
Rend. Istit. Mat. Univ. Trieste
Volume 48 (2016), 587–605

DOI: 10.13137/2464-8728/13174

Multiply warped products

as quasi-Einstein manifolds with
a quarter-symmetric connection

Sampa Pahan, Buddhadev Pal

and Arindam Bhattacharyya

Abstract. In this paper we study warped products and multiply

warped products on quasi-Einstein manifolds with a quarter-symmetric

connection. Then we apply our results to generalize Robertson-Walker

spacetime with a quarter-symmetric connection.

Keywords: Quasi-Einstein manifold, warped product, multiply warped product, quarter-

symmetric connection.
MS Classification 2010: 53C25.

1. Introduction

A Riemannian manifold (Mn, g), n ≥ 2, is said to be an Einstein manifold if
its Ricci tensor S satisfies the condition S = r

n
g, where r denotes the scalar

curvature of M. M. C. Chaki and R. K. Maity introduced the notion of quasi-
Einstein manifold in [2]. A non-flat Riemannian manifold (M , g), n ≥ 2, is
said to be a quasi-Einstein manifold if the condition

S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

is fulfilled on M , where α and β are scalars of which β �= 0 and η is a non-zero
1-form such that g(X,U) = η(X), for all vector field X and U , a unit vector
field.

Let (B, gB) and (F, gF ) be two Riemannian manifolds and f > 0 be a
differential function on B. Consider the product manifold B × F with its
projections π : B × F → B and σ : B × F → F . The warped prod-
uct B ×f F is the manifold B × F with the Riemannian structure such that
||X||2 = ||π∗(X)||2+f2(π(p))||σ∗(X)||2, for any vector field X on M . Thus we
have that gM = gB + f2gF holds on M . Here B is called the base of M and F

is called the fiber. The function f is called the warping function of the warped
product [7]. The concept of warped product was first introduced by Bishop
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and O’Neill [1] to construct examples of Riemannian manifolds with negative
curvature.

Now, we can generalize warped products to multiply warped products. A
multiply warped product is the product manifoldM = B×b1

F1×b2
F2...×bm

Fm

with the metric g = gB ⊕ b2
1
gF1

⊕ b2
2
gF2

⊕ b2
3
gF3

.... ⊕ b2
m
gFm

, where for each
i ∈ {1, 2, ...m}, bi : B → (0,∞) is smooth and (Fi, gFi

) is a pseudo-Riemannian
manifold. In particular, when B = (c, d), the metric gB = −dt2 is negative
and (Fi, gFi

) is a Riemannian manifold. We call M the multiply generalized
Robertson-Walker spacetime.

A multiply twisted product (M, g) is a product manifold of the form M =
B ×b1

F1 ×b2
F2...×bm

Fm with the metric g = gB ⊕ b2
1
gF1

⊕ b2
2
gF2

⊕ b2
3
gF3

....⊕

b2
m
gFm

, where for each i ∈ {1, 2, ...m}, bi : B × Fi → (0,∞) is smooth.

In 1924, Friedmann and Schouten introduced the notion of a semi-sym-
metric linear connection on a differentiable manifold [3]. The definition of
metric connection with torsion on a Riemannian manifold, was given by Hay-
den (1932) in [5]. In 1970, K. Yano [10] considered a semi-symmetric metric
connection and studied some of its properties. Then in 1975, Golab [4] intro-
duced the definition of a quarter-symmetric linear connection on a differentiable
manifold, which is a generalization of semi-symmetric connection. Later in [8],
Q. Qu and Y. Wang generalized the results to warped product and multiply
warped product with a quarter-symmetric connection.

In this paper we consider multiply warped products as quasi-Einstein man-
ifolds endowed with a quarter-symmetric connection. In section 2 and 3, we
discuss some preliminary concepts and results which are useful for proving
our main results in the next sections 4 and 5. In Theorem 4.1, we obtain a
necessary and sufficient condition for the warped product manifold to be a
quasi-Einstein manifold with respect to a quarter-symmetric connection. Then
in Theorem 4.2, under some assumptions on base and fiber we study quasi-
Einstein manifold with respect to a quarter-symmetric connection. Next in
Theorem 4.3, we establish that if (M, g) admits a metric for Robertson-Walker
spacetime then it is a quasi-Einstein manifold with respect to the above men-
tioned connection under certain conditions. Then in Theorem 4.5, we charac-
terize the warping function for a warped product space (M, g) with a quarter-
symmetric connection. Later in Theorem 4.5, we show that for quasi-Einstein
warped product with respect to a quarter-symmetric connection the complete
connected (n̄−1)-dimensional base is isometric to a (n̄−1)-dimensional sphere.
In the last section, we study special multiply warped product manifold with
respect to a quarter-symmetric connection.
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2. Preliminaries

Let (Mn, g) be a Riemannian manifold with the Levi-Civita connection ∇. A
linear connection ∇̆ on (Mn, g) is said to be a quarter-symmetric connection if
its torsion tensor T with respect to the connection ∇̆ defined by

T (X,Y ) = ∇̆XY − ∇̆Y X − [X,Y ],

satisfies
T (X,Y ) = ω(Y )φX − ω(X)φY,

where ω is a 1-form on Mn with the associated vector field P defined by
ω(X) = g(X,P ), for all vector field X, and φ is a (1, 1) tensor field.

A quarter-symmetric connection ∇̆ is called a quarter-symmetric metric
connection if ∇̆g = 0. ∇̆ is called a quarter-symmetric non-metric connection
if ∇̆g �= 0.

The relation between a quarter-symmetric connection ∇̆ and the Levi-Civita
connection ∇ of Mn is given by [9]

∇̆XY = ∇XY + λ1ω(Y )X − λ2g(X,Y )P, (1)

where g(X,P ) = ω(X) and λ1 �= 0,λ2 �= 0 are scalar functions.
We can easily see that:

when λ1 = λ2 = 1, ∇̆ is a semi-symmetric metric connection,

when λ1 = λ2 �= 1, ∇̆ is a quarter-symmetric metric connection,

when λ1 �= λ2, ∇̆ is a quarter-symmetric non-metric connection.

Further, a relation between the curvature tensors R and R̆ of type (1,3) of the
connections ∇ and ∇̆ respectively is given by [9],

R̆(X,Y )Z = R(X,Y )Z + λ1g(Z,∇XP )Y − λ2g(Z,∇Y P )X,

+ λ2

�

g(X,Z)∇Y P − g(Y, Z)∇XP
�

+ λ1λ2ω(P )
�

g(X,Z)Y − g(Y, Z)X
�

+ λ2

2

�

g(Y, Z)ω(X)− g(X,Z)ω(Y )
�

P + λ2

1
ω(Z)

�

ω(Y )X − ω(X)Y
�

, (2)

for vector fields X,Y, Z on M.

3. Warped Product Manifolds with Quarter-Symmetric

Connection

In this section we consider the following propositions from Propositions 3.5,
3.6, 3.7 and 3.8 of [8], which will be helpful to prove our main results of next
section.
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Proposition 3.1. Let M = B ×f F be a warped product. Let S and S̆ denote
the Ricci tensors of M with respect to the Levi-Civita connection and a quarter-
symmetric connection respectively. Let dimB = n1, dimF = n2, dimM = n̄ =
n1 + n2. If X,Y ∈ χ(B), V,W ∈ χ(F ) and P ∈ χ(B), then

(i) S̆(X,Y ) = S̆B(X,Y )+n2

�

H
f

B
(X,Y )

f
+λ2

Pf
f
g(X,Y )+λ1λ2ω(P )g(X,Y )+

λ1g(Y,∇XP )− λ2
1ω(X)ω(Y )

�

,

(ii) S̆(X,V ) = S̆(V,X) = 0,

(iii) S̆(V,W ) = SF (V,W ) +
�

λ2divBP + (n2 − 1)
|gradBf |2B

f2 +
�

(n̄− 1)λ1λ2 −

λ2
2

�

ω(P ) +
�

(n̄− 1)λ1 + (n2 − 1)λ2

�

Pf
f

+ ∆Bf
f

�

g(V,W ), where divBP =
n1
�

k=1

εk�∇Ek
P,Ek� and Ek, 1 ≤ k ≤ n1, is an orthonormal basis of B with

εk = g(Ek, Ek).

Proposition 3.2. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If X,Y ∈ χ(B), V,W ∈ χ(F ) and P ∈ χ(F ), then

(i) S̆(X,Y ) = SB(X,Y ) +
�

(n̄ − 1)λ1λ2 − λ2
2

�

ω(P )g(X,Y ) + n2
H

f

B
(X,Y )

f
+

λ2g(X,Y )divFP,

(ii) S̆(X,V ) =
�

(n̄− 1)λ1 − λ2

�

ω(V )Xf
f
,

(iii) S̆(V,X) =
�

λ2 − (n̄− 1)λ1

�

ω(V )Xf
f
,

(iv) S̆(V,W ) = SF (V,W )+g(V,W )
�

(n2−1)
|gradBf |2B

f2 + ∆Bf
f

+
�

(n̄−1)λ1λ2−

λ2
2

�

ω(P ) + λ2divFP
�

+
�

(n̄ − 1)λ1 − λ2

�

g(W,∇V P ) +
�

λ2
2 + (1 −

n̄)λ2
1

�

ω(V )ω(W ).

By Proposition 3.1 and Proposition 3.2 and by the definition of the scalar
curvature, we have the following propositions.

Proposition 3.3. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If P ∈ χ(B), then

r̆M = r̆B +
rF

f2
+ n2(n2 − 1)

|gradBf |
2
B

f2
+ n2(n̄− 1)(λ1 + λ2)

Pf

f
+ 2n2

∆Bf

f

+
�

n2(n̄+ n1 − 1)λ1λ2 − n2(λ
2
1 + λ2

2)
�

ω(P ) + n2(λ1 + λ2)divBP.
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Proposition 3.4. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If P ∈ χ(F ), then

r̆M = rB+
rF

f2
+(n̄−1)(λ1+λ2)divFP+[n̄(n̄−1)λ1λ2+(1−n̄)(λ2

1
+λ2

2
)]ω(P )

+ n2(n2 − 1)
|gradBf |

2

B

f2
+ 2n2

∆Bf

f
.

4. Generalized Robertson-Walker Spacetime with a

Quarter-Symmetric Connection

In this section we consider a quasi-Einstein warped product manifold with
respect to a quarter-symmetric connection. We prove the following theorem.

Theorem 4.1. Let (M, g) be a warped product I×fF where I is an open interval

in R, dimI = 1 and dimF = n̄ − 1, n̄ ≥ 3. Then (M, g) is a quasi-Einstein

manifold with respect to a quarter-symmetric connection if and only if F is a

quasi-Einstein manifold for P = ∂

∂t
with respect to the Levi-Civita connection

or the warping function f is a constant on I for P ∈ χ(F ), λ2 �= (n̄− 1)λ1.

Proof. Assume that P ∈ χ(B) and let gI be the metric on I. Taking f = e
q

2

and using the Proposition 3.1, we get

S̆

�

∂

∂t
,
∂

∂t
) = (1− n̄

��

1

2
q�� +

1

4
q�

2

−
1

2
λ2q

� + λ1λ2 − λ2

1

�

gI

�

∂

∂t
,
∂

∂t

�

, (3)

S̆

�

∂

∂t
, V

�

= 0, (4)

S̆(V,W ) = SF (V,W ) + eq
�

n̄− 1

4
(q�)2 +

1

2
[(n̄− 1)λ1 + (n̄− 2)λ2]q

�

+λ2

2
+

1

2
q�� + (1− n̄)λ1λ2

�

gF (V,W ), (5)

for vector fields V,W on F.

Since M is a quasi-Einstein manifold with respect to a quarter-symmetric
connection, we have

S̆

�

∂

∂t
,
∂

∂t

�

= αg

�

∂

∂t
,
∂

∂t

�

+ βη

�

∂

∂t

�

η

�

∂

∂t

�

,

and
S̆(V,W ) = αg(V,W ) + βη(V )η(W ).



592 S. PAHAN ET AL.

Then the last two equations reduce to

S̆

�

∂

∂t
,
∂

∂t

�

= αgI

�

∂

∂t
,
∂

∂t

�

+ βη

�

∂

∂t

�

η

�

∂

∂t

�

, (6)

and
S̆(V,W ) = αeqgF (V,W ) + βη(V )η(W ). (7)

Decomposing the vector field U uniquely into its components UI and UF on
I and F , respectively, we have U = UI + UF . Since dimI = 1, we can take
UI = υ ∂

∂t
which gives U = υ ∂

∂t
+ UF , where υ is a function on M. Thus, we

can write

η

�

∂

∂t

�

= g

�

U,
∂

∂t

�

= υ. (8)

Using equations (3) and (5), equations (6), (7) reduce to

S̆

�

∂

∂t
,
∂

∂t

�

= α+ βυ2, (9)

and
S̆(V,W ) = αeqgF (V,W ) + βη(V )η(W ). (10)

Comparing the right hand sides of (3) and (9), we get

α+ βυ2 = (1− n̄)

�

1

2
q�� +

1

4
q�

2

−
λ2q

�

2
+ λ1λ2 − λ2

1

�

. (11)

Similarly, comparing the right hand sides of (5) and (10), we obtain

SF (V,W ) = eq
�

α+
1− n̄

4
(q�)2 −

1

2
[(n̄− 1)λ1 + (n̄− 2)λ2]q

�

−λ2

2
−

1

2
q�� + (n̄− 1)λ1λ2

�

gF (V,W ) + βη(V )η(W ), (12)

which gives that F is a quasi-Einstein manifold with respect to the Levi-Civita
connection for P ∈ χ(B).

Taking P ∈ χ(F ) and by the use of Proposition 3.2, we get

S̆

�

∂

∂t
, V

�

=
q�

2

�

(n̄− 1)λ1 − λ2

�

ω(V ) (13)

and

S̆

�

V,
∂

∂t

�

=
q�

2

�

λ2 − (n̄− 1)λ1

�

ω(V ), (14)

for any vector field V ∈ χ(F ).
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Since M is a quasi-Einstein manifold, we have

S̆

�

∂

∂t
, V

�

= S̃

�

V,
∂

∂t

�

= αg

�

V,
∂

∂t

�

+ βη(V )η

�

∂

∂t

�

. (15)

Now g(V, ∂

∂t
) = 0 as ∂

∂t
∈ χ(B) and V ∈ χ(F ).

Hence, from the last equation, we get

S̆

�

∂

∂t
, V

�

= S̆

�

V,
∂

∂t

�

= βη(V )η

�

∂

∂t

�

. (16)

Therefore, we have

βη(V )η

�

∂

∂t

�

=
q�

2

�

(n̄− 1)λ1 − λ2

�

ω(V ), (17)

βη(V )η

�

∂

∂t

�

=
q�

2

�

λ2 − (n̄− 1)λ1

�

ω(V ). (18)

From equations (17) and (18), we get

q� = 0,

when λ2−(n̄−1)λ1 �= 0. It follows that q is a constant on I. Then f is constant
on I. This completes the proof.

Now, we consider the warped product M = B ×f I with dimB = n̄ − 1,
dimI = 1, n̄ ≥ 3. Under this assumption, we obtain the following theorem.

Theorem 4.2. Let (M, g) be a warped product B ×f I, where dimI = 1 and
dimB = n̄− 1, n̄ ≥ 3, then

i) if (M, g) is a quasi-Einstein manifold with respect to a quarter-symmetric
connection, P ∈ χ(B) is parallel on B with respect to the Levi-Civita
connection on B and f is a constant on B, then,

α = [(n̄− 1)λ1λ2 − λ2

2
)]ω(P ).

ii) If (M, g) is a quasi-Einstein manifold with respect to a quarter-symmetric
connection for P ∈ χ(I), and λ2 �= (n̄− 1)λ1 then f is a constant on B.

iii) If f is a constant on B and B is a quasi-Einstein manifold with respect
to the Levi-Civita connection for P ∈ χ(I), then M is a quasi-Einstein
manifold with respect to a quarter-symmetric connection.
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Proof. Assume that (M, g) is a quasi-Einstein manifold with respect to a quar-
ter-symmetric connection. Then we write

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ). (19)

Decomposing the vector field U uniquely into its components UB and UI on B

and I, respectively, we have

U = UB + UI . (20)

Since dimI = 1, we can take UI = υ ∂

∂t
which gives U = UB + υ ∂

∂t
, where υ is

a function on M. From (19), (20) and Proposition 3.1, we have

S̆B(X,Y ) = αgB(X,Y ) + βgB(X,UB)gB(Y, UB)−

�

Hf (X,Y )

f

+λ2

Pf

f
g(X,Y ) + λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ2

1
ω(X)ω(Y )

�

. (21)

By contraction over X and Y, we get

r̆B = α(n̄− 1) + βgB(UB , UB)−

�

∆Bf

f
+ λ2(n̄− 1)

Pf

f

+
�

(n̄− 1)λ1λ2 − λ2

1

�

ω(P ) + λ1

n̄−1
�

i=1

g(ei,∇eiP )

�

. (22)

Also from (19), we have

r̆M = αn̄+ βgB(UB , UB). (23)

Now, putting the value of (23) in (22), we get

r̆B = r̆M − α−
∆Bf

f
− λ2(n̄− 1)

Pf

f

−
�

(n̄− 1)λ1λ2 − λ2

1

�

ω(P )− λ1

n̄−1
�

i=1

g(ei,∇eiP ). (24)

On the other hand, from Proposition 3.3, we get

r̆M = r̆B + (n̄− 1)(λ1 + λ2)
Pf

f
+ 2

∆Bf

f

+
�

2(n̄− 1)λ1λ2 − (λ2

1
+ λ2

2
)
�

ω(P ) + (λ1 + λ2)

n̄−1
�

i=1

g(∇eiP, ei).
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Then from the above two relations, we get

α+
∆Bf

f
+ λ2(n̄− 1)

Pf

f
+
�

(n̄− 1)λ1λ2 − λ2

1

�

ω(P ) + λ1

n̄−1
�

i=1

g(ei,∇eiP )

= (n̄− 1)(λ1 + λ2)
Pf

f
+ 2

∆f

f
+
�

2(n̄− 1)λ1λ2 − (λ2

1
+ λ2

2
)
�

ω(P )

+ (λ1 + λ2)
n̄−1
�

i=1

g(∇eiP, ei).

Since P ∈ χ(B) is parallel and f is a constant on B, then we get

α =
�

(n̄− 1)λ1λ2 − λ2

2

�

ω(P ).

ii) Let P ∈ χ(I). By the use of Proposition 3.2, we get

S̆(X,P ) =
�

(n̄− 1)λ1 − λ2

�

ω(P )
Xf

f
, (25)

and

S̆(P,X) =
�

λ2 − (n̄− 1)λ1

�

ω(P )
Xf

f
. (26)

Since M is a quasi-Einstein manifold, we have

S̆(X,P ) = S̆(P,X) = αg(P,X) + βη(P )η(X).

Again, we have g(P,X) = 0 for X ∈ χ(B) and P ∈ χ(I).
Hence, we have

Xf = 0,

where λ2 �= (n̄− 1)λ1. This implies that f is a constant on B.
iii) Assume that B is a quasi-Einstein manifold with respect to the Levi-

Civita connection. Then we have

SB(X,Y ) = αg(X,Y ) + βη(X)η(Y ), (27)

for vector fields X,Y tangent to B.

From Proposition 3.2, we get

S̆M (X,Y ) = SB(X,Y ) +
�

(n̄− 1)λ1λ2 − λ2

2

�

ω(P )g(X,Y ) +
Hf (X,Y )

f
,

for any vector field P ∈ χ(I). Since f is a constant, Hf (X,Y ) = 0 for all
X,Y ∈ χ(B).
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The above equation reduces to

S̆M (X,Y ) = SB(X,Y ) +
�

(n̄− 1)λ1λ2 − λ2

2

�

ω(P )g(X,Y ). (28)

Using the value of (27) in (28), we get

S̆M (X,Y ) =
�

α+
�

(n̄− 1)λ1λ2 − λ2

2

�

ω(P )
�

g(X,Y ) + βη(X)η(Y ), (29)

which shows that M is a quasi-Einstein manifold with respect to a quarter-
symmetric connection.

Next, we study M = I×f F with metric −dt2+f(t)2gF , where I is an open
interval in R, and we prove the following theorem.

Theorem 4.3. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t
, dimF = l. Then (M, g) is a quasi-Einstein mani-

fold with respect to a quarter-symmetric connection ∇̆ with constant associated
scalars α and β if and only if the following conditions are satisfied:

i) (F, gF ) is a quasi-Einstein manifold with scalar αF ,βF ;

ii) −l
�

λ2

f �

f
−

f ��

f
+ λ2

1
− λ1λ2

�

= −α+ υ2β;

iii) αF − ff ��
− (l − 1)f �

2

+
�

λ2

2
− lλ1λ2 − α

�

f2 +
�

lλ1 + (l − 1)λ2

�

ff � = 0
and β = βF .

Proof. By Proposition 3.1, we have

S̆

�

∂

∂t
,
∂

∂t

�

= −l

�

λ2

f �

f
−

f ��

f
+ λ2

1
− λ1λ2

�

,

S̆

�

∂

∂t
, V

�

= S̆

�

V,
∂

∂t

�

= 0,

S̆(V,W ) = SF (V,W ) + gF (V,W )
�

− ff ��
− (l − 1)f �

2

+ (λ2

2
− lλ1λ2)f

2 +
�

lλ1 + (l − 1)λ2

�

ff �

�

.

Since M is a quasi-Einstein manifold, we have

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Now,

S̆

�

∂

∂t
,
∂

∂t

�

= αg

�

∂

∂t
,
∂

∂t

�

+ βη

�

∂

∂t

�

η

�

∂

∂t

�

.
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We can decompose the vector field U uniquely into its components UI and UF

on I and F , respectively. Then we have U = UI +UF . Since dimI = 1, we can
take UI = υ ∂

∂t
which gives U = υ ∂

∂t
+ UF , where υ is a function on M. Thus,

we can write

η

�

∂

∂t

�

= g

�

U,
∂

∂t

�

= υ. (30)

Therefore, we get

−l

�

λ2

f �

f
−

f ��

f
+ λ2

1
− λ1λ2

�

= −α+ υ2β.

Again, S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
Also, we have

S̆(V,W ) = SF (V,W ) + gF (V,W )
�

− ff ��
− (l − 1)f �

2

+ (λ2

2
− lλ1λ2)f

2 +
�

lλ1 + (l − 1)λ2

�

ff �

�

.

From the above two equations, we get

SF (V,W ) =
�

ff �� + (l − 1)f �
2

− (λ2

2
− lλ1λ2 − α)f2

−

�

lλ1 + (l − 1)λ2

�

ff �

�

gF (V,W ) + βη(V )η(W ).

Hence, (F, gF ) is a quasi-Einstein manifold.
Also, we have

S̆(V,W ) = SF (V,W ) + gF (V,W )
�

− ff ��
− (l − 1)f �

2

+ (λ2

2
− lλ1λ2)f

2 +
�

lλ1 + (l − 1)λ2

�

ff �

�

.

After some calculations, we show that

αF − ff ��
− (l − 1)f �

2

+ (λ2

2
− lλ1λ2 − α)f2 +

�

lλ1 + (l − 1)λ2

�

ff � = 0

and β = βF . Thus, the proof is completed.

Putting dimF = 1 in Theorem 4.3, we get the following corollary.

Corollary 4.4. Let (M, g) be a warped product I×f F with the metric tensor

−dt2 + f(t)2gF , P = ∂

∂t
, dimF = 1. Then (M, g) is a quasi-Einstein manifold

with respect to a quarter-symmetric connection if and only if

f ��
− λ2f

� +
�

(α− υ2β)− (λ2

1
− λ1λ2)

�

f = 0.
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By using Corollary 4.4 and elementary methods for ordinary differential
equations, we obtain the following theorem.

Theorem 4.5. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t
, dimF = 1. Then (M, g) is a quasi-Einstein manifold

with respect to a quarter-symmetric connection if and only if

i) α− υ2β < (λ1 − λ2

2 )2,

f(t) = c1e

�

λ2+
√

(2λ1−λ2)2−4(α−υ2β)
2

�

t
+ c2e

�

λ2−

√

(2λ1−λ2)2−4(α−υ2β)
2

�

t
,

ii) α− υ2β = (λ1 − λ2

2 )2, f(t) = c1e
(λ2

2 )t + c2te
(λ2

2 )t,

iii) α−υ2β > (λ1− λ2

2 )2, f(t) = c1e
(λ2

2 )tc1 cos

��√
4(α−υ2β)−(2λ1−λ2)2

2

�

t

�

+

c2e
(λ2

2 )t sin

��√
4(α−υ2β)−(2λ1−λ2)2

2

�

t

�

.

Corollary 4.6. Let (M, g) be a warped product I×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t
, dimF = 1, and λ2 = 2λ1. Then (M, g) is a quasi-

Einstein manifold with respect to a quarter-symmetric connection if and only
if

i) α− υ2β < 0, f(t) = c1e

�

λ1+
√

−(α−υ2β)
�

t
+ c2e

�

λ1−

√
−(α−υ2β)

�

t
,

ii) α− υ2β = 0, f(t) = c1e
λ1t + c2te

λ1t,

iii) α−υ2β > 0, f(t) = c1e
λ1t cos

�

�
�

α−υ2β
�

t
�

+c2e
λ1t sin

�

�
�

α−υ2β
�

t
�

.

Next, the following theorem shows when the base of a quasi-Einstein warped
product manifold is isometric to a sphere of a particular radius.

Theorem 4.7. Let (M, g) be a warped product B ×f I of a complete connected
(n̄−1)-dimensional Riemannian manifold B where n̄ ≥ 3 and one-dimensional
Riemannian manifold I. If (M, g) is a quasi-Einstein manifold with constant
associated scalars α and β, U ∈ χ(M) with respect to a quarter-symmetric
connection, P ∈ χ(B) and the Hessian of f is proportional to the metric tensor
gB , then (B, gB) is a (n̄− 1)-dimensional sphere of radius ρ = n̄−1√

r̆B+α
.

Proof. Let M be a connected warped product manifold. Then from Proposi-
tion 3.1, we have

S̆M (X,Y ) = S̆B(X,Y ) +
H

f
B(X,Y )

f
+ λ2

Pf

f
g(X,Y )

+ λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ2
1ω(X)ω(Y ), (31)
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for any vector field X,Y on B. Since M is a quasi-Einstein manifold with
respect to a quarter-symmetric metric connection, we have

S̆M (X,Y ) = αg(X,Y ) + βη(X)η(Y ). (32)

Decomposing the vector field U uniquely into its components UB and UI

on B and I, respectively, we have

U = UB + UI . (33)

Putting the values of (32), (33) in (31), we get

S̆B(X,Y ) = αgB(X,Y ) + βgB(X,UB)gB(Y, UB)−

�

H
f
B(X,Y )

f

+λ2

Pf

f
g(X,Y ) + λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ2

1
ω(X)ω(Y )

�

. (34)

By contraction over X and Y , we get

r̆B = r̆M − α−
∆Bf

f
− (n̄− 1)λ2

Pf

f

−
�

(n̄− 1)λ1λ2 − λ2

1

�

π(P )− λ1

n̄−1
�

i=1

g(ei,∇eiP ). (35)

Again from Proposition 3.1, we obtain

r̆M

n̄
= λ2

n̄−1
�

i=1

g(ei,∇eiP )+(n̄−1)λ1

Pf

f
+[(n̄−1)λ1λ2−λ2

2
]ω(P )+

∆Bf

f
. (36)

From the last two equations, it follows that

(r̆B + α)f = (n̄λ2 − λ1)
n̄−1
�

i=1

fg(ei,∇eiP ) + (n̄− 1)[n̄λ1 − λ2]Pf

+
�

(n̄− 1)2λ1λ2 + λ2

1
− n̄λ2

2

�

fω(P ) + (n̄− 1)∆Bf. (37)

Since the Hessian of f is proportional to the metric tensor gB , then we have

Hf (X,Y ) =
1

(n̄− 1)2

�

(λ1 − n̄λ2)

n̄−1
�

i=1

fg(ei,∇eiP ) + (n̄− 1)[λ2 − n̄λ1]Pf

+
�

n̄λ2

2
− (n̄− 1)2λ1λ2 − λ2

1

�

fω(P ) + (1− n̄)∆Bf
�

gB(X,Y ).
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Hence, from the above equation, we obtain

Hf (X,Y ) +
r̆B + α

(n̄− 1)2
fgB(X,Y ) = 0. (38)

So B is isometric to the (n̄−1)-dimensional sphere of radius n̄−1√
r̆B+α

[6]. Thus,

the theorem is proved.

5. Multiply Twisted Product Manifold with

Quarter-Symmetric Connection

Now, we have the following propositions from Propositions 4.5 and 4.7 of [8],
for later use.

Proposition 5.1. Let M = B ×b1 F1 ×b2 F2... ×bm Fm be a multiply twisted
product manifold with dimB = n, dimFi = li, dimM = n̄. If X,Y ∈ χ(B),
V ∈ χ(Fi), W ∈ χ(Fj) and P ∈ χ(B), then

(i) S̆(X,Y ) = S̆B(X,Y ) +

m
�

i=1

li

�

λ1λ2ω(P )g(X,Y ) +
Hbi

B (X,Y )

bi
+

λ2

Pbi

bi
g(X,Y ) + λ1g(Y,∇XP )− λ2

1ω(X)ω(Y )
�

,

(ii) S̆(X,V ) = S̆(V,X) = (li − 1)
�

V X(lnbi)
�

,

(iii) S̆(V,W ) = 0 if i �= j,

(iv) S̆(V,W ) = SFi(V,W ) + g(V,W )
�

(li − 1)
|gradBbi|

2
B

b2i
+

∆Bbi

bi
+

�

(n̄ − 1)λ1λ2 − λ2
2

�

ω(P ) + λ2divFP +
�

(n̄ − 1)λ1 + (li − 1)λ2

�Pbi

bi
+

�

s �=i

ls
gB(gradBbi, gradBbs)

bibs
+ λ2

�

s �=i

ls
Pbs

bs

�

if i = j, where divBP =

n
�

k=1

εk�∇Ek
P,Ek� and Ek, 1 ≤ k ≤ n, is an orthonormal basis of B with

εk = g(Ek, Ek).

Proposition 5.2. Let M = B ×b1 F1 ×b2 F2... ×bm Fm be a multiply twisted
product, dimB = n, dimFi = li, dimM = n̄. If X,Y ∈ χ(B), V ∈ χ(Fi),
W ∈ χ(Fj) and P ∈ χ(Fr) for a fixed r, then

(i) S̆(X,Y ) = SB(X,Y )+

m
�

i=1

li
Hbi

B (X,Y )

bi
+
�

(n̄−1)λ1λ2−λ2
2

�

ω(P )g(X,Y )+

λ2g(X,Y )divFr
P,
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(ii) S̆(X,V ) = (li − 1)
�

V X(lnbi)
�

+
�

(n̄− 1)λ1 − λ2

�

ω(V )Xbr
br

,

(iii) S̆(V,X) = (li − 1)
�

V X(lnbi)
�

+
�

λ2 − (n̄− 1)λ1

�

ω(V )Xbr
br

,

(iv) S̆(V,W ) = 0 if i �= j,

(v) S̆(V,W ) = SFi(V,W )+g(V,W )
�

(li−1)
|gradBbi|

2

B

b2
i

+∆Bbi
bi

+
�

(n̄−1)λ1λ2−

λ2

2

�

π(P ) +
�

s �=i

ls
gB(gradBbi, gradBbs)

bibs

�

+
�

(n̄− 1)λ1 − λ2

�

g(W,∇V P ) +

�

λ2

2
+ (1− n̄)λ2

1

�

ω(V )ω(W ) + λ2g(V,W )divFr
P if i = j.

Let M = B×b1 F1 ×b2 F2...×bm Fm be a multiply warped product with the
metric tensor −dt2 ⊕ b2

1
gF1

⊕ .... ⊕ b2mgFm
, and let I be an open interval in R

and bi ∈ C∞(I).

Now, we prove the following theorem for multiply generalized Robertson-
Walker spacetime.

Theorem 5.3. Let M = I×b1 F1×b2 F2...×bm Fm be a multiply warped product
with the metric tensor −dt2 ⊕ b2

1
gF1

⊕ .... ⊕ b2mgFm
and P = ∂

∂t
.Then (M, g)

is a quasi-Einstein manifold with respect to a quarter-symmetric connection ∇̆

with constant associated scalars α and β, if and only if the following conditions
are satisfied:

i) (Fi, gFi
) are quasi-Einstein manifolds with scalars αFi

,βFi
, i∈{1, 2, ...m};

ii)

m
�

i=1

li

�

λ2

b�i
bi

−
b��i
bi

+ λ2

1
− λ1λ2

�

= α− υ2β;

iii) αFi
− bib

��
i − (li − 1)b�

2

i +
�

λ2b
2

i − bib
�
i

�

�

s �=i

ls

�

b�s
bs

�

+
�

λ2

2
+ (1− n̄)λ1λ2 −

α
�

b2i +
�

(n̄− 1)λ1 + (li − 1)λ2

�

bib
�
i = 0 and β = βFi

.

Proof. By Proposition 5.1, we have

S̆

�

∂

∂t
,
∂

∂t

�

=

m
�

i=1

li

�

−λ2

b�i
bi

+
b��i
bi

− λ2

1
+ λ1λ2

�

, (39)

S̆

�

∂

∂t
, V

�

= S̆

�

V,
∂

∂t

�

= (li − 1)V

�

b�i
bi

�

, (40)

S̆(V,W ) = 0, if i �= j, (41)
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S̆(V,W ) = SFi(V,W ) + gFi
(V,W )

�

− (li − 1)b�
2

i
− b��

i
bi +

�

(n̄− 1)λ1

+ (li − 1)λ2

�

b�
i
bi + (λ2b

2

i
− b�

i
bi)

�

s �=i

ls
b�
s

bs
+
�

λ2

2
+ (1− n̄)λ1λ2

�

b2
i

�

. (42)

Since M is a quasi-Einstein manifold, we have

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Now,

S̆

�

∂

∂t
,
∂

∂t

�

= αg

�

∂

∂t
,
∂

∂t

�

+ βη

�

∂

∂t

�

η

�

∂

∂t

�

.

Decomposing the vector field U uniquely into its components UI and UF on
I and F , respectively, we have U = UI + UF . Since dimI = 1, we can take
UI = υ ∂

∂t
which gives U = υ ∂

∂t
+UF , where υ is a function on M. Then we can

write

η

�

∂

∂t

�

= g

�

U,
∂

∂t

�

= υ. (43)

Hence, we get

m
�

i=1

li

�

λ2

b�
i

bi
−

b��
i

bi
+ λ2

1
− λ1λ2

�

= α− υ2β.

Again, S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
From Proposition 5.1 and equation (42), we obtain that (Fi, gFi

) are quasi-
Einstein manifolds.

After a brief calculation, we can easily prove that

αFi
− bib

��
i
− (li − 1)b�

2

i
+ (λ2b

2

i
− bib

�
i
)
�

s �=i

ls

�

b�
s

bs

�

+
�

λ2

2
+ (1− n̄)λ1λ2 − α

�

b2
i
+
�

(n̄− 1)λ1 + (li − 1)λ2

�

bib
�
i
= 0

and β = βFi
.

Thus, the proof of the theorem is completed.

Next, the following theorem establishes the necessary and sufficient con-
ditions on a multiply warped product to be a quasi-Einstein manifold with a
quarter-symmetric connection whenever P ∈ χ(Fr).

Theorem 5.4. Let M = I ×b1
F1 ×b2

F2...×bm
Fm be a multiply warped prod-

uct with the metric tensor −dt2 ⊕ b2
1
gF1

⊕ .... ⊕ b2
m
gFm

with P ∈ χ(Fr) and

gFr
(P, P ) = 1 and n̄ ≥ 2. Then (M, g) is a quasi-Einstein manifold with re-

spect to a quarter-symmetric connection ∇̆ with constant associated scalars α

and β, if and only if the following conditions are satisfied:
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i) (Fi, gFi
) (i �= r) are quasi-Einstein manifolds with scalars αi,βi, i ∈

{1, 2, ...m};

ii) br is constant and

m
�

i=1

li
b��
i

bi
= µ0, divFr

P = µ1, µ0 − λ2µ1 + α − υ2β =

[(n̄− 1)λ1λ2 − λ2

2
]b2

r
, where µ0, µ1 are constants;

iii) SFr (V,W ) + ᾱgFr
(V,W ) + βη(V )η(W ) =

�

(n̄ − 1)λ2

1
− λ2

2

�

ω(V )ω(W ) −
�

(n̄ − 1)λ1 − λ2

�

g(W,∇V P ), for V,W ∈ χ(Fr), where ᾱ = b2
r

��

(n̄ −

1)λ1λ2 − λ2

2

�

b2
r
+ λ2µ1 − α

�

.

iv) αFi
− bib

��
i
+
�

(n̄− 1)λ1λ2 − λ2

2

�

b2
i
b2
r
− bib

�
i

�

s �=i

ls
b�
s

bs
− (li − 1)(b�

i
)2 = (α−

λ2µ1)b
2

i
and β = βFi

.

Proof. By Proposition 5.2 (ii) and gFr
(P, P ) = 1, it follows that br is a con-

stant. By Proposition 5.2 (i), we obtain

S̆

�

∂

∂t
,
∂

∂t

�

=

m
�

i=1

li
b��
i

bi
+
�

λ2

2
+ (1− n̄)λ1λ2

�

b2
r
− λ2divFr

P = −α+ υ2β.

By separation of variables, we have

m
�

i=1

li
b��
i

bi
= µ0, divFr

P = µ1, µ0 − λ2µ1 + α− υ2β =
�

(n̄− 1)λ1λ2 − λ2

2

�

b2
r
.

Then we get ii). By proposition 5.2 (v), we have

S̆(V,W ) = SFi(V,W ) + b2
i
gFi

(V,W )
�

(li − 1)
−(b�

i
)2

b2
i

+
−b��

i

bi

+
�

(n̄− 1)λ1λ2 − λ2

2

�

ω(P ) +
�

s �=i

ls
−b�

i
b�
s

bibs

�

+
�

(n̄− 1)λ1 − λ2

�

g(W,∇V P )

+
�

λ2

2
+ (1− n̄)λ2

1

�

ω(V )ω(W ) + λ2g(V,W )divFr
P, if i = j.

When i �= r, then ∇V P = ω(V ) = 0, so,

S̆(V,W ) = SFi(V,W ) + b2
i
gFi

(V,W )
�

(li − 1)
−(b�

i
)2

b2
i

+
−b��

i

bi

+
�

(n̄− 1)λ1λ2 − λ2

2

�

ω(P ) +
�

s �=i

ls
−b�

i
b�
s

bibs

�

+ λ2µ1b
2

i
gFi

(V,W )

= αb2
i
gFi

(V,W ) + βη(V )η(W ).
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By separation of variables, it follows that (Fi, gFi
) (i �= r) are quasi-Einstein

manifolds with scalars αi,βi, i ∈ {1, 2, ...m}, and

αFi
− bib

��
i
+
�

(n̄− 1)λ1λ2 − λ2

2

�

b2
i
b2
r
− bib

�
i

�

s �=i

ls
b�
s

bs
− (li − 1)(b�

i
)2

= (α− λ2µ1)b
2

i

and β = βFi
. Then we have i) and iv).

When i = r and br is a constant, then we get

SFr (V,W ) + ᾱgFr
(V,W ) + βη(V )η(W )

=
�

(n̄− 1)λ2

1
− λ2

2

�

ω(V )ω(W )−
�

(n̄− 1)λ1 − λ2

�

g(W,∇V P ),

for V,W ∈ χ(Fr),

where ᾱ = b2
r

��

(n̄− 1)λ1λ2 − λ2

2

�

b2
r
+ λ2µ1 − α

�

, and thus we obtain iii).
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