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Summary. The main result of this paper is an abstract version oKihea-
lewski— Ciarlet — Wagschal multipoint Taylor formulimr representing the
pointwise error in multivariate Lagrange interpolation. Several applications
of this result are given in the paper. The most important of these is the con-
struction of a multipoint Taylor error formula forgeneral finite element
together with the correspondidg—error bounds. Another application is the
construction of a family of error formulae for linear interpolation (indexed
by real measures of unit mass) which includes some recently obtained for-
mulee. Itis also shown how the problem of constructing an error formula for
Lagrange interpolation from &—invariant space of polynomials with the
property that it involves only derivatives which annihilate the interpolating
space can be reduced to the problem of finding such a formula for a ‘simpler’
one—point interpolation map.

Mathematics Subject Classification (1994)A65, 41A80, 65D05, 41A05,
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1. Introduction

Overview

This paper is concerned wittxplicit representations of the linear mgp
which is definedmplicitly as the uniqgue map which makes the following
diagram commute
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wherel/ : X — Y, R : X — Z are linear maps with
keri C ker R.

Maps Q of this type occur frequently in approximation theory and nu-
merical analysis. For example,lif = D**! andR is a linear functional
whose kerneller R) containsii, (the polynomials of degre€ k), thenQ
gives thePeano kernel representation

Rf = Q(DM1f).

There is particular interest in certain such ma&psvhose norm provides

the best constant in error bounds for various numerical schemes. The most

notable of these are ttimite element methoahdnumerical differentiation

and integration rulegsee, e.g., Meingu¢h84] and the references therein).
The main result of this paper is that for certain maps of the form

R =A(l- L)

part of the flexibility in Meinguet’s abstract method for representih(e-

tailed below) can be used to satisfy conditions that ensure the representation
for O take a simple form. A precise statement of this result is given in
Theorem 2.2.

The prototype of such representations is iingtipoint Taylor formula
for Lagrange interpolation (see Ciarlet and Wags¢Bav71]). In Sect. 3,
this is discussed and then extended (in its unexpanded foral) tmear
operators that reprodudéy.

In Sect. 4, this extension is discussed within the settiriopidé elements
It is expanded in terms of theodal variabledo obtain the analogue of the
original presentation of the multipoint Taylor formula.

In Sect. 5,L,—error bounds for finite elements are obtained from these
‘expanded’ multipoint Taylor formulae by using timeultivariate Hardy’s
inequalityrecently given by the author (and intended for precisely this type
of situation).

In Sect. 6, to emphasise the wide applicability of the main ‘abstract
result’ and to illustrate some of its more subtle points, it is used to obtain
a family of formulae for the error in linear interpolation which is indexed
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by real measures of unit mass. These include many of the known formulese
(some of which have only recently been obtained).

Finally, in Sect. 7, a general form of Taylor interpolation is introduced
which allows the results of the previous sections to be extended. This ‘one—
point interpolation from an arbitrary polynomial space’ has close connec-
tions with theleast solutiorof de Boor and RofiBR97 to the ‘polynomial
interpolation problem’. It is shown how error formulee for the least solution
can be obtained from those for a simpler one—point interpolation problem.
Representing the error in both of these maps involves some deep questions
in the theory of multivariate Peano kernels.

Meinguet’'s abstract method for representi@g

Given the situation above, i.e.,
(1.1) oU="R

with R, U known linear maps, how can axplicit representation of be
obtained?
The approach most often used is to take

V:ranld — X
aright inversefor i, i.e., a map with
uy =1,
and right multiply (1.1) by to obtain
(1.2) Q =TRV.

This is stage(i) of what is referred to in MeingudiM84] as theabstract
methodfor representing?. The prototypical example of (1.2) is the Peano
kernel representation.

Stage(ii) of the abstract method is the observation that if the restriction
of R to the range o¥’ can be written as a finite sum

72«|mnV = Zsja

J

of what are referred to astandardlinear mappingsS;, then (1.2) can be
expanded as

(1.3) Q=> SV.
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Now assume tha¥ is linear andY’, Z are normed linear spaces. In the
final stage of the abstract methathgeiii), the triangle inequality is applied
to (1.3) to obtain

(1.4) 2l <> 218Vl

If R,U are continuous antf is open, then® is a continuous linear
map. This was first observed by S4&48; Theoremlwhen X, Y, Z are
Banach spaces, and is referred t&asd's factorisation theorery Atteia
[At92; Theorem 2.1, p. 98vho states it for topological vector spaces.

Meinguet does not suggest how best to chodsnd {S;}, other than
that it should be done in such away that bounding ¢f&h || is simpler than
bounding||RV|| directly. He gives many examples [M75], ..., [M84].
Earlier examples of the abstract method in the multivariate setting include
Ezrohi[E57] and SardS63.

In each case known to the author the right invérsselinear and comes
via an associated linear projectBrontoker I/ as described below.

Proposition 1.5 (cf [M84]). Let!/ : X — Y be a linear map. There is a
1-1 (linear) correspondence betwéiaear right inverses

V:ranld — X
for U andlinear projectors

P:X — kerd
ontoker U/, which is given by

P=1-VU.

2. The main result

Next is the main result, that if
(2.1) R=A1-L),

then it may be possible to choo¥eso that the representation gfgiven by
Meinguet'sabstract methotbkes a simple form. Later it will be shown how
many practical estimates follow from this ‘abstract result’ for operators of
the form (2.1), such as theror in thefinite element methagee Examples

1 and 2 of Sect. 4). The reader might like to keep in mind the simple example

Rf=0.(1—-L)f = f(z) = Lf(x)
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whereL is the operator of Lagrange interpolation frdiiy andi/ = D**1,
kerUd = I}.

Theorem 2.2.Let Q be the linear map which is defined implicitly as the
unique map that makes the following diagram commute

U

X rand CcY

R::A(l—x‘ o 0

7

wherel : X - Y, A: X — Z,L: X — X are linear maps with
kerU C ker'R.

If V:ranUd — X is aright inverse of{, chosen so that

(2.3) AVU =0,
then
(2.4) Q=—-ALY.

Proof. Expanding (1.2) usin® = A(1 — £) gives
(2.5) Q=AY - ALV.

If AVU = 0 (which is equivalent tod) = 0), then (2.5) reduces to (2.4).
O

Above, the conditiondVi/ = 0 was favoured over the equivalent one
that AV = 0. This is because usually the right invengeas alinear map
which comes via an associated linear projegto= 1—VU (see Proposition
1.5), and this choice makes it clear that (2.3) can be rewritten in the (often
more convenient) form

(2.6) A= AP.

At times, such as whely is the multivariate differentiation operator
D+ it is convenient to use Theorem 2.2 without any direct reference to
U or V. The following corollary allows this.

Corollary 2.7. Let
R=A01-L): X - Z
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whereAd: X — Z,L£: X — X are linear maps. [P : X — X is alinear
projector with

(2.8) ranP C ker R,
and

(2.9) A= AP,
then

(2.10) R=—-AL(1-7P).

Proof. This corollary follows by taking/ = 1 — P and choosing’ to be
the identity. However, it may be more instructive to give the direct proof
that:

R=R(1-7P) (sinceran P C ker R)
=A1-L)(1-P)=A(1-P)—-AL(1-P)
=—-AL(1-"P) (since4 = AP).

O

ExamplesAs far as the author is aware, there are two examples of (what
are effectively) representations @fof the form (2.4). One is the multipoint
Taylor formula for the error in Lagrange interpolation, and certain kinds of
Hermite interpolation, from a space containifig. This is discussed and
then extended in the next section. The other is Gregory’s error formula for
linear interpolation on a (standard) triangle (see next section).

3. Multipoint Taylor formulae for linear operators that reproduce IT;

In this section it is shown that threultipoint Taylor formuldor the errorin a
Lagrange map (see below) is a natural example of equation (2.4) of Theorem
2.2, and it is extended (in its unexpanded form) to all linear operators that
reproducelly.

Lagrange maps

We say that.agrange interpolatiorfrom a space of function® to data at
a finite set of point®® C IR" is correctif for each functionf (defined at
least on®) there is a unique € P with

p(v) = f(v), Vve®.
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The associated linear projectbr— pis called thd.agrange map(given by
the space of interpolanf3 and points of interpolatio®), and it is denoted

by

ﬁp,@ : f — D.
ThelLagrange fornof a Lagrange mag pe is
(3.1) Lpof =Y f(v)l,
veEO

where (3.1) uniquely defines
by = E’U,P,@ € P,

theLagrange functioror v € ©.

Lagrange maps with a space of interpolants that contdingive rise
to many commonly used finite elements, and are also frequently used to
interpolate to scattered data. Particular examples of the latter, which have
received much attention lately, are maps where the interpolants in@ude
dial basis functionsand theleast solutiornto the polynomial interpolation
problem (see Sect. 7).

The multipoint Taylor formula

The multipoint Taylor formula is a representation of the error
R:=A(1-L)

in a Lagrange map
L:=Lpeo

for which 11, ¢ P, and whereA is any of the derivatives
A= Ag,x = 629(D) : f = g(D)f(x), gc Hk

Here, and wheneve@oint evaluatioratz is being thought of as a linear map
on functions (and so should be applied from the left) it will be denoted by

5ot f = fl).

The differential operator induced lgyc 11} is writteng(D).
If P is a linear projector ont@/; which interpolates, i.e., for which

(3.2) 9(D)f(z) = g(D)P[f(x), Vf,
then by Corollary 2.7
(3.3) R=-AL(1-7P).
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Here, the intent is to apply Theorem 2.2 with= D**! (the k + 1 order
multivariate differentiation operator) to obtain expansion®6f) in terms
of DFHLf,

The linear functionals

{Ag,x 1g € Hk’}

are the interpolation conditions for the operatofaylor interpolatiorfrom
II}, atz, which we denotd, ... This operator is a natural choice fBrsince
it is the only linear projector (ontd7;) that interpolatesA = A, , for all
g € II;. For this choice the equation (3.3) becomes

(34) 9g(D)(f = Lref)(z) = —g(D)(LpoRrf)(x), Vf,

where
Rk,x =1- 774,1

is theerror (remainder) in Taylor interpolation frodT;, atz, which can be
expressed as

1 1
(35)  Riafo) = /0 (1— ) DAL f (o + o — ) dt.

HereD, f denotes the derivative ¢fin the directiony. For a given linear
functional A, such as point evaluation at there are (fork > 0) many
linear projectors satisfying (3.2). This is illustrated in Sect. 6 for linear
interpolation, i.e.P = I1;.

The careful reader will notice that the only property@# o used so far
isthat it is a linear operator which reprodudés, and so, in particular, (3.4)
holds withL p ¢ replaced by any such operator. This is a crucial observation,
which leads to Theorem 3.15 and is discussed further in this section.

By expressing the Lagrange interpoldht o (Ry .. f) in Lagrange form
(3.1) the equation (3.4) can be expanded as

(3.6) 9(D)(f — Lref)(@) == Riuf(v) (9(D)) ().

vEO

This formulais referred to by Meinguet jiM84; p. 99 as theKowalewski-
Ciarlet—Wagschal multipoint Taylor formulaut of deference to its origins
which are as follows.

History of the (Kowalewski — Ciarlet — Wagschal) multipoint Taylor formula

The earliest occurrence of (3.6)dewalewski’'s remaindeseg K32; p. 21
—24, or Davis's booD75; p. 71), which is theunivariatecase when the
linear functionalA is point evaluation at.
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In Ciarlet and WagschdICW71] the multivariate form of (3.6) was
given for the special cases of interpolation by linear polynomials (Theorem
2) and by quadratic polynomials for derivativds= §,g(D) up to orderl
(Theorem 4). The terrmultipoint Taylor formulawvas coined in that paper.
The subsequent paper of Ciarlet and Ravi@R7] proved the general
formula (3.6). A discussion of the relationship of that proof with Theorem
2.2 and of the choice of the term ‘multipoint Taylor formula’ is given below.

The special case of formula (3.6) whe#eis point evaluation at and
O consists of thesimplex point§dim I7;, equally spaced points on a sim-
plex) was proved independently by NicolaidegMv2; Theorem 5.Jland
[N73; Theorem 2L

The Ciarlet—Raviart proof of the multipoint Taylor formula

To understand the proof of (3.6) given[il@R77 it is instructive to consider
the following alternative simple proof found by the author (in trying to do
s0), which invited the generalisation to Theorem 2.2.

Since

f=Tkaf +Riuf,
andLpe reproduceslly, i.e.,
Lpeg=g, Vg€l
it follows that
3.7  Lpof=LpeTiaf +LPoRisf = Teaf +LroRiaf.

In particular, sincdy, ;. f is the Taylor interpolant froni/;, to f atx, applying
d:9(D) to each side of (3.7) gives

(3.8) 9(D)Lpef(x) = g(D)f(z) + (9(D)LreRkaf)(x),

which (up to a rearrangement) is (3.4) and can be expanded to (3.6). Again,
the careful reader will observe that (3.7) holds with ¢ replaced by any
linear operator that reproducés,.

The proof of (3.6) given ifCR73 uses then—th order differentiation
operator, which (for simplicity) can be thought of as the map

D™ f— (D“f:|a| =m)
to the sequence of partial derivatives of orderThere the Taylor formula
f(’l)) = E,xf(v) + Rk,xf(v)
1
(39)  =[(@)+ Doaf(@)+- + D f (@) + Rif(v)



470 S. Waldron

is used to expand the Lagrange formf o, and this expansion is differ-
entiated to obtain

D"Lpof(x z S DL, f(x) (D™4,)(x)
=0 " veod
(3.10) +2Rk,xf v) (D) ().
vEO

It is then proved that the double sum in (3.10) reduces to

(3.11) Z > DL, f(x) (D™)(x) = D™ f(z), 0<m<k,

=0 " veO
thereby proving (3.6), wher®™, 0 < m < k plays the role ofy(D),
g € II}.
With hindsight, since
k

=0

= T f (v),

N"_‘

it is seen that (3.11) is an expansion into Lagrange form of
D"™"(LpoTksf)(x)=D"f(z), 0<m<k,
an identity which holds because
Lpo(Tkaf) = Thal,

and not because of the specific nature of the linear opefatey. Instead,
the proof of (3.11) given ifCR73 involves showing (by induction) what
is described as ‘the (somehow unexpected) result’ that:

0, 0<1<m
(3.12) 'ZD ) (D™,)(z) = { D" f(z), l=m
veEO 0, m < <k.

Gregory’s error formula for linear interpolation on a triangle

For the multivariate case, in addition to (3.5), there are many expansions for
the error in Taylor interpolatio®y .. f (v) in terms of D¥*1 f that could be
substituted into (3.6), each giving different sumstaindardinear mappings
(2.3) (and thus leading to possibly better norm bounds).

Gregory’s well known formulee for the error in linear interpolation at

O = {(170)a (Oal)v (070)}
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is an example of this. In Gregof$ 75 the formulee (3.6) for remainders
(3.13)
f@) = Lmef@), DYONf—Lmef)(x), DOV(f~Lnef)z)

are expanded using a formula f&r , f (v) different from (3.5). To get an
appreciation for the detail involved, the formula used, which is in the spirit
of Sard[S63; Theorem 8, p.163is that forz,v € T (the triangle with
vertices®)

Rl,xf(v)
= Xy, (V) {/m(Ul —5) DO f(s,5) ds + /m/le(l’l)f(s,t) ds dt

+ / P s = )DOD (1) dt}

//D@O 51 —1) dsdt—i—// DO (a1, 1) dt ds

+/U DO f(s,t) di ds + (g—t)D(’)f(:cl,t)dt}

x1 J1—s X9

\/

+X 4, (v

+XA3( )_/”1( S)D(20 f(s,z ds—i—/ - tD(1 1)f(s t)dsdt

+/ 1tD“ f(s,z2) dsdt+/ /DO2 s,t)dtds],
(3.14)
wherey A is thecharacteristic functiorof the setA; which is defined by
T\ (A2 U A3), i=1;
5

{ve T:vy>1—-x}, i=2
{ve T:vy>1—ux1}, i=3.

Naturally, the formulae for the remainders (3.13) so obtained are of a similar
complexity to (3.14). Gregory was successful in obtaining uséfulerror
bounds from these formulee.

The (unexpanded) multipoint Taylor formula for linear operators that re-
producelly,
We end this section with the general result referred to previously.

Theorem 3.15Suppose thaf is alinear operator that reprodudés. Then,
for sufficiently smoothf

(3.16) Lf=Teof +LRiof
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In particular, forg € I1j,

(3.17) g(D)(f — Lf)(x) = QD ),
where
(3.18) QDM f) = —g(D) (LR f) ().

Proof. The proof is exactly as for (3.7) and (3.8). Sirge, f € II;; andL
reproducedly,

Apply d,9(D) to each side of this, to obtain (after rearrangement) that

g(D)(f = Lf)(x) = —g(D) (LR o f)()-

From (3.5) it follows that-g(D)(LRy. .. f)(z) depends only oD**1 £, as
is claimed by the definition of (3.18)1

Terminology

The termmultipoint Taylor formulafor (3.6) was adopted ilCW71], not
because it involves the err@;, , f(v) for manypointsv € ©, but rather
because (3.6) can be rewritten as

g(D)f(x) =Y f(v) (9(D)e)(x) + error(D* ),

veEO

which expresses the derivatiyéD) f(x) in terms of the value of at the
multiplepointsv € © plus an error term. Since a similar phenomenon will be
observed for the linear projectafsconsidered in the next section, equation
(3.17) will be referred to as thenexpanded multipoint Taylor formufar

L. The adjectivaunexpandeds used since, as we have just seen, the error
Ry f occurring in (3.18) can be expanded in many ways (as(caself).
These expansions are explored within the setting of finite elements in the
next section.

4. Error formulae for finite elements

In this section theexpandedorm of the multipoint Taylor formula (3.6)
is extended tall finite elements, with the examples of thebic Hermite
n-simplexandWilson’s brickbeing treated in detail.
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Finite elements

The following (standard) definitions can be found in Brenner and Scott
[BS94; ChapterB

Definition 4.1. Let

(i) K ¢ IR™ be a domain with piecewise smooth boundary @hEment
domain,

(i) P be afinite-dimensional space of functionsigr{theshape functions
and

(i) N = {N;} be a basis fo’ (thenodal variable}.

Then(K, P, N) is called &finite element

It is assumed that the nodal variable¥;} are defined on sufficiently
smooth functions (e.g., those from some Sobolev space). For afinite element
(K, P,N), the basis forP dual to{N;} is called thenodal basisfor P. It
will be denoted by{ ¢; }.

Definition 4.2.Given a finite elementk’, P, N), itslocal interpolant(to f)
is

(4.3) Ixf=ZLgpnS = ZNz’(f) bi-

Observe that the mapy defined by (4.3) is the linear projector onfo
with interpolation conditionsV, i.e., for which

Ni(Zk f) = Ni(f), Vi, Vf.

A typical example of a finite element is that (with its local interpolant)
given by a Lagrange mafpe, i.e., aLagrange finite elemer(see, e.g.,
Ciarlet and LiondCL91; p.99). Here, theelement domaiis usually the
convex hull of®, the shape functionsare P, and thenodal variablesare
the point evaluation$d, },co. In this case th@odal basisconsists of the
Lagrange functions and (4.3) is exactly the Lagrange form (3.)rq$.

Expanding the (unexpanded) multipoint Taylor formula for a finite element
in terms of the nodal basis

In Sect. 3, wherf was a Lagrange mafp o, equation (3.17) was expanded
interms ofthe Lagrange functions (the nodal basis) to obtain the Kowalewski
— Ciarlet — Wagschal multipoint Taylor formula (3.6). In exactly the same
way, whenl = Zg is any finite element it is possible to expand (3.17) in
terms of the nodal basisy; } as follows.
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Theorem 4.4.Suppose thatK, P, N) is a finite element withl;, C P C
C*. Then, for sufficiently smootlf andg € I1;,

(4.5) gD)(f —Ikf)(x) = — Z Ni(Rif) (9(D)éi)(z),

whereN;(Ry. . f) can be expressed in terms BF 1 f using Lemma 4.11
(see below).

Proof. SinceL := Tk is a linear projector that reproducék,, Theorem
3.15 gives (3.17). Expandirix (R . f) as it occurs in (3.17) using (4.3)
gives (4.5). The expansion o¥;(Ry .. f) in terms of D**! f is discussed
below. O

For the reasons just mentioned, equation (4.5) (and expansions of it by
Lemma 4.11) will be referred to as tk&panded multipoint Taylor formula
for the finite element K, P, N) (or, equivalently, for its local interpolant
Tk).

Using variations of the Ciarlet—Raviart proof of the multipoint Taylor
formula (discussed earlier) the equivalent of (4.5) has been given for certain
finite elements with nodal variables of the form

(4.6) [ De--De,f(v),  0<d<F,

which are often calledHermite finite elementsin Ciarlet and Raviart
[CR72; Theorem RBit is proved for P = II; and nodal variables with

0 < d < 1, with the result involving nodal variables with < d < k
being described as ‘long and cumbersome’ and hence omitted. In Gout
[Go77; p.41% the result is shown fodl, C P (without restriction on
0<d<Ek).

ExpressingV; (R . f) in terms of DEFL f

The majority of finite elements used in humerical modelling have nodal
variables of the form

(4.7) fr=a(D)f(v),

whereq € II)) (the space ohomogeneoupolynomials of degred), 0 <

d < k. This is a (slightly) more general form than (4.6). Indeed, the very
term nodal variable(degree of freedors also used) comes from the fact
that (4.6) and (4.7) involve theodew. A nodal variable of the form (4.7)
will be said to have thesual form
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The exceptions given in Ciarlet and Lions monogr§@h91] areWil-
son’s brick(p. 214), and th&raeijs de Veubeke triang(@. 309). In addition
to nodal variables of the usual form (4.7), these involve some of the form

(4.8) fo /T ¢(D)f(v) dv,

whereT is the element domai&’, or one of its faces, andv is Lebesgue
measure.

By considering the error in Taylor interpolation we can now give expres-
sions forN; (R, f) interms ofD**1 f for nodal variablesy; of either form.
These will be presented using the following instance ofdiveded differ-
ence functional ofR” (see (5.6) for the general definition). FbK d < k,
let

1
(4.9) /[] e (k_ld),/o (1= 04 (x + t(v — x)) dt,
e

which allows (3.5) to be rewritten as

(4.10) Ri—daof(v) = / | Dty

Lemma 4.11.Suppose thak = N; is a nodal variable of the usual form,
i.e.,
A(f) = q(D)f(v),

whereq € Hg, 0 < d < k. Then, for sufficiently smootlf,

(4.12) ANRiaf) = /[ DF+1=dg(D) .
k+1—d

In particular, if f is C**! in a neighbourhood of the line segment frarto
v, then there existg belonging to the line segment fromto v for which

@13 MReoh) = Gy (PEE (D) Do)

If A = N, is a nodal variable which is of the form (4.8), i.e.,

A(f) = /T g(D)f (v) dv,

then, for sufficiently smootlf,

N A /[] DE (D) ) o

k+1—d
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Proof. The proof relies upon the fact that

(4.15) (D) (Traf) = Tr—da(a(D)f),

which is a special case of a more general result for the scateah value
interpolations(see Waldron{W97;; Proposition 5.1])). Here is a direct
proof. If f € II, thenq(D)f € II;_4 and it is obvious that (4.15) holds.
But both sides of (4.15) depend only on the derivatives up to droérf at
x, and so it holds for all (smoothy).
From (4.15) it follows that
4(D)(Riaf) = Rip—ax(a(D)f),

and hence, by (4.10),

ARizf) = a(D)Rief)(v) = Ri—a.(q(D)f)
= D (D) f,

[z,....x v
N

k+1—d

giving (4.12). Since

1
1=
/[:r,...,:p,'u] (k‘ +1-— d)'
~——

k+1—d

the mean value theorem (for integrals) can be applied to (4.12) to obtain
(4.13). Lastly, integrating (4.12) overc T gives (4.14).0

Now we illustrate the use of Theorem 4.4 with three examples.

Example 1: The cubic Hermite-simplex

Here we give the expanded multipoint Taylor error formula for ¢hbic
Hermite n-simplex This finite element was introduced (under the name
approximation of typed) in Ciarlet and Wagschal's papg€W77]]. It is
defined as follows.

Let K be ann-simplex inIR™ with vertices{a; }?1!, and let

aij = (a; + a; + ag)/3, 1<i<j<k<n+1.

Let V be the set of linear functionals consisting of point evaluatiom; at
1<i<n+1,anda;, 1 <1< j <k <n+1,together with

NZ] : fHDajfaif(a‘i)v 1 S Za] S 7'L+1, Z#]

Then(K, 13, N) is a finite element called theubic Hermiten-simplex
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Fig. 1. The cubic Hermite triangledfm 75 (IR?) = 10)

Its local interpolant is given by
Hf =TIxf = Z f(a;) ¢i + Z flagjr) Giji + ZDQj_aif(ai) Dij
i 1<j<k i#£j
where the nodal basis has the explicit representation
Gi 1= —2X] 43N] — TN D> Ak,
i<k
j ki
Gijk = 2TNiNj A,
¢ij = )\i)\j(Q)\i + )\j — 1),
with {);} the barycentric coordinates corresponding to the pdimts.
Takingq(D) = Dg; 4, andv = a; in Lemma 4.11 gives the expansion

Nij(Rg’wf) - /[ ] Dgi—xDaj—aif-

Thus, applying Theorem 4.4 t6x = H (with k& = 3) gives the error
formula: forg € 113

oD M) =3[ Diat )6

- ([ P D

i<j<k

(4.16) ([ DDt )e(D)ss)a),
itj [z,x,z,0;]

which holds for all sufficiently smootffi.

In the next section it is shown how to obtain-error bounds from this
and other such formulae.
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Fig. 2. Wilson’s brick,n = 3 (dim P = 11)

Example 2: Wilson’s brick

The second example involves nodal variables which are not of the usual
form. Let K be a rectangle ifR? aligned in the coordinate directions,

es, ez, With its length in these directions beid@,, 2ho, 2h3 respectively,

and its (eight) vertices beinge O. Let

P := T, ® span{()\>'},

where ()b4Y o (2, 29,23) +— z12023. Then, Wilson's brick (see
[WTDG73) is the finite elementX, P, N), where the nodal variables
consist of the eight point evaluatiofs, : v € ©} together with

2

h=
N; : J /DZ, 1<j<3.
J f}_)hthhg.K ]f _j_

HereD? f denotesD?, f, the second partial derivative ¢fin the coordinate
directione;.
The local interpolant for Wilson'’s brick is

h2
Wf=Ixf:=) fv)d,+ Z(hlh;hg

vEO 7

/;<D32f> bj-

Formulee for the nodal bas{®, : v € ©}U{¢; : 1 < j < 3} can be found
in [CL91; p.214.
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Applying Theorem 4.4 t@x = W (using (4.14) to express; (R f)
in terms of D3 f) gives the following error formula: fog € 11,

o(D)(f ~WI) (@)
—-2 ([ D) a0

vEO
h2
4.17 — J
( ) zj: hihohs

[ ([ Dee3 )i (o(D)0s) @),

for all sufficiently smoothyf.

Example 3: Numerical differentiation and integration rules

Interpolatory (numerical) differentiation and integration rules based on point
evaluations at € @ and exact forl1;, are of the form

> w(v) f(v) = Alpef,

vEO

whereA is the derivative or integral to be approximatége is a Lagrange
map, and theveightsw(v) are given by

w(v) = A(ly), veO.
The error in approximation by such a rule is
(4.18) Al - Lpo)f,
which is of the form (2.1). For differentiationrule, i.e.,
Af =g(D)f(z), g€ i,

this is the pointwise error in a Lagrange map, for which there is the Kowalew-
ski— Ciarlet — Wagschal multipoint Taylor formula (3.6). For differentiation
rules based on data that includes linear functionals other than point eval-
uations the expanded multipoint Taylor formula for a finite element (4.5)
applies.

For anintegrationrule, i.e.,

afs= [ 1,

where 2 is some region of volumeol({?), it is also possible to apply
Theorem 2.2. LeP be some linear projector onid, satisfying

(4.19) | 1= s
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which is condition (2.9), and denote its errory= 1 —"P. Then, Corollary
2.7 gives the error formula

| 1= ) fv) = ~ALpeE
° vEO
= A E))

vEO
(4.20) = — Z w()(Ef)(v).
veEO
The hope is then to express the quantiti€g)(v), v € © occuring above
in terms of D1 f. The practical difficulty with this scheme is finding
(appropriate) projectorB which satisfy (4.19). At first glance it might seem
the averaged Taylor interpolant

1
Pf= i@ /anfd:c

would be a good choice, however this does not satisfy (4.19). The author
has not pursued these questions further. There are a number of linear pro-
jectors’ P matching certain integrals, together with error representations
Ef = Q(D*1 ), the best known being the scaleroéan value interpola-
tions(see, e.g[W97,]), and so it would seem that at least in some situations
such a theory might be feasible.

5. Ly—error bounds for finite elements

In this section, we use thaultivariate Hardy’s inequality{recently intro-
duced by the author) to obtaib,—error bounds from the expanded mul-
tipoint Taylor formula for a finite element. To do this, the following facts
about Sobolev spaces will be required.

Sobolev spaces

Let Wj((z) be theSobolev spacef functions defined orf? (a bounded
open set inR™ with a Lipschitzboundary) with derivatives up to ordér

in L,,(£2) equipped with the usual topology (see, e.g., Ad§At7S]). It is
convenient to include the condition th@thave a Lipschitz boundary in the
definition, so that Sobolev’s embedding theorem(s) can be applied. We will
only need the following consequence of Sobolev’'s embedding theorem(s)
(which can be found in any text on Sobolev spaceg)-4#1 —d —n/p > 0,

then

(5.1) WEH(2) c (),
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where? is the closure of?.

To measure the size of ifs-th order derivative, it is convenient to as-
sociate with eactf € W} (£2) the function|D* f| € L,(12), given by the
rule

(62) [D"fl@):= sup |Dg---Def(@)|= sup |Dif()]

lI€; 1<t [lull=1

where the derivatived)g, - - - D, f are computed from any (fixed) choice

of representatives for thie-th order partial derivatives of. The equality

of the two suprema above follows from a classical result of Banach on the
norm of a symmetric multilinear map. This definition|d#* f| is consistent

with its standard univariate interpretation. From (5.2), it is easy to see that
|D* f| is well-defined and satisfies

(5:3) |De, - De, f1 < [DMflII6]l -~ Nigwll,  ae.,

for &1,...,& € IR™ The L,(£2)-norm of |D* f| gives a seminorm on
Wy (92)

(5.4) Fo U lipa = I1D"fl Iz, -

This coordinate—independent seminorm (5.4) is ideal for the analysis that
follows because of (5.3). It is convenient to generalise (5.3) slightly. For
g e 119, let

[¢(D) f(0)]
q(D)|| := max —————,
aPN= 2585 T1D77100)
which defines norm on the differential operat§ugD) : ¢ € II9}. It can
easily be shown that: fof € W) (12)

(5:5) |De, -+ Dg_,a(D)f| < [0l -+ —all la(D)I[|1D* f].

The multivariate Hardy’s inequality

The multivariate Hardy’s inequality involves the following linear functional
called thedivided difference functional o™ by Micchelli in [Mi80].

Definition. For© := [y, . .., 0;] any sequence df + 1 points inIR", let

(5.6) fe=Jof =
Jo o o £ (Bo + 51(01—00) + - - + sk (O—0k_1)) dsy. - - - dsa dsy,

with the convention thafH f:=0.
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This linear functional was introduced (with a change of variables) in
(4.9), for the special case = [z, ...,x,v]. Let

(a)p = (a)(a+1)(a+2) - (a+n—1),
be the shifted factorial function, ag®© denote the cardinality ab.

Multivariate Hardy's inequality 5.7 ([W97 2; Theorem 3.2.1]).Let © be
a finite sequence ifR", and letf? be an open set ifR" for which (2 is
starshaped with respect@ If m — n/p > 0, then the rule

(5.8) Hyof(@) = | .
[u ]

m

induces a positive bounded linear méAp, o : L,,(£2) — L,(£2) with norm
(5.9)
1

m —1)l(m —n/p)ye

HHm@HLP(Q)g( —o0 as m-—n/p— 0",

This upper bound fof H,,, e || ., (12) IS sharp whe® involves only one point,
i.e., when
O =v,...,v],

and wherp = oo (with the norm taken on only for the constant functions).
Whenn =1, m = 1,0 = [0] and{2 = (0, co) the inequality (5.9) is
the well-known Hardy’s inequality: fgr > 1

1 = P
l2 o 2 [ Pl € 251000, ¥ € Ly(0.20).

and so (5.9) is referred to as thaultivariate (form of) Hardy’s inequality

L,—error bounds from the multivariate Hardy’s inequality

Next, L,—error bounds are obtained from the expanded multipoint Taylor
formula for a finite element using the multivariate Hardy’s inequality. Let
{2 be a bounded open subsetlRf (with Lipschitz boundary), and

hy.o:=sup|lv—z| <h:=diam 2  (the diameter of?).
x€Q

Lemma 5.10.Suppose tha€ is starshaped with respectépandq € Hg,
0<d<k.lfk+1—d—n/p>0andfec Wit (£2),then

(5.11)

(ho,02) ' ~|g(D)||

|z = (@(D)Riaf) (V) (1,02 <

(k—d)!(k+1—d—n/p) [f k41,0
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Proof. Sincek +1 —d —n/p > 0, it follows from Lemma 4.11 and the
multivariate Hardy’s inequality 5.7 that
(5.12) Sf:a = ((D)Reaf)(v)
defines a function i, (£2). From (5.5) we obtain that
D52~ %(D) f| < |z — oM g(D)]| |[D* )
< (ho,0)* T g(D)[|[D*F 1,

in L,(£2). Thus, by Lemma 4.11 and the multivariate Hardy’s inequality
5.7, we obtain

1Sfllz, ()
k+1—d k+1
< (o) @) e [
k+1—d
1

< (hv,Q)k+1_d"Q(D)‘| (k’ — d)'(k‘ +1—d— n/p) || ’Dk+1f| HLP(Q)

(k—d)(k+1—d—n/p) ’ *kir?
which is (5.11).0

We now extend the.,—error bounds of Arcangeli and Go[AG76]
and GoufGo77 to a general finite element and for a much wider class of
seminorms, defined as follows. A family of seminorms,, ; on W} (12),
1 < p < o is said to be of theisual formif either

(5.13) |flp2 =1 (lg; (D) fllz, ) 5 =1,...m) [lmm,
where they; € IT;,(IR") are fixed and| - ||g= is any norm odR™, or
(5.14) L lp.2 = 1"l p.05 0<j<k.

Theorem 5.15.Suppose thatK’, P, N) is a finite element withll), C P C
C*(£2), and nodal variable§N;} of the usual form

Ni(f) == q(D) f(vi),

whereg; € 19,0 < d; < k, andv; € R". Letd := max; d;. If k+1 —
d—n/p >0, then

(hoy,2)** =% @i (D) |6l oo,
7 < 2 ,
|f Kf’p,ﬂ_; e — )1k +1—d; —n/p) L/ 1 ev1p.0:

(5.16) VfeWwrth(0),

where| - |, » is any family of seminorms of/}(£2) of the usual form.
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Proof. Let g; € II. Sincek +1 —d — n/p > 0, Sobolev's embed-
ding theorem (5.1) implies th&y is well defined onW]ﬂ““(Q). It fol-
lows from the multivariate Hardy’s inequality 5.7 and Theorem 4.4 that, for
f e Wit1(12), the error satisfies

9i(D)(f — Ik f) () = — Z(%(D)Rk,mf)(w) (9i(D)i)(x)
in L, (£2), giving
(5.17)
9;(D)(f — Ik f) (x)] < Z! Gi(D) R ) (i) |95 (D) ill Lo (2)

Since|| - ||z, (s) is @ monotone norm, applying Lemma 5.10 to this (as a
function ofx) glves
(5.18) 19;(D)(f = I )L, ()

vl k+1_d'||qz( )l

Takmg theH : ”lRm norm of the inequality form—vectors (indexed by
4) which is given coordinatewise by (5.18) gives (5.16) for a family of
seminorms of the form (5.13). Take the supremum of each side of (5.17)
over the set of differential operatof®, : |ju|| = 1} to obtain

‘Dj(f_IKf ) < Z‘ (ai( kaf (v3)] I¢’LI]00.Q7 a.e. T.

Next, take thel,,(2)—norm of each side of this and apply Lemma 5.10 to
get

> (ho, )" 7% qi (D) | 1651 5.00.02

If Kflj,p,ﬂ— (k—dz)'(k—i-l—dz—n/p) Iflk‘-l—l,p,Q:

which is (5.16) for seminorms of the form (5.14).

Remarklf (K, P, N) involves nodal variables of the form (4.8), i.e.,

A f>—>/ D) f dv,

then the argument of Theorem 5.15 can be modified by using the inte-
gral form of Minkowski's inequality to bring| - ||, () inside the integral

J7 () dv. This leads to estimates of the form

(5.19)

hk+1fd D T o
| @ AR §)0() [po < 3 = d!)!?((k J)rllvi (d z!i\/p,)g o




Multipoint Taylor formulee 485
in (5.16).

Now we illustrate Theorem 5.15 with some examples where for simplic-
ity h., ¢ is replaced by the (possibly larger) constant

If Zx is a Lagrange mag p o, then (5.16) reduces to
(5.20)

1
_ < gv - hk+1
|f EP,9f|P7Q = k:'(k‘ 41— n/p) <1§9| | ,Q> |f|k+1,p,(27

which was proved by Arcangeli and Gout[IAG76; Theorem 1-Jlwhen
| - |p,2 is a seminorm of the form (5.14).

Following the work of[AG76], Gout[Go77 obtained Theorem 5.15
for finite elements with nodal variables of the form (4.6) and seminorms of
the form (5.14). Both of these works are based on (the equivalent of) the
multivariate Hardy’s inequality as used in the proof of Theorem 5.15.

For the cubic Hermitei—simplex (5.16) reduces to: for > n/3 and
feWwy ()

’f - Hf‘p,!) <
|pil 0,22 |Pijk oo, | P00, 4
(Z Bl(d—n/p) " <]2<k A —n/p) ; 205 - n/p)) WA g0

where| - |,, 2 is any of the usual seminorms Wj(ﬁ). While for Wilsons’s
brick, using (5.19), we obtain: for > n andf € W3(12)

. ’¢v|oo,9 |¢j’oo,!? h3
b Wf|p,n£(gaus—n/m*;om—n/m) sy

where| - |, 2 is any of the usual seminorms &¥>(12).

6. Error formulee for linear interpolation

In this section, Theorem 2.2 is used to construct a family of formulee for
pointwise error in linear interpolation. Blnear interpolationwe mean
interpolation from the space of linear polynomidls at © a set ofn + 1
(affinely independent) points iR", i.e., a Lagrange map

ﬁ@ = Eﬂl,@-
If Vis a linear right inverse for

U:=D?
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and the corresponding linear projec®r:= 1 — VU onto IT; (= ker D?)
satisfies

(6.1) Pf(x) = f(z),
then by Theorem 2.2
(6.2) f(x) — Lof(z) = —(LoV(D?[)) - V(D*f) ().

veEO
Earlier, the choicé® = T; , was made to obtain from (6.2) that

oo Izl
which is the expanded multipoint Taylor formula (4.5) fo& 1 (originally
given in[CWT71]).

In addition toP? = T, ., there are many other linear projectors onto
11, that satisfy (6.1). When a representation ¥bthe corresponding right
inverse ofD? is available, each of these leads to a different error formula
(6.2). For example, one might take to beKergin interpolationat {z, £ }
with £ € IR" (see, e.g., WaldropN97,]), for which

6.4 V(D*f) = D._,D._¢f.
(64) ()= [ DaDog

When¢ = x this is Taylor interpolation at (compare (6.4) with (4.10) for
k —d = 1). More generally, one can take a weighted average ©wésuch
approximations to obtain the following family of formulae of the type (6.2).

Theorem 6.5.Let u be areal measure dR" of massl (and finite variation).
Then, the error in linear interpolation & satisfies

(66) f@)~Lof@ ==Y [ (/[ Dv_xDvgf) An(€) (),

vEO
for sufficiently smoothy.

Proof. The convergence of the integrals of the operators used below (which

can be interpreted pointwise) follows from the standard theory of integration.
Let Ky,.¢) denote the operator of Kergin interpolation{te, £} which

has the representation

(6.7) Kegf =1@)+ | Doar
Integrating the right hand side of (6.7) against the meag\atgows that

Pf = / Koey f du(€)
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defines a linear projector oni@; which satisfies (6.1). Similarly, the right
inverses corresponding 16y, ¢} given by (6.4) can be integrated agaipst
to get

(6.8) vt = [ [ DouDepau(e),

R" ['75’376]
the right inverse corresponding® Substitute (6.8) in (6.2) to obtain (6.6).
O

Certain choices of. in Theorem 6.5 as a measure supported on a finite
number of points give error formulee that are known. Here are these examples
which were obtained (some very recently) by a variety of methods.

Example 1.Suppose that
p= g,

i.e., point evaluation at, then(6.6) gives the ‘classical’ multipoint Taylor
formula(6.3).

Example 2.Suppose that
/"L = 511]7
i.e., point evaluation ab € ©, then(6.6) gives

(6.9) f@)— Lof(z) =3 ( /[m] Dy—oDy f) 0o(),
vw

which is a special case of tHgauer—Xu formuldSX95; Corollary 3.11
(also see de BodB96)).

Example 3.Suppose that
w= Z Ly(x)d
wed

a weighted average of the point evaluationsat ©, then(6.6) gives

(6.12) f(x) = Lof(x) =D > ( /[W] Dx—va—wf> Co ()l ().

vEO WEB

The ‘symmetrised’ form 0f6.12) is

(6‘11) f(x) - E@f(:E) = Z </[xwv] Dw—va—wf> Ev(x)ﬂw(x),

{v,w}CO
vF#EW

which was given by Waldron ifWw9§g].
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Example 4.Suppose that

1
= 2511)
n+1w€@

the average of the point evaluations@at ©, then(6.6) gives
1
(612) f(r)~Lof@) = —= > 3 ([ DeuDumuf | to(a),
nt+17% eco \Jvwl

which has the ‘symmetrised’ form

(6.13) fx) = Lof(x) =

1
n+1

{v,w}Co
vFEW

/[ | (bo(2)Dy—g Doy f + Loy(2) Dy Dy f ) -

Both of these formulae are new.

Itis easy to see from these examples how many new formulae for the error
in linear interpolation can be obtained by choosing diffepeint Theorem
6.5. This section was only intended to give an indication of how effectively
Theorem 2.2 can be applied to obtain error formulae. The generalisation of
Theorem 6.5 to the error in interpolation fraff),, whereu, becomes a real
measure ofilR™)* of massl, is left to the reader. In the last section another
promising application of Theorem 2.2 is outlined.

7. Error formulee for Lagrange maps
from those for one—point interpolation

In this section, we give a generalisation of Theorem 3.15 wigrés re-
placed by a polynomial spacg Itis shown that the problem of constructing

an error formula for Lagrange interpolation fronbe-invariant polynomial
spaceP (such as a tensor product space, or more generally the least solu-
tion) that involves only derivatives which annihilafecan be reduced to the
simpler problem of obtaining such a formula for ‘one—point’ (Taylor) inter-
polation fromP at the origin (which has been solved in a number of cases).
These results require the following facts about one—point interpolation.
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One-—point interpolation

We say thabne—point interpolatiorfrom a (finite dimensional) space of
polynomials@ to derivatives)(D) at a pointz € IR" is correctif for each
function f (smooth enough at) there is a unique € Q with

(7.1) p(D)q(z) =p(D)f(z), VpeQ.

The associated linear projectpr— ¢ is called theone—point interpolation
map(from @ atz). It is denoted by

(7.2) Toz:f—q,
and its error (remainder) by
(7.3) Roz:f—f—q

For Q = II; this one—point interpolation map is simply the Taylor map
from 11, atx, which was discussed in Sect. 3. There the (shorter) notations

77{?,$ = Tﬂk,:m sz,:c = Rﬂk,;r

were used.
One—point interpolation at the origin, which will be denoted by

To :="Tagpo (with Rg := Rg,0),

is always correct (even if) is not a homogeneous space of polynomials).
To see this, and other properties of the set

OPI(Q) := {z € R™ : One—point interpolation frony atx is correct,

we equipl! (the space of polynomials) with the inner product

(7.4) (f,p) = p(D)f(0),

which was used so effectively in de Boor and H&R9Z to study mul-
tivariate polynomial interpolation. With the polynomials thought of as an
incomplete inner product space in this way we have the following.

Proposition 7.5.0ne—point interpolation frond atx € IR™ is correct for
a.e. z. If Q is D—invariant (invariant under differentiation), then one—point
interpolation is correct for alt € R", i.e.,

OPI(Q) = IR",

(7.6) Tz = T—2TQTe,
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wherer, is thetranslationoperator

Te: f = f(-+x).

Furthermore, one—point interpolation at the origin is always correct, and its
restriction
TQ|U I — Q

to the polynomials is therthogonal projectioronto Q.

Proof. The orthogonal projection of € IT onto @ is, by definition, the
uniqueq € @ for which

(7.7) (f—q¢.Q)=0.

By (7.4) it is seen that (7.7) is precisely (7.1), i.e., the interpolation condi-
tions for one—point interpolation frorf at the origin, which gives the last
statement.

Let{q¢;} be a basis fo€). One—point interpolation fror® atx is correct
if and only if the Gramian matrix

(7.8) G(x) = [Qi(D)QJ<x)]i,j

is invertible. Thus, one—point interpolation fraghat = is not possiblenly
whenz is a zero of the polynomial

p:x— det(G(x)).

But, we have shown that one—point interpolation at the origin is correct, so
p(0) # 0, andp is a nonzero polynomial, which therefore has zero set

Z(p) = R"\ OPI(Q)

of measure zero. In other words, one—point interpolation fépia correct
ata.ex.

Suppose thad) is D—invariant. Theng) is translation—invariant (see de
Boor[B87]), and so

(7.9) T2 TQTe

is alinear projector ont@. Next, we show that (7.9) interpolates derivatives
Q(D) atx, so that one—point interpolation fro@ at x is correct and given

by (7.6). This argument uses the facts that differentiations and translations
commute, and

(Sx’ry = 6x+y-
Letp € Q, then

(5a:p(D)(7_—xTQ7—xf) = 5m7'—a:p(D)TQ7—xf
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= 50p(D)TQTocf

= dop(D)70 f (7q interpolatesiyp(D))
= 507-:vp(D)f

= 5xp(D)f>

so thatr_, 77, matchey(D) f(x). O

The ‘almost everywhere’ in Proposition 7.5 is needed. Supposéxhat
is the space spanned by the (univariate) polynomial

g:r—1l4+axr, 0#£aclR.
Then, the Gramian matrix (7.8) is
G(x) = [1 + a® + ax],
and so one—point interpolation frofnto « € IR is not correct when

1+a?
r=— ,
a

and is correct for all other values of

More general multipoint Taylor formulee for Lagrange maps and other linear
projectors

We are now able to give a generalisation of Theorem 3.15 whirés
replaced by a (finite—dimensional) polynomial spékte

Theorem 7.10.Suppose thaf is a linear operator that reproduces a poly-
nomial space&). Then, forz € OPI and sufficiently smootlf

(7.11) Lf=T0zf+LRgxf-
In particular, forg € @ andx € OPI(Q)
(7.12) g(D)(f = Lf)(z) = —9(G) (LR f) ().

If £is aLagrange magpe, then (7.12) can be expanded as
(7.13) g(D)(f = Lref)() == Rqu.f(v) (9(D)l)(x).
vEO

Proof. The proofis exactly as for Theorem 3.15 wiih, replaced by and
using the fact that

g(D)(TQ,:ch) = g(D)f(:E), Vo € OPI(Q)
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Proposition 7.5 gives the following useful corollary for Lagrange inter-
polation from aD—invariant space.

Corollary 7.14. Suppose thaP is a (finite—dimensionalp—invariant space
(necessarily a polynomial space) for which Lagrange interpolatiéh at
IR"is correct, and p o is the corresponding Lagrange map. Thengfer P
andzx € R"

(7.15)  g(D)(f = Lrof)(@) = =Y _(T-aRp7f)(v) (9(D)) (@),

vEO

for sufficiently smoothf.

Proof. Itis shown in de Boo[B87] that a finite—dimensional)—invariant
space is necessarily a polynomial space. By (7.6),

RP,QU =1- TP,z = fo(l - 7}3)7—:): = foRPTza

which is substituted into (7.13) to get (7.15), which holds foradl IR™ =
OPI(P). O

Thus, whenP is D—invariant, to obtain an error formula fdlp o that
involves only derivatives that kilP, it is sufficient to do so for the ‘simpler’
problem of one—point interpolation at the origin. A particulrinvariant
choice of great interest is tHeast solutionof de Boor and RoliBR97,
which associates with any (finite) set of poirtls C IR™ a polynomial
space, denoted by

P =g,

for which Lagrange interpolation & is correct. In addition to beindg—
invariant theleast spacdio has many other desirable properties including
constructabilityand being aninimal—-degree solutign.e.,

dim(Ilo N II;) > dim(P N IT),  Vk,

for all polynomial space® for which Lagrange interpolation étis correct.
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