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Summary. The main result of this paper is an abstract version of theKowa-
lewski– Ciarlet – Wagschal multipoint Taylor formulafor representing the
pointwise error in multivariate Lagrange interpolation. Several applications
of this result are given in the paper. The most important of these is the con-
struction of a multipoint Taylor error formula for ageneral finite element,
together with the correspondingLp–error bounds. Another application is the
construction of a family of error formulæ for linear interpolation (indexed
by real measures of unit mass) which includes some recently obtained for-
mulæ. It is also shown how the problem of constructing an error formula for
Lagrange interpolation from aD–invariant space of polynomials with the
property that it involves only derivatives which annihilate the interpolating
space can be reduced to the problem of finding such a formula for a ‘simpler’
one–point interpolation map.

Mathematics Subject Classification (1991):41A65, 41A80, 65D05, 41A05,
41A10, 41A44, 41A55

1. Introduction

Overview

This paper is concerned withexplicit representations of the linear mapQ
which is definedimplicitly as the unique map which makes the following
diagram commute
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whereU : X → Y , R : X → Z are linear maps with

ker U ⊂ ker R.

MapsQ of this type occur frequently in approximation theory and nu-
merical analysis. For example, ifU = Dk+1 andR is a linear functional
whose kernel (ker R) containsΠk (the polynomials of degree≤ k), thenQ
gives thePeano kernel representation

Rf = Q(Dk+1f).

There is particular interest in certain such mapsQ whose norm provides
the best constant in error bounds for various numerical schemes. The most
notable of these are thefinite element methodandnumerical differentiation
and integration rules(see, e.g., Meinguet[M84] and the references therein).

The main result of this paper is that for certain maps of the form

R = A(1 − L)

part of the flexibility in Meinguet’s abstract method for representingQ (de-
tailed below) can be used to satisfy conditions that ensure the representation
for Q take a simple form. A precise statement of this result is given in
Theorem 2.2.

The prototype of such representations is themultipoint Taylor formula
for Lagrange interpolation (see Ciarlet and Wagschal[CW71]). In Sect. 3,
this is discussed and then extended (in its unexpanded form) toall linear
operators that reproduceΠk.

In Sect. 4, this extension is discussed within the setting offinite elements.
It is expanded in terms of thenodal variablesto obtain the analogue of the
original presentation of the multipoint Taylor formula.

In Sect. 5,Lp–error bounds for finite elements are obtained from these
‘expanded’ multipoint Taylor formulæ by using themultivariate Hardy’s
inequalityrecently given by the author (and intended for precisely this type
of situation).

In Sect. 6, to emphasise the wide applicability of the main ‘abstract
result’ and to illustrate some of its more subtle points, it is used to obtain
a family of formulæ for the error in linear interpolation which is indexed
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by real measures of unit mass. These include many of the known formulæ
(some of which have only recently been obtained).

Finally, in Sect. 7, a general form of Taylor interpolation is introduced
which allows the results of the previous sections to be extended. This ‘one–
point interpolation from an arbitrary polynomial space’ has close connec-
tions with theleast solutionof de Boor and Ron[BR92] to the ‘polynomial
interpolation problem’. It is shown how error formulæ for the least solution
can be obtained from those for a simpler one–point interpolation problem.
Representing the error in both of these maps involves some deep questions
in the theory of multivariate Peano kernels.

Meinguet’s abstract method for representingQ

Given the situation above, i.e.,

(1.1) QU = R
with R,U known linear maps, how can anexplicit representation ofQ be
obtained?

The approach most often used is to take

V : ranU → X

a right inversefor U , i.e., a map with

UV = 1,

and right multiply (1.1) byV to obtain

(1.2) Q = RV.

This is stage(i) of what is referred to in Meinguet[M84] as theabstract
methodfor representingQ. The prototypical example of (1.2) is the Peano
kernel representation.

Stage(ii) of the abstract method is the observation that if the restriction
of R to the range ofV can be written as a finite sum

R|ran V =
∑
j

Sj ,

of what are referred to asstandardlinear mappingsSj , then (1.2) can be
expanded as

(1.3) Q =
∑
j

SjV.
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Now assume thatV is linear andY , Z are normed linear spaces. In the
final stage of the abstract method,stage(iii), the triangle inequality is applied
to (1.3) to obtain

(1.4) ‖Q‖ ≤
∑
j

‖SjV‖.

If R,U are continuous andU is open, thenQ is a continuous linear
map. This was first observed by Sard[S48; Theorem 1] whenX, Y, Z are
Banach spaces, and is referred to asSard’s factorisation theoremby Atteia
[At92; Theorem 2.1, p. 98] who states it for topological vector spaces.

Meinguet does not suggest how best to chooseV and{Sj}, other than
that it should be done in such a way that bounding each‖SjV‖ is simpler than
bounding‖RV‖ directly. He gives many examples in[M75], . . ., [M84].
Earlier examples of the abstract method in the multivariate setting include
Èzrohi[E57] and Sard[S63].

In each case known to the author the right inverseV is linear and comes
via an associated linear projectorP ontoker U as described below.

Proposition 1.5 (cf [M84]). Let U : X → Y be a linear map. There is a
1–1 (linear) correspondence betweenlinear right inverses

V : ranU → X

for U andlinear projectors

P : X → ker U
ontoker U , which is given by

P = 1 − VU .

2. The main result

Next is the main result, that if

(2.1) R = A(1 − L),

then it may be possible to chooseV so that the representation ofQ given by
Meinguet’sabstract methodtakes a simple form. Later it will be shown how
many practical estimates follow from this ‘abstract result’ for operators of
the form (2.1), such as theerror in thefinite element method(see Examples
1 and 2 of Sect. 4). The reader might like to keep in mind the simple example

Rf = δx(1 − L)f = f(x) − Lf(x)
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whereL is the operator of Lagrange interpolation fromΠk andU = Dk+1,
ker U = Πk.

Theorem 2.2.Let Q be the linear map which is defined implicitly as the
unique map that makes the following diagram commute

X ranU � Y

Z

-U

@
@
@RR:=A(1�L)

p

p

p

p

p

p	 Q

whereU : X → Y , A : X → Z, L : X → X are linear maps with

ker U ⊂ ker R.

If V : ranU → X is a right inverse ofU , chosen so that

(2.3) AVU = 0,

then

(2.4) Q = −ALV.

Proof. Expanding (1.2) usingR = A(1 − L) gives

(2.5) Q = AV − ALV.

If AVU = 0 (which is equivalent toAV = 0), then (2.5) reduces to (2.4).

Above, the conditionAVU = 0 was favoured over the equivalent one
that AV = 0. This is because usually the right inverseV is a linear map
which comes via an associated linear projectorP := 1−VU (see Proposition
1.5), and this choice makes it clear that (2.3) can be rewritten in the (often
more convenient) form

(2.6) A = AP.

At times, such as whenU is the multivariate differentiation operator
Dk+1, it is convenient to use Theorem 2.2 without any direct reference to
U or V. The following corollary allows this.

Corollary 2.7. Let
R := A(1 − L) : X → Z
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whereA : X → Z, L : X → X are linear maps. IfP : X → X is a linear
projector with

(2.8) ranP ⊂ ker R,

and

(2.9) A = AP,

then

(2.10) R = −AL(1 − P).

Proof. This corollary follows by takingU = 1 − P and choosingV to be
the identity. However, it may be more instructive to give the direct proof
that:

R = R(1 − P) (sinceranP ⊂ ker R)
= A(1 − L)(1 − P) = A(1 − P) − AL(1 − P)
= −AL(1 − P) (sinceA = AP).

Examples. As far as the author is aware, there are two examples of (what
are effectively) representations ofQ of the form (2.4). One is the multipoint
Taylor formula for the error in Lagrange interpolation, and certain kinds of
Hermite interpolation, from a space containingΠk. This is discussed and
then extended in the next section. The other is Gregory’s error formula for
linear interpolation on a (standard) triangle (see next section).

3. Multipoint Taylor formulæ for linear operators that reproduce Πk

In this section it is shown that themultipoint Taylor formulafor the error in a
Lagrange map (see below) is a natural example of equation (2.4) of Theorem
2.2, and it is extended (in its unexpanded form) to all linear operators that
reproduceΠk.

Lagrange maps

We say thatLagrange interpolationfrom a space of functionsP to data at
a finite set of pointsΘ ⊂ IRn is correct if for each functionf (defined at
least onΘ) there is a uniquep ∈ P with

p(v) = f(v), ∀v ∈ Θ.
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The associated linear projectorf 7→ p is called theLagrange map(given by
the space of interpolantsP and points of interpolationΘ), and it is denoted
by

LP,Θ : f 7→ p.

TheLagrange formof a Lagrange mapLP,Θ is

(3.1) LP,Θf =
∑
v∈Θ

f(v) `v,

where (3.1) uniquely defines

`v := `v,P,Θ ∈ P,

theLagrange functionfor v ∈ Θ.
Lagrange maps with a space of interpolants that containsΠk give rise

to many commonly used finite elements, and are also frequently used to
interpolate to scattered data. Particular examples of the latter, which have
received much attention lately, are maps where the interpolants includera-
dial basis functions, and theleast solutionto the polynomial interpolation
problem (see Sect. 7).

The multipoint Taylor formula

The multipoint Taylor formula is a representation of the error

R := A(1 − L)

in a Lagrange map
L := LP,Θ

for whichΠk ⊂ P , and whereA is any of the derivatives

A := Ag,x := δxg(D) : f 7→ g(D)f(x), g ∈ Πk.

Here, and wheneverpoint evaluationatx is being thought of as a linear map
on functions (and so should be applied from the left) it will be denoted by

δx : f 7→ f(x).

The differential operator induced byg ∈ Πk is writteng(D).
If P is a linear projector ontoΠk which interpolatesA, i.e., for which

(3.2) g(D)f(x) = g(D)Pf(x), ∀f,

then by Corollary 2.7

(3.3) R = −AL(1 − P).
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Here, the intent is to apply Theorem 2.2 withU = Dk+1 (thek + 1 order
multivariate differentiation operator) to obtain expansions ofR(f) in terms
of Dk+1f .

The linear functionals

{Ag,x : g ∈ Πk}
are the interpolation conditions for the operator ofTaylor interpolationfrom
Πk atx, which we denoteTk,x. This operator is a natural choice forP since
it is the only linear projector (ontoΠk) that interpolatesA = Ag,x for all
g ∈ Πk. For this choice the equation (3.3) becomes

(3.4) g(D)(f − LP,Θf)(x) = −g(D)(LP,ΘRk,xf)(x), ∀f,

where
Rk,x := 1 − Tk,x

is theerror (remainder) in Taylor interpolation fromΠk atx, which can be
expressed as

(3.5) Rk,xf(v) =
1
k!

∫ 1

0
(1 − t)kDk+1

v−xf(x + t(v − x)) dt.

HereDyf denotes the derivative off in the directiony. For a given linear
functionalA, such as point evaluation atx, there are (fork > 0) many
linear projectors satisfying (3.2). This is illustrated in Sect. 6 for linear
interpolation, i.e.,P = Π1.

The careful reader will notice that the only property ofLP,Θ used so far
is that it is a linear operator which reproducesΠk, and so, in particular, (3.4)
holds withLP,Θ replaced by any such operator. This is a crucial observation,
which leads to Theorem 3.15 and is discussed further in this section.

By expressing the Lagrange interpolantLP,Θ(Rk,xf) in Lagrange form
(3.1) the equation (3.4) can be expanded as

(3.6) g(D)(f − LP,Θf)(x) = −
∑
v∈Θ

Rk,xf(v) (g(D)`v)(x).

This formula is referred to by Meinguet in[M84; p. 98] as theKowalewski–
Ciarlet – Wagschal multipoint Taylor formulaout of deference to its origins
which are as follows.

History of the (Kowalewski – Ciarlet – Wagschal) multipoint Taylor formula

The earliest occurrence of (3.6) isKowalewski’s remainder(see[K32; p. 21
–24], or Davis’s book[D75; p. 71]), which is theunivariatecase when the
linear functionalA is point evaluation atx.
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In Ciarlet and Wagschal[CW71] the multivariate form of (3.6) was
given for the special cases of interpolation by linear polynomials (Theorem
2) and by quadratic polynomials for derivativesA = δxg(D) up to order1
(Theorem 4). The termmultipoint Taylor formulawas coined in that paper.
The subsequent paper of Ciarlet and Raviart[CR72] proved the general
formula (3.6). A discussion of the relationship of that proof with Theorem
2.2 and of the choice of the term ‘multipoint Taylor formula’ is given below.

The special case of formula (3.6) whereA is point evaluation atx and
Θ consists of thesimplex points(dimΠk equally spaced points on a sim-
plex) was proved independently by Nicolaides in[N72; Theorem 5.1] and
[N73; Theorem 2.1].

The Ciarlet–Raviart proof of the multipoint Taylor formula

To understand the proof of (3.6) given in[CR72] it is instructive to consider
the following alternative simple proof found by the author (in trying to do
so), which invited the generalisation to Theorem 2.2.

Since
f = Tk,xf + Rk,xf,

andLP,Θ reproducesΠk, i.e.,

LP,Θg = g, ∀g ∈ Πk,

it follows that

(3.7) LP,Θf = LP,ΘTk,xf + LP,ΘRk,xf = Tk,xf + LP,ΘRk,xf.

In particular, sinceTk,xf is the Taylor interpolant fromΠk tof atx, applying
δxg(D) to each side of (3.7) gives

(3.8) g(D)LP,Θf(x) = g(D)f(x) + (g(D)LP,ΘRk,xf)(x),

which (up to a rearrangement) is (3.4) and can be expanded to (3.6). Again,
the careful reader will observe that (3.7) holds withLP,Θ replaced by any
linear operator that reproducesΠk.

The proof of (3.6) given in[CR72] uses them–th order differentiation
operator, which (for simplicity) can be thought of as the map

Dm : f 7→ (Dαf : |α| = m)

to the sequence of partial derivatives of orderm. There the Taylor formula

f(v) = Tk,xf(v) + Rk,xf(v)

= f(x) + Dv−xf(x) + · · · + 1
k!

Dk
v−xf(x) + Rk,xf(v)(3.9)
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is used to expand the Lagrange form ofLP,Θ, and this expansion is differ-
entiated to obtain

DmLP,Θf(x) =
k∑

l=0

1
l!

∑
v∈Θ

Dl
v−xf(x) (Dm`v)(x)

+
∑
v∈Θ

Rk,xf(v) (Dm`v)(x).(3.10)

It is then proved that the double sum in (3.10) reduces to

(3.11)
k∑

l=0

1
l!

∑
v∈Θ

Dl
v−xf(x) (Dm`v)(x) = Dmf(x), 0 ≤ m ≤ k,

thereby proving (3.6), whereDm, 0 ≤ m ≤ k plays the role ofg(D),
g ∈ Πk.

With hindsight, since

k∑
l=0

1
l!

Dl
v−xf(x) = Tk,xf(v),

it is seen that (3.11) is an expansion into Lagrange form of

Dm(LP,ΘTk,xf)(x) = Dmf(x), 0 ≤ m ≤ k,

an identity which holds because

LP,Θ(Tk,xf) = Tk,xf,

and not because of the specific nature of the linear operatorLP,Θ. Instead,
the proof of (3.11) given in[CR72] involves showing (by induction) what
is described as ‘the (somehow unexpected) result’ that:

(3.12)
1
l!

∑
v∈Θ

Dl
v−xf(x) (Dm`v)(x) =




0, 0 ≤ l < m;
Dmf(x), l = m;
0, m < l ≤ k.

Gregory’s error formula for linear interpolation on a triangle

For the multivariate case, in addition to (3.5), there are many expansions for
the error in Taylor interpolationRk,xf(v) in terms ofDk+1f that could be
substituted into (3.6), each giving different sums ofstandardlinear mappings
(1.3) (and thus leading to possibly better norm bounds).

Gregory’s well known formulæ for the error in linear interpolation at

Θ := {(1, 0), (0, 1), (0, 0)}



Multipoint Taylor formulæ 471

is an example of this. In Gregory[G75] the formulæ (3.6) for remainders
(3.13)
f(x) − LΠ1,Θf(x), D(1,0)(f − LΠ1,Θf)(x), D(0,1)(f − LΠ1,Θf)(x)

are expanded using a formula forR1,xf(v) different from (3.5). To get an
appreciation for the detail involved, the formula used, which is in the spirit
of Sard[S63; Theorem 8, p.163], is that forx, v ∈ T (the triangle with
verticesΘ)

R1,xf(v)

= χ
A1

(v)
[∫ v1

x1

(v1 − s)D(2,0)f(s, x2) ds +
∫ v2

x2

∫ v1

x1

D(1,1)f(s, t) ds dt

+
∫ v2

x2

(v2 − t)D(0,2)f(x1, t) dt

]

+χ
A2

(v)
[∫ v1

x1

∫ t

x1

D(2,0)f(s, 1 − t) ds dt+
∫ v1

x1

∫ 1−s

x2

D(1,1)f(x1, t) dt ds

+
∫ v1

x1

∫ v2

1−s
D(1,1)f(s, t) dt ds +

∫ v2

x2

(v2 − t)D(0,2)f(x1, t) dt

]

+χ
A3

(v)
[∫ v1

x1

(v1 − s)D(2,0)f(s, x2) ds +
∫ v2

x2

∫ v1

1−t
D(1,1)f(s, t) ds dt

+
∫ v2

x2

∫ 1−t

x1

D(1,1)f(s, x2) ds dt +
∫ v2

x2

∫ s

x2

D(0,2)f(1 − s, t) dt ds

]
,

(3.14)

whereχ
Ai

is thecharacteristic functionof the setAi which is defined by

Ai :=




T \ (A2 ∪ A3), i = 1;
{v ∈ T : v1 > 1 − x2}, i = 2;
{v ∈ T : v2 > 1 − x1}, i = 3.

Naturally, the formulæ for the remainders (3.13) so obtained are of a similar
complexity to (3.14). Gregory was successful in obtaining usefulLp–error
bounds from these formulæ.

The (unexpanded) multipoint Taylor formula for linear operators that re-
produceΠk

We end this section with the general result referred to previously.

Theorem 3.15.Suppose thatL is a linear operator that reproducesΠk. Then,
for sufficiently smoothf

(3.16) Lf = Tk,xf + LRk,xf.
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In particular, forg ∈ Πk

(3.17) g(D)(f − Lf)(x) = Q(Dk+1f),

where

(3.18) Q(Dk+1f) := −g(D)(LRk,xf)(x).

Proof. The proof is exactly as for (3.7) and (3.8). SinceTk,xf ∈ Πk andL
reproducesΠk,

Lf = LTk,xf + LRk,xf = Tk,xf + LRk,xf.

Apply δxg(D) to each side of this, to obtain (after rearrangement) that

g(D)(f − Lf)(x) = −g(D)(LRk,xf)(x).

From (3.5) it follows that−g(D)(LRk,xf)(x) depends only onDk+1f , as
is claimed by the definition of (3.18).

Terminology

The termmultipoint Taylor formulafor (3.6) was adopted in[CW71], not
because it involves the errorRk,xf(v) for manypointsv ∈ Θ, but rather
because (3.6) can be rewritten as

g(D)f(x) =
∑
v∈Θ

f(v) (g(D)`v)(x) + error(Dk+1f),

which expresses the derivativeg(D)f(x) in terms of the value off at the
multiplepointsv ∈ Θ plus an error term. Since a similar phenomenon will be
observed for the linear projectorsL considered in the next section, equation
(3.17) will be referred to as theunexpanded multipoint Taylor formulafor
L. The adjectiveunexpandedis used since, as we have just seen, the error
Rk,xf occurring in (3.18) can be expanded in many ways (as canL itself).
These expansions are explored within the setting of finite elements in the
next section.

4. Error formulæ for finite elements

In this section theexpandedform of the multipoint Taylor formula (3.6)
is extended toall finite elements, with the examples of thecubic Hermite
n-simplexandWilson’s brickbeing treated in detail.
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Finite elements

The following (standard) definitions can be found in Brenner and Scott
[BS94; Chapter 3].

Definition 4.1. Let
(i) K ⊂ IRn be a domain with piecewise smooth boundary (theelement
domain),
(ii) P be a finite-dimensional space of functions onK (theshape functions),
and
(iii) N = {Ni} be a basis forP ′ (thenodal variables).
Then(K, P, N) is called afinite element.

It is assumed that the nodal variables{Ni} are defined on sufficiently
smooth functions (e.g., those from some Sobolev space). For a finite element
(K, P, N), the basis forP dual to{Ni} is called thenodal basisfor P . It
will be denoted by{φi}.

Definition 4.2.Given a finite element(K, P, N), its local interpolant(to f )
is

(4.3) IKf := I(K,P,N)f :=
∑

i

Ni(f) φi.

Observe that the mapIK defined by (4.3) is the linear projector ontoP
with interpolation conditionsN , i.e., for which

Ni(IKf) = Ni(f), ∀i, ∀f.

A typical example of a finite element is that (with its local interpolant)
given by a Lagrange mapLP,Θ, i.e., aLagrange finite element(see, e.g.,
Ciarlet and Lions[CL91; p.95]). Here, theelement domainis usually the
convex hull ofΘ, the shape functionsareP , and thenodal variablesare
the point evaluations{δv}v∈Θ. In this case thenodal basisconsists of the
Lagrange functions and (4.3) is exactly the Lagrange form (3.1) ofLP,Θ.

Expanding the (unexpanded) multipoint Taylor formula for a finite element
in terms of the nodal basis

In Sect. 3, whenL was a Lagrange mapLP,Θ, equation (3.17) was expanded
in terms of the Lagrange functions (the nodal basis) to obtain the Kowalewski
– Ciarlet – Wagschal multipoint Taylor formula (3.6). In exactly the same
way, whenL = IK is any finite element it is possible to expand (3.17) in
terms of the nodal basis{φi} as follows.
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Theorem 4.4.Suppose that(K, P, N) is a finite element withΠk ⊂ P ⊂
Ck. Then, for sufficiently smoothf andg ∈ Πk,

(4.5) g(D)(f − IKf) (x) = −
∑

i

Ni(Rk,xf) (g(D)φi)(x),

whereNi(Rk,xf) can be expressed in terms ofDk+1f using Lemma 4.11
(see below).

Proof. SinceL := IK is a linear projector that reproducesΠk, Theorem
3.15 gives (3.17). ExpandingIK(Rk,xf) as it occurs in (3.17) using (4.3)
gives (4.5). The expansion ofNi(Rk,xf) in terms ofDk+1f is discussed
below.

For the reasons just mentioned, equation (4.5) (and expansions of it by
Lemma 4.11) will be referred to as theexpanded multipoint Taylor formula
for the finite element(K, P, N) (or, equivalently, for its local interpolant
IK).

Using variations of the Ciarlet–Raviart proof of the multipoint Taylor
formula (discussed earlier) the equivalent of (4.5) has been given for certain
finite elements with nodal variables of the form

(4.6) f 7→ Dξ1 · · ·Dξd
f(v), 0 ≤ d ≤ k,

which are often calledHermite finite elements. In Ciarlet and Raviart
[CR72; Theorem 3] it is proved forP = Πk and nodal variables with
0 ≤ d ≤ 1, with the result involving nodal variables with2 ≤ d ≤ k
being described as ‘long and cumbersome’ and hence omitted. In Gout
[Go77; p.414] the result is shown forΠk ⊂ P (without restriction on
0 ≤ d ≤ k).

ExpressingNi(Rk,xf) in terms ofDk+1f

The majority of finite elements used in numerical modelling have nodal
variables of the form

(4.7) f 7→ q(D)f(v),

whereq ∈ Π0
d (the space ofhomogeneouspolynomials of degreed), 0 ≤

d ≤ k. This is a (slightly) more general form than (4.6). Indeed, the very
term nodal variable(degree of freedomis also used) comes from the fact
that (4.6) and (4.7) involve thenodev. A nodal variable of the form (4.7)
will be said to have theusual form.
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The exceptions given in Ciarlet and Lions monograph[CL91] areWil-
son’s brick(p. 214), and theFraeijs de Veubeke triangle(p. 309). In addition
to nodal variables of the usual form (4.7), these involve some of the form

(4.8) f 7→
∫

T
q(D)f(v) dv,

whereT is the element domainK, or one of its faces, anddv is Lebesgue
measure.

By considering the error in Taylor interpolation we can now give expres-
sions forNi(Rk,xf) in terms ofDk+1f for nodal variablesNi of either form.
These will be presented using the following instance of thedivided differ-
ence functional onIRn (see (5.6) for the general definition). For0 ≤ d ≤ k,
let

(4.9)
∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
f :=

1
(k − d)!

∫ 1

0
(1 − t)k−df(x + t(v − x)) dt,

which allows (3.5) to be rewritten as

(4.10) Rk−d,xf(v) =
∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
Dk+1−d

v−x f.

Lemma 4.11.Suppose thatλ = Ni is a nodal variable of the usual form,
i.e.,

λ(f) := q(D)f(v),
whereq ∈ Π0

d , 0 ≤ d ≤ k. Then, for sufficiently smoothf ,

(4.12) λ(Rk,xf) =
∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
Dk+1−d

v−x q(D)f.

In particular, iff is Ck+1 in a neighbourhood of the line segment fromx to
v, then there existsξ belonging to the line segment fromx to v for which

(4.13) λ(Rk,xf) =
1

(k + 1 − d)!
(Dk+1−d

v−x q(D) f)(ξ).

If λ = Ni is a nodal variable which is of the form (4.8), i.e.,

λ(f) :=
∫

T
q(D)f (v) dv,

then, for sufficiently smoothf ,

(4.14) λ(Rk,xf) =
∫

T

(∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
Dk+1−d

v−x q(D)f
)

dv.



476 S. Waldron

Proof. The proof relies upon the fact that

(4.15) q(D)(Tk,xf) = Tk−d,x(q(D)f),

which is a special case of a more general result for the scale ofmean value
interpolations(see Waldron[W971; Proposition 5.11]). Here is a direct
proof. If f ∈ Πk, thenq(D)f ∈ Πk−d and it is obvious that (4.15) holds.
But both sides of (4.15) depend only on the derivatives up to orderk of f at
x, and so it holds for all (smooth)f .

From (4.15) it follows that

q(D)(Rk,xf) = Rk−d,x(q(D)f),

and hence, by (4.10),

λ(Rk,xf) = q(D)(Rk,xf)(v) = Rk−d,x(q(D)f)

=
∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
Dk+1−d

v−x q(D)f,

giving (4.12). Since ∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
1 =

1
(k + 1 − d)!

,

the mean value theorem (for integrals) can be applied to (4.12) to obtain
(4.13). Lastly, integrating (4.12) overv ∈ T gives (4.14).

Now we illustrate the use of Theorem 4.4 with three examples.

Example 1: The cubic Hermiten-simplex

Here we give the expanded multipoint Taylor error formula for thecubic
Hermite n-simplex. This finite element was introduced (under the name
approximation of type3) in Ciarlet and Wagschal’s paper[CW71]. It is
defined as follows.

Let K be ann-simplex inIRn with vertices{ai}n+1
i=1 , and let

aijk := (ai + aj + ak)/3, 1 ≤ i < j < k ≤ n + 1.

Let N be the set of linear functionals consisting of point evaluation atai,
1 ≤ i ≤ n + 1, andaijk, 1 ≤ i < j < k ≤ n + 1, together with

Nij : f 7→ Daj−aif(ai), 1 ≤ i, j ≤ n + 1, i 6= j.

Then(K, Π3, N) is a finite element called thecubic Hermiten-simplex.
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Fig. 1. The cubic Hermite triangle (dim Π3(IR2) = 10)

Its local interpolant is given by

Hf := IKf =
∑

i

f(ai) φi +
∑

i<j<k

f(aijk) φijk +
∑
i6=j

Daj−aif(ai) φij ,

where the nodal basis has the explicit representation

φi := −2λ3
i + 3λ2

i − 7λi

∑
j<k

j,k 6=i

λjλk,

φijk := 27λiλjλk,

φij := λiλj(2λi + λj − 1),

with {λi} the barycentric coordinates corresponding to the points{ai}.
Takingq(D) = Daj−ai andv = ai in Lemma 4.11 gives the expansion

Nij(R3,xf) =
∫
[x,x,x,ai]

D3
ai−xDaj−aif.

Thus, applying Theorem 4.4 toIK = H (with k = 3) gives the error
formula: forg ∈ Π3

g(D)(f − Hf) (x) = −
∑

i

(∫
[x,x,x,x,ai]

D4
ai−xf

)
(g(D)φi)(x)

−
∑

i<j<k

(∫
[x,x,x,x,aijk]

D4
aijk−xf

)
(g(D)φijk)(x)

−
∑
i6=j

(∫
[x,x,x,ai]

D3
ai−xDaj−aif

)
(g(D)φij)(x),(4.16)

which holds for all sufficiently smoothf .
In the next section it is shown how to obtainLp-error bounds from this

and other such formulæ.
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Fig. 2. Wilson’s brick,n = 3 (dim P = 11)

Example 2: Wilson’s brick

The second example involves nodal variables which are not of the usual
form. Let K be a rectangle inIR3 aligned in the coordinate directionse1,
e2, e3, with its length in these directions being2h1, 2h2, 2h3 respectively,
and its (eight) vertices beingv ∈ Θ. Let

P := Π2 ⊕ span{( )1,1,1},

where ( )1,1,1 : (x1, x2, x3) 7→ x1x2x3. Then, Wilson’s brick (see
[WTDG73]) is the finite element(K, P, N), where the nodal variablesN
consist of the eight point evaluations{δv : v ∈ Θ} together with

Nj : f 7→ h2
j

h1h2h3

∫
K

D2
j f, 1 ≤ j ≤ 3.

HereD2
j f denotesD2

ej
f , the second partial derivative off in the coordinate

directionej .
The local interpolant for Wilson’s brick is

Wf := IKf :=
∑
v∈Θ

f(v) φv +
∑
j

(
h2

j

h1h2h3

∫
K

D2
j f

)
φj .

Formulæ for the nodal basis{φv : v ∈ Θ}∪{φj : 1 ≤ j ≤ 3} can be found
in [CL91; p.214].
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Applying Theorem 4.4 toIK = W (using (4.14) to expressNj(R2,xf)
in terms ofD3f ) gives the following error formula: forg ∈ Π2

g(D)(f − Wf) (x)

= −
∑
v∈Θ

(∫
[x,x,x,v]

D3
v−xf

)
(g(D)φv)(x)

−
∑
j

h2
j

h1h2h3

∫
K

(∫
[x,v]

Dv−xD2
j f

)
dv (g(D)φj)(x),(4.17)

for all sufficiently smoothf .

Example 3: Numerical differentiation and integration rules

Interpolatory (numerical) differentiation and integration rules based on point
evaluations atv ∈ Θ and exact forΠk are of the form∑

v∈Θ

w(v) f(v) = ALP,Θf,

whereA is the derivative or integral to be approximated,LP,Θ is a Lagrange
map, and theweightsw(v) are given by

w(v) = A(`v), v ∈ Θ.

The error in approximation by such a rule is

(4.18) A(1 − LP,Θ)f,

which is of the form (2.1). For adifferentiationrule, i.e.,

Af := g(D)f(x), g ∈ Πk,

this is the pointwise error in a Lagrange map, for which there is the Kowalew-
ski – Ciarlet – Wagschal multipoint Taylor formula (3.6). For differentiation
rules based on data that includes linear functionals other than point eval-
uations the expanded multipoint Taylor formula for a finite element (4.5)
applies.

For anintegrationrule, i.e.,

Af :=
∫

Ω
f,

whereΩ is some region of volumevol(Ω), it is also possible to apply
Theorem 2.2. LetP be some linear projector ontoΠk satisfying

(4.19)
∫

Ω
f =

∫
Ω

Pf,
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which is condition (2.9), and denote its error byE := 1−P. Then, Corollary
2.7 gives the error formula∫

Ω
f −

∑
v∈Θ

w(v) f(v) = −ALP,ΘEf

= −A(
∑
v∈Θ

E(v)`v)

= −
∑
v∈Θ

w(v)(Ef)(v).(4.20)

The hope is then to express the quantities(Ef)(v), v ∈ Θ occuring above
in terms ofDk+1f . The practical difficulty with this scheme is finding
(appropriate) projectorsP which satisfy (4.19). At first glance it might seem
the averaged Taylor interpolant

Pf :=
1

vol(Ω)

∫
Ω

Tk,xf dx

would be a good choice, however this does not satisfy (4.19). The author
has not pursued these questions further. There are a number of linear pro-
jectorsP matching certain integrals, together with error representations
Ef = Q(Dk+1f), the best known being the scale ofmean value interpola-
tions(see, e.g.,[W971]), and so it would seem that at least in some situations
such a theory might be feasible.

5. Lp–error bounds for finite elements

In this section, we use themultivariate Hardy’s inequality(recently intro-
duced by the author) to obtainLp–error bounds from the expanded mul-
tipoint Taylor formula for a finite element. To do this, the following facts
about Sobolev spaces will be required.

Sobolev spaces

Let W k
p (Ω) be theSobolev spaceof functions defined onΩ (a bounded

open set inIRn with a Lipschitzboundary) with derivatives up to orderk
in Lp(Ω) equipped with the usual topology (see, e.g., Adams[Ad75]). It is
convenient to include the condition thatΩ have a Lipschitz boundary in the
definition, so that Sobolev’s embedding theorem(s) can be applied. We will
only need the following consequence of Sobolev’s embedding theorem(s)
(which can be found in any text on Sobolev spaces). Ifk+1−d−n/p > 0,
then

(5.1) W k+1
p (Ω) ⊂ Cd(Ω̄),
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whereΩ̄ is the closure ofΩ.
To measure the size of itsk–th order derivative, it is convenient to as-

sociate with eachf ∈ W k
p (Ω) the function|Dkf | ∈ Lp(Ω), given by the

rule

(5.2) |Dkf |(x) := sup
ξ1,...,ξk∈IRn

‖ξi‖≤1

|Dξ1 · · ·Dξk
f(x)| = sup

u∈IRn

‖u‖=1

|Dk
uf(x)|,

where the derivativesDξ1 · · ·Dξk
f are computed from any (fixed) choice

of representatives for thek–th order partial derivatives off . The equality
of the two suprema above follows from a classical result of Banach on the
norm of a symmetric multilinear map. This definition of|Dkf | is consistent
with its standard univariate interpretation. From (5.2), it is easy to see that
|Dkf | is well–defined and satisfies

(5.3) |Dξ1 · · ·Dξk
f | ≤ |Dkf | ‖ξ1‖ · · · ‖ξk‖, a.e.,

for ξ1, . . . , ξk ∈ IRn. The Lp(Ω)–norm of |Dkf | gives a seminorm on
W k

p (Ω)

(5.4) f 7→ f k,p,Ω := ‖ |Dkf | ‖Lp(Ω).

This coordinate–independent seminorm (5.4) is ideal for the analysis that
follows because of (5.3). It is convenient to generalise (5.3) slightly. For
q ∈ Π0

d , let

‖q(D)‖ := max
f∈Π0

d
\0

|q(D)f(0)|
|Ddf |(0)

,

which defines norm on the differential operators{q(D) : q ∈ Π0
d}. It can

easily be shown that: forf ∈ W k
p (Ω)

(5.5) |Dξ1 · · ·Dξk−d
q(D)f | ≤ ‖ξ1‖ · · · ‖ξk−d‖ ‖q(D)‖ |Dkf |.

The multivariate Hardy’s inequality

The multivariate Hardy’s inequality involves the following linear functional
called thedivided difference functional onIRn by Micchelli in [Mi80].

Definition. ForΘ := [θ0, . . . , θk] any sequence ofk + 1 points inIRn, let

f 7→ ∫
Θ f :=(5.6)∫ 1

0
∫ s1
0 ...

∫ sk−1
0 f(θ0 + s1(θ1−θ0) + · · · + sk(θk−θk−1)) dsk · · · ds2 ds1,

with the convention that
∫
[ ] f := 0.
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This linear functional was introduced (with a change of variables) in
(4.9), for the special caseΘ = [x, . . . , x, v]. Let

(a)n := (a)(a + 1)(a + 2) · · · (a + n − 1),

be the shifted factorial function, and#Θ denote the cardinality ofΘ.

Multivariate Hardy’s inequality 5.7 ([W97 2; Theorem 3.2.1]).Let Θ be
a finite sequence inIRn, and letΩ be an open set inIRn for which Ω̄ is
starshaped with respect toΘ. If m − n/p > 0, then the rule

(5.8) Hm,Θf(x) :=
∫
[x,...,x︸ ︷︷ ︸

m

,Θ]
f

induces a positive bounded linear mapHm,Θ : Lp(Ω) → Lp(Ω) with norm
(5.9)

‖Hm,Θ‖Lp(Ω) ≤ 1
(m − 1)!(m − n/p)#Θ

→ ∞ as m − n/p → 0+.

This upper bound for‖Hm,Θ‖Lp(Ω) is sharp whenΘ involves only one point,
i.e., when

Θ = [v, . . . , v],

and whenp = ∞ (with the norm taken on only for the constant functions).
Whenn = 1, m = 1, Θ = [0] andΩ = (0,∞) the inequality (5.9) is

the well–known Hardy’s inequality: forp > 1

‖ x 7→ 1
x

∫ x

0
f ‖Lp(0,∞) ≤ p

p − 1
‖f‖Lp(0,∞), ∀f ∈ Lp(0,∞),

and so (5.9) is referred to as themultivariate (form of) Hardy’s inequality.

Lp–error bounds from the multivariate Hardy’s inequality

Next, Lp–error bounds are obtained from the expanded multipoint Taylor
formula for a finite element using the multivariate Hardy’s inequality. Let
Ω be a bounded open subset ofIRn (with Lipschitz boundary), and

hv,Ω := sup
x∈Ω

‖v − x‖ ≤ h := diamΩ (the diameter ofΩ).

Lemma 5.10.Suppose that̄Ω is starshaped with respect tov, andq ∈ Π0
d ,

0 ≤ d ≤ k. If k + 1 − d − n/p > 0 andf ∈ W k+1
p (Ω), then

(5.11)

‖ x 7→ (q(D)Rk,xf)(v) ‖Lp(Ω) ≤ (hv,Ω)k+1−d‖q(D)‖
(k − d)!(k + 1 − d − n/p)

f k+1,p,Ω.
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Proof. Sincek + 1 − d − n/p > 0, it follows from Lemma 4.11 and the
multivariate Hardy’s inequality 5.7 that

(5.12) Sf : x 7→ (q(D)Rk,xf)(v)

defines a function inLp(Ω). From (5.5) we obtain that

|Dk+1−d
v−x q(D)f | ≤ ‖x − v‖k+1−d‖q(D)‖ |Dk+1f |

≤ (hv,Ω)k+1−d‖q(D)‖ |Dk+1f |,
in Lp(Ω). Thus, by Lemma 4.11 and the multivariate Hardy’s inequality
5.7, we obtain

‖Sf‖Lp(Ω)

≤ (hv,Ω)k+1−d‖q(D)‖
∥∥∥x 7→

∫
[x,...,x︸ ︷︷ ︸
k+1−d

,v]
|Dk+1f |

∥∥∥
Lp(Ω)

≤ (hv,Ω)k+1−d‖q(D)‖ 1
(k − d)!(k + 1 − d − n/p)

‖ |Dk+1f | ‖Lp(Ω)

=
(hv,Ω)k+1−d‖q(D)‖

(k − d)!(k + 1 − d − n/p)
f k+1,p,Ω,

which is (5.11).

We now extend theLp–error bounds of Arcangeli and Gout[AG76]
and Gout[Go77] to a general finite element and for a much wider class of
seminorms, defined as follows. A family of seminorms| · |p,Ω on W k

p (Ω),
1 ≤ p ≤ ∞ is said to be of theusual formif either

(5.13) |f |p,Ω := ‖ (‖gj(D)f‖Lp(Ω) : j = 1, . . . m) ‖IRm ,

where thegj ∈ Πk(IRn) are fixed and‖ · ‖IRm is any norm onIRm, or

(5.14) | · |p,Ω := · j,p,Ω, 0 ≤ j ≤ k.

Theorem 5.15.Suppose that(K, P, N) is a finite element withΠk ⊂ P ⊂
Ck(Ω̄), and nodal variables{Ni} of the usual form

Ni(f) := qi(D)f(vi),

whereqi ∈ Π0
di

, 0 ≤ di ≤ k, andvi ∈ IRn. Let d := maxi di. If k + 1 −
d − n/p > 0, then

|f − IKf |p,Ω ≤
∑

i

(hvi,Ω)k+1−di‖qi(D)‖ |φi|∞,Ω

(k − di)!(k + 1 − di − n/p)
f k+1,p,Ω,

∀f ∈ W k+1
p (Ω),(5.16)

where| · |p,Ω is any family of seminorms onW k
p (Ω) of the usual form.
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Proof. Let gj ∈ Πk. Sincek + 1 − d − n/p > 0, Sobolev’s embed-
ding theorem (5.1) implies thatIK is well defined onW k+1

p (Ω). It fol-
lows from the multivariate Hardy’s inequality 5.7 and Theorem 4.4 that, for
f ∈ W k+1

p (Ω), the error satisfies

gj(D)(f − IKf) (x) = −
∑

i

(qi(D)Rk,xf)(vi) (gj(D)φi)(x)

in Lp(Ω), giving
(5.17)

|gj(D)(f − IKf) (x)| ≤
∑

i

|(qi(D)Rk,xf)(vi)| ‖gj(D)φi‖L∞(Ω).

Since‖ · ‖Lp(Ω) is a monotone norm, applying Lemma 5.10 to this (as a
function ofx) gives

‖gj(D)(f − IKf)‖Lp(Ω)(5.18)

≤
∑

i

(hvi,Ω)k+1−di‖qi(D)‖
(k − di)!(k + 1 − di − n/p)

‖gj(D)φi‖L∞(Ω) f k+1,p,Ω.

Taking the‖ · ‖IRm norm of the inequality form–vectors (indexed by
j) which is given coordinatewise by (5.18) gives (5.16) for a family of
seminorms of the form (5.13). Take the supremum of each side of (5.17)
over the set of differential operators{Dj

u : ‖u‖ = 1} to obtain

|Dj(f − IKf)|(x) ≤
∑

i

|(qi(D)Rk,xf)(vi)| φi j,∞,Ω, a.e. x.

Next, take theLp(Ω)–norm of each side of this and apply Lemma 5.10 to
get

f − IKf j,p,Ω ≤
∑

i

(hvi,Ω)k+1−di‖qi(D)‖ φi j,∞,Ω

(k − di)!(k + 1 − di − n/p)
f k+1,p,Ω,

which is (5.16) for seminorms of the form (5.14).

Remark.If (K, P, N) involves nodal variables of the form (4.8), i.e.,

λ : f 7→
∫

T
q(D)f dv,

then the argument of Theorem 5.15 can be modified by using the inte-
gral form of Minkowski’s inequality to bring‖ · ‖Lp(Ω) inside the integral∫
T (·) dv. This leads to estimates of the form

(5.19)

| x 7→ λ(Rk,xf)φ(x) |p,Ω ≤
∑

i

hk+1−d‖q(D)‖ vol(T )|φ|∞,Ω

(k − d)!(k + 1 − d − n/p)
f k+1,p,Ω



Multipoint Taylor formulæ 485

in (5.16).

Now we illustrate Theorem 5.15 with some examples where for simplic-
ity hvi,Ω is replaced by the (possibly larger) constanth.

If IK is a Lagrange mapLP,Θ, then (5.16) reduces to
(5.20)

|f − LP,Θf |p,Ω ≤ 1
k!(k + 1 − n/p)

(∑
v∈Θ

|`v|∞,Ω

)
hk+1 f k+1,p,Ω,

which was proved by Arcangeli and Gout in[AG76; Theorem 1–1] when
| · |p,Ω is a seminorm of the form (5.14).

Following the work of[AG76], Gout [Go77] obtained Theorem 5.15
for finite elements with nodal variables of the form (4.6) and seminorms of
the form (5.14). Both of these works are based on (the equivalent of) the
multivariate Hardy’s inequality as used in the proof of Theorem 5.15.

For the cubic Hermiten–simplex (5.16) reduces to: forp > n/3 and
f ∈ W 4

p (Ω)
|f − Hf |p,Ω ≤

∑
i

|φi|∞,Ω

3!(4 − n/p)
+

∑
i<j<k

|φijk|∞,Ω

3!(4 − n/p)
+
∑
i6=j

|φij |∞,Ω

2!(3 − n/p)


h4 f 4,p,Ω,

where| · |p,Ω is any of the usual seminorms onW 3
p (Ω). While for Wilsons’s

brick, using (5.19), we obtain: forp > n andf ∈ W 3
p (Ω)

|f − Wf |p,Ω ≤

∑

v∈Θ

|φv|∞,Ω

2!(3 − n/p)
+
∑
j

|φj |∞,Ω

0!(1 − n/p)


h3 f 3,p,Ω,

where| · |p,Ω is any of the usual seminorms onW 2
p (Ω).

6. Error formulæ for linear interpolation

In this section, Theorem 2.2 is used to construct a family of formulæ for
pointwise error in linear interpolation. Bylinear interpolationwe mean
interpolation from the space of linear polynomialsΠ1 at Θ a set ofn + 1
(affinely independent) points inIRn, i.e., a Lagrange map

LΘ := LΠ1,Θ.

If V is a linear right inverse for

U := D2,
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and the corresponding linear projectorP := 1 − VU ontoΠ1(= ker D2)
satisfies

(6.1) Pf(x) = f(x),

then by Theorem 2.2

(6.2) f(x) − LΘf(x) = −(LΘV(D2f))(x) = −
∑
v∈Θ

V(D2f)(v) `v(x).

Earlier, the choiceP = T1,x was made to obtain from (6.2) that

(6.3) f(x) − LΘf(x) = −
∑
v∈Θ

(∫
[x,x,v]

D2
v−xf

)
`v(x),

which is the expanded multipoint Taylor formula (4.5) forg = 1 (originally
given in[CW71]).

In addition toP = T1,x, there are many other linear projectors onto
Π1 that satisfy (6.1). When a representation forV the corresponding right
inverse ofD2 is available, each of these leads to a different error formula
(6.2). For example, one might takeP to beKergin interpolationat {x, ξ}
with ξ ∈ IRn (see, e.g., Waldron[W971]), for which

(6.4) V(D2f) =
∫
[·,x,ξ]

D·−xD·−ξf.

Whenξ = x this is Taylor interpolation atx (compare (6.4) with (4.10) for
k − d = 1). More generally, one can take a weighted average overξ of such
approximations to obtain the following family of formulæ of the type (6.2).

Theorem 6.5.Letµ be a real measure onIRn of mass1 (and finite variation).
Then, the error in linear interpolation toΘ satisfies

(6.6) f(x)−LΘf(x) = −
∑
v∈Θ

∫
IRn

(∫
[v,x,ξ]

Dv−xDv−ξf

)
dµ(ξ) `v(x),

for sufficiently smoothf .

Proof. The convergence of the integrals of the operators used below (which
can be interpreted pointwise) follows from the standard theory of integration.

Let K{x,ξ} denote the operator of Kergin interpolation to{x, ξ} which
has the representation

(6.7) K{x,ξ}f = f(x) +
∫
[x,ξ]

D·−xf.

Integrating the right hand side of (6.7) against the measureµ shows that

Pf :=
∫

K{x,ξ}f dµ(ξ)
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defines a linear projector ontoΠ1 which satisfies (6.1). Similarly, the right
inverses corresponding toK{x,ξ} given by (6.4) can be integrated againstµ
to get

(6.8) V(D2f) =
∫
IRn

∫
[·,x,ξ]

D·−xD·−ξf dµ(ξ),

the right inverse corresponding toP. Substitute (6.8) in (6.2) to obtain (6.6).

Certain choices ofµ in Theorem 6.5 as a measure supported on a finite
number of points give error formulæ that are known. Here are these examples
which were obtained (some very recently) by a variety of methods.

Example 1.Suppose that
µ = δx,

i.e., point evaluation atx, then(6.6) gives the ‘classical’ multipoint Taylor
formula(6.3).

Example 2.Suppose that
µ = δw,

i.e., point evaluation atw ∈ Θ, then(6.6) gives

(6.9) f(x) − LΘf(x) =
∑
v∈Θ
v 6=w

(∫
[x,w,v]

Dx−vDv−wf

)
`v(x),

which is a special case of theSauer–Xu formula[SX95; Corollary 3.11]
(also see de Boor[B96]).

Example 3.Suppose that

µ =
∑
w∈Θ

`w(x)δw

a weighted average of the point evaluations atw ∈ Θ, then(6.6) gives

(6.12) f(x) − LΘf(x) =
∑
v∈Θ

∑
w∈Θ

(∫
[x,w,v]

Dx−vDv−wf

)
`v(x)`w(x).

The ‘symmetrised’ form of(6.12) is

(6.11) f(x) − LΘf(x) =
∑

{v,w}⊂Θ
v 6=w

(∫
[x,w,v]

Dw−vDv−wf

)
`v(x)`w(x),

which was given by Waldron in[W98].
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Example 4.Suppose that

µ =
1

n + 1

∑
w∈Θ

δw

the average of the point evaluations atw ∈ Θ, then(6.6) gives

(6.12) f(x)−LΘf(x) =
1

n + 1

∑
v∈Θ

∑
w∈Θ

(∫
[x,v,w]

Dv−xDw−vf

)
`v(x),

which has the ‘symmetrised’ form

f(x) − LΘf(x) =(6.13)

1
n + 1

∑
{v,w}⊂Θ

v 6=w

∫
[x,w,v]

(`v(x)Dv−xDw−vf + `w(x)Dw−xDv−wf) .

Both of these formulæ are new.

It is easy to see from these examples how many new formulæ for the error
in linear interpolation can be obtained by choosing differentµ in Theorem
6.5. This section was only intended to give an indication of how effectively
Theorem 2.2 can be applied to obtain error formulæ. The generalisation of
Theorem 6.5 to the error in interpolation fromΠk, whereµ becomes a real
measure on(IRn)k of mass1, is left to the reader. In the last section another
promising application of Theorem 2.2 is outlined.

7. Error formulæ for Lagrange maps
from those for one–point interpolation

In this section, we give a generalisation of Theorem 3.15 whereΠk is re-
placed by a polynomial spaceQ. It is shown that the problem of constructing
an error formula for Lagrange interpolation from aD–invariant polynomial
spaceP (such as a tensor product space, or more generally the least solu-
tion) that involves only derivatives which annihilateP can be reduced to the
simpler problem of obtaining such a formula for ‘one–point’ (Taylor) inter-
polation fromP at the origin (which has been solved in a number of cases).
These results require the following facts about one–point interpolation.
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One–point interpolation

We say thatone–point interpolationfrom a (finite dimensional) space of
polynomialsQ to derivativesQ(D) at a pointx ∈ IRn is correctif for each
functionf (smooth enough atx) there is a uniqueq ∈ Q with

(7.1) p(D)q(x) = p(D)f(x), ∀p ∈ Q.

The associated linear projectorf 7→ q is called theone–point interpolation
map(from Q atx). It is denoted by

(7.2) TQ,x : f 7→ q,

and its error (remainder) by

(7.3) RQ,x : f 7→ f − q.

For Q = Πk this one–point interpolation map is simply the Taylor map
from Πk atx, which was discussed in Sect. 3. There the (shorter) notations

Tk,x = TΠk,x, Rk,x = RΠk,x

were used.
One–point interpolation at the origin, which will be denoted by

TQ := TQ,0 (with RQ := RQ,0),

is always correct (even ifQ is not a homogeneous space of polynomials).
To see this, and other properties of the set

OPI(Q) := {x ∈ IRn : One–point interpolation fromQ atx is correct},

we equipΠ (the space of polynomials) with the inner product

(7.4) 〈f, p〉 := p(D)f(0),

which was used so effectively in de Boor and Ron[BR92] to study mul-
tivariate polynomial interpolation. With the polynomials thought of as an
incomplete inner product space in this way we have the following.

Proposition 7.5.One–point interpolation fromQ at x ∈ IRn is correct for
a.e. x. If Q is D–invariant (invariant under differentiation), then one–point
interpolation is correct for allx ∈ IRn, i.e.,

OPI(Q) = IRn,

and

(7.6) TQ,x = τ−xTQτx,
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whereτx is thetranslationoperator

τx : f 7→ f(· + x).

Furthermore, one–point interpolation at the origin is always correct, and its
restriction

TQ|Π : Π → Q

to the polynomials is theorthogonal projectionontoQ.

Proof. The orthogonal projection off ∈ Π onto Q is, by definition, the
uniqueq ∈ Q for which

(7.7) 〈f − q, Q〉 = 0.

By (7.4) it is seen that (7.7) is precisely (7.1), i.e., the interpolation condi-
tions for one–point interpolation fromQ at the origin, which gives the last
statement.

Let {qi} be a basis forQ. One–point interpolation fromQ atx is correct
if and only if the Gramian matrix

(7.8) G(x) := [qi(D)qj(x)]i,j

is invertible. Thus, one–point interpolation fromQ atx is not possibleonly
whenx is a zero of the polynomial

p : x 7→ det(G(x)).

But, we have shown that one–point interpolation at the origin is correct, so
p(0) 6= 0, andp is a nonzero polynomial, which therefore has zero set

Z(p) = IRn \ OPI(Q)

of measure zero. In other words, one–point interpolation fromQ is correct
at a.e.x.

Suppose thatQ is D–invariant. Then,Q is translation–invariant (see de
Boor [B87]), and so

(7.9) τ−xTQτx

is a linear projector ontoQ. Next, we show that (7.9) interpolates derivatives
Q(D) atx, so that one–point interpolation fromQ atx is correct and given
by (7.6). This argument uses the facts that differentiations and translations
commute, and

δxτy = δx+y.

Let p ∈ Q, then

δxp(D)(τ−xTQτxf) = δxτ−xp(D)TQτxf
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= δ0p(D)TQτxf
= δ0p(D)τxf (TQ interpolatesδ0p(D))
= δ0τxp(D)f
= δxp(D)f,

so thatτ−xTQτx matchesp(D)f(x).

The ‘almost everywhere’ in Proposition 7.5 is needed. Suppose thatQ
is the space spanned by the (univariate) polynomial

q1 : x 7→ 1 + ax, 0 6= a ∈ IR .

Then, the Gramian matrix (7.8) is

G(x) = [1 + a2 + ax],

and so one–point interpolation fromQ to x ∈ IR is not correct when

x = −1 + a2

a
,

and is correct for all other values ofx.

More general multipoint Taylor formulæ for Lagrange maps and other linear
projectors

We are now able to give a generalisation of Theorem 3.15 whereΠk is
replaced by a (finite–dimensional) polynomial spaceQ.

Theorem 7.10.Suppose thatL is a linear operator that reproduces a poly-
nomial spaceQ. Then, forx ∈ OPI and sufficiently smoothf

(7.11) Lf = TQ,xf + LRQ,xf.

In particular, forg ∈ Q andx ∈ OPI(Q)

(7.12) g(D)(f − Lf)(x) = −g(G)(LRQ,xf)(x).

If L is a Lagrange mapLP,Θ, then (7.12) can be expanded as

(7.13) g(D)(f − LP,Θf)(x) = −
∑
v∈Θ

RQ,xf(v) (g(D)`v)(x).

Proof. The proof is exactly as for Theorem 3.15 withΠk replaced byQ and
using the fact that

g(D)(TQ,xf) = g(D)f(x), ∀x ∈ OPI(Q).
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Proposition 7.5 gives the following useful corollary for Lagrange inter-
polation from aD–invariant space.

Corollary 7.14. Suppose thatP is a (finite–dimensional)D–invariant space
(necessarily a polynomial space) for which Lagrange interpolation atΘ ⊂
IRn is correct, andLP,Θ is the corresponding Lagrange map. Then, forg ∈ P
andx ∈ IRn

(7.15) g(D)(f − LP,Θf)(x) = −
∑
v∈Θ

(τ−xRP τxf)(v) (g(D)`v)(x),

for sufficiently smoothf .

Proof. It is shown in de Boor[B87] that a finite–dimensional,D–invariant
space is necessarily a polynomial space. By (7.6),

RP,x = 1 − TP,x = τ−x(1 − TP )τx = τ−xRP τx,

which is substituted into (7.13) to get (7.15), which holds for allx ∈ IRn =
OPI(P ).

Thus, whenP is D–invariant, to obtain an error formula forLP,Θ that
involves only derivatives that killP , it is sufficient to do so for the ‘simpler’
problem of one–point interpolation at the origin. A particularD–invariant
choice of great interest is theleast solutionof de Boor and Ron[BR92],
which associates with any (finite) set of pointsΘ ⊂ IRn a polynomial
space, denoted by

P = ΠΘ,

for which Lagrange interpolation atΘ is correct. In addition to beingD–
invariant theleast spaceΠΘ has many other desirable properties including
constructabilityand being aminimal–degree solution, i.e.,

dim(ΠΘ ∩ Πk) ≥ dim(P ∩ Πk), ∀k,

for all polynomial spacesP for which Lagrange interpolation atΘ is correct.
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