensions of p-analysis for LTI systems with structured uncertainty 

to  nonlinear systems [14]. A similar analysis was presented by Campo et al. [8, 91. 

From the preceding review, we see that several seemingly diverse techniques have been 

applied to  develop stability conditions for several specific AWBT schemes. Very little work 

has been done on AWBT stability analysis in a reasonably general setting. The objective 
of this paper is to  develop general tools for analyzing the stability properties of the AWBT 

framework presented in 1241. Since the framework in 1241 unifies essentially all known LTI 
AWBT schemes, the results we obtain are general enough to be applicable to  all existing 

AWBT schemes. A second objective is to show that the technique we use to analyze AWBT 

stability allows us to  interpret and generalize previously reported AWBT stability results in 
a single unified setting. 

The paper is organized as follows: In 92, we review the general AWBT framework from 

[24] which is central to  the analysis problem under consideration. We also summarize neces- 
sary technical machinery such as the absolute stability problem, passivity theorem, multiplier 

theory and linear matrix inequalities (LMIs), which will be used in the later sections. In $3, 
we present the main results on stability of AWBT control systems, under various restrictions 
on the input nonlinearity. We show how the sufficient conditions for AWBT stability can 

be checked via readily computable convex conditions involving the feasibility of equivalent 
LMIs. We also develop necessary conditions for closed-loop stability of the AWBT system. 

In 94, we present an example to illustrate the application of the stability results to  a typical 
AWBT control scheme. Finally, in $5, we present conclusions. 

Not at ion 

The notation is fairly standard. 32 is the set of real numbers. For a matrix A, AT denotes 

its transpose, A* denotes its complex conjugate transpose, A-' denotes its inverse (if it ex- 
ists), A-* denotes the inverse of A* (if it exists). The matrix inequality A > B (A > B) 
means that A and B are square Hermitian matrices and A - B is positive (semi-)definite. 

L2 is the Hilbert space of m-vector valued signals defined on ( - a ,  oo) , with scalar product 
A (xly) = J-%x(t)*y(t) dt and such that 1 1 ~ 1 1 ~  = ( Z I X ) ~  < oo V x E L2. L2e is the extended 

Hilbert space of m-vector valued signals u such that UT E L2, where 



A transfer function matrix 

[ . For simplicity 

in terms of state-space data is denoted G(s) = C(sI-A)-'B+D 

of notation, f o G(s)x refers to  the operation of convolving the 

<mpulse response of G(s) with x and then applying the operator f .  Similar interpretation 

can be given to  G(s) o fx.  With some abuse of notation, we will denote the adjoint of an 

LTI operator G(s) by G ( - s ) ~ .  Thus, with the usual rules of an adjoint operator 

If G(s) is causal, stable, then its adjoint is considered to be anti-causal, stable. 

2 Background 

2.1 A General AWBT Framework 

(a) without nonlinearity N (ideal case) (b) with nonlinearity N 

Figure 1: Linear control problem 

Consider the linear fractional transformation (LFT) in Figure 1 (a), which represents the stan- 

dard linear control problem. P(s) is the LTI plant and K(s) is a stabilizing LTI controller, 

designed to  meet given performance specifications (for example, or 31, performance 

criteria [13]). The exogenous input w includes all signals which enter the system such as 

commands, disturbances and sensor noise. The input u is the control effort applied to  the 

plant by the controller K(s). The plant outputs x and y, represent the controlled output 

which the controller is designed to keep small (e.g. tracking error) and all measurements 

available to the controller respectively. 

As discussed in $1, due to limitations and/or substitutions, a nonlinearity N is introduced 

into the interconnection as shown in Figure l (b) .  As a result, the actual plant input 6 will, 

in general, not be equal to the controller output u. This mismatch is the cause for controller 

windup, controller state initialization errors and a significant transient which must decay 

after the system returns to  the linear regime. This is also the cause for degradation of 

performance and sometimes instability. 



Figure 2: The AWBT problem 

The AWBT problem (see Figure 2) involves the design of ~ ( s ) ,  commonly referred to as 

the "AWBT compensated version" of K(s) .  The plant 

from Figure l (b ) ,  partitioned according to its inputs and outputs, is augmented to  

in Figure 2, to  provide a measurement or estimate 

of the plant input ii. We allow the general relationship (3) to account for non-trivial mea- 

surement dynamics ( P 3 2 ( ~ )  $ I). The measured or estimated value of 2 ,  i.e., urn, provides 

information regarding the effect of the nonlinearity N and is fed back to  the AWBT com- 

pensated controller ~ ( s ) .  The general AWBT problem can be stated as follows: 

Given the linear controller K ( s )  which meets certain linear performance specifications, syn- 
thesize the AWBT controller ~ ( s )  which 

renders the system i n  Figure 2 stable; 

meets the linear performance specifications when N -. I ;  and 

exhibits graceful performance degradation when N $ I 

A parameterization of all AWBT controllers ~ ( s )  which satisfy certain (appropriately de- 

fined) admissibility criteria has been presented in [24]. This parameterization is in terms of 

two matrix parameters HI and H2 and is summarized below: 

If K (s) = v(s)- '~(s)  = [+I 



then, ~ ( s )  = [ U ( s )  I - V ( s ) ]  (5) 

with Hz invertible. Assuming that Hl is chosen such that the eigenvalues of A - H1 C are in 

the open left half complex plane, then U(s) and V(s) correspond to the stable left coprime 

factors of K (s) . 
The noteworthy feature about this parameterization is that it allows us to unify all known 

LTI AWBT control schemes under a general framework. Thus, as shown in [24], for particular 

choices of Hl and H z ,  all known LTI AWBT control schemes reported in the literature are 

special cases of this parameterization, as summarized in Table 1. The focus of our attention 
is on analyzing the stability properties of the interconnection in Figure 2. 

Parameters 

Anti-reset windup 

Hanus conditioned controller 

Observer-based anti-windup 

Conventional anti-windup 

Internal Model Control (IMC) 

Table 1: Special cases of the general framework (see Kothare et al. (1994) for details) 

HI 

- 7". 1 

BD-I 

Anti-windup IMC 

Extended Kalman filter 

Generalized Conditioning-I 

Generalized Conditioning-I1 

2.2 The Passivity Theorem and Multiplier Theory 

H2 
1 

I  

L 

aB(I  + a ~ ) - '  

[ 0 B: 1' 

The approach we adopt in this paper for AWBT stability analysis is based on concepts 

derived from absolute stability theory (see [12, §VI],[23]). Specifically, we apply the passivity 

theorem [ l l ,  29, 30, 311 with appropriate choice of multipliers [4, 5, 331 to  develop sufficient 
conditions for AWBT stability. We begin by giving a formal definition of stability. 

I 

( I  + 
I 

[ 0 B,T ~ p r  ] '1' 

B~ 
B ( D  + 

0 R, T T ~  B f  

Definition 1 (Stability) A causal operator h : CPe -+ C2e is  C2 stable i f  x E L2 + h x  E 

C2. Furthermore, i f  3 y 2 0 and P such that 

I  

I  

I 

I 

then, h is said to  be finite-gain C2 stable. 



Note that stability requires the output hx to belong to  the non-extended space C2 for all 

x E C2. A feedback interconnection of the form shown in Figure 3 is LC2 stable if all closed- 

loop maps from all external inputs to  all internal variables are C2 stable. Finite-gain C2 

stability of the interconnection can be defined similarly. Next we define the concept of 

passivity. 

Definition 2 (Passivity) [I21 An operator h : C2e + C2e is said to be strictly passive if 

3 6 > 0 and some P such that 

If 6 > 0, then h is said to be passive. 

The motivation for this definition of passivity comes from network theory where circuit 

elements which absorb energy are called passive elements. For example, the energy absorbed 

by a resistance R > 0 with a voltage v across it and a current i through it is given by 
T 

(uT1iT) = SO i(t)u(t)dt = R i2(t)dt and hence a resistance is a strictly passive element. 

If h is a causal, stable and LTI operator with transfer function H(s), then i t  is (strictly) 

passive, i.e., it satisfies (9) if and only if there exists 6 > ( > ) O  such that [12, SVI] 

A matrix transfer function H(s), whether stable or unstable but having no poles on the jw  

axis, and satisfying (10) is said to  be generalized (strictly) positive real [I]. The following 

lemma gives an equivalent condition for checking (10) in terms of the state-space matrices 

of H(s) .  

Lemma 1 (Positive Real Lemma) [I] A matrix transfer function H(s)  having no poles 

on the jw  axis, with a controllable state-space realixation (A, B ,  C, D) ,  satisfies (10) iff there 

exists a symmetric matrix Q = QT such that 

or equivalently, iff there exists a symmetric matrix Q = QT such that 

Remark 1 If H(s) is stable, then the matrix Q = QT in (ll), (12) can be taken to be 

positive definite without loss of generality. 

Note that (11),(12) are matrix inequalities that are affine in Q and 6 and are referred to  as 

Linear Matrix Inequalities (LMIs) in Q and 6 (see [6] for details on LMIs). The significance 

of reducing a problem to  the feasibility of an LMI is that LMI-based problems are convex 

and can be solved in polynomial-time, i.e., with low computational complexity. There exist 

powerful and effective algorithms which efficiently compute a feasible solution (if i t  exists) to  



an LMI problem or verify that none exists [18]. Hence, reducing a problem to the feasibility 

of an LMI is equivalent to solving that problem. 

The connection between passivity and stability of the closed-loop shown in Figure 3 was 

originally addressed by Sandberg 1291 and later by Zames 130, 311. The basic question that 
needs to  be answered in this context is the following: Is a network consisting of passive 

elements necessarily stable? We state below a general version of the passivity theorem which 

answers this question. 

Figure 3: General interconnection for the passivity theorem 

Theorem 1 (Passivity Theorem) Consider the feedback system shown i n  Figure 3, where 
the operators h : C2, + C2, and f : C2, -+ C2, are any (possibly nonlinear) causal 
operators. Assume that for any ul,  u:, E L2, there exist solutions el, e2, y1, y2 E C2,. Suppose 
there exist constants yl, dl, 152, all Pl, P2 such that V x E C2,, V T E 32 we have 

I f  S1 + S2 > 0, then ul ,  u2 E C2 + el, e2, y1, y2 E C2. Furthermore, i f  oil, PI, P2 are zero, 
then the map from (ul,  u2) to  (el, e2, y1, y2) is finite-gain C2 stable. 

Proof. See 112, 331. II 

Note that if the operator h is C2 stable, then the finite gain condition (13) is automatically 

satisfied. Also, if h is strictly passive and f is passive, then conditions (14) and (15) are 

satisfied with 62 = 0, S1 > 0. 
For the AWBT stability analysis problem, as we will see in 53, h is a fixed, stable, LTI 

system with transfer function H ( s )  and f belongs to  a class of sector bounded nonlinearities 

with a specified diagonal structure. We will be interested in developing stability conditions 
for the entire class of f .  Such a problem is referred to  as the absolute stability problem. 

Application of the passivity theorem will lead to  sufficient conditions for stability which 

can be potentially conservative. This is because Theorem 1 assumes f to  be any arbitrary 

operator satisfying (15), whereas, in reality, f has some additional structural properties. In 

this case, we can apply multiplier theory [4, 5, 331 to get less conservative conditions for 

stability by using this additional information about f .  



Figure 4: The passivity theorem with multipliers 

The basic idea behind multiplier theory is that by multiplying the operators h and f by 

appropriately chosen multipliers, the product can be modified to satisfy the conditions of 

Theorem 1. Consider Figure 4 which is obtained from Figure 3 by pre- and post-multiplying 

H ( s )  by W - ( - S ) - ~  and W + ( s )  respectively, and correspondingly, pre- and post-multiplying 

f by W+(s) - I  and W- ( - s ) ~  , and the inputs ul and u2 by W - ( - S ) ~  and W + ( s ) .  If we 

assume that W + ( s ) ,  W - ( - s )  are stable, proper and minimum phase with proper inverses, 

then the stability of the systems in Figures 3 and 4 are equivalent. Applying Theorem 1 
then gives the following result. 

Corollary 1 Consider the feedback system shown in Figure 4. Assume that for any ul, u2 E 

L2, all the signals i n  the system are well-defined and belong to  C2e. Then, the system is L2 
stable if 

1. 3 W + ( s ) ,  W - ( - s )  which are stable and proper with stable and proper inverses; 

2. W+ ( s )  H ( s )  W- (- s ) - ~  is  L2 stable; and 

3. 3 constants pl, P2, a l ,  b2 such that 'v' x E L2e, 'v' T E E, we have 

where R, f are the operators W + ( S ) H ( S ) W _ ( - S ) - ~  and w-( - s )~  o f o w+(s)-' 
respectively (symbol 'b " denotes composition). 

Remark 2 I n  most problems of interest, as also i n  the A W B T  analysis problem of $3, 

Corollary 1 is  applied with 62 = 0. This will be assumed to  be the case i n  the rest of the 
paper. I n  that case, using ( lo ) ,  we can conclude that conditions (16) and (18) above are 
equivalent t o  the existence of S1 > 0 such that 

W + ( j w ) H ( j w ) W - ( j w ) - *  + W - ( ~ w ) - ~ H ( ~ w ) * w + ( ~ w ) *  2 'v' w E E 

u W ( j w ) H ( j w )  + H ( j w ) * W ( j w ) *  2 6'1, 'v' w E El for some 6' > 0. (19)  



In (19), W(s) = W- (s) W+(s) is commonly referred to  as the stability multiplier. Since 

W-(-s) is stable, W(s) = W-(s) W+(s) is in general unstable or equivalently, non-causal. 

Note that if we are given the state-space representation of W(s) H(s) ,  then we can use 

Lemma 1 to  check condition (19) in terms of the state-space matrices of W(s)H(s) .  

Thus, we see that stability analysis using multipliers involves finding a multiplier W(s) 

such that it can be factorized into W- (s) W+ (s), with W- (s) , W+ (s) satisfying conditions 1 
and 2 of Corollary 1 and (17), and W (s), H(s) satisfying (19). 

The significance of the multiplier approach to stability analysis discussed in this section 

is that a host of well-known, seemingly different stability analysis tests can be shown to  
be special cases of Corollary 1 for particular choices of the multiplier W(s) (see [4, 5, 281). 

These special cases include the Circle Criterion, the Off-axis Circle Criterion and the Popov 

Criterion in the SISO case 1281, and upper bounds on ,LL [26] for multivariable systems with 

structured, (mixed) real/complex and parametric uncertainties [4, 51. Moreover, given the 

multiplier W(s) establishing stability of the closed-loop, the corresponding quadratic Lya- 

punov function establishing stability for the closed-loop can be explicitly constructed [3]. 

With these preliminaries, we now consider the AWBT stability analysis problem. 

3 Stability Analysis of AWBT Control Systems 

Consider the AWBT compensated system of Figure 2, where ~ ( s )  and ~ ( s ) ,  partitioned 

according to their inputs and outputs, are given respectively by (2) and (5). We will assume 

that Pz2(oo) = 0 to  ensure well-posedness of the linear interconnection in Figure l(a) .  It is 

easy to  verify that Figure 2 can be rearranged in the form shown in Figure 5 with 

N is the generic input nonlinearity which represents either component-wise actuator sat- 

Figure 5: Interconnection for AWBT stability analysis 

uration, relay, dead-zone, hysteresis, etc. (input limitation) or an override, mode selection 

scheme/switching logic (input substitution). We will assume that the Mll(s) - N loop is 
well-posed. This can be ensured, for instance, by assuming that Mll (oo) + Adll ( w ) ~  > 0. 



Exact stability analysis, i.e., development of non-conservative conditions which are both 

sufficient and necessary for stability of the system in Figure 5, for a given nonlinearity N (for 

example, saturation) is, in general, a difficult problem. On the other hand, as we will see 

in 53.1, firstly, the nonlinearity N can be assumed to be memoryless, i.e., its output at  any 

time depends only on its input at the present time. Secondly, bounds on its input-output 

map (for example, sector bounds) can be easily derived. Based on these two facts, we can 

cover N by a class of sector bounded memoryless nonlinearities having the same structure 

as N. We can then apply results from absolute stability theory 112, 231 to develop sufficient 

conditions which guarantee stability for the entire class of N rather than N itself. This has 

probably been the most common approach for analyzing AWBT stability (see for example 

18, 9, 19, 20, 21, 22]), the reason being that it greatly simplifies the nonlinear analysis. 

The unavoidable price paid for this simplification is conservatism since the resulting 

conditions ensure stability not only for N but also for all nonlinear maps with the given 

structure and sector bounds. In 53.2, we will see how we can reduce this conservatism by 

applying concepts from multiplier theory to incorporate additional properties of N. 

3.1 Sector bounds on the nonlinearity N 

In this section, we derive sector bounds for common input limitation and substitution non- 

linearities. We begin by defining a sector condition on a nonlinearity. 

Definition 3 Let f : Xn x X + Xn with f (0, t) = 0 Vt 2 0 be a memoryless (possibly 
time-varying) diagonal nonlinearity f = diag{ fl, . . . , f,}. We say that f E sector [K1, K2], 

with Kl = diag(Kll,.  . . , Kin), K2 = diag(K21,. . . , K2,), K2 - K1 > 0 if 

Klixf 5 xifi(xi,t) 5 K~~x:, for all xi E 8, t 2 0, i = 1 ,2  , . . . ,  n. (21) 

Consider the interconnection in Figure 3, where h is assumed to be a fixed LTI system with 

transfer function H (s) and f is a diagonal nonlinearity lying in the sector [K1, K2], with 

K1, K2 as in definition 3. Suppose we apply a negative feedforward of K1 and a positive 

feedback of (K2 - K1)-l to the nonlinearity f ,  and correspondingly, we apply a negative 

feedback of K1 and a positive feedforward of (K2 - K1)-l to H(s) as shown in Figure 6. 

This is a well-known loop transformation (see 112, 5VI.91) from Figure 3 to the equivalent 

interconnection in Figure 6. The resulting nonlinear subsystem j is a diagonal operator 

f = diag{fl,. . . , fn} where & lies in the sector [0, CQ] (see [12, 5VI.91 for details) and satisfies 

the sector condition 

i.e., the graph of &(xi, t) vs. xi lies in the first and third quadrants. We may note that, by 

definition, f is passive and Remark 2 from 52.2 applies in this case. The linear subsystem is 

given by 

~ ( s )  = (K2 - K~)-'(I + K2H(s))( I  + K,H(s))-~. (23) 

The reason for introducing this loop transformation is that, as shown in 1321, applying the 

passivity theorem with multipliers to the transformed system in Figure 6 gives potentially 

less conservative stability conditions than those resulting from its application to the original 

system in Figure 3. We will use this loop transformation in the AWBT stability analysis 

problem. 



Figure 6: A loop transformation 

3.1.1 Limitations 

The most common example of an input limitation is actuator saturation (see Figure 7). 

Multivariable actuator saturation can be described by a memoryless, time-invariant, diagonal 

operator N = diag{Nl,. . . , NnU), where the Nils are defined as follows: 

I t  is easy to  verify that 

0 I uiNi(ui) I u:, for all ui E 8 

and hence N E sector[0, I] as shown in Figure 7(a). We note that both the identity operator 

N = I and the zero operator N = 0 are included in the sector. However, if the controller 

output ui can be bounded in magnitude, then the zero operator need not be included and we 

can take K1 # 0 in (21). This will give a tighter sector bound for Ni as shown in Figure 7(b). 

Other input nonlinearities such as dead-zones, relays, relays with dead-zones and hys- 
teresis can also be covered by sectors in a similar manner. Note that except for hysteresis, 

all these nonlinearities are time-invariant, whereas the sector bounds include nonlinearities 

which are allowed to be arbitrarily time-varying. 

3.1.2 Substitutions 

Substitution mechanisms arise from the use of overrides or logic schemes which select the 

plant input ii from among the outputs of a "bank" of controllers, each designed to  achieve 



Figure 7: Sector bounds on the saturation nonlinearity N 

a different closed-loop characteristic. Commonly employed logic blocks are "min" selectors 

and "max" selectors which respectively select the minimum and maximum input as their 

output. Combinations of min-max selectors shown in Figure 8ja) are often used to enforce 

U m a x  
I 

Figure 8: a) A combination of "min-max" selectors; b) its equivalent representation using a 

dead-zone nonlinearity. 

upper and lower bounds on some variable, for example, u in Figure 8(a). It is easy to verify 

(see [19, 201) that this min-max selector can be equivalently represented by using a dead- 

zone nonlinearity as shown in Figure 8(b). As discussed in 33.1.1, this dead-zone can then 

be covered by the sector [0, 11. 
Min and max selectors are only special cases of a "generic" selector which selects one of 

its inputs as its output. If we assume that the mechanism which determines which input is 

selected is completely unspecified or arbitrary, then the generic selector can be approximated 

by an arbitrarily time-varying memoryless switching nonlinearity N. For example, if the 

selector has two inputs ul, u 2  and chooses one of them as its output 6, then this selector can 



be approximated as follows: 

where n(t) E sector[O, 11 is an arbitrarily time-varying memoryless parameter. n(t) = 0 

and 1 give respectively the outputs ul and u2. Selectors with more than two inputs can be 

modeled by decomposing them into a series of two-input selectors. The resulting multiple 

nonlinearities can then be arranged in a diagonal form. Sector bounds for combinations of 

selectors and other nonlinearities can be worked out using the same basic principles. 

3.2 Sufficient Conditions for AWBT Stability 

As discussed a t  the beginning of 53, we will derive sufficient conditions which ensure stability 

of the system in Figure 5 for all N with a given structure and sector bounds. A problem of this 

type was originally formulated by Lur7e [25] and is known as the absolute stability problem. 
The basic idea is to  derive conditions on the linear subsystem M such that the closed loop 

system in Figure 5 is stable for all nonlinearities N belonging to  a certain class. Theorem 1 

and Corollary 1 in 52.2 form the basis of the stability results that follow. We begin with the 

most general case by allowing the nonlinearity N to  be arbitrarily time-varying. We then 

successively impose more restrictions on the nonlinearity N. Correspondingly, we modify the 

choice of the multiplier W ( s )  in Corollary 1 to  get less conservative stability conditions. In all 

cases, we show how the multiplier W ( s )  establishing stability can be explicitly constructed 

from the feasible solution of a set of convex conditions involving LMIs. 

3.2.1 Memoryless Time-Varying Nonlinearities 

We begin by defining the set NTv of all allowable structured nonlinearities N. 

The nonlinearities in NTv are memoryless and are allowed to  be arbitrarily time-varying. 

Here we consider only the sector [0, I ] .  Conditions for other sector bounds can be derived 

similarly. NTv typically includes input nonlinearities such as those represented by (25) 

which model generic selectors with no pre-specified switching logic. Applying Corollary 1 to  

Figure 5 gives us the following result. 

Theorem 2 (Multiloop Circle Criterion) The A W B T  system i n  Figure 5 is  C2 stable 

for all N E NTv if 

1. A - H I C  has all eigenvalues i n  the open left-half complex plane; 

2. P in equation (2) is  asymptotically stable; and 

3. 3 W = diag(Wl, W2, . . . , Wnu) E Xnu xnu with W > 0 and 61 > 0 such that 



Furthermore, if Mll(s) = [s] , then (2'7) above can be equivalently checked via 

the existence of a symmetric matrix Q = QT > 0, 61 > 0 such that the following LMI 
in Q,  W, 61 is satisfied 

Proof. By assumption, the loop Mll(s) - N is well-posed. For L2 stability, i t  is enough to  
show that M(s)  is LC2 stable and that the Mll(s) - N loop is asymptotically stable. Condition 

1 of the Theorem and (6) imply that k(s) is asymptotically stable. Together with condition 

2 above and (20), this implies that M(s)  (and hence Mll(s)) is asymptotically stable. 
Next, consider the loop Mll (s) - N ,  where, N E sector [O, I].  Applying the loop transfor- 

mation of Figure 6, we transform the diagonal nonlinearity N to a diagonal nonlinearity N 
with & E sector[O, oo], and correspondingly, we transform Mll (s) to  Ml1 (s) = Mll (s) + I .  

Since N~ E sector[O, oo], N is passive. Corollary 1 can now be applied to  the Ml1(s) - N 
loop with H(s) = Mll(s), f = N. 

Since N is an arbitrarily time-varying, memoryless nonlinearity, an appropriate multiplier 

for this case is W(s) = W > 0 where W = diag(Wl, Wz, . . . , W,,) E Rnuxnu, with W+(s) = 

W ,  W-(s) = I (see [4, 51). This multiplier clearly satisfies (17) with 6 2  = 0 (see Remark 2) 

and conditions 1 and 2 of Corollary 1. (16) and (18) can be checked via (19) as follows: 

which establishes (27). Further, if Mll (s) = [el, then wGll(s) = [*] . 

Lemma 1 then establishes (28). 

We may note that the stability multiplier W(s) = W is directly computed once the LMI 
(28) is solved. 

Theorem 2 generalizes the AWBT stability results from [2,8,9,  15, 221 which were derived 

using small-gain arguments, generalized ,LL upper bounds, a version of the multiloop Circle 

Criterion and describing functions. The stability result in [22] corresponds to  choosing the 
multiplier W to  be the identity matrix. However, the result from [22] can be potentially 

conservative since it does not account for the diagonal structure of N.  The results in [8, 

9, 151 correspond to  choosing the multiplier W to be a constant, diagonal, positive-definite 

complex matrix. Although choosing W to be complex facilitates computation of the stability 
conditions in 18, 9, 151, it does not account for the fact that the nonlinearity N is real. 

3.2.2 Memoryless Time-Invariant (Static) Nonlinearities 

In the previous section, the set NTV included arbitrarily time-varying memoryless nonlin- 
earities. A large class of input nonlinearities such as saturation, relay, dead-zone, relay 
with dead-zone, etc. are memoryless and time-invariant, i.e., static. Almost all previously 
reported AWBT stability analysis results [9, 8, 15, 19, 20, 21, 221 model these static nonlin- 
earities as time-varying to  simplify the analysis problem. The resulting stability conditions, 



as also those obtained from Theorem 2, are potentially extremely conservative in such cases. 

This conservatism can be reduced by appropriately modifying the choices of W+(s) and 

W-(s) such that the time-invariance property of N is taken into account. 

Let us define the class of memoryless time-invariant nonlinearities as follows: 

Using a variety of techniques, Popov (1961) [27], Zames (1966) [31] and Brockett and Willems 

(1965) [7] have shown that the appropriate multiplier for this case, with a scalar nonlinearity 

(nu = I), is W(s) = l + W s ,  W > 0, with W+(s) = 1+Ws,  W-(s) = 1. As wewillsee, with 
a multivariable diagonal nonlinearity N belonging to the set NTI, the appropriate multiplier 

is the following: 

W(s) = X + s W  with W+(s) = ( X + s W ) ,  W-(s) = I  (30) 

where W = diag(W1, W2,. . . , Wn,) E Xnuxnu, X = diag(X1, X2, . . . , Xnu) E Rnuxnu,W > 0, 
X > 0. Note that although (X  + sW) is not proper, it can be obtained as the limit 

1 
X + s W  = lim -(X + s W )  

n-+m 1 + 

where &(X + sW) is the appropriate proper multiplier satisfying the conditions of Corol- 

lary 1. We will need the following lemma to prove AWBT stability with static input nonlin- 

earities. 

Lemma 2 Let f = diag{fl, f2 , .  . . , fn)  be a memoryless, time-invariant, diagonal nonlin- 

earity f : Rn + Rn, with fi E sector[O, oo]. Let W (s) = X+sW, X = diag(X1, X2, . . . , Xn) E 

Rnxn, W = diag(Wl, W2,. . . , Wn) E Rnxn with W > 0, X > 0. Then f o W(s)-I is passive. 

Proof. The proof is a multivariable extension of the proof of Lemma 2 in [31]. Since 

fi E sector[O, oo], f is passive, i.e., it satisfies 

We need to show that f o W(s)-I is passive, i.e., that it satisfies 

(XT 1 (f 0 W(S)-'X)T) = ((W(S)Y)T 1 (f Y)T) (substituting y = W (s)-lx) 
rT 



The last two inequalities follow from the fact that f is diagonal, i.e. f = diag{ f l ,  . . . , fn} 

with fi E sector[O, m] and W 2 0, X > 0 are diagonal matrices. 
The following theorem, a multivariable extension of the classical scalar Popov criterion, 
states conditions for AWBT stability with static input nonlinearities. 

Theorem 3 (Multivariable Popov Criterion) The AWBT system in Figure 2 is L2 sta- 

ble for all N E MTI if 

1. A - HIC has all eigenvalues in the open left-half complex plane; 

2. P in equation (2) is asymptotically stable; and 

3. 3 X = diag(X1, X2, . . . , Xnu) E XnuXnu, W = diag(Wl, W2, . . . , Wnu) E Xnuxnu with 

W 2 0, X > 0 and S1 > 0 such that if Mll(s) = [%I, then 

( X  + jwW) (Mil (jw) - d) + (M:l (jw) - DT) (X - jwW) 

+ x D + D ~ x + ~ x ~ ~ ~ I ,  V ~ E X .  (31) 

Furthermore, (31) above can be equivalently checked via the existence of a symmetric 

matrix Q = QT > 0, 61 > 0 such that the following LMI in Q, W, X, S1 is satisfied 

Proof. As in the proof of Theorem 2, we see that M(s)  is stable and the Mll(s) - N loop is 

well-posed. Also, as in the proof of Theorem 2, the Adll (s) - N loop can be transformed to  
the f i l l (s )  - N loop with a l ( s )  = Mll(s) + I ,  N = diag{N1,. . . ,NnU}, Ni E sector[O,m] 
with N passive. Corollary 1 can now be applied to  the fiIl(s) - N loop with H(s) = &!ll(s), 

f = N, W(s) = X+sW,  W+(s) = X+sW,  W-(s) = I, where W = diag(Wl, W2,.  . . , Wnu) E 

XnuXnu, X = diag(Xl,X2,. . . , Xnu) E Xnuxnu, W > 0, X > 0. 

By Lemma 2, N O  w (s)-' is passive and hence (17) is satisfied with 62 = 0 (see Remark 2). 
(16) and (18) can be checked via (19) as follows: 

which establishes (31). Note that the above inequality can be rigorously derived using the 

multiplier W (s) = & (X + sW) and taking the limit as n -+ m. Furthermore, it can be 

verified that ( X  + sW)  (Mll (s) - D) = 
A 

. (32) then follows from 

Lemma 1 and this completes the proof. 
As in Theorem 2, we may note that the multiplier W(s) = X + s W  establishing stability is 
explicitly determined once we compute a feasible solution to the LMI (32). 



In [19, 20, 211, the Popov criterion was used to  ascertain stability of SISO anti-reset 

windup PI  control systems. However, in their work, the scalar Popov parameter W 2 0 could 

only be deduced graphically. Hence, it was not clear how their analysis could be extended 

to  the MIMO case. Theorem 3 generalizes their analysis technique to the multivariable case 

by giving a sufficient condition for AWBT stability in terms of the feasibility of an LMI in 

the Popov matrix parameters W > 0, X > 0, the symmetric matrix Q > 0 and the scalar 

61 > 0. Hence, the existence (or absence thereof) of a Popov multiplier establishing AWBT 

stability can be readily determined via a convex LMI condition. 

3.2.3 Monotonic Slope-Restricted Static Nonlinearities 

Several input nonlinearities, in addition to being memoryless and time-invariant, are also 

(odd) monotonic and/or slope-restricted. Examples include saturation, dead-zone, relay 

and relay with dead-zone. To the best of our knowledge, there has been no attempt to  

incorporate these additional properties of the input nonlinearities to  get improved AWBT 

stability conditions. As we will see, it is possible to  exploit these properties, by appropriately 

choosing the multiplier W(s) ,  to get less conservative stability conditions. 

Definition 4 Let f : 8" + $2" with f (0) = 0 be a static diagonal nonlinearity f = 

diag(fl, f 2 , .  . . , f,). f is said to be monotone non-decreasing if 

and f is said to be odd monotone non-decreasing if, in addition 

Definition 5 Let f : Xn -+ Rn with f (0) = 0 be a static diagonal nonlinearity f = 

diag(fl, f2 , .  . . , fn).  f is said to be incrementally inside (or slope-restricted in) sector[Kl, K2], 

with K1 = diag(Kll, .  . . , Kin), K2 = diag(K21,. . . , K2n), K2 - K1 > 0 if 

I t  is easy to  verify that the saturation nonlinearity Ni of Figure 7(a) satisfies (33) and (35) 

with Kli = 0, K2i = 1. Furthermore, if Ui,rnin = - ~ i , ~ ~ ~ ,  then Ni also satisfies (34). 

Absolute stability of the feedback interconnection in Figure 3, where h is a causal LTI 

system with transfer function H(s) and f is an (odd) monotonic, slope-restricted, static 

scalar nonlinearity, was originally studied by Zames and Falb (1968) [33]. The basic idea 

of the stability proof was to  characterize the appropriate multiplier to be used in Corol- 

lary 1. The following theorem, a multivariable extension of the result from Zames and Falb 

(1968) [33], states conditions for AWBT stability with static slope-restricted (odd) monotone 

nonlinearities. 

Theorem 4 Let wi(t), i =, 1 ,2 , .  . . , nu be the impulse response of a scalar LTI (possibly 

non-causal) operator on t E (-m, oo) with 



Then the AWBT system in Figure 2 is Cz stable for all N E GI with N being odd monotone 

non-decreasing and incrementally inside sector [0, I] if 

1. A - HIC has all eigenvalues in the open left-half complex plane; 

2. P in equation (2) is asymptotically stable; and 

3. 3 wi(t), with Fourier transform Wi(jw), and Xi > 0, i = 1 , 2 , .  . . , n u  satisfying (36) 
such that for some 61 > 0 

where, W(jw) = diag(Wl(jw), . . . , Wn,(jw)), X = diag(XI,.  . . , Xnu) > 0. (38) 

If N is not odd, then in the stability conditions stated above, we require, in addition, wi to 

satisfy 

wi(t) > 0, b' t E (-oo, oo). (39) 

Proof. The proof involves application of Corollary 1 with the multiplier X - W(s) and is 

given in Appendix A. I t  requires several intermediate results which are extensions of the 

scalar results from 1331 to  the multivariable case. 

Theorem 4 generalizes the SISO AWBT stability result in [34] which was obtained by 

applying the Off-axis Circle Criterion [Ill .  In fact, the multiplier in the SISO Off-axis Circle 

Criterion is of the form ejs, B E (-5, 5) which can be obtained as a limiting case of the 

elements of the class of SISO RC and RL multipliers [31], as the number of terms in the 

RC/RL multipliers tends to infinity. Note that the RC and RL multipliers introduced in [31] 

are special cases of the multipliers characterized in Theorem 4 by equation (36). 

The AWBT stability conditions in Theorem 4 are not very useful since they are not con- 

structive, i.e., it is not clear how to  search for the infinite dimensional, non-causal operators 

w;(t), i = I ,  . . . , nu,  satisfying (36), (37), (38) and (39). One alternative is to  decompose 
wi(t) into causal and anti-causal components and then approximate each component by a 

finite dimensional LTI system. Such an approach and a complete solution involving LMIs 

has been presented in [lo]. For completeness, we briefly discuss this approach here. Details 

can be found in [lo]. 

Let us express wi (t) in terms of its causal and anti-causal components as wi (t) = w: (t) + 
w; (t) , where 

wi (t) if t > 0, 
w'(t) = 

wi(t) i f t < O ,  
{ o  i f t < o ;  

w;(t) = { o  i f t > o .  

We can now obtain finite series expansions of w:(t) and w,(t) with basis functions e:(t) = 

e ~ ~ t j ,  t > 0, (zero for t < 0) and e;(t) = etti, t 5 0, (zero for t > 0) respectively. This leads 

to  an mth order approximation of wi(t) as follows: 

wi(t) = (ai,je: (t) + bi,je; (t)) . 



This is equivalent to using - and -, j 2 1, as basis functions for approximating the 

causal and anti-causal components of Wi(s) respectively. Condition (39), i.e., wi(t) > 0, t t 
(-oo, oo) can be shown to  be equivalent to  (see [lo]) 

CF~ ai,j(-l)is23 Em ~ = 0  b. 21.7 .s2j 
> 0 and > O , \ d s = j w , w E E ,  (40) 

(-s + l ) m ( s  + l ) m  - (-s + l)m(s + 1)m - 

and the condition (36) can be expressed as 

By Lemma 1, condition (40) reduces to  checking that the state-space matrices of 

bi 
and 

(-s + l ) m ( s  + 1)m (-s + l)m(s + l ) m  

satisfy (12). Here, c,("), D:) are affine in ai,j and c,(", D:) are affine in bij  (see [lo]). Ap- 

plication of (12) leads to two matrix inequalities which are affine in c,("), Dja) and c:", D;", 
respectively, and hence are LMIs in aid, bif. Condition (41) is an obvious LMI in ai,j7 bi,j, 
xi. 

For absolute stability, Theorem 4 requires that W(jw), Mll(jw) should satisfy (37), which 

is equivalent, by Lemma 1, to  checking that the state-space matrices of (X - W(s)) (Mil (s) + 
I) = [ I  satisfy (12). Here, 6 is affine in ai,j, bi,j and h is affine in Xi (see [lo]). 

Hence the matrix inequality resulting from (12) is affine in ai,j, bi,j, Xi. 

If we do not require wi(t) 2 0, t E (-00, oo), which is the case when the nonlinearity N 

is odd, then the above procedure is a bit more involved and we refer the reader to  [lo] for 

details. 

Thus, an intractable problem of finding an infinite dimensional multiplier satisfying the 

conditions in Theorem 4 is approximated by a tractable problem of finding a finite dimen- 

sional multiplier via the feasibility of a set of convex LMI conditions. It is worth mentioning 

that this finite dimensional solution approximates the solution to the original problem to an 

arbitrary accuracy, as the order m of the approximation of wi(t) tends to  infinity. 

3.3 Necessary Conditions for AWBT Stability 

Since we are concerned with stability conditions for all N t sector[O, I], we immediately get 

the following necessary condition. 

Theorem 5 The AWBT system in Figure 2 is L2 stable for all N E NTv (or NTI) only 

if the AWBT controller k ( s )  stabilizes p ( s )  1 ] for all constant gain matrices N = 

diag{Nl, N2,.  . . , Nnu) t IRnuxnu  such that 0 <N 5 I.' 



Furthermore, if ~ ( s )  = [@I (actually, = 0 since p22(c0) = 0 ,  see 53), 

c3 0 3 1  0 3 2  

then the above statement is  eyhivalent to  the existence of a symmetric matrix Q = QT > 0 

such that the following L M I  is satisfied for all constant gain matrices N = diag{Nl,  N 2 ,  . . . , N n u )  E 

!Rnuxnu, 0 2 N 5 I :  

A + B ~ N T - ~ ( H ~ D ~ ' ~  + ( I  - H 2 ) G )  B ~ N T - ~ H ~ C  
where A = I ' 

(42)  
( B  - HID)(?, + HlC3+ A - H I C +  

H ~ & ~ N T - ' ( H ~ D ~  + ( I  - ~ 2 ) 6 ' 3 )  HI D ~ ~ N T - ~ H ~ C  

with T = I - ( I  - H 2 )  D ~ ~ N  

Proof. Follows trivially by forming the closed-loop A matrix of P ] and k and 
- -1 

using Lyapunov's theorem. Note that the inverse of T = I - ( I  - H2)D32N is well-defined 

for all 0 5 N 5 I since, by assumption (see 53), the loop formed by N is well-posed. 

Remark 3 For a SISO nonlinearity (nu = I ) ,  a similar condition was claimed to  be su f i -  

cient for stability and is the well-known Aizermann's conjecture. That  conjecture has since 
been proved false [17]. 

By considering the cases N = 0 and N r I ,  we get the following corollary from Theorem 5. 

Corollary 2 The  A W B T  system i n  Figure 2 is L2 stable for all N E NTv (or NTI) only i f  

1. ~ ( s )  and ~ ( s )  are stable; and 

2. K ( s )  stabilizes ~ ( s )  . 

4 Example 

The plant we consider here is a fourth order lead-lag butterworth filter taken from Doyle et 

al. (1987) [15]: 

P ( s )  = 0.2 
s2 + 2 6 1 1 s  + w:)  ( s 2  + 2l2w1s + w:) 

s2 + 2J1w2s + wz s2 + 2J2w2s + w; 

where wl = 0.2115, w:! = 0.0473,J1 = 0.3827 and J2 = 0.9239. The control input u to  the 

plant is constrained to  lie in the range [-0.5,0.5], i.e., (see Figure 9 )  



disturbance 
input constraint I 

Figure 9: Standard feedback interconnection for the example 

In the absence of any input constraints, a PI controller which stabilizes the plant is given by 

1 
K(s) = k(1 + -), with k = 100, r~ = 10. 

71s 

The feedback interconnection in Figure 9 can be redrawn in the standard form of Figure l (b)  

with N in Figure l (b )  corresponding to  the saturation nonlinearity in Figure 9. 

We would like to  analyze the stability properties of typical anti-windup schemes applied 

to  this problem. Several anti-windup schemes and the anti-windup controller ~ ( s )  corre- 

sponding to Figure 2 are listed below (see [24] for a description of these techniques). The 

corresponding values of the matrix parameters H1 and H2 in the general AWBT framework 

of $2.1, as summarized in Table 1, are also listed. 

Classical anti-reset windup: 

where r, is the so-called reset time constant. 

Hanus' conditioned controller: 

Generalized conditioned controller: 

where, p is a tuning parameter. 

Observer-based anti-windup: 

where, L is the observer gain. 



AWBT design for these seemingly different techniques can be considered as the single problem 

of choosing an appropriate HI (or equivalently, L in the observer-based anti-windup scheme) 

since a given value of HI corresponds to unique values of the AWBT parameters r,, p and L in 
these techniques. Note that the Hanus' conditioned controller has no free AWBT parameters 

to "tune" or optimize nonlinear performance. 

Table 2 shows the results of applying the stability tests from Theorems 2, 3, 4 (using a 

finite series expansion of the multiplier), and the off-axis circle criterion, for various values of 

HI = L in the observer-based anti-windup scheme. The corresponding multipliers X - W(s) 

Table 2: Application of various AWBT stability conditions 

establishing stability for the four cases above, using Theorem 4 and the finite dimensional 

approximation of the multiplier, as discussed in 83.2.3, are given respectively by 

HI = L 
Theorem 2 

(Circle Criterion) 

Theorem 3 

(Popov Criterion) 

Off-axis circle criterion 

Theorem 4 

A simple Nyquist plot like the one shown in Figure 10(a) can be used to verify that in 

each case, these multipliers satisfy the frequency domain condition (31) of Theorem 4. The 

Nyquist plot of Mll(s) + 1 is shown in Figure 10(b). Comparing the two Nyquist plots, 

we see that by multiplying Mll(s) + 1 with the multiplier X - W(s),  we effectively move 

the Nyquist plot to the right of the imaginary axis, as required by the stability condition in 

Theorem 4. 

100 

inconclusive 

inconclusive 

inconclusive 

stable 

10000 

inconclusive 

inconclusive 

inconclusive 

stable 

1 

inconclusive 

inconclusive 

inconclusive 

stable 

10 

inconclusive 

inconclusive 

inconclusive 

stable 



Conclusions 

In this paper, we presented a general approach for analyzing the stability properties of AWBT 

control systems. The approach involved application of the passivity theorem with suitable 

choice of multipliers to  develop sufficient conditions for stability. This AWBT stability 

analysis framework allowed us to  consider any multivariable linear AWBT control system 

subject to  multivariable control input nonlinearities. In the same setting, we could deal 

with several classes of input nonlinearities encountered in operating control systems, such 

as saturation, relay, dead-zone, hysteresis, switching/override/logic-based nonlinearities and 

combinations thereof. 

The basic premise was to  cover the input nonlinearity by a class of sector bounded mem- 

oryless structured nonlinearities and then apply concepts from absolute stability theory to  

develop sufficient conditions guaranteeing stability for all nonlinearities in the specified class. 

Indeed, this has been the predominant approach to  analyzing stability properties of AWBT 

control system reported in the literature [9, 8, 15, 19, 20, 21, 221. These previous attempts 

to  analyze AWBT stability properties were based on application of seemingly diverse results 

and theorems to  the AWBT problem. Our approach generalizes these previous attempts to  

analyze AWBT stability. This generalization comes from two sources: 

The AWBT framework from Kothare et al. [24], which is central to  the AWBT stability 

problem under consideration, unifies all known LTI AWBT schemes reported in the 

literature. 

The multiplier approach to stability analysis used in this paper has been shown to  

be a generalization of several seemingly diverse stability analysis techniques [4, 5, 281. 

Similarly, the connection between the multiplier approach and conventional Lyapunov 

stability analysis is also well-established [3]. 

Thus, Theorems 2 and 3 generalize the results from [2, 8, 9, 15, 221 and [19, 20, 21) respec- 

tively, which were derived using small-gain arguments, p upper bounds, a version of the 

multiloop Circle Criterion, describing functions and the SISO Popov Criterion. Theorem 4, 

in its general form, has never been used for analyzing AWBT stability. One particular case 

which it generalizes is the Off-axis Circle Criterion which was used in [34] for analyzing 

stability of the anti-windup IMC scheme. 

Moreover, our sufficient conditions for AWBT stability, derived under various restrictions 

on the input nonlinearity, can be checked easily via the feasibility of equivalent convex LMI 

conditions. In particular, the multiplier establishing stability can be explicitly constructed 

from the feasible solution to the LMIs. The necessary conditions, derived in 93.3, give 

insight into the extent of conservatism involved in the sufficient AWBT stability conditions. 

Extensions to  account for structured plant uncertainty can be worked out in a straightforward 

manner by augmenting the nonlinear block N with structured, norm-bounded uncertainty 

blocks and using "mixed" multipliers. 

The ultimate goal in studying AWBT control schemes is to  develop systematic AWBT 

synthesis techniques for designing the AWBT matrix parameters HI and H2. The analysis 

results presented in this paper will serve as a starting point in this direction of future research. 
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A Appendix A: Proof of Theorem 4 

We will need several subsidiary lemmas before we can prove Theorem 4. Most of these 

lemmas are straightforward extensions of the scalar results from [33] to  the multivariable 

case. Hence, we will only outline the proofs without going into details. We begin with a 
factorization lemma. 

Lemma 3 Let wi(t), i =, 1 ,2 , .  . . , nu be the impulse response of a scalar LTI (possibly non- 

causal) operator on t E (-oo, oo) satisfying (36) for some Xi > 0. Let Wi(s) be its Laplace 

transform 
03 

W~(S) = J__ e - s t ~ i ( t )  dt, i = 1, 2, . . . , nu. (43) 

Let W(s)  = diag(Wi (s), W2(s), . . . , W,, (s)) and X = diag(X1, X2, . . . , Xn,) > 0. Then, 
there exist matrix tranfer functions W+(s) and W-(-s) which are stable and proper with 

stable and proper inverses such that 

x - W (s) = w- (s) w+ (s) . (44) 

Proof. From [33, Lemma 31, it follows that since S-: lwi(t) 1 dt < Xi, there exist scalar 

transfer functions Wi-(-s), Wi+(s) which are stable and proper with stable and proper 

inverses such that 

Choosing W- (s) = diag(Wl- (s), . . . , Wn,_ (s)), W+ (s) = diag(Wl+ (s), . . . , Wnd (s)) then 

establishes the lemma. II 

Lemma 4 Let wi (t), Wi (s), W (s), Xi, X be as in Lemma 3. Let X - W (s) be factorixed 

as W-(s) W+(s) as in Lemma 3. Let N = diag{Nl, . . . , N,,) be a static, monotone non- 
decreasing, passive nonlinearity. If either Ni is odd or wi(t) 2 0, t E %, then W - ( - S ) ~  o 

N o W+(s)-l is passive. 

Proof. From [33, Proposition 11, since SOo -00 lwi(t) 1 dt < Xi and either Ni is odd or wi(t) > 
0, t E 8, we conclude that (Xi - Wi(-s)) o Ni is passive, i.e., 

(xiTI[(Xi - Wi(-s)) 0 N ~ z ~ ] T )  2 07V Xi E %, T > O 

@ (x i~I [wi+( -~)Wi- ( -~)  0 Nix i ]~ )  > 0, V Xi E 8, T > O 

* ([wi+(s)xi]TI [Wi-(-s) 0 Nix i ]~ )  > O7 V Xi E %, T > O 

* (WT I [Wi- (-S) 0 Ni 0 wi+ (s)-' Yi]T) > 0, 'd yi E %, T > 0 (substituting y = Wi+ (s)ai). 

Hence w,-(-s)~ o Ni o Wi+(s)-' is passive. Since W- (-s)* o N o W+(s)-I is a diagonal 

operator with all its diagonal entries passive, hence it is passive. II 



Lemma 5 Let N = diag{Nl, . . . , Nnu) be a diagonal nonlinearity satisfying the conditions 

in Definitions 4 and 5. Suppose we apply the loop transformation of Figure 6 to N to get 

a diagonal nonlinearity N = diag{N1,. . . , N~,} with N~ E sector[O, oo]. Then, if N is odd 

and monotone non-decreasing, so 11s N. 

Proof. Since N = diag{N1,. . . , N,,), if N is odd, monotone non-decreasing, then so are 

Ni, i = 1 ,2 , .  . . , nu. From [33, $71, we conclude that if Ni is odd, monotone non-decreasing, 

then so is N ~ .  The lemma then follows since fi = diag{N1, . . . , Nnu}. 

Proof of Theorem 4. As in the proofs of Theorems 2 and 3, we can show that M(s)  is stable 

and the Mll(s) - N loop is well-posed. Also, we can transform the Mll(s) - N loop to the 

MIl(s) - N loop where Mll(s) = Mll (s )+I  and N = diag{N1,. . . , NnU), & E sector[O,oo], 

with N passive. From Lemma 5, we conclude that if N is odd, monotone non-decreasing 

and incrementally inside sector[O, I ] ,  then N is odd and monotone non-decreasing. 

We can now apply Corollary 1 to the Ml1(s) - N loop with H(s) = Ml1(s) and f = N. 
The appropriate multiplier is X - W(s),  where W (s) = diag(W1 (s), . . . , Wn, (s)), with the 

impulse responses wi(t) of the scalar transfer functions Wi(s) satisfying (36). From Lemma 3, 

we conclude that X - W(s) can be factorized into W-(s)W+(s) which satisfy conditions 1 

and 2 of Corollary 1. By Lemma 4, (17) of Corollary 1 holds with S2 = 0. (16) and (18) can 

be checked via (19) (see Remark 2) as follows: 

which establishes (37) and the proof is complete. 
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Figure 10: Nyquist plot of (a) ( X  - W (s)) (Mil (s) + I), and (b) Mll (s) + 1 for the case L = 1 


