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 
Abstract—The design of multipolar Ferrite Assisted 

Synchronous Reluctance (FASR) machines is formalized via a 

two steps procedure. At first one rectified machine pole is 

analyzed and key figures of merit are expressed in equations and 

discussed to derive general guidelines for high performance 

designs. Then, multipolar rotating machines are modeled as the 

combination of multiple rectified poles within a stack cylinder 

having constrained outer dimensions. It is demonstrated that, at 

given output torque, the number of poles can be optimized either 

to minimize the Joule loss or to minimize the remanence of the 

ferrite magnets. The design approach is both FEA and 

experimentally tested on a prototype FASR machine, rated about 

800 Nm at 168 rpm. The prototype has been designed for direct 

drive lift applications, showing similar performances, if fairly 

compared to the ones of previous solutions based on rare-earth 

magnets. 

 
Index Terms— Hard ferrite magnets, Synchronous motor 

drives, Demagnetization, Direct drive applications, Wind turbine 

generators. 

I. INTRODUCTION 

ermanent Magnet (PM) machines have been the most 

performing electric actuators, in terms of torque density 

and efficiency, since the adoption of rare-earth magnets, 

which offer large energy products and ideal recoil 

characteristics over wide ranges of temperatures. However, the 

recent price volatility of rare earth raw materials has been 

compelling designers and manufacturers of electric motors to 

test alternative solutions, using no PMs [1]-[2], a reduced 

amount of rare-earth PMs [3]-[4], or lower energy density 

PMs, such as hard ferrites [5]-[12]. 

The mere substitution of high energy magnets with ferrite 

ones into standard Surface-mounted PM (SPM) and Interior 

PM (IPM) rotor configurations cannot lead to satisfactory 

designs [6]-[7], since both SPM and IPM motors mainly rely 

on Nd- or Sm-based materials for their high performance [13]-

[14]. A more effective way [8]-[10] to exploit lower energy 

density magnets is to PM-assist Synchronous Reluctance (SR) 

machines, having multi-layer rotor structures (i.e. valuable 

starting designs in terms of torque density). In this case, the 

magnet excitation is needed only as an additional contribute to 

the torque and an improvement for the Power Factor (PF) and 

the speed range of the drive. As a result, FASR machines can 

 
   

 

 

 

compete with rare-earth based SPM and IPM counterparts, 

despite the lower energy density of ferrite materials [8], [9]. 

Ferrites are also known to be prone to demagnetization at 

low temperatures. Recent papers have put in evidence that, 

when dealing with low temperature environments, the flux 

barriers of FASR rotor types must be shaped properly [11]-

[12] and a pre-heating or a temporary derating of the machine 

output torque might be necessary [12]. 

This paper sums up the geometric rules needed for 

optimizing the starting SR design and increasing the 

robustness against demagnetization of FASR motors. It gives 

also fully analytical expressions for the design and evaluation 

of such these machines. In the first sections, reference is made 

to one rectified pole, as the one in Fig. 1, with the flux barriers 

having constant thickness along their widths and being 

completely filled with ferrites, so to compensate for their low  

B-H energy products. Figures of merit such as shear stress, 

Joule loss density and power factor are expressed in equations, 

as functions of per-unit (pu) quantities, and the maximum 

current loading according to irreversible demagnetization is 

quantified. Afterwards, the elementary blocks are assembled 

to form a rotating machine fitting into fixed stack dimensions 

(stator diameter and stack length). The design space is 

identified according to the results of the pu analysis on the 

reference block and straightforward equations are proposed to 

choose the pole pairs number of the machine in order to 

minimize either the Joule loss or the PM grade, at given 

torque. The proposed design procedure is both FEA and 

experimentally validated.  

         

Fig. 1.  Rectified pole of a FASR machine with a three-layer rotor and the 

PMs magnetized radial-wise. The dq axes follow the SR model approach. 
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II. GENERAL ASSUMPTIONS AND ROTOR MODEL 

A. Reference geometry 

The key-geometric parameters in Fig. 1 are: the airgap 

length (g), the pole pitch (a), the stator tooth length (lt), the 

pitch of the k-th rotor “slot” (Δξk), half the width of the k-th 

layer (Sk) and its uniform thickness (lk). The parameters b and 

kt will be introduced in Subsection III.A; q is the slot number 

per pole per phase; l is the stack length of the reference block. 

As for the number of rotor flux barriers (n) and their shapes, 

different choices are possible. Round barriers are sketched in 

Fig. 1 only for simplicity. In fact, actual rotor designs are  

typically optimized to improve the saliency ratio between the 

d- and q-axis. Since a PM-assisted SR machine is analyzed 

here, the dq axes follow the SR model approach (that is, the d-

axis is aligned to the maximum permeance direction). 

 

Fig. 2.  The equivalent circuit represents the q-axis magnetic behavior of half 

a pole. It refers to the FASR example rotor in Fig. 1 (n=3). 

B. q-axis magnetic model 

The circuit in Fig. 2 shows the q-axis magnetic model of the 

3-barrier rotor reported in Fig.1. This represents a simplified 

version, as structural ribs are not taken into account yet. The 

fluxes are the ones of half a pole. The magneto-motive force 

(mmf) generators, magnetic potentials and permeances are 

expressed in normalized quantities according to the base 

values listed in Table I.  

TABLE I 

NORMALIZATION OF THE Q-AXIS MAGNETIC MODEL 

Quantity Base value 

Magneto-motive forces, 

magnetic potentials 

Peak Fq of the fundamental q-axis 

stator mmf waveform 

Permeances 0l 

Fluxes Fq 0l 

The m123 generators and the respective barrier permeances 

pb123 model the layers filled with ferrite magnets. The terms pg 

are the permeances of the rotor teeth at the airgap. The mmf 

generators fq123 stand for the effect of the q-axis stator current, 

oriented against the PMs. The fundamental wave of the stator 

mmf, in pu of its peak value Fq, is averaged across each rotor 

tooth at the airgap and then modeled via the staircase fq123 

reported in Fig. 3 [12], [15]. The model accounts for the 

polarization of the rotor flux guides into the potentials r123, 

assumed to be uniform along the guides width. 

If the rotor geometry is designed for having both the PMs 

mmf m123 and the magnetic potential drops Δr123 proportional 

to the stator mmf staircase, as in Fig. 3, the harmonic content 

of the quadrature flux density is minimized and all the PMs 

work at the same flux density, at all current level. The main 

geometric rules leading to this twofold purpose are discussed 

in the next section, even if more details can be found in [12]. 

 
Fig. 3.  Staircase distributions of the mmfs of Fig. 2, in pu of the peak value of 

the q-axis fundamental mmf. No markers: q-axis stator mmf fq123. Star: PMs 

mmf m123. Circle: iron guides magnetic potentials r123. 

C. Main geometric constraints for the rotor design 

The rotor geometry is based on four design criteria: 

1. the rotor pitch is “regular”; 
2. the barriers have constant thickness throughout their 

respective spans; 

3. the barriers thicknesses l123 follow the proportion of the pu 

steps fq123, that model the q-axis stator mmf; 

4. also the barriers widths S123 follow the proportions defined 

in point 3. 

The first condition refers to torque ripple minimization via 

proper displacement of the flux barriers at the airgap [2], [16]. 

The equivalent number of rotor slots per pole pair nr is 

introduced and the “regular” inter-barrier pitch Δξ is defined:         (1) 

Different choices of nr are possible, in order to avoid the 

direct interaction between stator and rotor slot harmonics [17]. 

If nr=4n+2, the rotor “slot” pitch Δξk is kept constant, and 

equal to Δξ, along the whole periphery of the rotor. If 

nr>4n+2, the inter-barrier pitch can be still uniform, with the 

general exception of the angle Δξn (between the smallest layer 

and the q-axis) that is larger than Δξ. The most “regular” rotor 

topologies are called “complete” in [17] and they are the ones, 
this paper refers to, for simplicity. To deal with “non-

complete” machines, the following equations need little 

modifications and one extra parameter (that is, Δξn). 

The second constraint in the list comes from the idea that, in 

case some parts of the barriers (i.e. of the magnets) would be 

thinner, there the flux density would be lower and thus closer 

to irreversible demagnetization. 

With all the flux barriers having constant thicknesses, the 

mmf m123 follow directly from l123 [12]. Thus, in order to make 

the PMs mmf staircase proportional to the stator one, the third 

geometrical constraint is required. In formula:                                    (2) 

la is the total insulation, sum of l123. fqn is the top value of 

the pu n-steps staircase, that reproduces the stator mmf along 

the q-axis. fqn is always close to one, whatever the number of 

layers is (for example fq3 = 0.967 when n=3 and nr=14, as in 

the “complete” reference rotor of Fig. 1). 

Once the magnet thicknesses l123 and then the mmf m123 are 

set as suggested by (2), the magnetic potentials r123 are 

proportional to the pu steps fq123, if all the layers have the same 
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permeance [12]. At this purpose, the fourth condition (3) about 

the barrier widths S123 is needed.                                (3) 

III. KEY DESIGN EQUATION 

This section provides pu expressions for the design of both 

the magnetic and electric loading of the reference block in  

Fig. 1. The magnetic loading Bgap [T] is defined here as the 

peak flux density in the airgap. The electric loading A [Apk/m] 

is proportional to the fundamental peak value F of the stator 

mmf waveform:                (      ) (4) 

I is the peak value of the stator current, N is the number of 

conductors in series per pole per phase and kw is the winding 

factor. 

A. d-axis magnetizing loading 

A portion of the total electric loading has to be spent for 

generating the d-axis magnetizing loading Bgap,d, which is 

typically required to be around 0.75-0.9 T. 

The value of Bgap,d is strictly related to the size of the stator 

back iron and its exploitation in terms of flux density. In fact, 

if the q-axis flux is nearly zeroed by the PMs action, as it is 

the case with effective PM-assisted designs, the stator yoke 

and teeth are interested mainly by the d-axis flux. Then, the 

chosen magnetizing loading in the airgap (Bgap,d) and the target 

flux density in the back iron (Bfe) determine the core 

dimension. As highlighted in Fig. 1, the ratio b between Bgap,d 

and Bfe represents: the yoke height, in pu of the pole pitch, and 

the tooth width, in pu of the slot pitch, being kt a scaling factor 

slightly lower than one. b is usually between 0.5 and 0.65. 

Once Bgap,d (i.e. the product b∙Bfe) is fixed, the Ampere law 

defines the relationship (5) between the selected d-axis 

magnetizing loading and the required mmf Fd.                       (5) 

Then, the d-axis electric loading Ad (6) is determined:                 (6) 

Ad is proportional to the pu airgap g/a, to indicate that, when 

the airgap is too thick, a non-negligible part of the current 

loading is spent for d-excitation, with negative impact on the 

Joule loss and the PF, as it will be recalled in the following. 

 

Fig. 4.  Vector diagram of a “Naturally Compensated” PM-assisted machine. 

B. Natural compensation of the q-axis flux-linkage 

When dealing with PM-assisted motors, the magnets flux is 

designed for compensating either the whole q-axis flux of the 

basic SR machine or the majority of it [15]. In the former case, 

represented by the vector diagram of Fig. 4, the FASR 

machine is “naturally compensated” [1]. It says that: 

 the PF is defined by the current argument only and just 

few poor design choices (i.e. the ones with large pu 

airgaps) lead to unsatisfactory PF values; 

 the stator back iron is saturated primarily by the d-axis 

magnetizing flux and the cross saturation effects are 

definitely reduced. 

“Natural Compensation” will be considered, from now on, 

as the rated design condition of the elementary block. In other 

words, the PM flux linkage m will be designed for having the 

q-axis rated current of the machine equal to the characteristic 

(or short circuit) one, namely Iq0 [18]. In formula:          (7) 

where Lq is the q-axis inductance. 

The PM flux linkage m of one rectified pole (8) is a 

function of the flux density Bgap,m, produced in the airgap by 

the magnets.                      (8) 

The characteristic loading Aq0 follows from (8), according 

to the definitions (4) and (7):                       (9) 

Where the normalization Lq,pu= Lq /Lbase is based on (10):           (      ) 
 (10) 

The key role played by Aq0 has to do with the torque 

capability of the machine, as it will be demonstrated. Thus, it 

is worth pointing out its dependence on the main design 

parameters. It will be done by defining Bgap,m and Lq,pu, in 

Subsection III.C and III.D, respectively. 

C. PM and airgap flux density at no load 

At no load, the peak flux density in the airgap Bgap,m and the 

uniform flux density in the magnets Bm0 are proportional to 

each other and are both obtained by solution of the magnetic 

circuit in Fig. 2. 

The no load flux-density in the magnets, in pu of the PM 

remanence Br, is derived in [12]. Its expression (11) is 

reported here for convenience, reminding that la,pu, which is 

equal to la/(a/2), represents the rotor pu magnetic insulation.       (                 (   ⁄ )     )  
 (11) 

In (11), the term S1/a can be simplified and the PMs 

volume, in pu of the rotor one, can be introduced instead. The 

substitution will lead to a more useful formulation, since the 

normalized PMs volume (Vm,pu) is known to be an indicative 

design indicator, strictly correlated to the chosen la,pu.  
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The relationship between S1/a and Vm,pu is solved, as shown 

by (12), considering the geometrical constraints fixed by (2) 

and (3) on the magnets lengths and widths.        (            )                   (   ⁄ )   (   ⁄ )     (12) 

Then, Equation (13) is obtained by substituting (12) into (11) 

and by approximating the trigonometric function cos(Δξ/2) 

with the first two terms of the respective Taylor series. The 

parameter nr is put in evidence by means of (1).       (                (       )   )  
 (13) 

The PMs flux density Bm0 (13) at no load: 

 determines the robustness of the machine towards 

demagnetization at any operating conditions, as it will be 

demonstrated later; 

 defines the no load flux density in the airgap via a 

proportional relationship, that will be introduced in the 

following. 

The maximization of Bm0 has then a twofold purpose, that, 

according to (13), can be better pursued when dealing with 

multi-layer rotor structures (nr≥14), as the ones considered 
here. Equation (13) also suggests that designs with thick pu 

airgaps g/a and small rotor magnetic insulation la,pu penalize 

the no load flux density in the magnets. Recommended values 

of la,pu are around 0.35-0.45. With larger pu insulation, the 

design of the rotor flux guides would be poor and the 

consequent iron saturation effects might compromise the 

machine performance. 

 

Fig. 5.  Peak flux density in the airgap at no load (14), as a function of the 

pole pitch to airgap ratio. Ferrite grades with different remanence values are 

shown. The example is for lapu = 0.4, Vm,pu=0.35, n = 3, nr = 14. 

As said, a proportional relationship (14) between the airgap 

flux density and the PMs one can be found from the q-axis 

magnetic circuit of Fig. 2:                        (   ⁄ )   (   ⁄ )                (       )    (14) 

The previous equation accounts for the flux concentration 

effect of this type of PM machines. If the FASR rotor is 

designed with proper values of both la,pu (e.g. 0.35-0.45) and 

Vm,pu (e.g. 0.3-0.4), the airgap flux density Bgap,m results to be 

roughly 2 times the flux-density in the magnets. The flux 

density in the magnets, in turn, can be optimized as described. 

That is to say that low energy density PMs can still produce a 

valuable flux density in the airgap, thanks to the particular 

rotor topology. Once more, multi-layer rotor structures (i.e. 

nr≥14, n≥3) show noticeable advantages. In fact, in case of 

more standard IPM machines with one or two layers (that is, 

lower nr values) the flux concentration is penalized by the 

terms in bracket in (14).  

Fig. 5, which puts together (13) and (14), shows the peak 

flux density produced by the PMs in the airgap, as a function 

of a/g and the magnets grade. The plots are referred to the 

room temperature. However, the actual temperature of the 

PMs and the law of degradation of their B-H characteristic 

with the temperature affect Bgap,m, and this dependence has to 

be taken into account in the design procedure. 

 

Fig. 6.  Per unit q-axis inductance as a function of the pole pitch to airgap ratio 

and with the pu tooth length lt/g as a parameter. Lq,pu is shown in 

correspondence of both an inadequate (0.25) and an adequate (0.4) value of 

la,pu. Other parameters: q = 3, n = 3, nr = 14, kw = 0.96, b = 0.55, kt = 0.9, 

ktip=1.4. 

D. q-axis inductance and its component 

When designing PM-assisted motors, the minimization of 

the q-axis inductance is one pivotal aspect, as it improves the 

rotor saliency of the basic SR machine. Besides, with low Lq 

values, the PM flux linkage needed to fulfill the natural 

compensation condition (9) can be reduced, or, if the PMs 

grade and volume are given, the characteristic current (7) can 

be increased. 

The total q-axis inductance accounts for the magnetizing 

term  𝑚,q (15), the slot leakage one  𝜎,  𝑜𝑡 (16) and the zig-zag 

inductance  zz,q (17).               (     )       (15) 

               (     )                    
(16) 

        [(    )  (    ) ]           
(17) 

More details about (15) can be found in [15]. Equation (16) 

is presented in its simplest version [19]-[20], as a more 

complicate one is needed for including the case of chorded 

windings. In (16), lt is the tooth length, (1-bkt) is 

representative of the slot width and ktip quantifies the 

inductance increase of a semi-closed slot with respect to an 

open one, due to the tooth tip shoe. The zig-zag inductance 

[21], as highlighted by the squared terms in round brackets in 

(17), includes both the stator and rotor slots leakage effects, 

being q the number of stator slots per pole per phase. 
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The curves reported in Fig. 6 put in evidence that for small 

values of a/g the slot leakage component dominates the total 

q-axis inductance with a bad impact on the achievable saliency 

ratio. Conversely, starting from a/g values roughly larger than 

50, the term  𝜎,  𝑜𝑡, and thus the choice of lt/g, get increasingly 

less important in affecting the total q-axis inductance. This 

value is definitely determined by the magnetizing component, 

especially when the zig-zag one is small thanks to high q and 

nr values. It points out that both the p.u. insulation la,pu and the 

parameter nr (i.e. the number of layers) are of crucial 

importance for the minimization of the overall q-axis 

inductance. 

E. Characteristic electric loading 

The characteristic electric loading is directly proportional to 

Bgap,m (Fig. 5) and inversely proportional to Lq,pu (Fig. 6). As a 

result, the Aq0 curves in Fig. 7 are flat in a wide range of a/g. 

In the same range (that is, 50 ≤ a/g ≤ 200) the tooth length 
factor (lt/g) is not of great importance, whereas the magnet 

grade, expectedly, is. Also the pu magnetic insulation in the 

rotor and the normalized PMs volume affect the characteristic 

current loading. As an example, the plots in Fig. 7a show the 

behavior of Aq0, referred to the outer values of typical la,pu and 

Vm,pu design spaces. In particular, larger magnetic insulations 

and, consequently, larger PMs volumes are distinctive of 

multipolar machines, since the shape of their poles, closer to 

the rectified one, is more convenient to optimize 

simultaneously the design of the rotor flux barriers and iron 

guides. 

 

(a) 

(b) 

Fig. 7.  Characteristic electric loading. Design inputs: q = 3, n = 3, nr = 14,  

kw = 0.96, b = 0.55, kt = 0.9, ktip=1.4. a) Effect of lt/g, la,pu and Vm,pu, with  

Br = 0.34T. b) Effect of Br with lt/g = 30, la,pu=0.4 and Vm,pu=0.35. 

F. Accuracy of the model 

The accuracy of the proposed analysis can be improved as 

suggested in the Appendix: 

 Appendix A illustrates how to take into account the 

presence of rotor structural bridges, by quantifying the 

reduction of the PMs flux concentration effect (14). 

 Appendix B enlists the equations needed for modifying the 

definition of the d-axis current loading (6), so to 

compensate for the magnetic potential drops in the 

saturated stator back iron. 

The effectiveness of the formulas reported in the Appendix 

will be discussed in the last Section, by comparing the results 

of the proposed model to the experimental data. 

IV. PERFORMANCE INDICATORS 

A. Shear stress 

The shear stress [Nm/m
3
], averaged over one machine pole, 

is the cross product (18) of the airgap flux density by the 

electric loading [19]. 

                    (18) 

In the area that has been revealing of main interest for the 

design (i.e. 50 ≤ a/g ≤ 200), if the machine is “naturally 
compensated”, the second term of (18) is negligible, because 

both Bgap,q and Ad are significantly smaller than the respective 

counterparts on the other axis. Thus, the characteristic shear 

stress  0 is approximately defined as in (19): 

                      (19) 

where the subscript 0 reminds of the reference to the 

“Natural Compensation” condition.  

 

(a) 

(b) 

Fig. 8.  Characteristic shear stress, for the same design inputs declared in  

Fig. 7. lt/g is fixed and equal to 30. All the  0 curves are plotted starting from 

a/g=25, since for lower a/g values the approximation (19) is too imprecise.  

a)  0 is referred to the outer values of typical la,pu and Vm,pu design spaces.  

(Br = 0.34T); b) Effect of Br with la,pu=0.4 and Vm,pu=0.35. 

Given the d-axis magnetic loading Bgap,d, the shear stress is 

decided by the characteristic loading only. As a consequence, 

it is influenced by: the pole pitch to airgap ratio a/g, the rotor 

pu insulation, the magnets volume and remanence. The curves 

in Fig. 8 quantify the impact of these four design parameters 

on the achievable performance, highlighting that the shear 

stress figures are competitive with the ones of Nd-based 
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machines [19], [22] especially for designs with large pu rotor 

insulation and multi-layer rotor structures. In that cases, Aq0 is 

maximized thanks to the low q-axis inductance and the 

valuable concentration of the PMs flux in the airgap. This, 

associated to good ferrite grades improves the torque 

capability of the machine. Or, at given torque, it allows the 

employment of lower energy density magnets, since, being the 

layers completely filled with ferrite, their quantity is fixed. 

To deal with shear stress values typical of very large liquid 

cooled machines, the analysis can be extended to “non-

naturally compensated” machines, taking advantage of the 

better cooling system to put into play q-axis electric loadings 

larger than Aq0 and thus increase the achievable  . 

 

(a) 

(b) 

Fig. 9.  PF (top) and current loading components (bottom) at “Natural 
Compensation” as functions of the pole pitch to airgap ratio and the PM grade. 

Same design parameters as in Fig. 7 and 8 (lt/g = 30, la,pu=0.4 and Vm,pu=0.35). 

B. Power factor of “Naturally Compensated” machines 

Disregarding the resistive voltage drop as indicated in  

Fig. 4, the PF angle φ0 (20) at “Natural Compensation” is 

defined by the current phase angle only: 𝑡  (  )  𝑡  (    )        (20) 

As shown in Fig. 9, both Ad and Aq0 penalize the PF in the 

low range of a/g. But, as a/g increases, the PF tends 

asymptotically to one, whatever the PMs. In other words, the 

pu airgap g/a (that is, the choice of the pole pairs in the final 

design) is the only variable to influence the PF of “Naturally 
Compensated” FASR machines. 

C. Stiffness towards demagnetization 

Regarding demagnetization issues, the main figure of merit 

is the maximum feasible q-current loading Aq,irr, that is the one 

that takes the PMs to the edge of irreversible demagnetization.                      (                 ) (21) 

                            (22) 

Equation (21) is derived from the magnetic circuit of Fig. 2 

[12].It introduces the knee of demagnetization Bm,irr,pu, defined 

by (22), in pu of the PMs grade, and points out that, besides 

the per-unit insulation, also the PMs flux density at no load 

has to be as high as possible to maximize Aq,irr. In fact, if Bm0.pu 

gets closer to the knee of demagnetization, no room for the 

current loading is left and the magnets can be damaged even at 

no load. It follows that, according to (13), the need of 

designing the rotor as a multi-layer structure with good 

magnetic insulation along the q-axis is again well documented, 

as highlighted in subsection III.C. 

Another factor that plays a key role in (21) is the operating 

temperature, that affects both the remanence flux density and 

the knee of irreversible demagnetization, as shown in the 

example B-H curves of Fig10. However, when dealing with 

very cold environments, if the demagnetization issues result to 

be critical, even with Bm0.pu maximized via optimized rotor 

designs, specialized ferrite grades with low Bm,knee at all 

practical temperatures can be found [23]. 

 

Fig. 10.  Magnetic curves of Hitachi Ferrite grade NMF-3C, and graphical 

expression of the Bm,irr.pu at -60°C and 20°C. 

D. Joule loss density 

The Joule loss density of the rectified pole of Fig.1, referred 

to the block surface (al), is:                                             (23) 

Where Cu is the copper resistivity, kCu is the slot filling 

factor and kend is the total length of one conductor, end 

connections included, in pu of the active length,  

Since core and PM losses can be disregarded in this 

analysis, which is dedicated to low speed multipolar machines, 

the Joule loss density is representative of both the efficiency 

and the type of cooling of the machine. Regarding the 

efficiency, the key role played by the tooth length is put in 

evidence in (23). However, as lt heavily affects also the mass 

of active materials of each pole, a tradeoff must be found. 

Equation (23) can be used also to find out the maximum 

electric loading Ath (=[       ] ) at rated thermal conditions, 

considering that the type of cooling identifies a maximum 

value for the heat rate density. The thermal limit Ath must be 
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compatible with the other key values of electric loading Ad, 

Aq0 and Aq,irr, as discussed in [12]. 

E. Summary of the elementary block analysis 

From the analysis of the rectified block it turns out that: 

1. Designing multi-layer structures with good insulation 

properties improves the stiffness against demagnetization. 

It allows also to minimize the q-axis inductance and 

maximize the magnetic loading produced by the PMs, by 

concentrating the flux in the airgap. This is twice 

beneficial for the shear stress. 

2. Given both nr and lapu, low pole pitch to airgap ratios a/g, 

meaning thick pu airgaps, make the machine prone to 

demagnetization and reduce the magnetic loading 

obtainable in the airgap thanks to the magnets. If a/g is too 

small, also the saliency ratio is unsatisfactory. In 

particular, the magnetizing d-axis inductance is low 

(requiring high excitation currents), whereas the q-axis 

one is high (badly affecting the characteristic electric 

loading). 

3. From the previous point, it follows that a low a/g ratio is a 

symptom of low shear stress, low PF and low efficiency 

(or more specifically increased Joule losses). 

4. The characteristic shear stress depends significantly on the 

PMs remanence, and very little on the stator tooth length, 

which will be handled as an important degree of freedom 

in the final design of the rotating machine. It impacts the 

machine weight, besides its efficiency. 

V. ROTATING MACHINE INTO CONSTRAINED ENVELOPE 

A rotating machine, that is defined by the input data in 

Table II, can be seen as an assembly of 2p elementary blocks, 

all having the rotor pitch equal to a. Thus, given the target 

torque T, the stack outer radius (r) and length (l), the machine 

can be designed via the closed form equations presented in the 

previous subsection. All the normalized parameters required to 

start the design have already been discussed and are briefly 

summarized in Table II. The design variables are: the pole 

pairs number p and the tooth length lt. 

Both p and lt contribute to define the rotor radius r’ (24). 

This is also due to the dependence, shown in Fig. 1, of the 

stator yoke height on the rotor pole pitch a, which, in turn, is 

identified by (25), and thus again by p and lt. 

                                    (24) 

            (25) 

Given the torque, the relationship (24) allows to express the 

required shear stress (26) in terms of the variables lt/r and p.        (  )       (26) 

Then, if the desired magnetizing loading b∙Bfe is provided 

by a correct choice of the d-axis current loading (6), the 

characteristic q-axis electric loading follows directly from (26) 

by inversion of (19). As a result, both Ad and Aq0 turn out to be 

functions of the variables p and lt/r. And the same is for the PF 

(20) and the PM grade needed for “Natural Compensation”, 
which can be derived via (9)-(13) starting from the Aq0 value. 

Also the Joule loss density kj can be easily computed as a 

function of the other design quantities, keeping in mind that 

the heat rate density is here reasonably calculated here at the 

outside surface and is then related to the block one by (27).                   (27) 

The proposed procedure can be iteratively applied in order 

to explore all the feasible combinations of lt/r and p, that give 

the desired torque with the stack envelope constrained. The 

design spaces of the two variables are identified in Subsection 

V.A and the concurrent designs are compared in Subsection 

V.B, so to derive general guidelines for optimized solutions.  

In particular, Subsection V.C shows how to simplify the 

design task, if the Joule loss density needs to be minimized. In 

that case, an analytical expression fixes the optimal pole pairs 

number, which does exist due to the different variation of the  

d- and q-axis current loadings with p. In fact: 

 as p increases, the rotor pitch a gets smaller and the d-axis 

current (6), needed to have the airgap flux density equal to 

b∙Bfe, increases; 

 as p decreases, the bore radius decreases, as shown by 

(24)-(25). It means that the lever associated to the airgap 

shear stress is reduced and greater q-axis currents (26) are 

required. Also the end connections are longer if the bore 

radius is smaller, with a bad impact on the resulting kj.  

TABLE II 

DESIGN PROCEDURE: MAIN PARAMETERS, INPUT AND OUTPUT DATA 

Input data 

Geometrical quantities r, l, g 

Performance target Torque T 

Design parameters 

Magnetizing loading and sizing of the stator back iron b, Bfe, kt 

Rotor design nr, n, la,pu, Vm,pu 

Stator winding design  q, kw, kCu, kend 

Design variables 

Pole pairs p and stator tooth length lt 

Performance indicators and other design outputs 

Needed PM grade Br, Electric loadings Ad and Aq0, PF, Joule loss density kj 

A. Upper and lower limits to the design variables 

The choice of the tooth length factor lt/r is a matter of trade-

off, as it affects both the efficiency of the machine and the 

weight of its active materials. According to (23), too short 

stator teeth lead to unfeasible designs due to the increased 

Joule loss. On the other hand, having too long teeth impacts 

negatively the total weight, in addition to other unwanted side 

effects. In particular, with longer teeth and consequently 

smaller bore radius, the lever associated to the airgap shear 

stress is reduced and higher q-axis current loadings are 

required, at given output torque. Also the length of the end 

connection grows with lt/r and it contributes to vanish the 

convenience of increasing the tooth length, over a certain 

extent, to reduce the Joule loss. As a result, effective lt/r 

design spaces typically include values that vary from few 

percent to 25%, also depending also on the machine size. 
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(a) 

(b) 

(c) 

(d) 

Fig. 12.  Prototyped direct drive lift motor (T = 795 Nm, r = 0.19 m,  

l= 0.25 m, b∙Bfe = 0.84 T). The plots show  the Joule loss density (a), PM 

remanence (b), PF (c) and total machine weight (d) as function of the number 

of pole pairs and with the tooth length as a parameter. Three different designs 

are compared: the “circle” design is for Joule loss minimization; the “star” 
design is similar to the former one, but has longer stator teeth; the “square” 

design is for weight reduction. 

The analysis on the reference block suggests the presence of 

a lower limitation for a/g (a/g≥50) and thus an upper limit for 

the pole pairs number. In order to quantify it, Equation (28) is 

derived from (24) and (25).         (  |   )  (     )       (28) 

In (28) the parameters b and lt/r can be defined as 

discussed, then the minimum recommended a/g value 

univocally identifies the maximum number of pole pairs. This 

upper limitation, which is compliant with the core loss 

minimization purposes, depends on r/g. In turn, the ratio r/g, 

mainly related to constructional aspects, is a function of the 

machine size: it can be around 100, when dealing with small 

traction motors, and raise up to 500, for large wind turbine 

generators. A lower limit to the pole pairs number does also 

exist, because, as said, when p decreases, the yoke height 

increases and the bore radius, together with the torque lever, 

decrease. It follows that machines with too few poles are 

heavier and less efficient, because of the augmented q-axis 

electric loading. 

B. Concurrent designs at given torque and outer stack 

For finding out the best combinations of p and lt/r with 

respect to the main design indicators, two examples are 

considered. The first one is the direct drive lift motor tested to 

validate the proposed analysis. It is rated 14 kW at 168 rpm; 

its outer radius is 0.19 m, its stack 0.25 m, its airgap length 

0.75 mm. The other design example is a wind generator, rated 

2 MW at 15 rpm. Its outer radius is 2 m, its stack 1.5 m and its 

airgap length 4 mm. The two machines have been purposely 

chosen, since they are very different in terms of required shear 

stress, size and shape of the stack (specifically, r/l ratio). 

 

(a) 

(b) 

Fig. 13.  Wind turbine generator (T = 1273 kNm, r = 2 m, l= 1.5 m,  

b∙Bfe = 0.85 T). The plots show the Joule loss density (a) and PM remanence 

as functions of the pole pairs number and with the tooth length as a parameter. 

The curves in Fig. 12 refer to the prototyped motor, 

showing the charts of the Joule loss density, the needed PMs 

grade, the PF and the total weight, as functions of the pole 

pairs number and with lt/r as a parameter. Fig. 12a highlights 

that the Joule loss density is always minimum in 

correspondence of a specific number of pole pairs, that does 

not depend on the tooth length. It is also evident that the loss 

reduction obtainable by lengthening the stator teeth flattens 

with lt/r beyond 15%. It says that, in this case, a machine with 

p equal to 7 and lt/r lower than 15% (that is, the “circle” 
design in Fig. 12) results the most convenient in terms of Joule 

loss minimization. Conversely, the values of p that minimize 

the ferrite remanence needed to fulfill the “Natural 
Compensation” condition vary with respect to the tooth length, 

as shown by Fig. 12b. In general, with longer stator teeth, the 

required PM grade is higher and more sensitive to the number 

of poles. For example, the “star” symbol in Fig. 12 indicates a 

design with p = 5 and lt /r = 20%, that has nearly the same loss 

of the “circle” design but needs Br = 0.43 T instead of 0.37 T. 

From Fig. 12c and Fig. 12d, it is highlighted that the choice of 
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the pole pairs number is critical for both the PF and the total 

weight of the machine. However, the PF is good (meaning, 

higher than 0.85) for both the “star” and “circle” designs. 
Mass reduction could lead to consider a number of pole pairs 

larger than 7, for example p=11 (that is, the “square” design), 
but it would require to accept a lower efficiency, a better PM 

grade, a poorer PF and a higher fundamental frequency with 

the need of a proper check on the iron loss, up to now 

disregarded. 

Fig 13, that refers to the large wind generator, confirms the 

qualitative considerations presented for the prototyped lift 

motor, highlighting the generality of the proposed approach. 

The PF and weight curves are not reported for brevity. 

Anyway it can be pointed out that the PF is even less critical 

in this case. The number of the pole pairs that minimize the 

Joule loss density here is very different from the one found for 

the previous design example, since, as it will be demonstrated 

in the next subsection, this value is strictly related to the 

machine size and required torque. 

C. Optimal pole pairs number for Joule loss minimization 

The number of pole pairs po (29), that minimizes the Joule 

loss, can be expressed analytically, if (27) is minimized, 

reminding (23) and applying the proposed procedure to write 

both Ad and Aq0 as functions of the two design variables. 

   √  (                      )(                  )    (29) 

In (29), the torque density TSV is referred to the stator 

volume and ksh is the winding shortening factor, which is 

lower than one only in case of chorded windings.  

Equation (29) can be simplified, obtaining (30), with very 

little loss of accuracy, especially when the factors lt/r and lt/l 

are small, as it is for large size generators. 

   ̃ √  (           )  (            )    (30) 

Equation (30) puts in evidence that po depends on: 

 the outer radius to length ratio r/l, representative of the 

shape of the stack; 

 the outer radius to airgap ratio r/g, accounting for the 

machine size and mechanical aspects; 

 the torque density per stator volume TSV, again related to 

the machine size and to the type of cooling. 

In general, pancake shape (i.e. r/l >> 1), small per unit 

airgap and high TSV are all factors leading to increase the 

optimal number of poles for Joule loss minimization. This is 

quantified by (30) and confirmed by the examples examined in 

the previous subsection. In fact, if compared to the prototyped 

lift motor, the wind generator has a TSV that is increased by 

2.4 times, a double r/g value and a r/l ratio increased by 1.33. 

Then, also the optimal pole pairs number shifts from 7 to 

nearly 20, as graphically represented by Fig. 12a and Fig. 13a. 

VI. FEA AND EXPERIMENTAL RESULTS 

A. FASR prototypes and experimental setup 

Two twin motors for lift application were prototyped, on the 

basis of the specifications discussed in the previous section. 

 

Fig. 14.  Twin FASR prototypes, shaft connected on the test rig. 

TABLE III  

DESIGN PARAMETERS, GEOMETRICAL INPUTS AND OUTPUTS. 

Design Parameters  Input data 

Yoke per-unit width b 0.54  Torque T 795  Nm 

Back-iron flux density Bfe 1.55 T  Nominal Speed 168  rpm 

Tooth width factor kt 0.92  Stator diameter 2r 380  mm 

Rotor slots per pole pair nr 14  Active Length l 250  mm 

Rotor flux barriers n 3  Airgap length g 0.75 mm 

Pu rotor insulation la,pu  0.42  Geometrical design outputs 

Pu magnets volume Vm,pu  0.30  Pole pairs p 7 

Slot per pole per phase q 3  Pu tooth length lt/r 14.4 % 

Winding factor kw 0.96  Rotor diameter 2r’ 296.5 mm 

End connections  factor kend 1.53  Other outputs 

Slot filling factor kCu 0.4  PMs remanence Br 0.37 T 

 

(a) 

(b) 

Fig. 15.  d- and q-axis stator flux linkages of the twin prototypes of Fig. 14. 

Both the FEA results and the experimental data refer to a stabilized value of 

the operating PMs temperature (that is, 100°C). 

The prototypes are “Naturally Compensated” FASR 
machines, designed with a number of pole pairs equal to po 

(30) in order to minimize the Joule loss (that is, the “circle” 
design in Fig. 12). The main input data, normalized 

parameters and outputs of the design are reported in Table III. 

The magnet grade Br needed to fulfill the “Natural 
Compensation” condition has been evaluated taking into 

account the effect of the rotor structural bridges, that reduce 

the concentration of the PMs flux linkage by 16%, in this case  
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(Appendix A). 

During the tests, the two prototypes were shaft connected, 

as shown in Fig. 14, and the respective converters were back 

to back connected, with the dc-link in common. A torque-

meter (HBM-T40B) was interposed and two power analyzers 

(Zimmer-LMG500) were used to log the electric quantities at 

the two machines’ terminals. Continuous operation was tested, 

with the direct measurement of the stator temperatures 

(windings, chassis) and the estimation of the PMs ones via 

back-emf measurement. 

The flux linkage curves (Fig 15) and the torque one (Fig.16) 

have been identified over the (id, iq) plane, following the 

experimental procedure introduced in [24]. The results of Fig. 

15 show that both the d- and q-axis flux linkages are just 

merely affected by the current on the heteronymous axis, at 

least in the area of interest for the control (that is, iq ≥ 0). 
Especially for the d-axis flux linkages, it occurs thanks to the 

choice of “Natural Compensation”. So the experimental 

results confirms the theoretical discussion. In Fig. 15, the 2D 

FEA flux linkages do match quite well the experimental ones. 

The leakage fluxes in the cast iron stator chassis are not 

negligible in this case and they were included in the FE model. 

The end connections flux linkages are small, if compared to 

the other contributes, and were not modeled. Anyway, as all 

the leakage fluxes do not contribute to produce the torque, the 

accordance between FEA and experiment is always good, 

when comparing the torque, as done in Fig 16 at given current 

amplitudes and variable current arguments. 

 

Fig. 16.  Torque curves of the twin prototypes of Fig. 14 at constant current 

amplitude and variable phase angle. Both the FEA results and the 

experimental data refer to a stabilized value of the operating PMs temperature 

(that is, 100°C). 

TABLE IV 

EXPERIMENTS, FEA AND MODEL: COMPARISON OF THE RESULTS 

Quantity Exp. FEA Model  

Torque 791 799 795 Nm 

Current 28.3 28.3 A rms 

Current phase angle 53.3 61.0 degree 

PM-flux (20°C) 1.0 1.0 0.99 Vs 

d-flux 2.34 2.36 2.33 Vs 

q-flux -0.01 -0.015 0 Vs 

Line Voltage 230 - - Vrms 

Joule loss 2660 - 3134 W 

Copper temperature 100 °C 

Power Factor 0.85 0.87 0.87  

Core loss (stator + rotor) 300 - - W 

Loss density - Joule (kj) 8980 - 10500 W/m2 

Loss density - Total (kj) 9988 - 10500 W/m2 

B. Validation if the adopted analytical model 

A detailed list of the results produced by the adopted model 

is reported in Table IV, for a fair comparison to the 

experimental and FEA data. As it can be seen, a very good 

matching has been obtained between experimental and model 

results, except for the optimal current phase angle and the 

expected Joule loss. The former is underestimated by the 

model, as the core saturation effects contribute to modify the 

Maximum Torque Per Ampere (MTPA) locus in the (id, iq) 

plane. However, it is worth pointing out that the current 

amplitude, needed to produce the willed torque, is predicted 

with good accuracy. This is also thanks to the corrective factor 

proposed in Appendix B for the d-axis current loading. It 

attempts to compensate for the stator back iron magnetic 

potential drops increasing Ad by 14%. On the contrary, the 

model overestimates the Joule loss, because of the rectified 

geometry, which schematically models parallel side slots, 

referring their constant widths to the (shorter) bore radius. 

Anyway, the model estimation results “safer” from this point 

of view. This is valid for the prototypes under test, even if the 

additional core losses are considered. Their measured value is 

reported in Table IV. 

In Table IV the FEA results are reported as well, for 

completeness. Their agreement with the experiment looks 

reasonably good, according to what already discussed about 

the stator flux linkages and the need of modeling the effect of 

the cast iron chassis (Fig. 15). 

VII. CONCLUSION 

A general approach to the optimal design of multipolar 

FASR machines has been discussed. The procedure is based 

on a fully analytical per-unit model, that has a twofold 

purpose. First, it aims at orienting the designers to the most 

convenient solutions by means of general guidelines, suitable 

for machines of all sizes and applications. Then, it provides 

closed-form equations to determine all the design variables 

and performance indicators of the machine. As a result, the 

FEA is not mandatory, but just useful for final refinements. In 

particular, a simple formula suggests the optimal pole pairs 

number to be adopted if the machine efficiency needs to 

maximized, greatly simplifying the design task. In order to 

prove the generality of the design approach, the proposed 

method has been validated on different cases and, as an 

example, the paper refers to a direct-drive lift motor prototype 

and presents the experimental and FEA results, together with 

the model outputs. All the data are in good accordance, despite 

the simple nature of the adopted model. 

APPENDIX 

A. Appendix A 

Rotor structural bridges shunt a portion of the PM flux, 

weakening the no load flux density in the airgap. As deeper 

explained in [4], their magnetic behavior can be modeled by 

the Norton equivalent circuit of Fig. 17, where the parameters 

rib,k and prib,k depend on: 

 the rib working point on the saturated B-H curve of the 

rotor iron (namely, the flux density BR and the respective 

relative permeability R); 
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 the rib thickness Srib,k and length, which can be expressed 

in pu of the respective barrier length via the factor krib. 

With some manipulations, the superposition of the magnets 

model and the ribs one can be seen as its Thevenin equivalent, 

that has again the form of a PM-generated mmf mk*and an 

equivalent permeance pbk*, as the barrier circuit introduced in 

Fig. 2. 

 
Fig. 17  Circuital model with structural bridges included. 

As a result, when it is needed to quantify the reduction of 

the PM flux due to the rotor structural ribs, it is sufficient to 

write the equations derived in Subsection III.C for finding out 

the no load flux density Bgap,m substituting S1 with S1* (31) and 

Br with Br* (32).                     (31) 

                       
(32) 

B. Appendix B 

The magnetic potential drops associated to the flow of the 

d-axis flux in the stator back iron can be compensated, if the 

magnetizing current loading Ad (6) is increased by ksat (33): 

                   (    )           (33) 

fe is the iron relative permeability in correspondence of the 

working flux density Bfe. Bfe is typically chosen to be around 

1.5-1.7 T and the related fe values are in the range of 600-

800. 
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