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The K distribution is used in a number of areas of scientific endeavor. In optics, it provides a useful statistical
description for fluctuations of the irradiance (and the electric field) of light that has been scattered or transmitted
through random media (e.g., the turbulent atmosphere). The Poisson transform of the K distribution describes the
photon-counting statistics of light whose irradiance is K distributed. The K-distribution family can be represented
in a multiply stochastic (compound) form whereby the mean of a gamma distribution is itself stochastic and is
described by a member of the gamma family of distributions. Similarly, the family of Poisson transforms of the K
distributions can be represented as a family of negative-binomial transforms of the gamma distributions or as
Whittaker distributions. The K distributions have heretofore had their origins in random-walk models; the
multiply stochastic representations provide an alternative interpretation of the genesis of these distributions and
their Poisson transforms. By multiple compounding, we have developed a new transform pair as a possibly useful
addition to the K-distribution family. All these distributions decay slowly and are difficult to calculate accurately
by conventional formulas. A recursion relation, together with a generalized method of steepest descent, has been
developed to evaluate numerically the photon-counting distributions and their factorial moments with excellent
accuracy.

1. INTRODUCTION

As with so many of the probability distributions of current
interest in optics and information transmission, the K distri-
bution was introduced first in entomology. In 1953, Broad-
bent and Kendall' used the K0 distribution to describe the
spatial distribution of certain larvae in terms of a two-di-
mensional random-walk model coupled with an exponential-
ly distributed stopping time.2 In 1975, Yasuda3 generalized
the result of Broadbent and Kendall by using a gamma-
distributed stopping time in the Rayleigh random walk, ob-
taining the K distribution. He then used this to describe the
behavior of matrimonial distances (the distance between the
birthplaces of mates) in Japan and Italy. The appellation
"K distribution" appears to have been used first by Mal6cot 4

in 1967.
In optics, the K0 distribution was used first in 1970 by

Bertolotti et al.5 in connection with the problem of doubly
scattered laser light. A more general approach, initiated by
Pusey, Jakeman, and their colleagues in 1976, made use of
the K distribution for problems involving the field and irra-
diance in scattering, speckle, and the propagation of light
through turbulent media.6 -'2 The same model was used also
to describe non-Rayleigh microwave sea echo.'3 -'5 A num-
ber of generalizations of the K distribution, including the I-
K distributionl617 and the generalized K distribution, 1

8" 9

were set forth recently. The K distribution also was ob-
tained in the context of a quantum-mechanical formula-
tion.2 0 The smoothing of the K distribution caused by dead
time2' and saturation22 has been considered as well.

Two physically distinct doubly stochastic representations
were developed for the K distribution and for some of its
generalizations. In the first, considered by Yasuda3 and
pursued by a number of researchers,12,13,17,19,23-26 the second

moment of a Rayleigh distribution is smeared by a gamma

distribution. In the second, considered by Lewinski,' 4 the
mean of a gamma distribution is smeared by another gamma
distribution. It was shown by Jakeman and Tough' 9 that
the generalized K distribution can be represented as a Rician
distribution with both its mean-squared noise component
and its coherent amplitude varying in correlated fashion,
according to a gamma distribution.

The Poisson transform of the K distribution, describing
the photon-counting detection of light whose field (or irradi-
ance) is K distributed, has been written in terms of Whitta-
ker functions. 5 6,2, 27-29

The purpose of this paper is twofold. First, we show that
the family of K distributions and their Poisson transforms
can be represented as multiply stochastic distributions, in
which the mean of one distribution is smeared by another.
For the K' distribution, which is a generalization of the K
distribution, the mean of a gamma distribution is smeared
by another gamma distribution; for the Poisson transform of
the K' distribution, the mean of a negative-binomial distri-
bution is smeared by a gamma distribution. Second, we
obtain mathematical expressions and numerical results for
the Poisson transforms of the K family (i.e., for the photon-
counting distributions of light whose irradiance fluctuations
are K distributed).

A schematic representation for the process is provided in
Fig. 1(a). A scattering (or atmospheric) medium of fluctuat-
ing transmission (with characteristic fluctuation time a)
imposes a random modulation on the mean irradiance W of a
light source that passes through it. For purposes of illustra-
tion, we take the fluctuations of the mean irradiance im-
posed by the medium to be gamma distributed. These fluc-
tuations result in an overall mean aW for the light that
emerges from the medium, where a is a scaling factor intro-
duced by the medium. Light sources also exhibit intrinsic
irradiance fluctuations (characterized by the coherence time
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(a)

LIGHT SOURCE MEDIUM WITH INTEGRATED-

WITH FLUCTUATING FLUCTUATING IRRADIANCE

IRRADIANCE TRANSMISSION DETECTOR K'x)

(-Cd ~(%¶a) (T)

(b)

LIGHT SOURCE MEDIUM WITH PHOTON-

WITH FLUCTUATING FLUCTUATING COUNTING

IRRADIANCE TRANSMISSION DETECTOR A(n)

Fig. 1. Models representing the effects of a medium with fluctuat-
ing transmission (or a scattering medium) on the statistical proper-
ties of a light source observed at the output of a detector. (a) The
medium (with characteristic fluctuation time ra) stochastically
modulates the mean irradiance of the source, the source exhibits
intrinsic irradiance fluctuations (with coherence time TJ), and the
detector records the overall (continuous) integrated irradiance (in
the time 71. (b) Same as (a) but now the detector records the
overall (discrete) photon count (in the time T).

i-,). The integrated irradiance of chaotic (or thermal) light,

for example, is gamma distributed. A gamma-fluctuating
light source, whose mean is smeared by a random medium in

accordance with another gamma distribution, results in a

doubly stochastic distribution for the integrated intensity
that is precisely the K' distribution. A unity-quantum-
efficiency detector of the integrated irradiance provides a

direct measure of this distribution. Equivalently, the gam-
ma-distributed irradiance fluctuations may be viewed as
modulating the mean of the gamma-distributed transmis-
sion of the random medium.

In the scheme shown in Fig. 1(b), the fluctuating medium
and the light source have the same properties as those con-
sidered above. The integrated intensity is therefore again
describable by the K' distribution, but in this case a photon-
counting detector is used. It measures the Poisson trans-

form of the integrated intensity rather than the integrated
intensity itself. The resultant discrete photon-counting

distribution, which we refer to as A(n), is therefore the Pois-
son transform of the K' distribution. For a unity-quantum-
efficiency counter, it registers the same overall mean as the

integrated-irradiance detector.

After discussing the general properties of multiply sto-

chastic distributions in Section 2, we proceed to develop

doubly stochastic representations for the K-distribution
family in Section 3 and to obtain Poisson transforms of these

representations in Section 4. In Sections 5 and 6 we calcu-

late and present the photon-counting distributions A(n).

The conclusion is provided in Section 7.

2. MULTIPLY STOCHASTIC DISTRIBUTIONS

A multiply stochastic distribution is formed from a simple
one by smearing (averaging) its mean over a first-level distri-
bution; the latter may itself have a mean that is subject to
uncertainty and is then averaged over a second-level distri-
bution of that mean. The process may need to be continued,
in principle, until the deepest-level distribution has a mean
and other statistical parameters that are truly deterministic.

A vastly expanded variety of random behavior can thereby

be accounted for and related to the underlying probabilistic

nature of the processes involved. Multiply stochastic distri-
butions have been applied in a variety of disciplines.2 7 30

The complexity of the probability distributions tends to
rise rapidly with each additional level of smearing of the
mean, and the mathematical expressions for the resultant
counting distributions soon become difficult to calculate and
intractable to analysis. Parameters other than the mean of
the distributions may be smeared, giving rise to other fam-
ilies of distributions.

A. Notational Conventions
To simplify the notation and the manipulations of the ex-
pressions required for the calculations, we adhere to the
following conventions.

A probability distribution at any level is written as an
appropriately selected symbol for the function, with the
independent random variable as its first argument and its
mean as its last argument; other parameters of the distribu-
tion appear between the first and last ones. For example,
the gamma distribution for a continuous variable x with
mean N and degrees-of-freedom parameter a is designated
G(x, a, N), as an abbreviation for its full mathematical form,
given by

G(x, a, N) = [(a/N)a/r(a)]xa'l exp(-ax/N). (2.1)

It is understood implicitly that the range of x is 0 to and
that a > 0 to ensure that its integrals converge.

In the notation introduced by Gurland,31 the process of
smearing the mean of one distribution by averaging over
another is abbreviated by the operator A, defined as an
integration (or summation in the discrete case) over the
adjacent repeated parameter. This is akin to the Einstein
convention for repeated indices in tensor analysis. The
results are referred to sometimes as compound or mixed
distributions, but we prefer the term doubly stochastic dis-
tributions.

B. Example
An example is provided by the doubly stochastic counting
distribution that results when a Poisson counting process
with mean W, which has the distribution P(n, W) = (Wn/
n!)e-W, is smeared by allowing its mean W to take on values
associated with a gamma distribution. This is expressed by

p(n, a, N) = P(n, W) A G(W, a, N), (2.2)

which, because W is the repeated symbol that becomes the
dummy variable of integration, stands for the averaging op-
eration

p(n, a, N) = P(n, W)G(W, a, N)dW

= J (Wn/n!)e-w[(a/N)a/r(a)1 W-1

X exp(-aW/N)dW. (2.3)

In this instance, the integration presents no difficulties and
results in the negative-binomial distribution

p(n, a, N) = B(n, a, N)

= [aa/r(a)] [r(n + a)/n!]Nn/(N + a)n + a.

(2.4)
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The notation p(n, a, N) = P(n, W) A G( W, a, N) is consistent
with the first convention, as N remains the mean of the
resultant distribution p(n, a, N), necessarily, since W is the
mean of P(n, W) and N is the mean of G(W, a, N):

(n) = Enp(n, ca, N) = nf P(n, W)G(W, e, N)dW

= EnP(n, W)G(W, ,N)dW

= j WG(W, e, N)dW = N. (2.5)

The summations over n and the integrations over W both
span the entire range from 0 to -.

When we wish to allow for a gain (or loss) factor, a, in the
overall mean, we can maintain the notational convention
with this gain factor included, as in

f(m, n) A P(n, N) = N
m

. (2.13)

It follows at once that if a Poisson distribution is compound-
ed with any continuous distribution p(x, M) to form the
discrete one F(n, M) = P(n, x) Ap(x, M), then the factorial
moments of F are identical to the direct moments of p:

f(m, n) AF(n, M) = f(m, n) AP(n, x) Ap(x, M)

= XmAp(x, M) = (xm). (2.14)

This corresponds to a well-known theorem relating the two
sets of moments.

D. Symmetry
The compounding operation is not only associative but also
generally symmetric, or commutative, in the sense that

hl(x, N) = f(x, u) Ag(u, N)

is the same distribution as

h2(x, N) = g(x, u) Af(u, N).

(2.15)

p(n, a, aN) = P(n, aW) A G(W, a, N), (2.6)

where the integration is again over the repeated variable W.
This is found to be the negative-binomial distribution with
modified mean, B(n, a, aN). More generally, if the means of
two compounded distributions undergo linear transforma-
tions, then so does the mean of the resultant one, as in

h(x, aN + b3) = f(x, au + b) Ag(u, a2N + b2), (2.7)

with

a3 = ala2, b3 = alb2 + bl.

C. Moments

(2.16)

This property will hold if the constituent distributions f(x,
N) and g(x, N) are such that their moments (xm) are propor-
tional to Nm, as is borne out by a dimensional analysis, based
on (x) = N. If this is so, i.e., if

(x) = FN' for f(x, N) (2.17a)

and

(xm ) = G.Nn4 for g(x, N); (2.17b)

(2.8) then the moments of the two versions of h(x, N) are, for h,(x,
N) = fAg,

(xm
) = F mat Ag(u, N) = F(u m ) = FnGnN' (2.18)

The abbreviated notation becomes even more powerful
when the A operation is extended to include expressions
that are not themselves probability distributions but are
involved in the calculations of means, variances, and mo-
ments of the distributions. Thus the above calculation of
the mean of the distribution can consistently be abbreviated
as

(n) = n A p(n, a, N) = n A P(n, W) A G(W, a, N)

= WA G(W, a, N) = N. (2.9)

Similarly, the calculation of moments of continuous distri-
butions, or of factorial moments for discrete ones, can be
abbreviated as

(X') = x A p(x, N) = J xnp(x N) dx, (2.10)

and, defining f(m, n) as the factorial ratios, i.e.,

f(m, n) = n!/(n - m)! = n(n -1)(n - 2) . (n - m +1),

(2.11)

we obtain the factorial moments for a discrete distribution in
the form

(f(m, n)) = (n!/(n-m)!) = f(m, n) A p(n, N). (2.12)

For example, for the Poisson distribution, the factorial mo-
ments are

and, for h2 (x, N) = g Af,

(xm = GUmA (U,N) = G.(u' = GFnN. (2.19)

Since all the moments of the two version of the h(x, N)
distribution are the same, we conclude that h, = h2 and the
compounding operation is commutative.

3. DOUBLY STOCHASTIC REPRESENTATIONS
FOR THE IRRADIANCE DISTRIBUTIONS

A number of continuous probability-density functions
(pdf's) of interest in our study, and their direct moments, are
presented in Table 1. Various equivalent representations
for the pdf's are also shown. The entries under the heading
Equivalent Density Functions explain the provenance of the
distributions, as a smearing of the mean of a more primitive
distribution with another one. We have used the standard
notations 32 for the gamma function r(x), the generalized
Laguerre polynomials L(a)(x), and the modified Bessel
functions of the first kind I(x) and of the second kind K(x).
Several well-known entries 27 are included in the table, to
facilitate comparisons.

The distribution denoted by g(x, a) and labeled the basic
gamma is the gamma distribution stripped of the a/N factor
that distinguishes its mean from its parameter; that is, the
gamma distribution G(x, a, N) is merely a rescaling of the
basic gamma distribution: G(x, a, N) = (a/N)g(ax/N, a).
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Table 1. Pdf's, Moments, and Equivalent Density Functions for Some Continuous Random Variables

Equivalent
Name Symbol Expression (pdf) Moments (xm) Density Functions

Delta D(x, N) (x - N) Nm G(x, , N)

Exponential E(x, N) (1/N)exp(-x/N) Nmm! G(x, 1, N)

Gamma G(x, a, N) [(a/N)/r(a)](ax/N)a1- exp(-ax/N) Nm[r(m + a)/amr(a)] (a/N)g(ax/N, a)

Basic gamma g(x, a) [1/r(a)]xa-le-x r(m + a)/r(a) G(x, a, a)

Noncentral I(x, a, U + a) (x/u)(a-l)1
2 exp[-(x + u)]Iai1[2(xu)/2] m!Lm(a-)(-u) g(x, k + a) A P(k, u)

chi-square

Ko distribution K(x, N) (2/N)Ko(2(X/N)112) Nm(m!)
2

K(x, 1, N); E(x, u) AE(u, N)

K distribution K(x, a, N) [2(a/N)/r(a)](ax/N)(a.l)1
2 Nmm![r(m + a)/ E(x, U) A G(u, a, N)

X Ka-_(2(ax/N)"1
2
) amr(a)]

K' distribution K'(x, 13, a, N) [2(a//N)/r(a)r(g)](a3x/N)[(a+0)12]-l Nm[r(m + 0)/3mr(#)] G(x, 13, u) A G(u, a, N)

X Ka._(2(aflx/1N)
2
) X [r(m + a)/amr(a)]

GI distribution J(x, 3, a, u + a) G(x, fl, v) Ag(v, k + a) AP(k, u) [r(m + )/pmr(f3)] G(x, , v) AI(v, a, u + a)

x m!Lm(-1)(-u)

The basic gamma distribution can be considered a continu-
ous version of the discrete Poisson distribution, in that it
reduces to the Poisson distribution when a is restricted to be
an integer:

g(x, n + 1) = P(n, x). (3.1)

The distribution I(x, a, u + a) is the noncentral x2 distri-
bution (also called the generalized Rician-square distribu-
tion or the Laha distribution3 3 ). It applies to an optical
source that emits a superposition of interfering coherent and
chaotic radiation, with a (often denoted by M) as the num-
ber of degrees of freedom (or modes) and u = aIcoh/Ich, the
number of modes times the ratio of coherent irradiance to
chaotic irradiance. 34 In this case, the equivalent doubly
stochastic distribution g(x, k + a) A P(k, u) involves a sum-
mation over the discrete index k, not an integration; the
noncentral x2 distribution is a compounding of the basic
gamma distribution with a Poisson distribution.3 5 The no-
tation used adheres to the convention that the last parame-
ter, here u + a, be the mean of the distribution.

The three K distributions listed are denoted by K0, K, and
K'. The first is the simplest, resulting from an exponential
distribution that smears another exponential, E(x, u) A E(u,
N). The second is the K distribution that is usually cited,
which is obtained from an exponential distribution smeared
by (or driven by) a gamma distribution. This was consid-
ered initially to arise from a Rayleigh distribution,

R(x) = (2/S)x exp(-x 2 /S), (3.2)

whose second moment S = (x2) is randomized by a gamma
distribution.3 1

2"13"17' 1 9 23-26 The equivalence follows from
the fact that the square of a variable with a Rayleigh distri-
bution exhibits an exponential distribution. The more gen-
eral K' distribution results from a gamma distribution
smeared by another gamma distribution. The parameters a
and a3 may be viewed as degrees-of-freedom parameters, 2 7

such that

a 1 if T << T and a T/r if T >> ,

(3.3)

j3t1 if T << ra and 13tT/Ta if T >>ra.

(3.4)

As indicated above, the K' distribution, G(x, 13, U) A G(u, a,
N), is symmetric in the two degrees-of-freedom parameters,
a and 1.

The distribution denoted GI in Table 1, a compounding of
the gamma and the noncentral x2 distributions, is also a
compounding of two gamma distributions with a Poisson
distribution. This can model the smearing of laser light that
has a coherent component and an interfering chaotic compo-
nent. When the coherent portion is eliminated (u = 0), this
distribution reduces properly to G(x, , v) Ag(v, a), which,
except for a linear transformation of the mean, corresponds
to the K' distribution.

The generalized K distribution, derived from an n-dimen-
sional random-walk model of weak scattering,18' 19 can be
expressed in terms of a smearing operation that involves the
K' distribution. The generalized K distribution can be writ-
ten as

KG(X, a, 1, a13 + a(a + 1)z) = [2/r(a)]f#_,(Vx, A1)

X g0-1(cs (1 + Z)'/1 ),

(3.5)

where we have used the abbreviations

fv(x, u) = (x/u)vI,(2ux), g,(x, u) = (x/u)"K,(2ux) (3.6)

for the factors that involve the modified Bessel functions.
Correspondence with the Jakeman-Tough version19 is made
through x = a13A2/a2 and z = (/a)62/a 2, with = n/2 for an
n-dimensional random walk in the limit of the sum A of a
large number of small random steps of scaled mean-squared
amplitude a2, biased by a deviation from isotropy, 62, that
generalizes the usual K distribution. The moments of the
generalized K distribution are

(xm) = [r(m + w r/omr(1)][r(m + ae)/a mF(a)]

X (a1) m F(-m, a + m; 1; - z), (3.7)
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where F(a, b; c; i) is the hypergeometric function; for a =
-m, this reduces to a polynomial in u that is related to the
Jacobi polynomials. By comparing moments, we find that
this generalized K distribution can be considered to be a
multiply stochastic compounding of a simpler distribution,
Q(x, a, 1, N):

KG(X, a13, + a(a + 1)Z)

= G(x, 13, U) A G(u, a, v) A Q(v, a, 13, afi + a(a + 1)z)

= K'(X, a, v) A Q(v, a, 13, 0a1 + a (a + 1)z), (3.8)

where the distribution Q(x, a, 13, N) has moments

(xm) = (a1)mF(-m, c + m; 1;-[(N-aO)/a(a + 1)]). (3.9)

Note, however, that in this representation the Q distribution
is not independent of the parameters in the K' distribution.

Multiply stochastic representations for the irradiance are
applicable for the model presented in Fig. 1(a), in which the
integrated irradiance is detected. The operation of optical
detectors is accounted for more properly by the model in Fig.
1(b), as discussed in Section 4. Nevertheless, for relatively
strong irradiance fluctuations, the description given in this
section may suffice.

4. MULTIPLY STOCHASTIC
REPRESENTATIONS FOR THE PHOTON-
COUNTING DISTRIBUTIONS

Discrete analogs of the distributions represented in Table 1
may be obtained by permitting these distributions to smear
the mean of a Poisson distribution; i.e., they can arise as
Poisson transforms of the continuous distributions. The cor-
respondence is then to the detection model presented in Fig.
1(b), which is more appropriate for the operation of real
photodetectors. This operation leads to the distributions

presented in Table 2, in which the corresponding factorial
moments are also given. Note that the factorial moments in
Table 2 are identical to the direct moments of the correspond-
ing continuous distributions in Table 1, as noted in Section 2.
The exception is the noncentral negative-binomial distribu-
tion,3 4

37 which includes a gain factor in the Poisson distribu-
tion. Equivalent representations for the pdfs are also pre-
sented. Some well-known density functions2 7 are included in
Table 2 for ease of comparison.

The three K distributions in Table 1, K0, K, and K', trans-
form to three discrete distributions denoted PKO, PK, and
PK'. By the associative property of the smearing operation,
calculation of these discrete distributions may proceed in any
order desired. In particular, the PK' distribution, A(n, 13, a,
N), is a Poisson distribution smeared by the K' distribution,
but it may alternatively be viewed as a negative-binomial
distribution smeared by a gamma distribution; i.e., B(n, 1,
v) A G(v, a, N). This remarkable result is important for pu-
poses of both interpretation and calculation, as is made evi-
dent in Sections 5 and 6. Properties of the negative-binomial
transform are collected in Appendix A.

The three A(n) distributions in Table 2 are the main sub-
ject of the remainder of this paper. They represent triply
stochastic distributions and are obtained by smearing the
mean of one distribution with another distribution whose
mean is, in turn, smeared by a third distribution. The last
one, labeled PK', encompasses the previous two, as follows:

A(n, N) = A(n, 1, 1, N),

A(n, a, N) = A(n, 1, a, N).

(4.1)

(4.2)

Of these, A(n, N) has no adjustable parameter (other than
the mean), and A(n, a, N) has one adjustable parameter.
The most general distribution, A(n, 1, a, N), has two adjust-
able parameters, the primary and secondary degrees-of-free-
dom parameters, a and 13, respectively. Since the last distri-

Table 2. Pdf's, Factorial Moments, and Equivalent Density Functions for Some Discrete Random Variables

Factorial Moments Equivalent
Name Symbol Expression (pdf) (n!/(n - m)!) Density Functions

Poisson P(n, N) (Nn/n!)e-N Nm B(n, , N)

P(n, ) A 6(u, N)

Bose-Einstein B(n, N) Nn/(N + 1)n+1 Nmm! B(n, 1, N)

P(n, ) A E(u, N)

Negative binomial B(n, a, N) [lar(n + )/n!r(a)] Nm[r(m + a)/emr(a)] P(n, ) A G(u, a, N)
X Nn/(N + a)n+a

Noncentral L(n, s, a, s[u + a]) [Sn/( + 1)n+a] m!smLm(a)(-U) B(n, k + a, s[k + a]) AP(k, u)
negative binomial X exp[-su/(s + 1)] P(n, sx) A I(x, a, + a)

X Ln(ai-)(-U/[ + 1])

PKo distribution A(n, N) P(n, ) A E(u, v) A E(v, N) Nm(m!)2
B(n, v) A E(v, N)

P(n, ) A K(u, N)

PK distribution A(n, e, N) P(n, ) A E(u, v) A Nmm![r(m + a)/amr(a)] B(n, v) A G(v, a, N)
G(v, a, N) P(n, ) A K(u, a, N)

PK' distribution A(n, 13, a, N) P(n, ) A G(u, 13, v) A Nm[r(m + 3)/3mr(13)] B(n, 13, v) A G(v, a, N)
(Whittaker) G(v, a, N) X [r(m + )/amr(a)] P(n, ) A K'(u, , a, N)

BI distribution H(n, 13, a, u + a) P(n, ) A G(w, , ) A [r(m + )/pmr(#)] B(n, 13, ) A I(V, ae, + a)
g(v, k + a) A P(k, ) X rn!Ln(al)(-u) P(n, v) A J(V, , a, U + a)
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bution subsumes the others, we will study the most general
one and specialize the results to discuss the simpler distribu-
tions.

The general PK' distribution A(n, , a, N) can be repre-
sented in a bewildering variety of ways in terms of various
functions of mathematical analysis, notably in terms of
Whittaker functions WW,(x), as

3 8

A(n, 1, o, N) = Gn exp(ao/2N)(ao1/N)'WKo(ao3/N), (4.3)

where we have used the abbreviations

Gn = r(n + a)P(n + 13IFl)F(13)n! (4.4)

and

^y = (a+ 1-1)/2, K -(n+ y), r3= (a-)/2, (4.5)

or else in terms of confluent hypergeometric functions (or
Kummer functions) U(a, b, x), as32

A(n, A, a, N) = Gn(a13/N)aU(n + a, 1 + a - 1, a13/N)

= Gn(a13/N)3U(n + 3,1 + - a, a1/N); (4.6)

the last two expressions are known to be equivalent by a
Kummer transformation, 32 and they demonstrate the sym-
metry with respect to a and . Special cases of Eq. (4.3)
were reported previously by Bertolotti et al.

5 and by Pusey.6

We also report a generalization in which the negative-
binomial distribution is smeared by a noncentral x2 distribu-
tion. This distribution may suitably model the statistics of
photodetection for radiation passed through turbulent me-
dia, such as the atmosphere. This is because the noncentral
x2 distribution provides a useful and well-known representa-
tion for laser radiation as the sum of coherent and interfer-
ing chaotic components, while the negative-binomial distri-
bution captures the essential character of a birth-death-
immigration process, in which the death rate exceeds the
birth rate.39

We have found none of the analytic representations suit-
able for actual calculations of the distributions. Fundamen-
tally, the difficulties in developing suitably convergent rep-
resentations for these functions stem from the essential sin-
gularities that are present both at zero and at infinite
arguments. We were therefore led to develop other means
of computing the distributions. We succeeded by combin-
ing two approaches; we determined a second-order recursion
relation satisfied by the general distribution and then used a
generalized method of steepest descent to obtain pairs of
values of the probabilities for use in the recursion process.
The method is discussed in Section 5.

5. CALCULATION OF THE PHOTON-
COUNTING DISTRIBUTIONS AND FACTORIAL
MOMENTS

A. Recursion Relation
The actual evaluation of the double integral representing
A(n, 1, a, N) = P(n, i) A G(u, 1, v) A G(v, a, N) or, in more
explicit form,

A(n, 1, a, N) = J J P(n, u)G(u, 1, v)G(v, a, N)dudv

can be done easily after the integration variables are
changed by means of the transformation

(5.2)x = av/N, y = Ou/v,

which corresponds to

u = (N/a)xy, v = (N/a)x.

For this transformation, the Jacobian J(x, y) in the infinites-
imal element

dudv = J(x, y)dxdy = 1(u, v)/a(x, y)ldxdy

is given by

J(x, y) = (Na 2a20)x,

(5.4)

(5.5)

and the limits of integration remain from 0 to for both x
and y. If we let

X = N/ao, (5.6)

the double integral reduces, through u = Xxy, v = 13Xx, J =
$X2x, to

A(n, 1, a, N) = J P(n, Xxy)G(Xxy, 1, 1Xx)G(13Xx, a, N)

X 1X2 xdxdy

= [/n!r(a)r(1)] fA' fA Xn+a-lXn+f 3-l

X exp[-(x + y + Xxy)]dxdy.

Therefore

A(n, 1, a, N) = [n/n!r(a)P(0)]f(n + a - 1, n + 13-

(5.7)

1, X),
(5.8)

where

f(p, q, X) = J J xpyq exp[-(x + y + Xxy)]dxdy (5.9)

is the double integral to be studied. We will need this
function for values of (p, q) that are positive but not neces-
sarily integers.

The function f(p, q, X) satisfies the recurrence-differential
equation

Of(p, q, X)/OX = -f(p + 1, q + 1, X) (5.10)

and, for X = 0, becomes a product of two simple integrals:

f(p, q, 0) = r(p + 1)r(q + 1). (5.11)

Repeated use of Eqs. (5.10) and (5.11) yields derivatives of
all orders for f(p, q, X) at X = 0, but the resultant Taylor
series in powers of X fails to converge. Instead, we derive a
pair of recurrence relations for f(p, q, X) as follows.

We apply the divergence theorem (or Green's theorem in
the plane) to the double integral that defines f(p, q, X) in the
forms

J J V [xp(x, y)]dxdy = xp(x, y) ds,

J J V [yso(x, y)]dxdy = + yp(x, y) ds,

(5.12)

(5.13)

(5.1) where the surface integral is over the first quadrant of the xy

(5.3)
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plane; the closed-line integral is along the boundary of that
area, with ds directed along the outward normal to the
bounding curve; x and are unit vectors along the x and y
directions; and the quantity so(x, y) to be used in the theorem
is the integrand in Eq. (5.9),

so(x, y) = xPy' exp[-(x + y + Xxy)]. (5.14)

Accordingly,

V [(x, y)] = 0 + xdw/tlx = (p + 1 - x -Xxy)(x, y)

(5.15)

and

V.* [$y(x, y)] = v + yai/dy = (q + 1 - y - Xxy)p(x, y).

(5.16)

The closed line integrals in Eqs. (5.12) and (5.13) vanish,
because x * ds = 0 and yv = 0 along the x axis and y * ds = 0
and xvjo = 0 along the y axis; and both xSo and yvo vanish at an
infinite distance from the origin, because of the exponential
factor in so. The result is that the divergence theorem yields

J J (p + 1 - x - Xxy)X,(x, y)dxdy = 0 (5.17)

or

(p + 1)f(p, q, X) - f(p + 1, q, X) - Xf(p + 1, q + 1, X) = 0

(5.18)

and

J J (q + 1 - y - Xxy)o(x, y)dxdy = 0 (5.19)

or

(q + 1)f(p, q, X) -f(p, q + 1, X) - Xf(p + 1, q + 1, X) = 0,

(5.20)

as the two desired recurrence relations.
To use these two recurrence relations to obtain one for the

probability distribution A(n, 13, C, N), it is necessary to com-
bine them, because a unit increment in n causes a unit
increment in both p = n + a - 1 and q = n + 1 - 1, not just in
one or the other. We need to eliminate f(p + 1, q, ) and
f(p, q + 1, ) from the two relations, in favor of f(p, q, X) and
f(p + 1, q + 1, ). We use Eq. (5.18) as it is, then Eq. (5.20)
with q replaced by q - 1, and finally Eq. (5.18) again, with
(p, q) replaced by (p - 1, q - 1). When f(p + 1, q, X) and
f(p, q - 1, ) are eliminated from the three relations, the
second-order recurrence relation

pqf(p - 1, q - 1, ) = [1 + X(p + q + 1)]f(p, q, X)

- X2f(p + 1, q + 1, X) (5.21)

results, in which both indices p and q are incremented to-
gether.

Since A(n, , a, N) is proportional to [Xn/n!]f(n + a - 1, n
+ - 1, X), the recurrence relation [Eq. (5.21)] converts
readily to one for the distribution itself:

(n + a - )(n + - )An- = n[2n + + - 1 + (#1N)]An

- n(n + )Anilp (5.22)

where Am is an abbreviation for A(m, 1, a, N) and X = N/a is

used. This recurrence relation is confirmed also by combin-
ing the known recurrence properties3 2 of the Kummer func-
tion U(a, b, x) and the gamma-function ratio G, in Eqs. (4.6)
and (4.4).

To use this recurrence relation to compute the probability
distribution, we must have two consecutive values of An to
start with; the relation then provides all other values in
succession. It has been found that the recurrence relation is
stable when used downward, to get values for smaller n from
those for larger n; that is, there is no tendency for inaccura-
cies in higher-n values to accumulate to large errors in the
values derived for lower n. The task remains, then, to ob-
tain a pair of consecutive probabilities An and An+1 for some
sufficiently large n; these can then be used to get An-, and, in
turn, all the lower-n values, down to AO. What is needed is
an asymptotic expression for An, for large n.

An alternative approach3 2 starts arbitrarily with cAm+l =
0 and cAm = 1 for sufficiently large m, with c an unknown
normalization constant. Use of the recurrence relation then
yields cAn for successively smaller values of n, down to n = 0,
with ever-improving accuracy. The normalizing constant c
then can be obtained either by imposing unity as the sum of
the An or else by calculating any one of the An, say, AO, by
numerical quadrature. This procedure can yield accurate
results for low values of n but yields increasingly poor esti-
mates in the tail (high-n portion) of the distribution, which
is of particular interest, even when the normalizing constant
has been found with high accuracy.

B. Asymptotic Expression

Accurate evaluations of the distribution A(n, 13, a, N) for
large n can be made by adapting the method of steepest
descent to the double integral that defines the distribution.
We express the integrand in Eq. (5.9) as an exponential and
seek its stationary point in the first quadrant of the xy plane.
We then expand the exponent in a Taylor series about the
stationary point and retain up to quadratic terms in this
series. The resultant integrand is a bivariate Gaussian with
a known integral over the entire xy plane. For large n, the
errors made in neglecting higher-order terms in the Taylor
series and in extending the integral to the entire plane can be
made as small as desired.

We write the integral in Eq. (5.9) as

p, q, ) = J0 Io xpyq exp[-(x + y + xy)]dxdy

(5.23)= i: f: exp[-'(x, y)]dxdy,

where

'(x,y) =x +y+ Xxy-p lnx - q lny. (5.24)

The stationary point of the integrand occurs where the gra-
dient of vanishes:

I + Xx - ) =0.

This occurs at the point (xo, yo) such that

x+ xy=p, y+Xxy=q.

The Taylor series about this stationary point is

(5.25)

(5.26)
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4(x, y) = h'(xo, yo) + r* V (xO, yo)

+ /2 r * VV(xo, yo) r +..., (5.27)

where r = (x - x y - yo) and the linear term vanishes for
(xo, yo) satisfying Eqs. (5.26). The matrix of second deriva-
tives is

vv = [px2 2] (5.28)
[X q/y 2

to be evaluated at (xo, yO). The integrand then becomes,
approximately,

Sp(x, y) = exp[-+(x, y)] exp[--( 0 + /2r * VVQo r)

= exp(-fO)exp(-'/ 2r * VVao - r)

= oo exp(- 1/2 r* VV4 0o * r), (5.29)

and the integral itself becomes, approximately,

f(p, q, X) po J j exp(-'/ 2r * VVio * r)dxdy
fo 

xy 0 q exp[-(xo + yo + Xxoyo)]

X f J exp(-'/2 r * VV O * r)dA. (5.30)

In the last integral, the domain of integration has been ex-
tended to the entire xy plane, instead of only to the first
quadrant, on the basis that points in the other three quad-
rants are so remote from (xo, yo) that the exponent is large
enough for the additional contribution to the integral to be
negligible. The final integral is just the volume under the
bell-shaped bivariate Gaussian surface, and its value is

J A exp(-/ 2r * VVo * r)dA = 2r/[det VVpol]1/2

= 2rxoyo/[pq - (XXoyo)2]1/
2
.

(5.31)

The approximate expression for f(p, q, X) is therefore

f(p, q, X) 27rxP+lyoq+l exp[-(xo + yo + Xx0yo)]

X [pq - (XXoyo)2f/
2
, (5.32)

provided that the stationary point (xo, yo) is not too close to
the boundary of the first quadrant of the xy plane.

That point, which is where the bell-shaped surface peaks,
is found by solving the pair of equations x + Xxy = p and y +
Xxy = q in Eq. (5.26). These are easily converted into a
quadratic equation for the unknown Xxy:

(XXy)
2

- (p + q + 1/X)(Xxy) + pq = 0, (5.33)

and the solution that makes the determinant of VVo posi-
tive, as is needed, is

XxyO = (p + q + 1/X)/2 - [(p + q + 1/X)/2] 2
- pq)112

(5.34)

from which we get

So = p - Xx0Y0, yo = q - Xx0yo. (5.35)

The approximate expression for A(n, 13, a, N) is then

obtained by.combining relation (5.32) with Eq. (5.8) in the'
form

A(n, a,. a, N)

X0ayo0 (XX0 y0 )n27r exp[-(xo + yo + Xx0yo)]

r(a)I(O)n![(n + a - 1)(n + 1 -1) - (XxOyo)2]l/ 2

where xo, yo, and Xxoyo are determined for given N, a, and 1,
and for each n from Eqs. (5.34) and (5.35) with p = n + a - 1
and q = n + 13- 1.

The reason that this approximate, asymptotic expression
can be accurate for large n is that the bivariate Gaussian that
was extended over the entire plane, instead of the first quad-
rant alone, is reduced to values less than approximately
exp[-(n/X)1/2 ] (in the worst case of small a and ) on the x
and y axes, compared with unity at the stationary point.
The cubic and higher-order terms neglected in the Taylor
series contribute even less. Hence the error in the steepest-
descent approximation to the distribution can be kept as
small as needed by using the approximation for sufficiently
large n.

The procedure that we followed was to evaluate two con-
secutive values of the distribution for a suitably large n, say,
A(n' +'1, , a, N) and A(n, , a, N), by the asymptotic
formula (5.36) and then to apply downward recursion with
the exact relation [Eq. (5.22)] to calculate A(n - 1, , a, N)
and values for lower n successively, down to A(O, , a, N).
This approach maintains high accuracy even for large n.

Asymptotic expressions for the Kummer function in Eq.
(4.6), involving combinations of Bessel functions, are avail-
able as well32 and can be combined with asymptotic approxi-
mations for the gamma-function ratio in Eq. (4.4) to obtain
alternative expressions for A(n, , a, N) for large n.

C. Factorial Moments
The accuracy and the precision of the calculations were
verified by calculating the apparent factorial moments of the
resultant distribution, A(n, 1, a, N), for comparison with the
exact ones,

(f(m, n)) = Nm r(m + o)(m + a)
1rr(a) amr(a)

(5.37)

Note that the factors such as r(m + a)/am are just unity for
m = 0 and m = 1 and are calculated readily for m > 1,
without recourse to the gamma function, in the form

r(m + a) in
- J7J(1 + k/a).

amr(a) k=1
(5.38)

In practice, the factorials magnify the high-count probabili-
ties to such an extent that only the apparent factorial mo-
ments for the lowest few values of m can be calculated accu-
rately. The variance (n2) - (n)2 of the distribution can be
obtained by combining the factorial moments for m = 2 and
m = 1, or directly from

a2= (n2) - (n)2 = N + N2[(1 + 1/a)(1 + 1/10)-1]. (5.39)

For a = = 1, the variance reduces to o2 = N + 3M, which is
appropriate for the A(n, N) distribution or, equivalently, the
PKO,BAE, orPAEAEdistribution. For a -X (or:3- I),
on the other hand, the variance becomes u2= N + N2/ (or N
+ N2 /a), in accordance with the result for the negative-
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binomial distribution. Finally, for a - and : X , we
find that a2 = N, as for the Poisson distribution.

For typical choices of the mean N and for a, >> 1, the
asymptotic formula applied for n of the order of 100 or so
gave distributions whose factorial moments agreed with the
exact values to within a fraction of 1%; for the worst case of a
= = 1, it is necessary to start at a value of n in excess of 400
to attain comparable accuracy. Calculations were per-
formed on an Apple Macintosh desk-top computer, using a
BASIC program running with double precision; typical cases
were calculated and plotted in approximately 1 min, by
using a compiled version of the program.

6. RESULTS FOR THE PHOTON-COUNTING
DISTRIBUTIONS

We present several examples of calculated distributions,
displaying the wide variety of probability distributions en-
compassed by the triply stochastic P(n, u) A G(u, , ) A G(v,
a, N) construction.

Figure 2 shows the distribution P(n, u) A G(u, 3, v) A G(v, 2,
20), formed by driving a Poisson counting detector with light
that has a gamma distribution with parameter a = 2 (possi-
bly representing the intrinsic irradiance fluctuations of the
light source) that has itself been smeared by a gamma distri-
bution of parameter = 3 (possibly representing the fluctua-
tions of the mean irradiance imposed by the medium). The
mean count is N = 20, and the plot is a linear one. For this
case, downward recursion was begun at n = 400, and it
resulted in a calculated sum of the probabilities of 1.00579
instead of 1, a calculated mean of 20.115 rather than 20, and
a calculated variance of 419.82 instead of the exact one, 420.
This case is fairly typical of those with a, 13> 1. Note that,
because of the symmetry property A(n, , a, N) = A(n, a, ,
N), this case can equally well be considered to arise from
detection of light from a source with parameter a = 3, after
traversal of a medium that imposes fluctuations with param-
eter = 2, instead of the reverse pair of degrees of freedom.

The case of A(n, N) = A(n, 1, 1, N) = P(n, u)AE(u,
V) A E(v, N), which is also the exponentially driven Bose-
Einstein distribution B(n, v) A E(v, N) or, equivalently, the
Ko-driven Poisson distribution P(n, u) A K(u, N), is shown in
Fig. 3, again for a mean count of N = 20. For this extreme
case, in which the degrees of freedom of the light source and
of the medium are both unity, the tail of the distribution is
long; the variance is large. The precision attained with n =

0.10

A(n, 1,120)

0.051 x

0
0 20 40

Fig. 3. Plot of the distribution A(n, 20) = P(n, U) A E(u, V) AE(v, 20)
versus n.

A(n, 1 00,3,20)

0.05-

0 20 40

Fig. 4. Plot of A(n, 100, 3, 20) B(n, 3, 20), the negative-binomial
distribution, versus n.

0

A(n, 100, 1,20)

Fig. 5. Plot of A(n, 100, 1, 20) B(n, 20), the Bose-Einstein
distribution, versus n.
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Fig. 2. Plot of the distribution A(n, 3, 2, 20) = P(n, ) A G(u, 3,
v) A G(v, 2, 20) versus n.

Fig. 6. Plot of A(n, 100, 100, 20) P(n, 20), the Poisson distribu-
tion, versus n.
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400 as the starting point for recursion is relatively poor, as
evidenced particularly by the calculated variance, which was
1101.4 instead of the exact 1220; the calculated sum up to n
= 400 was 1.0137, and the apparent mean was 20.019.

The negative-binomial distribution is obtained, approxi-
mately, for the case A(n, 100, 3, 20), depicted in Fig. 4. With
the large value = 100 for the degrees of freedom of the
medium, the G(u, , v) factor in the triply stochastic con-
struction is approximately the delta-function distribution
D(u, v), so that PAD A G reduces to just PA G = B(n, 3, 20).
Equivalently, the large parameter may be considered to de-
scribe the fluctuations of the light source instead. Here, the
fact that 13 is large aids the precision of the results: the sum
up to n = 200 is 1.00018; the mean is calculated as 20.0037;
the variance' is found to be 158.622, instead of the exact
158.6667.

Similarly, the case A(n, 100, 1, 20) approximates the Bose-
Einstein distribution B(n, 20) = A(n, X, 1, 20). This is just
20n/21(n+l), which varies exponentially with n. Figure 5

shows a semilogarithmic plot of A(n, 100, 1, 20) to confirm
this behavior. With n = 250 as the starting point, the calcu-
lated sum, mean, and variance are 0.99978, 19.9936, and
427.47 instead of the exact values 1, 20, and 428, respective-

ly.
Finally, with both a and 1 large, the Poisson distribution is

approximated fairly well by A(n, 100, 100, 20), as shown in
the linear plot in Fig. 6. The calculated sum and mean are
1.000066 and 20.0013 for n up to 200; the calculated variance
is 28.015, whereas the exact one is 28.04. The latter should
be compared with 20 as the variance of the exact Poisson
distribution P(n, 20) = A(n, X, X, 20), showing how close a =
1 = 100 is to a = = c for this purpose. In this case, the
large values of the degrees of freedom a for the source and 
for the medium can be thought of as arising from a detector
integration time T >> T Ta. From a physical point of view,
the wavelike fluctuations in both the source irradiance and
its mean are washed out almost entirely, resulting in a pho-
ton-counting distribution that resembles the Poisson distri-

bution.

7. CONCLUSION

The continuous K0, K, and K' distributions are of impor-
tance for describing the field and irradiance fluctuations of
scattered light, speckle, and light passed through a random
medium such as the turbulent atmosphere. The K' distri-
bution, which subsumes the others, can be understood in
terms of the gamma transform of a gamma distribution,
where the two distributions generally have different de-
grees-of-freedom parameters. The Poisson transforms of
the K0, K, and K' distributions, representing discrete pho-
ton-counting distributions, are denoted PK0, PK, and PK',

respectively. The most general of these, the PK' distribu-
tion, can be viewed as the negative-binomial transform of a
gamma distribution where, again, the degrees-of-freedom
parameters of the two distributions are generally different.
Although all the members of this family of distributions
decay slowly, they have been evaluated numerically to excel-
lent accuracy by use of a recursion relation and a generaliza-
tion of the method of steepest descent. Although these
distributions can also be expressed in terms of confluent
hypergeometric functions or Whittaker functions, those rep-
resentations are less suitable for computational purposes.

We have also presented a convenient asymptotic form for
the tail of these distributions.

We have suggested a new continuous distribution, the
gamma transform of a noncentral chi-squared distribution,
as a possibly useful addition to the K family. We call this
the GI distribution, the G and the I representing the gamma
and the modified Bessel function of the first kind in the
noncentral chi-squared distribution, respectively. This dis-
tribution differs from the H-K, the I-K, and the KG distri-
butions. The associated new discrete distribution in the
Poisson transform domain, denoted BI, is the negative-bino-
mial transform of the noncentral chi-squared distribution.
The GI and BI distributions offer promise in modeling opti-
cal phenomena because the noncentral chi-squared distribu-
tion provides a good representation of the irradiance fluctu-
ations of laser radiation, whereas the negative binomial cap-
tures the essence of a birth-death-immigration process in
certain limits.

Finally, we point out that the results derived here may
well be useful in other applications, such as auditory and
visual psychophysics.4 0

APPENDIX A: THE NEGATIVE-BINOMIAL

TRANSFORM

We collect here, for ready reference, the salient properties of
counting distributions derived from an arbitrary continuous
pdf by transforming it with a negative-binomial distribu-
tion; that is, the negative-binomial transform of any pdf D(x,
N) is defined by

B141 = B(n, a, x) A D(x, N) = (p(n, a, N)

= jB(n, a, x)((x, N)dx. (Al)

Explicitly, this is

B{4 = [aaI(n + a)/n!P(a)] J {xnl(x + a)n+aJ(x, N)dx.

(A2)

This operation transforms the pdf of any continuous source
distribution into a discrete counting distribution. The
transform is thus a three-level operation:

B14 = (n, a, N) = B(n, a, x) A b(x, N)
= P(n u) A G(u, a, x) A (x, N). (A3)

The negative-binomial kernel is of importance because the
distribution arises in many contexts.41 42

The factorial moments (n!/(n - m)!) of a negative-bino-
mial transform (p(n, a, N) are related to the direct moments
(xm ) of the untransformed distribution b(x, N) by

(n!/(n - m)!) = [(m + a)/a m r(a)](x m).

The first few of these are as follows:

form = 1, (n) = (x);

for m = 2, (n(n-1j) = (1 + l/a)(x2 );

for m = 3, (n(n-1)(n-2))

= (1 + 1/a)(1 + 2/a)(x 3);

for m = 4, (n(n-1)(n-2)(n-3))

= (1 + 1/a)(1 + 2/a)(1 + 3/a)(X4).

(A4)

(A5)

(A6)

(A7)

(A8)
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The probability-generating function for the transformed
distribution is a function of the variable Z and is defined by
G(Z) = (Zn). When expanded in a power series about Z = 0,
this function of Z exhibits the successive counting probabili-
ties p(n, a, N), since

G(Z) = (Zn) E Znso(n, a, N), (A9)

so that

p(n, a, N) = (1/n!)dnG(O)/dZn. (A10)

On the other hand, when expanded in a power series about Z
= 1, the same function of Z exhibits the successive factorial
moments, since

G(Z) = (Zn) =E[1 + (Z1)]n (n, a, N)

= Z E [(Z -1)m/m!] [n!/(n - m)!]so(n, a, N),

(All)

so that

(n!/(n - n)!) = dG(1)/dZm . (A12)

For the negative-binomial transform (p(n, a, N) of 4'(x, N),
the probability-generating function is given in terms of an
average over the original, continuous distribution '(x, N) as

G(Z) = (Zn) = ([1 - (Z - )(x/a)]a). (A13)

Examples of negative-binomial transforms of some impor-
tant distributions are presented in Table 2.
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