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Abstract

In this paper, we provide a multipoint moment matching
model for multiport distributed interconnect networks. We
introduce a new concept: integrated-congruence transform
which can be applied to the partial differential equations of a
distributed line and generate a passive finite order system as
its model. Moreover, we also provide an efficient algorithm
based on the L2 Hilbert space theory so that exact moment
matching at multiple points can be obtained.

1 Introduction

With the rapid increase of signal frequency and decrease of
feature sizes of high speed electronic circuits, interconnect
has become a dominating factor in determining circuit per-
formance and reliability in deep submicron designs. Not only
interconnect delay may dominate gate delay, but also trans-
mission line effects, such as reflection, distortion, dispersion
and crosstalk, have severe impact on circuit performance. In
recent years, interconnect modeling, simulation and design
has become a hot topic in the research of advanced CAD
techniques [1], and model order reduction techniques have
been advanced quickly to meet with the requirement of the
fast simulation and design of interconnects. Especially, the
symmetric Padé V ia Lanczos algorithm and the congru-
ence transform together with the Arnoldi algorithm have
been successfully applied to the model order reduction with
multipoint moment matching of RC and RLC lumped cir-
cuits [2]-[6].
At high frequencies, a long on-chip wire should be mod-
eled as a lossy transmission line [7]. One way to use the
Lanczos/Arnoldi algorithm to find the reduced order model
of transmission lines is to do discretization for the lines, as
these algorithm can only be applied to finite order systems
[8] [9]. But discretization is not ideal either in theory or in
practice. For example, for a nearly lossless line terminated
with resistors matching the characteristic impedance of the
line at high frequencies and excited by a pulse source, when
discrete model is used, there are ripples in the waveform of

the output voltage, which can not be seen in practice. Also,
because of the discretization, the moment matching model
generated cannot be exact. Moreover, the error of the dis-
cretization increases in the modeling of gobal wires where
we have very high frequency and quite obvious inductance
effects. The development of an algorithm to do model order
reduction for distributed networks without any discretization
has interested many researchers.
In this paper, we provide a new algorithm to do model order
reduction of distributed interconnect networks. Our algo-
rithm consists of two main steps. In the first step, each
distributed line is modeled by a finite order system with pas-
sivity preservation and multipoint moment matching of its
input admittance matrix. In the second step, an Arnoldi-
based congruence transform is applied to the network to form
its reduced order model.Our algorithm can guarantee the pas-
sivity of the reduced order model and provide the multi-point
moment matching as required. The main contribution of this
paper is that we provide a passive reduced order model algo-
rithm for distributed lines with multipoint moment matching
and avoid any discretization of the lines. We developed an
integrated-congruence transform, which can directly be ap-
plied to the partial differential equations of a line and gen-
erate a passive finite order system so that the discretization
step can be eliminated. To meet with the moment match-
ing requirement, we extend the Krylov subspace algorithm
for finite dimensional space to an approach based on the L2

Hilbert space theory [11] , which can provide an exact mo-
ment matching model. Our algorithm is new in theory, and
experiments show it works well in practice.

2 Integrated-congruence Transform
and Passivity Preservation

2.1 General form of transmission line equa-
tions

We consider a transmission line system consisting of m cou-
pled lines. Suppose that R0, L0, G0 and C 0 are the resis-

1



tance, inductance, conductance and capacitance matrix per
unit length of the line, respectively, and d is its length. We
first normalize the length to 1, and let R = R0d, L = L0d,
G = G0d and C = C 0d be the normalized resistance, induc-
tance, conductance and capacitance matrix per unit length,
respectively, of the normalized line 1. Let z be the axis along
the line, and z = 0 and z = 1 correspond to its near and far
end, respectively. Let I(z; s) and V (z; s) be the current and
voltage vector in the frequency domain along the line. Then,
the equations of the line can be written as follows:

(sM +N + T
d

dz
)X(z; s) = 0 (1)

where

X(z; s) =

�
I(z; s)

V (z; s)

�
(2)

M =

�
L

C

�
(3)

N =

�
R

G

�
(4)

and

T =

�
I

I

�
(5)

where I is an m � m identity matrix. When we are inter-
ested in the input admittance of the matrix, it is assumed
that the system is driven by voltage sources, so the boundary
conditions of the line are�

V (0; s)
V (1; s)

�
= Vs(s) (6)

where Vs(s) is a 2m-dimension source voltage vector.

2.2 Integrated-congruence transform

Suppose thatU (z) is a 2m�nmatrix, which can be expressed
as

U (z) =
�
u1(z) u2(z) : : : un(z)

�
=

�
UI (z)

UV (z)

�

=

�
UI;1(z) UI;2(z) : : : UI;n(z)

UV;1(z) UV;2(z) : : : UV;n(z)

�
(7)

where uj(z) is U (z)’s j-th column vector and UI (z) and
UV (z) are two m � n submatrices of matrix U (z). uj(z)

consists of two subvectors

uj(z) =

�
UI;j(z)

UV;j(z)

�
(8)

1In the case of an RC line, matricesL andG are zero matrices.

each of which has m components, i.e.,

UI;j(z) = [UI;1j(z); UI;2j(z); : : : ; UI;mj(z)]
T

(9)

and

UV;j(z) = [UV;1j(z); UV;2j(z); : : : ; UV;mj(z)]
T (10)

Note that matrix U (z) is a function of variable z but not a
function of s.
Let

X(z; s) = U (z)x̂(s) (11)

where vector x̂(s) = [x̂1(s); x̂2(s); : : : ; x̂n(s)]
T is of dimen-

sion n. Substitute Eq(11) to Eq(1), premultiply uT (z) on
both sides of the equations and integrate them w.r.t. variable
z from 0 to 1, we obtain

(sM̂ + N̂1 + T̂ )x̂(s) = 0 (12)

where

M̂ =

Z 1

0
UT (z)M (z)U (z)dz

=

Z 1

0
(UT

I (z)L(z)UI (z) + UT
V (z)C(z)UV (z))dz (13)

N̂1 =

Z 1

0
UT

(z)N (z)U (z)dz

=

Z 1

0
(UT

I (z)R(z)UI (z) + UT
V (z)G(z)UV (z))dz (14)

and

T̂ =

Z 1

0
UT (z)T

dU (z)

dz
dz

=

Z 1

0
(UT

I (z)
dUV (z)

dz
+ UT

V (z)
dUI(z)

dz
)dz (15)

The transform from Eq(1) to Eq(12) is called an integrated-
congruence transform (w.r.t. the transformation matrix
U (z)). Note that the order of the system described by Eq(12)
is n, and x̂(s) can be regarded as the state vector of the finite
order system.
We divide T̂ into two matrices: T̂ = N̂2 + P , where

P =

Z 1

0

d(UT
I (z)UV (z))

dz
dz = UT

I (1)UV (1)�UT
I (0)UV (0)

(16)
and

N̂2 =

Z 1

0
(UT

V (z)
dUI (z)

dz
�
dUT

I (z)

dz
UV (z))dz (17)

Note that
N̂T

2 = �N̂2 (18)

2



Let N̂ = N̂1 + N̂2, then Eq(12) becomes

(sM̂ + N̂ )x̂(s) = �P x̂(s) (19)

From Eq(16),

�P x̂(s) = UT
I (0)UV (0)x̂(s) � UT

I (1)UV (1)x̂(s)

and from Eq(11),

UV (0)x̂(s) = V (0; s) = Vs1(s)

and

UV (1)x̂(s) = V (1; s) = Vs2(s)

so that

� P x̂(s) = B̂Vs(s) (20)

where

B̂ =

�
UI(0)
�UI (1)

�T
(21)

Substitute Eq(20) to Eq(19), we have the state equations for
the state vector x̂ as follows:

(sM̂ + N̂ )x̂(s) = B̂Vs(s) (22)

When we are interested in the input admittance of the line,
the output vector y(s) consists of I(0; s) and�I(1; s). From
Eq(11), we have

y(s) =

�
I(0; s)
�I(1; s)

�
=

�
UI(0)
�UI(1)

�
x̂(s) (23)

Compared with Eq( 21), it can be seen that

y(s) = B̂T x̂(s) (24)

and the input admittance matrix of the transformed system
can be expressed as

Ŷ (s) = B̂T (sM̂ + N̂ )�1B̂ (25)

2.3 Passivity of the reduced order system

Theorem 1
Suppose that the transformation matrix U (z) is of full rank
and each element ofU (z) in the region z 2 [0; 1] is inC1, then
the reduced order model generated by using an integrated-
congruence transform w.r.t. matrix U (z) on an RLGC trans-
mission line system is passive.
The proof of Theorem 1 can be found in [10].

3 Moment Matching

3.1 Moment matrices

An m-coupled line system is a 2m port. To find its input
admittance, we can apply a set of 2m input voltage vectors
with the j-th source voltage vector being the unit vector ej.
Suppose that Xj(z; s) be the solution to Eq(1) when the
source vector ej is applied, and let the admittance matrix be

Y (s) = [Y0(s); Y1(s); : : : ; Y2m(s)] (26)

where Yj(s) = [Ij(0; s)T ;�Ij(1; s)T ]T .
Let Ĩ(z; s) = [I1(z; s); I2(z; s); : : : ; I2m(z; s)], Ṽ (z; s) =

[V1(z; s); V2(z; s); : : : ; V2m(z; s)], and W (z; s) = [Ĩ(z; s)T ;

Ṽ (z; s)T ]T . Then, from Eq(1), we have

(sM + N + T
d

dz
)W (z; s) = 0 (27)

This is the block form of the line equations, and its boundary
conditions are �

Ṽ (0; s)
Ṽ (1; s)

�
= I (28)

where I is the 2m�2m identity matrix. Let matrixW (z; s)be
expanded into Tylor series at some point s = s0, W (z; s) =P
1

k=0 W
(k)(z; s0)(s � s0)

k, then W (k)(z; s0) is called the
k-th order moment of W (z; s) at s = s0, which satisfies the
following equations. For k = 0,

(TN (s0) +
d

dz
)W (0)(z; s0) = 0 (29)

where

TN (s0) =

�
G+ s0C

R+ s0L

�
(30)

The boundary conditions of this equation are
�
Ṽ (0)(0; s0)

Ṽ (0)(1; s0)

�
= I (31)

where I is an 2m � 2m identity matrix.
For k > 0, we have

(TN (s0) +
d

dz
)W (k)(z; s0) = �TMW (k�1)(s0; z) (32)

where

TM =

�
C

L

�
(33)

and the boundary conditions of the equation are
�
Ṽ (k)(0; s0)

Ṽ (k)(1; s0)

�
= 0 (34)

From these equations, the moemnt matrices W (k)(z; s0) can
be exactly computed [10].
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3.2 Moment matching theorem

The moment matching theorem is based on the Hilbert L2

space theory [11].
Theorem 2
Let W (k; z; s0) = fW (0)(z; s0); : : : ;W

(k)(z; s0)g, i.e.,
W (k; z; s0) is a set of moment matrices of W (z; s) at
s = s0 from order 0 to k. Let U (z) = [u1(z); u2(z);

: : : ; un(z)] be the transformation matrix of the integrated-
congruence transform. If matrix U (z) is orthonormal and
W (k; z; s0) 2 colspan(U (z)), i.e., each element in the set
W (k; z; s0) can be expressed as a linear combination of the
column vectors of matrix U (z), then

Ŷ (j)(s0) = Y (j)(s0) 0 � j � k (35)

The proof of the theorem can be found in [10].

3.3 Multipoint moment matching algorithm

Based on Theorem 2, we give the multipoint moment match-
ing algorithm as follows. For a matching point si and its
matching order ki, we define a matching pair mi = (si; ki),
and we define a matching set MS = fm1;m2; : : : ;mpg.
Given the matching set, the algorithm can be stated as fol-
lows.

Multipoint Moment Matching Algorithm 1
f Input: Line number m, line parameters R, L, G and

C and matching set MS.
Output: Transformation matrix U .
U = �; n = 0;
for i = 1 to jMSj do
f(si; ki) = mi;

for j = 0 to ki do
fcompute [r1(z); r2(z); : : : ; r2m(z)] = W (j)(z; si);

for k = 1 to 2m do
fif(si is real)

n=orthonormal(U; rk(z); n);
else
fra = real(rk(z)); rb = imag(rk(z));

n=orthonormal(U; ra; n);
n=orthonormal(U; rb; n);
g
g

g
g

g

In the above algorithm, the function orthonormal(u; r; n) is
based on the Modified Gram-Schmidt(MGS) process and can
be stated as follows.

function orthonormal(U(z),r(z),n)
ffor i=1 to n do
f� =

R 1
0 r

T (z)ui(z)dz;
r(z) = r(z)� �ui(z);
g

a =
R 1

0 r
T (z)r(z)dz;

n = n+ 1;
un = r=

p
a;

return(n);
g

4 Model Order Reduction of Combined
Lumped and Distributed Network

4.1 MNA equations

Suppose that we have a p-port distributed network, which
consists of n distributed lines, some linear resistors, capac-
itors and inductors. This distributed network is driven by p
voltage sources and its input admittance matrix is of interest.
We first apply the model order reduction algorithm to all the
lines. Suppose that for the i-th line, its state equations and
output equations of the reduced order model are as follows:

Fai(s)xai = BaiVai (36)

and
Iai = BT

aixai (37)

Where Vai and Iai are the port voltage and current vector
of the line, respectively. Let Vn be the node voltage vector
of the entire network, and Aai be the node-branch incidence
matrix of the port branches of the line. Then, Vai = AT

aiVn,
and Eq(36) can be rewritten in the following form:

Fai(s)xai = CaiVn (38)

where
Cai = BaiA

T
ai (39)

and the contribution of Iai to the KCL equations of the nodes
can be expressed as

AaiIai = CT
aixai (40)

Let xa = [xTa1; x
T
a2; : : : ; x

T
an]

T , then we have

Fa(s)xa = CaVn (41)

where

Fa(s) = block diag(Fa1(s); Fa2(s); : : : ; Fan(s)) (42)

and
Ca = [cTa1; c

T
a2; : : : ; c

T
an]

T (43)
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and the contributionof Iai; 1 � i � n to the KCL equations
can be expressed as CT

a xa.
Suppose that the nodal conductance and capacitance matrix
of lumped resistors and capacitors are G and C, respectively.
Suppose that there are resistor-inductor branches with the
branch resistance and inductance matrixR andL respectively,
the branch current vector IL and the node- branch incidence
matrix AL. Let the port voltage and current vector be Vs
and Is, respectively, and their node-branch incidence matrix
be As. Note that the current of each voltage source flows
out of its positive terminal. Then, the unknown vector of the
MNA equations of the network x = [xTa ; V

T
n ; I

T
L ; I

T
s ]

T , and
the MNA equations can be written as follows:

H(s)x = BVs (44)

where

H(s) =

�
Fa �Q
QT Fb

�
(45)

with
Q =

�
Ca 0 0

�
(46)

Fb =

2
4 sC +G AL �As

�AT
L SL +R

AT
s

3
5 (47)

and
B = [0 0 0 I]T (48)

The output equations of the network are

Is = BTx (49)

and the input admittance matrix of the network is

Y (s) = BTH(s)�1B (50)

Theorem 3
Matrix H(s) in Eq(50) is positive-real.

4.2 Model order reduction

Suppose that jxj = r, and we apply a congruence transform
with the transformation matrix V 2 Rr�q with q < r � jIsj
on Eq(44), with

x = V x̂ (51)

Ĥ(s) = V TH(s)V (52)

and
B̂ = V TB (53)

then we have a q-th order system as follows:

Ĥ(s)x̂ = B̂Vs (54)

The output equations become

Is = B̂T x̂ (55)

and the input admittance matrix of the reduced order model
is

Ŷ (s) = B̂T Ĥ(s)�1B̂ (56)

Theorem 4
If the transform matrix V is of full rank, than Ŷ (s) is positive-
real and the reduced order model is passive.

4.3 Moment matching

As in the case of modeling a line, we apply p sets of input
voltages such that the j-th input voltage vector is the unit
vector ej , and let xj be the solution to Eq(44) in this case.
Let

X = [x1; x2; : : : ; xp] (57)

Then, the block form of the MNA equations will be

H(s)X = BVs (58)

and the output equations become

Y (s) = BTX (59)

We have the moment matching theorem as follows.
Theorem 5
Let H(s) = sM + N , N (s0) = s0M + N , X(j)(s0) =

(�N (s0)
�1M )jN (s0)

�1B and K(n; s0) = fX(0)(z; s0);

X(1)(z; s0); : : : ; X
(n)(z; s0)g. If the congruence transform

matrix V is orthonormal and K(n; s0) 2 colspan(V ), then

Ŷ (j)(s0) = Y (j)(s0); 0 � j � n (60)

Based on Theorem 5, given the moment matching set MS, the
algorithm for the formation of congruence transform matrix
V is as follows.

Multipoint Moment Matching Algorithm 2
f Input: Port number p, matrix H(s) = sM +N , matrix B
and matching set MS.

Output: Transformation matrix V .
V = �; n = 0;
for i = 1 to jMSj do
f(si; ki) = mi;

for j = 0 to ki do
fcompute [r1; r2; : : : ; rp] = X(j)(si);

for k = 1 to p do
fif(si is real)

n=orthonormal1(V; rk; n);
else
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fra = real(rk); rb = imag(rk);
n=orthonormal1(V; ra; n);
n=orthonormal1(V; rb; n);
g
g

g
g

g

In the above algorithm, the function orthonormal1 is as
follows:

function orthonormal1(V; x; n)
ffor i = 1 to n do

x = x� xTVi;
a =

p
xTx;

n = n+ 1;
Vn = x=a;
return(n); g

5 Examples

We have successfully tested a number of examples. We show
some of them here.
Example 1.
This is a simple example to show the advantage of our model
over the discrete model of a transmission line. The circuit
consists of a single line with parameters R = 0:01Ω=cm,
L = 2:5nH=cm, C = 1ph=cm, d = 1cm, a load resistor
and a source resistor of 50Ω, which match the characteristic
impedance of the line at high frequencies. The voltage source
is a pulse. Fig.1 shows the output voltage waveform V2 ob-
tained by the SPICE simulation with the segmentation model
of the line, where the solid and dashed lines correspond to
the number of segments equal to 50 and 100, respectively.
The ripple in the waveform is obvious, which should not
exist when exact model is used, and when the number of
segments increases, the magnitude of the ripple does not de-
crease much. Fig.2 shows the time domain simulation by
using a three point moment matching model generated by our
algorithm, where the ripple is missing, and the waveform is
nearly exact. This example shows that discretization is not
ideal in practice as we stated in “Introduction".
Example 2.
This is a clock net consisting of 73 lossy transmission lines,
2895 resistors and 2777 capacitors driven by a cascade of two
inverters, as shown in Fig.3. The waveforms at PIN117 are
shown in Fig.4, where the solid and dashed lines correspond
to the result of SPICE simulation and the time domain simu-
lation with our model, where for each line moment matching
at 0 frequency with order 4 and at a high frequency with order
0 is used. These two waveforms are close.

Example 3.
The circuit is shown in Fig.5, where 4 coupled lines with
neighbor coupling are presented. The waveforms of V5 are
shown in Fig.6, where the solid and dashed lines correspond
to the result of SPICE simulationand the time domain simula-
tion with our model, which is obtained by moment matching
at zero frequency with order 4. These two waveforms are
close.
Example 4.
This is an example borrowed from [12]. The circuit is
shown in Fig.7, where two coupled line systems, each of
which consists of three coupled lines, are presented. The fre-
quency domain and time-domain response of Vout are shown
in Fig.8 and 9, respectively. The solid line represents the
exact solution where the coupled lines are modeled by their
exact multiport characteristic model. The dashed line corre-
sponds to our model, where a moment matching set MS =

f(0Hz; 4); (1:5Ghz; 0); (3Ghz;0); (4Ghz;0); (5Ghz; 0)g
for each line system is used. The solid and dashed lines are
indistinguishable. Compared with the model used in [12],
not only that our model is guaranteed passive and theirs not,
but also that our model order is much lower (a 40-th moment
matching model at zero frequency is used for each coupled
line system in [12]). This also shows the advantage of a
multipoint moment matching model over a single point one.

6 Conclusions

We have presented a new algorithm for passive model order
reduction with multipoint moment matching for distributed
interconnect networks. Given the moment matching require-
ment, for each distributed lines, moment matrix functions
are computed, then the Modified Gram-Schmidt(MGS) pro-
cess is implemented to form an orthonormal transformation
matrix in the Hilbert L2[0; 1] space. By using an integrated-
congruence transform on the partial differential equations of
the line, a finite order passive system satisfying the moment
matching requirement is obtained. Then, the MNA equations
of the whole network are formulated, and an orthonormal ma-
trix based on the moment matching requirement is formed.
By using a congruence transform with such a matrix,a passive
reduced order model of the network with multipoint moment
matching is obtained. The whole process can be done ex-
actly in theory, especially as there is no discretization for a
distributed line in the algorithm, an exact moment matching
model can be obtained. Experiments show that the model
generated by the algorithm works well.
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process," IEEE Trans. on MTT, vol.44, pp.2525-2535, Dec. 1996.

[9] Q.Yu and E.S.Kuh, “Reduced order model of transmission lines with
preservation of passivity and moment matching at multiple points,"
Proc. NOLTA’97, pp.845-848, Dec.1997.

[10] Q.Yu, J.M.L.Wang and E.S.Kuh:“Passive multipoint moment match-
ing model order reduction algorithm on multiport distributed inter-
connect networks," Technical Report, M98/13 , ERL, U.C.Berkeley,
March 1998.

[11] N.Young, An introduction to Hilbert space, Cambridge University
Press, 1988.

[12] M.Celik and A.C.Cangellaris, “Simulation of dispersive multicon-

ductor transmission lines by Padé approximation via the Lanczos
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