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Introduction. In the theory of trigonometric Fourier series (abbrev. TFS),
it is well known that the behavior of a TFS is "ameliorated" by integrating
(even by a fractional order) the generating function. But, the process of
taking the a-th integral (in the sense of H. Weyl) of a function f is to
consider the convolution of f with an integrable function whose Fourier
coefficients are (ί |w|)" r t; this fact suggests us the possibility to define a cor-
responding operation in the dyadic group of N. J. Fine [1]. The purpose of
the present paper is to investigate a class of multiplier transformations of
Walsh Fourier series, (abbrev. WFS), which shares most of properties with
fractional integration.

Let G be the dyadic group, with elements x = (xn), : r n = 0 . o r 1 (w = l, 2,
•' " )> y =(yn) etc., with the "addition" + ; the topology of G is defined by
the neighborhoods Vn = [x xί = = xn = 0} (n = l, 2, ) of the identity

CO

element, or equivalently, by the distance d(x,y)= Σ \χn—yn\2~n- The Rade-
n=l

macher functions φvix) (w=0,1,2, ) are defined by φn(x) = (—l)x( n+1) where
x(n-\-ϊ) stands for xn+i, and the Walsh functions, the characters of G, are
given by

for n = 2W(1> + 2W ( 2 )+ +2n^ = 1, n(l) >n(2)> > n(r) ̂  0.

We refer the reader to Fine [1] for basic properties of Walsh functions.

1. Polynomials and formal series. A (Walsh) polynomial of degree n
n—l

is a linear combination ^2ckψk(x) with Cn-^0; the totality of polynomials
k=0

of degree not exceeding n is denoted by $βw and the union of the 5βn's by 5β.
It is clear that 5)3 (as well as each of 5βw) forms a linear space.

We denote by 5 the set of all formal (Walsh) series with complex
coefficients. It is not difficult to introduce such topologies in 5)3 and g that
they are the duals with these topologies, but we do not insist on this point.
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Let fx(x) = Σckylrk(x) and f<ί(x)= Σdkψk(x) be two elements of

3\ We call the formal series

the convolution of fx(x) and f2(x), and denote it by (/i^/2)(^) If both series
happen to be WFS or Walsh-Fourier-Stieltjes series, this definition agrees with
the ordinary one. It is clear that 5 is a commutative algebra with convolution

as multiplication, and $, 5βn are ideals of $. $ has a unit, ΰ(x) = Σ ψk(x)>
k=0

which is the Fourier-Stieltjes series of the Dirac measure situated at 0. Thus
multiplier transformations are (restriction of) convolution transformation in g\

2. Kernel functions. We study here a special class of formal series, the
kernels of our multiplier transformations. Let us write

Ia(x) = 1 + έ2-wψ k (x) {a real),
k=l

where k(l) is the first dyadic exponent of k.

LEMMA 1. Let 1 ^ p ^ oo and let q be its conjugate exponent, i.e.,

(l//>) + (V?) = 1. Then we have, for a > 1/q, Ia{x) e Lp = LP(G).

PROOF. If /> = OO, then q = 1 and a > 1 implies the absolute (and uni-

form) convergence of Ia(x), thus Ia(x) is the WFS of a continuous function,

which is more than what is to be proved. On the other hand, it is well

known that D2J(X), the Dirichlet kernel of order 2j, equals to 2j or 0 accord-

ing as xzVi or not. Thus for 1 ^ / > < O O ? w e have \D#\p = 2i{χ-m=2i/q. Now

gives for m > n,

' - L ^ 2 J V * V II P

m—1 m—1

^ Σ 2"* I A<«) I p = Σ 2-*α-1/ϊ) ^ 0 (m, M -> oo) .
^ = 71 j = W

Thus I{a\x) converges in Z/-norm to a function whose WFS is Ia(x), q.e.d.
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Lemma 1 may be restated as follows:

Ia(x)€Lp for ρ<l/0—a) ( 0 < « ^ l ) .

LEMMA 2. If As V», we have

II Δft7α I , Ξ || IJx+h) - h(x) || „ = O (2~^-^) (a

PROOF. AJa = Σ 2-* Σ ψ*(a:+A) - Σ, 2~}a Σ
j=0

£ (ψk(h) - ΐ)ψk(x) (v ψ ,(λ) = 1, 0 ̂  * < 2")

= Σ 2-* (ΦX* + A) D^x + A) - φ/
.7 = 71

Thus, by Minkowski's inequality,

έ 2"*
,

= 2 X; 2-* 2j/« = 2 £ 2^ ( Λ-1 / 9 ), q. e. d.
j=n j=n

LEMMA 3. There is a positive constant Ba depending only on oί such
that

II /5S ip^Ba 27n(α+1/«) (a > 0 ) .

PROOF. /«(«) = 1 + Σ 2*(1)* ψ *(^) = 1 + Σ ^φ^x) D*{x).

Thus
m—1 m—1

II / S O ) lip ^ 1 + Σ 2 ' α II A Ί * = 1 + Σ 2j(£ϊ+1/Q) = O (2w ι ( Λ + 1 / 9 )), q. e. d.
j=0 j=0

The case p=l is of particular importance for later applications.

3. Lemmas on the best approximation. A function f(x) on G is said
to belong to the Lip(p) a(W) (resp. li
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|| fix + h)- fix)\, = O {(d(h, 0))«) (resp. o((d(h, 0))")) .

This definition is essentially due to G. Morgenthaler [5]. A characterization
of the class LipC3°Λ(W) was given by us [9], which applies with little modifi-
cation also to the class lip(p>#(W), i.e., we have

LEMMA 4. The following four statements are equivalent:

(1) /(a:)€Lip<rttf(W)

(2) »<»(2- / ) = sup {!/(*+*) - fix)\v'. hzVn}= O(2—)

(3) £.<rt(/) = i n f ί | / - A . | p : A, € Sβm} = O (m-)

(4) l / (*)-*<*;/) ! , , = O(2—)

similarly for the o-case.

As a corollary of Lemma 4, we have

LEMMA 5. Let a > 0, β > 0, r § 1, 5 ̂  1 <z?z<i 1/ί ^ (1/r) + (1/s) - 1.
/ € Lip(r) Λ(W) (r̂ 5/>. lip ( r ) Λ(W)) ΛW J ^ e Lip ( s ) /9(W) together imply

For the proof of these Lemmas, the reader is referred to [9] for the
O-case; the o-case can be proved similarly.

4. Metric properties of multiplier transforms. Let us write

for f*LK

THEOREM 1. The operation f—*fa has the following properties'.

1°. (Ja)β(x) = f.+β(x) fzL\ a > 0, β>0.

2°. // fzLip^aiW) then fβ € Lip(p>(α:+/3)(W)

similarly for lip c/α55 p^h Λ>0, /3>0.

3°. If f is in *$n and OL > 0, ίA^n £/i£Γ£ /s α constant Aay depending
only on a, such that |/-«| p ^ Aα w

α

4°. // f z Lp (1^: p< 00) or C and a > 1/p, then

PROOF. 1° is directly verified by an application of Fubini theorem.
Ad 2°: Lemmas 2 and 4 imply Iβ € Lip(1) β(W), and the result follows from
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Lemma 5. 3° follows from Lemma 3 upon "truncating" the formal series /_*:

/_.(*) = (/_. */)(*) = (US* fXx) (m = »(1) + 1) .

Consequently

To prove 4°, observe that \\f(x-f-h)— f(x)\\p — o(l) (Λ—>0). Now a combination
of Lemma 2 and Lemma 5 yields the requied result.

The next theorem and its proof shows that our multiplier transformation
is very close to fractional integration (cf. Zygmund [13]).

THEOREM 2. If feL* <J»1\ a = -~-— >0 then

fa zU and ll/llα^A^II/H,.

2—1>
PROOF. We begin with the special case 1 < /> < 2, q = 2, a = ^ .

Δ p
We may and do suppose that the mean value of f(x) is 0. Our assertion is
now equivalent to

1/2

where cv are the Fourier coefficients of f.

The left-hand member does not exceed, by Holder's inequality,

^ {(Σ I c. I ψ (Σ ̂  I *

by well-known inequalities of Hausdorff-Young and Paley. (cf. [14], Chapter
XII, Theorems (2. 8) and (5. 1)).

x τ - ™_ . , r 1 1 . α 1 1 α
Now the Theorem is true for -T — ~7Ϊ + TΓ> — = I T — w .

P Δ Δ Q Δ Δ
For let g be a polynomial g(x) = ^Z dvψv(x\ with II # | |p = 1. We have
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which does not exceed -AJI/I p by the preceding case.
The proof will be complete if we prove the following Theorem:

THEOREM 3. Let f z L\ 0 < a < 1. Then the operation f-+fa is

of weak type ί 1, j . That is, there exists a constant Aa, depending

on a only, such that for any y > 0,

m({x; \fu(x)\

PROOF. We need the following lemmas:

LEMMA 6. Let z be a positive number greater than | | / | | i . Then the
following decomposition is possible:

( i ) f{x) = v(x) + w(x)9 w{x) =

(ii) I v(x)\ ^2z for almost every x,

(in) | | f 11.^

(iv) Σ

(v) there exist xl5 € G and neighborhood Vt of 0, such that w%j

vanishes outside

ane mutually disjoint,

(vi) I wtjix)dx = 0 for every pair ii,j) .

This Lemma is due to S. Igari [3], and is a modification of the "decom-
position lemma" of L. Hormander [2],

LEMMA 7. With the notations of the previous lemma, we have

wa Or) = 0 for xφ\J VM = E .

PROOF. Fix a pair (ί, j), and consider u — wih a = xtj. It is sufficient to
prove that uix -f- a) = 0 for x K V = Vt.
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Now

ua(x + a) = I u(t) Ia(x + a-rt)dt

= ί u(t) (Ia(x 4- a + t) - Ia(χ)) dt
JV(μ)

= fu(t + a)(Ia(x+t)-Ux))dt.
Jv

Let us evaluate I*(x+t) — Ia(x) for xφV, t$V. We have seen in the
proof of Lemma 2, that, for t <= V = Vi9

= Σ. 2~ia (Φi(x + t) D2,(x 4- t) - φj(x) D2,(x)).

But, x φ Vί9 tsVi implies x 4- t φ V\ (Vt being a subgroup of G). Since D#
vanishes outside Vj9 all of the summands vanish, and so does Ia(x + t)—Ia(x).

PROOF OF THEOREM 3. We may suppose l / ϊ i = 1-
It is sufficient to prove the following two facts:

1°. m ({x I v.(x) \ > y}) ^ Aay^«-»

2°. m ({x I «;.(χ) \>y})τ=ί Aβy/<-» .

Or, 2° is evident from Lemma 6, (v) and Lemma 7, put z=yι/a~Λ). To prove
1°, we use the special case of Theorem 2 already established. In fact

III/ M X , I *•/ofr\>Λs J

\Q/P

^ α 3 || v \\ϊ

where 8̂ = - ^ + (p-ί) q/p(l-a) = - 1 / ( 1 - Λ ) , q. e. d.

The proof of Theorem 2 is completed by an application of Marcinkiewicz
interpolation Theorem ([14] Chapter XII, Theorem (4.6)), since Ia e L1 implies

IIΛIU^AJ/IU
In the theory of TFS, it is well known that a formally integrated Fourier

series converges uniformly. This is not the case for fi(x) = (Iι*f)(x)9 fzL1,
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though there is a partial substitute, as indicates the following theorem.

THEOREM 4. Let fz L\ f(x)~~ Σ cktyk(x). Then we have

where

L(x;f) = sup I sn(x / ) | = sup |(fx *Dn)'(x)\
n n

and Ap depends only on p.

PROOF. Putting m — n(l) we have

v=l

= c Σ 2-
y = l y=2 r o

m—1 w - 1

= c0 + Σ 2"' 8/a: / ) + 2~m Σ cv ψXx) = c0+St+S2, say.
j=0 v=2m

where U*', f) = ^ ( « ; / ) - *<«;/) = / / ( ^ + ί) φ/ί) A<0 Λ Since

lx for every v, it is clear that || S2 j«, ̂  | / H , . On the other hand,

implies, for p §: 1,

where q — P — p/(p — 1). This inequality, combined with

j = 0

gives

I sup I * .(*;/,) ! I, ̂  I c. I + Σ

^ Il/Bi + Σ 2-'(1-1/9) 11/111 = Ap\\f\\ι •
j=0
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This yields the required estimate for *SΊ, and the proof of complete.
The theorem ceases to be true for p=oo in fact, consider the series

'-^ , which is the Fourier series of an integrable function f(x), for

which fi(x) is not bounded in any neighborhood of 0 (S. Yano [12]).

5. Series with random signs. Another substitute, yielding the uniform
convergence of multiplier transforms, is obtained by considering series with
random signs. The following theorem is the Walsh analogue of a result of
Paley and Zygmund (see [14], Chapter V, Theorem (8, 34)).

THEOREM 5. ( i ) Suppose J2 al<°° Then the "random Walsh series"
v~0

oo

Σ aυφv(t)ψv(x) has, for almost all t, partial sums of magnitude o((log w)1/2),
l/=0

uniformly in x.

(ii) If Σ al(logv)ι+ε < co for some £ > 0, then, for almost all t, the series

oo

Σ avφv(t)ψv(x) converges uniformly in x.

The proof of this theorem is a repetition of that of the trigonometric
case due to Salem and Zygmund, the only difference being the use of a fact
that a Walsh polynomial is of constant value when it is restricted to a suitable
neighborhood of a point. Thus we omit the proof, referring the reader to
Zygmund [14], Chapter V, pp. 219-220. The following corollary, however,
seems to be new.

COROLLARY. There exists a set E of Haar measure 1 such that for any

fzL1, f(x) ^ Σ aυyfrv(x) and for any α>l/2, t € E implies the uniform con-

vergence of the formal series ,

/«,,(*) = aoφo(t) + £ 2-"<»« avφv(t) ψv(x) .
v=l

PROOF. From Theorem 3 (ii), the series

v=l

converges, for a fixed cc>l/2 and for almost all t (say for t € Ea), uniformly
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in x, representing consequently a continuous function /α>ί(:r). Or, it is easily-

seen that the sets EΛ are increasing with respect to a. Put E — f^\ {Ea a

rational, a > 1/2}. Then EdEa for a > 1/2 with α: rational or irrational
and E is of measure 1. It is now sufficient to observe that fa,t

=f*Ioc,t and
Sn(x\fa,t)— (βn( IΛ,t) *f)(x) the uniform convergence of sn(x /«,*) proves our
assertion.

6. Multiplier {ir •}. The above theorems remain true if we consider v~*
instead of 2"y(1)α. Let

J.(x) = 1 + Σ "~ ψv(*) (pt > 0).

Repeated use of Abel transformations shows that JΛzLι and Theorem 1 is
re-proved easily. The special case of Theorem 2 requires no change, and
Theorem 3 will be based on the fact Ja(x) ^ AΛHa(x\ where Ha(x)=2H1-a)

(x € Vn—Vn+1), n = 0, 1, 2, , (0< a < 1). Lemma 7, with Ha(x) in place of
Ja(x), remains true and the rest is similarly carried on.

If one could prove that the formal series

should be a Walsh-Fourier- Stieltjes series, one would have a unified treat-
ment of the two classes of multipliers 2~v(i)cc and v~a but the present author
has been unable to prove this statement. However, for functions belonging
to Lp (1 < p < oo), we have

THEOREM 6. Let λ0 = 1, λ, = 2H1)a/v* z/ = l, 2, where a is a fixed

real number, and let fa Lp, 1 < p < oo, f(χ) — Σ cυψv(x). Then

is the Fourier series of a function Af in Lp and

This theorem is a special case of the Walsh analogue of a theorem of
J. Marcinkiewicz [4] (see also [14], Chapter XV, P. 232) and proved similarly.
The main step (corresponding to [14], Chapter XV, Lemma (2. 15)) has already
been proved by G. Sunouchi ([6], Theorem 1).

7. Application to the theory of approximation. If a 2 7r-periodic func-

tion f(x) has its TFS Σ Av(x), the formal trigonometric series Σ vλAJ^x) plays

an important role in the process of (trigonometric) approximation to f(x) (see
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e.g. [8]). A similar fact holds for WFS. Let f(x) <= U and let its WFS be

Σ cvψv(x)> If ffv(n) (v = 0,1, 2, ) is the sequence of Walsh-Fourier-Stieltjes

coefficients of a bounded measure μin) on G, with $fo(n) = I dμ(n) = 1, we

have multiplier transforms

Pn(x) = Pn(x;/) = (/* μ^){x) - έ cvgv(n) ψv(x) ,

where the parameter n need not be discrete.

If there exist a positive non-increasing function φ{n) and a class K of
functions in such a way that

( I ) II / ~~ f* iU((n) II P — o(φ(n)) implies f(x) = constant

(II) ll/-/*A*Cn) \\p = O(φ(n)) implies f(x) € K;

(III) Ax)*K implies | | / -/*/χ ( w ) II, =

then we say that the method of approximation with multiplier transforms

defined by μ{n) is saturated with the order <p(n) and with the class K.

Suppose that there exist a positive constant c and sequence

{p(v)}> v = 1,2> for which

~J(i\ = c'Kv) ( v = 1, 2, ) ,

then we can prove, by a standard weak compactness argument (we may take
here the 2*-th patial sum of the WFS of (f-f*μin)) instead of (C,l)-means,
used in the case of TFS) that our method is saturated with the order φ(n)

and the class of those functions f(x) for which

(*) Σ CvP«»1rjζx)\\ = O ( 1 )

provided that the assertion (III) is verified by the properties of μin). The

relation (*) is equivalent to, respectively,

is the WFS of a bounded function (p — oo)

is the WFS of a function in Lp (l<p<<χ>)

Σ cv ρ(v) ψv(x) is the Walsh-Fourier-Stieltjes series of a bounded measure on
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For most of the well-known summability methods, the sequence ρ(v) is of
the form vλ> where λ is a positive number, and (III) is proved by a direct
estimation. If we denote by Wλ = WiP)λ the class of all WFS for which (* )
holds with p(v)=vλ, we have the following

THEOREM 7. Let λ > 0 and let T=(Tn) be a linear approximation
process with

(1) \\Tn(f)(x)\\p^Mx\\f\\p

(2) \\A*)-Tn{f)(x)\\p = M%n-χ\\f™\\9 for f

Then f € Lip(2))a(W) 0<a<\ implies

where f[λ] is (the function or the measure represented by) the formal series

This theorem was first proved by G. Sunouchi [7] in the theory of the
trigonometric approximation; a different proof (with a slight generalization),
which applies also for Walsh system, is found in Watari [10].

COROLLARY. If f(x)<=Lip(p)a(W) l<ρ<oo, 0<a<l, then for any
θ>0 \\σξ(x;f)-f(x)\\p = O(/ι' ), where σi(x;f) denotes the n-th (C, β)
means of the WFS of f(x).

For the proof it suffices to see that the approximation by σ£ is saturated
with the order 1/n and the class [f:f[Ί] ^Lp}; this fact being a consequence
of Paley's decomposition theorem and multiplier theorem of Marcinkiewicz
(see Theorem 6 above).

This result was proved, under an additional condition 8 > ct, by S. Yano
[11]. For the trigonometric system, this is due to G. Sunouchi [7].
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