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Multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is a powerful method that can extract the periodic
characteristics of signal effectively, but this method needs to evaluate the fault cycle a priori, and moreover, the results obtained in
a complex environment are easily affected by noise. These drawbacks reduce the application of MOMEDA in engineering practice
greatly. In order to avoid such problems, in this paper, we propose an adaptive fault diagnosis method composed of two parts: fault
information integration and extracted feature evaluation. In the first part, a Teager energy spectrum amplitude factor (T-SAF) is
proposed to select the intrinsic mode function (IMF) components decomposed by ensemble empirical mode decomposition
(EEMD), and a combined mode function (CMF) is proposed to further reduce the mode mixing. In the second part, the particle
swarm optimization (PSO) taking fractal dimension as the objective function is employed to choose the filter length of MOMEDA,
and then the feature frequency is extracted by MOMEDA from the reconstructed signal. A cyclic recognition method is proposed
to appraise the extracted feature frequency, and the evaluation system based on threshold and weight coefficient removes the
wrong feature frequency. Finally, the feasibility of the method is verified by simulation data, experimental signals, and on-site

signals. The results show that the proposed method can effectively identify the bearing state.

1. Introduction

The floor-type multirope friction hoist system is an im-
portant equipment in coal mine production. Its critical
rotating parts (main shaft and sheave) have the critical task
of transmitting power and supporting the load. Once a
bearing fault occurs, it is effortless to cause serious safety
accidents. Therefore, the study of bearing automatic fault
diagnosis is very important for a safe operation of the
hoisting system [1, 2].

In engineering practice, the hoist bearing has several
unique characteristics in comparison to common bearings,
such as heavy load (tens or even hundreds of tons), large size
(diameter of meters), and low rotating speed (40-60 rpm)
[3]. The low-speed and heavy-load characteristics of bearing
make the fault signal weak and easily disturbed by noise
[4, 5]. Moreover, the running state of hoist bearing is often

unknown in practice. Although intelligent diagnosis
methods have apparent effects based on learning and clas-
sification, they need to deal with complex algorithms and
collect field fault data to get accurate diagnosis results [6-9].
However, for security reasons, it is extremely hard to obtain
the different fault data of hoist bearing in actual working
conditions. Because of the above problems, a simple method
composed of fault information integration and extracted
feature evaluation is proposed to obtain the fault features
and realize an automatic diagnosis.

The vibration signal is a nonstationary signal with
complex frequency components, where the characteristic
frequency representing the state of bearing can be extracted
through a variety of methods [10-14]. The ensemble em-
pirical mode decomposition (EEMD) is widely used in
rotating body fault diagnosis [15]. Although it is difficult for
EEMD to directly obtain satisfactory results from the
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vibration signal with complex components, this method can
decompose a large amount of useful information into a
single intrinsic mode function (IMF), called optimal IMF,
making it easy to get the characteristic frequency. Therefore,
to select the optimal IMF accurately, many indexes have
been proposed [16-19]. Yang et al. used the average mutual
information to select the “true” IMFs and the minimum
sample entropy to choose the effective IMFs [20]. Still, this
method is computationally complex and selects the IMF
with the least noise rather than the most fault information.
Wu et al. took kurtosis as the index and three as the
threshold to obtain the reconstructed signal by adding the
eligible IMFs [21]. However, kurtosis is easily affected by
noise and is unstable [22]. Yang et al. defined the spectral
amplification factor calculated from Fourier spectrum and
fault frequency band of the IMFs and raw signal to select the
optimal IMF [23]. This index is simple to calculate and has
little noise interference, but the fault information is mainly
concentrated at the frequency doubling in the Fourier
spectrum [24]. So, a lot of fault information may be lost by
selecting the optimal IMF component through the fault
frequency band. Also, it is impossible to select the range of
fault frequency band a priori when the bearing state is
unknown. Consequently, the Teager energy spectral am-
plitude factor (T-SAF) is built to choose the optimal IMFs
corresponding to different fault types, and a combined mode
function (CMF) is proposed to get the reconstructed signal
and solve the problem of mode mixing.

Multipoint optimal minimum entropy deconvolution
adjusted (MOMEDA) can extract cyclical features without
iteration. It uses a target vector constructed according to
the theoretical fault frequency to determine the locations
and weightings of the periodic characteristics [25]. It is
necessary to select the appropriate filter length and cycle
search range. Yao et al. used a periodic modulation in-
tensity to estimate the fault cycle and approximated the
real fault cycle by multiple iterations and proposed a
method to solve the filter through particle swarm opti-
mization (PSO) algorithm [26, 27]. Wang et al. evaluated
the signals obtained under different filter lengths through
the kurtosis spectral entropy so as to determine the op-
timal filter length [28]. For the hoist bearing, the low
rotation speed and large structure size make the theo-
retical fault frequencies often located in a small range.
When an appropriate sampling frequency is selected, the
cycles of different faults are located in a small range. Thus,
we can determine the search range according to this range
and use PSO to choose the filter length. When the effect of
EEMD is good, the method can extract the correct fre-
quency, but the efficiency of EEMD is greatly affected by
the level of white Gaussian noise [29]. Therefore, a cyclic
recognition method based on frequency ratio coefficient
and weight is proposed to quantitatively evaluate the
extracted feature frequency, so as to realize the automatic
recognition of bearing status. In each iteration, the weight
coefficient is continuously updated by comparing the
frequency ratio coefficient with the preset threshold,
thereby excluding the wrong frequency and determining
the fault type.
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The remainder of this paper is organized as follows. In
Section 2, the basic theory and the proposed method are
explained. Section 3 verifies the method by different bearing
fault experimental signals. Section 4 applies the proposed
method to analyze the field signals of sheave bearing. Section
5 gives the conclusion.

2. Theory and Analysis

2.1. EEMD Theory and Fault Diagnosis Process. EEMD can
solve mode mixing and endpoint effect by superposing the
white Gaussian noise. The EEMD method first needs to
determine the parameters of the added white noise, that is,
the level and amount of white noise. Then, EMD is carried
out to decompose the new signal by adding white noise to
the raw signal, and multigroup IMFs are obtained by re-
peating the process. Finally, the signals of averaging the same
IMFs of all groups are used as final results. In general, the
amplitude of white noise is 0.2 times the standard deviation
of the original signal, but according to reference [30], the
white noise level ¢=0.2 does not apply to all signals. The
larger white noise level will cause the phenomenon of
overdecomposition, and the smaller white noise will not
change the extreme point position. So, an iterative increase
method of the white noise level is used to raise the de-
composition efficiency of EEMD. The specific process is
shown in Figure 1. In each iteration, the white noise level is
increased by adding the step size (h=0.01) and EEMD is
carried out. Then, the feature frequency is extracted by the
CMF method and PSO-MOMEDA. Finally, automatic di-
agnosis is realized by the evaluation system.

2.2. Combined Mode Function (CMF) Method. EEMD can
decompose vibration signal into multiple IMFs adaptively,
and each IMF has only one fixed frequency band. But the
main energy of the fault signal is concentrated at the fre-
quency doubling in Fourier frequency spectrum. Therefore,
the fault characteristics are to be distributed to different
IMFs. By comparing the amplitude of different IMFs in the
same fault frequency band, the optimal IMF corresponding
to this fault type can be determined. The Teager energy
operator (TEO) can enhance the amplitude of the signal to a
greater extent [31]. Therefore, the TEO is adopted to further
strengthen the impact signal and make the fault frequency
more obvious. In general, the Teager energy spectrum
amplitude factor (T-SAF) is constructed to evaluate IMFs,
and the optimal IMFs can be determined based on maxi-
mum T-SAF. The mathematical expression of T-SAF is
shown as follows:

)
. I s At (f)

) (1)
s

S 5 AL
where A (f) is the amplitude in the envelope spectrum of
the IMF, A,(f) is the amplitude in the envelope spectrum of
the original signal, f, represents the theoretical fault fre-
quency, and 24 is the frequency bandwidth.
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FIGure 1: Fault identification process.

When the fault type is determined, the optimal IMF can
be easily identified. Still, the running state of the hoist
bearing in engineering practice is unknown, so the range of
frequency band cannot be selected in advance. Considering
the low-frequency characteristics of the bearing, a com-
bined mode function method is proposed to reconstruct
the signal including all fault characteristic frequencies, as
shown in Figure 2. The optimal IMFs corresponding to
inner ring fault, outer ring fault, rolling element fault, and
the normal condition are added to form a reconstructed
signal.

In order to show the availability of the CMF, the bearing
fault model in reference [23] is adopted to establish the inner
ring fault simulation signal. The structural parameters of
hoist bearing in actual working conditions are given in
Table 1. The bearing rotation frequency f, is 0.87 Hz, and the
fault frequency of the inner ring is 7.91 Hz, which is ap-
proximately 9 times the rotation frequency (9f,=7.83 Hz).
The outer ring fault frequency f, is 6.01 Hz, which is about 7
times the rotation frequency (7f,=6.09Hz). The rolling
element fault frequency is 3.13 Hz. The sampling frequency
f the sampling length N, and the bandwidth 2§ are set as
512 Hz, 4000 samples, and 1 Hz, respectively. The fault signal
and its Fourier transform spectrum are shown in Figure 3(a).
The rotation frequency, inner ring fault frequency, frequency
doubling, and side frequencies are apparent, and the max-
imum amplitude appears at 70.91 Hz (9f;). The vibration
signal formed by superposing noise to the fault signal is
shown in Figure 3(b). The characteristic frequency is entirely
submerged by noise, so it is hard to analyze the bearing state.

EEMD is used to decompose the simulation signal to
obtain IMF components, and then the T-SAF values are
calculated and normalized, as shown in Figure 4. The op-
timal IMFs corresponding to different bearing states are
IMF3, IMF4, IMF4, and IMF7, as shown in Figure 5. In
IMF3, the characteristic frequency of 8.19 Hz appears near
the theoretical inner ring fault frequency of f;=7.91 Hz, and
there is also an interference frequency of 6.01 Hz. In IMF4,
the frequencies of 6.14 and 3.02 Hz are displayed clearly, and
the inner ring fault frequency is completely submerged. In
IMF7, the characteristic frequency of 0.77 Hz is close to the
rotation frequency of f,=0.87 Hz. The reconstructed signal
formed by the CMF method is shown in Figure 6. The
frequencies of 1.79, 8.19, and 11.52Hz correspond to the
theoretical characteristic frequencies of 2f,=1.74Hz,
f;=7.91Hz, and 13f,=11.31 Hz, respectively. Although the
fault frequency is obvious in the reconstructed signal, the
interference frequencies are not completely eliminated,

Eliminating the same
IMF component
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FIGURE 2: Signal reconstruction flow diagram.

which can easily cause misdiagnosis. Therefore, the
MOMEDA method is adopted to denoise the reconstructed
signal.

2.3. PSO-MOMEDA Algorithm. The basic theory of
MOMEDA is in reference [25]. Its purpose is to find optimal
filter without iteration and highlight the shock signals within
a specific time scale. The effect of MOMEDA is related to the
fault cycle and filter length greatly. In order to obtain the
characteristic frequency more accurately, appropriate
sampling frequency is defined to make the fault cycles of
bearing with low-frequency characteristic in a smaller range,
multipoint kurtosis is used as a metric for determining the
period, and the PSO algorithm is used to select the filter
length. The specific optimization process is as follows:

(1) Initialize input parameters, such as particle position
(filter length), initial particle number, number of
iterations, and so on.

(2) Based on the maximum multipoint kurtosis, the
optimal fault cycle is determined and the noise re-
duction signal is obtained, and then the objective
function is used to evaluate the noise reduction
signal.

(3) Update the particle position and velocity and save
the optimal position of each particle and the global
optimal position, until the iteration termination
condition is met.

(4) Use MOMEDA to reduce noise according to the
optimized parameters and then extract the charac-
teristic frequency.
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TaBLE 1: The parameter of the hoist bearing SKF241/630 CAK/W33.
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FIGURe 3: The inner ring fault simulation signal: (a) no noise added; (b) noise added.

T-SAF

FiGUre 4: T-SAF values of the IMFs.

The fractal dimension describes the complexity and
roughness of the curve, which is a useful index for analyzing
bearing vibration signal [32]. We used fractal dimension as
the objective function. In order to show the effectiveness of
this index, it is compared with the kurtosis and permutation
entropy. Taking the above simulation signal as an example,
the theoretical fault cycles of the inner ring, outer ring, and
rolling element are 65.74, 85.18, and 163.56, respectively, so
the search range is in the interval [50 170]. The comparison
of indexes is shown in Figure 7. The frequency difference is
the difference between the extracted characteristic frequency
and the theoretical inner ring fault frequency. The charac-
teristic frequencies corresponding to the maximum kurtosis,
minimum permutation entropy, and minimum fractal di-
mension are 8.19, 8.19, and 8.09 Hz, respectively, but only
the fractal dimension has a similar trend with the frequency
difference.

The PSO method is used to optimize the MOMEDA
parameter. Set the initial particle swarm number to 20, the
number of iterations to 10, and the filter length range in the

interval [400 1000]. The calculated optimal filter length is
625, and the filtered signal is shown in Figure 8; the solid
blue line representing the filtered signal almost corresponds
to the red dashed line representing the fault signal, and the
characteristic frequency is 7.89 Hz, which is closer to the
theoretical inner ring fault frequency than the frequencies
shown in Figure 7.

2.4. Cyclic Recognition Method. According to the theory of
the MOMEDA algorithm, the peak of the signal after noise
reduction is usually a multiple of the fault period [28]. And
improper white noise level will make MOMEDA extract the
wrong characteristic frequency. The ability to manually
identify the bearing fault type based on the extracted
characteristic frequency is limited to a certain extent by the
experience and knowledge of the field staff. Therefore, a
cyclic recognition method is proposed according to
threshold and weight. The specific process is shown in
Figure 9.

According to the noise reduction principle of MOMEDA,
the extracted characteristic frequency may be multiple of fault
frequency [18]. Therefore, the frequency doubling coefficient
between the characteristic frequency and fault frequency is
first calculated to determine the fault type:

C= round(%), (2)

where round stands for rounding operation, f,, is the
characteristic frequency, and f; is the theoretical fault fre-
quency. In order to realize automatic identification of fault
types, the results need to be quantified. Based on the relative
error calculation method, the frequency ratio is defined, and
its formula is as follows:
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FIGURE 6: Time-domain waveform and envelope spectrum of the
reconstructed signal.

abs -Cx

D= (f m f f ),
fr

where abs represents the absolute value. Finally, the fre-

quency ratio corresponding to different fault types is
compared with the preset threshold to realize the bearing

(3)
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FIGURE 7: Comparison of different indexes.

state diagnosis. Considering that using the same threshold
for different fault frequencies may make the diagnosis
wrong, an adaptive threshold is proposed as the judgment
standard. The threshold is linearly changed based on the
inner ring fault frequency, and the specific calculation is
shown in the following equation:
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FIGURE 9: Automatic fault identification process.
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H is an estimated value, which represents the maximum
difference between the real fault frequency and the theo-
retical fault frequency; its value can refer to the frequency
bandwidth, generally /2. H; is the threshold after linear
change, and its maximum value does not exceed H.

Due to the low-frequency characteristics and structural
characteristics of the hoisting bearing, some fault frequen-
cies have a certain multiple relationship with the rotation
frequency. For example, f;=7.91 Hz and 9f,=7.83 Hz. This
makes the quantitative results meet the threshold require-
ments of multiple fault types at the same time, which brings
greater difficulties to fault identification. Therefore, in order
to avoid the bearing state recognition errors, the weight

coeflicient is established to evaluate each recognition result,
as shown in the following equation:

1 1 1
wp=w;+0.5 (Dn<S),
wf=w} +025 (D) <9), (5)

w,=w,+02 (D,<S,).

D,,' means that only one bearing state is identified; thus,
the fault weight corresponding to the fault type in this cycle
is set to 0.5. D, multiple bearing states have been iden-
tified and accurate results have not been obtained; thus, the
failure weight coefficients of all identified fault types are set
to 0.25. w, is 0.2 when the frequency ratio is less than the
normal state threshold. When the weight coeflicient rea-
ches 1, the cycle stops, and the corresponding fault type is
output.

The frequency obtained from the filtered signal in each
cycle is shown in Figure 10(a); the abscissa is cycle number,
the ordinate is the characteristic frequency, and the red
dotted line indicates the theoretical fault frequency value
corresponding to the fault type. The frequency ratios are
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FIGURE 10: Automatic fault identification. (a) Characteristic frequency in each cycle. (b) The frequency ratio of fault types in each cycle.

shown in Figure 10(b); the abscissa is the fault type, the
ordinate represents the frequency ratio, and the red line
indicates the threshold for each fault type; H=0.2 Hz is set
here. The figure shows that the characteristic frequencies of
7.89, 8.04, and 7.89 Hz obtained in the first, fourth, and fifth
cycles are less than the set thresholds. Among them, 7.89 Hz
corresponds to both the inner ring fault and the normal
state, and 8.04Hz only corresponds to inner ring fault.
According to equation (5), the weight coefficient of the inner
ring is 1 after the fifth cycle, so it is determined as the inner
ring fault. The simulation result illustrates the feasibility of
the method, which is further verified by experiments.

3. Experimental Verification

3.1. Algorithm Flow. In order to realize the fault diagnosis of
bearings with the unknown state in actual working condi-
tions, a fault diagnosis method is proposed, as shown in
Figure 11.

3.2. Experiment Rig and Conditions. The coal mine hoist has
strict requirements on safety, so it is hard to implement on-
site bearing failure tests. To verify the proposed method, the
hoist simulation testing setup shown in Figure 12 was built.
Figure 12(a) shows a schematic diagram of the hoist sim-
ulation testing setup, which mainly includes the steel
structure support, wire rope, hoisting container, guide
wheel, driving mechanisms, anti-running rope device, and
hydraulic station. The 10 m high structure support is used to
simulate the derrick, and the guide wheel is used to simulate
the hoisting sheave. The driving mechanism provides
driving force through a three-phase asynchronous motor
and controls the running direction and speed of the steel
wire rope through a matched frequency converter.
Figure 12(b) shows the physical diagram of the hoist testing
setup. Figure 12(c) shows the layout of measuring points,
and a three-way accelerometer which can measure low-
frequency vibration (the frequency response range of
0-30kHz) is fixed on the guide wheel bearing cover. The
signal acquisition device (LMS SCADAS Mobile) is shown in
Figure 12(d).

The hoist testing setup can obtain the vibration signal of
the bearing under normal status, inner ring fault, outer ring
fault, and rolling element fault. A single point was machined
to simulate the failure, as shown in Figure 13. The bearing
parameters are shown in Table 2.

In the test, the total lifting time is about 3.5s, and the
vibration signal from 0.5s to 3s is considered to be gen-
erated during the constant speed lifting process. In this case,
the rotating frequency f, was about 3.2 Hz. The theoretical
inner ring fault frequency f; is approximately 15.81 Hz, outer
ring fault frequency f, is 9.79 Hz, and rolling element fault
frequency f, is 6.43 Hz. The sampling frequency f;, sampling
length N, estimation value of frequency difference H, and
frequency bandwidth 2§ are set as 512 Hz, 1280 samples,
0.3 Hz, and 1 Hz, respectively. The search range and the filter
length range are in the interval [20 90] and [200 600],
respectively.

3.3. Automatic Identification of Different Fault Types

3.3.1. Inner Ring Fault. The diagnosis process of bearing
inner ring fault is shown in Figure 14. Figure 14(a) shows the
inner ring fault vibration signal. The characteristic fre-
quencies (16, 32, 48 Hz) representing the inner ring fault and
the interference frequency (53.20Hz) are obvious.
Figure 14(b) shows the reconstructed signal at ¢=0.03.
Compared with that of the raw signal, the amplitude of the
characteristic frequency of 16 Hz increases obviously, and
the interference frequency is wholly eliminated. Figure 14(c)
shows the extracted characteristic frequencies, and all of
them are near the theoretical inner fault frequency.
Figure 14(d) shows the recognition result of the extracted
feature frequency. It can be seen that 15.88 Hz obtained in
first cycle corresponds to both the inner ring fault and the
normal state and 15.79 and 15.76 Hz obtained in the second
and third cycles only correspond to the inner ring fault, so as
to determine the bearing inner ring failure.

3.3.2. Outer Ring Fault. Figure 15 shows the diagnosis
process of the bearing outer ring fault. In Figure 15(a), the
characteristic frequencies (10, 19.6, 29.6 Hz) of the original
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FIGURE 12: Hoist simulation testing setup: (a) equipment diagram; (b) physical map; (c) sensor’s fixed position; (d) data acquisition

equipment.

signal are close to the theoretical outer ring fault frequencies
(f,=9.79 Hz, 2f,, 3f,), and the maximum amplitude (10 Hz)
is 0.32m/s>. In the reconstructed signal, as shown in
Figure 15(b), a large number of noise components are
eliminated, and the amplitude of fault frequency (10 Hz)
reaches 0.60 m/s>. Figure 15(c) shows that all the extracted
characteristic frequencies are 9.81 Hz. Figure 10 shows that
the characteristic frequency only corresponds to the outer

ring fault. So, the fault type is determined as the outer ring
fault according to equation (5).

3.3.3. Rolling Element Fault. Figure 16 shows the processing
result of the rolling element fault signal. Figures 16(a) and
16(b) show the original signal and reconstructed signal,
respectively. The characteristic frequencies (6.40, 12.80 Hz)
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TaBLE 2: The parameters of the rolling bearing.
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FiGure 15: The diagnosis process of bearing outer ring fault: (a) the original signal; (b) the reconstructed signal; (c) characteristic frequency

in each cycle; (d) the frequency ratio of fault types in each cycle.

in the reconstructed signal are more prominent, and the
noise is significantly reduced. Figures 16(c) and 16(d) show
the extracted characteristic frequencies and the diagnosis
results. In first, third, and sixth cycles, the frequency ratios
meet the requirements of the rolling element fault; then, the
fault type is diagnosed as a rolling element fault.

3.3.4. Normal State. Figure 17 shows the processing results
of normal bearing vibration data. In Figure 17(a), the
characteristic frequencies (3.20, 6.40 Hz) make it difficult to
judge whether the state is normal or the rolling element fault.
In Figure 17(b), the rotation frequency and frequency
doubling are more prominent. In Figures 17(c) and 17(d),
when the characteristic frequency is close to 5f,= 16 Hz, it
meets the bearing normal state threshold requirement, so the
bearing state is considered normal.

3.3.5. Accuracy of This Method. The accuracy of the method
is verified by processing 10 sets of experimental data for each
bearing status, and the results are shown in Figure 18. In order
to illustrate the detection effect of the proposed method, two
indexes of recognition rate and accuracy rate are defined. The

recognition rate is the accuracy of identifying normal or faulty
bearings, and the accuracy rate is the correct proportion to
identify the bearing state. For the inner ring fault, the rec-
ognition rate and accuracy rate are both 100%. The recog-
nition rate and accuracy rate for the outer ring fault are 100%
and 90%, respectively. The recognition rate and accuracy rate
for the rolling element fault are 90% and 70%, respectively.
The recognition rate and accuracy rate for the bearing in the
normal state are both 90%.

Although this method fails to achieve a 100% accuracy,
misdiagnosis can be avoided by comparing the recognition
results of multiple sets of vibration data. Besides, although
this method takes a long time on average, the health of the
hoist bearing is gradual in actual working conditions, so the
real-time requirements are not strict. Based on the above
analysis, this method cannot satisfy the requirements of field
application.

4. Field Test

4.1. Field Environment and Equipment Installation. The al-
gorithm is used to identify the state of head sheave bearing of
the hoisting system under the actual working conditions.
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FIGURE 19: Installation diagram of the monitoring system.

The layout of the monitoring system is shown in Figure 19.
The hoisting height is 1047 m, the maximum hoist speed is
10.89 m/s, and the diameter of the head sheave is 4 m. The
bearings are inspected by workers to ensure that they are in
good condition. The rotation frequency of the head sheave
bearing is 0.87 Hz, and the corresponding bearing fault
frequency is consistent with that given in the simulation,
fi=791Hz, f,=6.01Hz, and f,=3.13Hz. The sampling
frequency f; is 256 Hz, the estimate value H is 0.2 Hz, the

frequency bandwidth 28 is 1 Hz, and the search range is in
the interval [20 90]. The parameters of PSO are the same as
experiment. In the field application, the vibration signal of
the head sheave bearing is collected and wirelessly trans-
mitted to the computer in the hoist driver cab.

4.2. Data Processing Results. The vibration signal is shown in
Figure 20(a). The signal contains a lot of noise, and the peak
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frequency is 29.2 Hz. The reconstructed signal obtained when
¢=0.07 is given in Figure 20(b). The characteristic frequencies
of 2.0 (2f,=1.74), 5.0 (6f,=5.22), and 11.6 (13f,=11.31) Hz
that represent normal state are obvious. In Figures 20(c) and
20(d), the extracted characteristic frequencies are distributed
between 5 times and 9 times the rotation frequency, and the
first, third, fourth, fifth, and seventh frequencies are effective
characteristic frequencies which all meet the threshold re-
quirements of the normal state. Therefore, it is determined
that the bearing is in normal condition, which is consistent
with the results given by the workers.

5. Conclusions

In this work, an adaptive fault diagnosis method composed
of fault information integration and extracted feature
evaluation is proposed. The feasibility of the proposed
method is proved by the simulated signal, experimental
signals, and on-site signal. The main results are as follows:

(1) The optimal IMF components can be selected effec-
tively based on the T-SAF index. The reconstructed
signal obtained by the CMF method can effectively
reduce noise without losing fault information.

(2) The noise reduction effect of the MOMEDA method
is greatly influenced by the filter length. The PSO
method taking the fractal dimension as the objective
function is used to select the optimal filter length.
The cyclic recognition method can eliminate the
influence caused by a larger search range as much as
possible through the established evaluation system.

(3) The experimental results illustrate that the proposed
method has good robustness. The field application
results show that the method can effectively diagnose
the bearing state under actual working conditions.

The proposed method can realize automatic recognition
of the hoist bearing state, and the fault recognition rate of the
method meets the requirements of the field application. It
provides a reference for the diagnosis of other low-frequency
bearings. In the next step, the accuracy of this method will be
further improved.

Data Availability

The data used to support the findings of this study are given
in the supplementary information files.
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sponding to Figure 3 in the paper. Field.txt contains the
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the field, corresponding to Figure 20 in the paper. ExpIn.txt
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