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Multipolar interband absorption in a
semiconductor quantum dot.

I. Electric quadrupole enhancement
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We present a theoretical investigation of a semiconductor quantum dot interacting with a strongly localized
optical field as encountered in high-resolution near-field optical microscopy. The strong gradients of these
localized fields suggest that higher-order multipolar interactions will affect the standard electric dipole tran-
sition rates and selection rules. For a semiconductor quantum dot in the strong confinement limit we calcu-
lated the interband electric quadrupole absorption rate and the associated selection rules. We found that the
electric quadrupole absorption rate is comparable with the absorption rate calculated in the electric dipole ap-
proximation. This implies that near-field optical techniques can extend the range of spectroscopic measure-
ments beyond the standard dipole approximation. However, we also show that spatial resolution cannot be
improved by the selective excitation of electric quadrupole transitions. © 2002 Optical Society of America

OCIS codes: 160.4760, 160.6000, 180.5810, 300.6470.

1. INTRODUCTION

Near-field optical techniques have extended the range of
optical measurements beyond the diffraction limit and
stimulated interest in many disciplines, especially in ma-
terial sciences and biological sciences.1,2 The increase of
spatial resolution is achieved by access to evanescent
modes in the electromagnetic field. These modes are
characterized by high spatial frequencies and therefore
permit the probing of subwavelength structures. Near-
field optical techniques have also been employed for the
study of optical properties and dynamics of charge carri-
ers in artificial nanostructures such as quantum wells,
quantum wires, and quantum dots (see, for example,
Refs. 3–5).

Nanostructures interacting with optical near fields do
not necessarily behave in the same way as nanostructures
interacting with far-field radiation. For example, as de-
scribed in Ref. 6, the response of a quantum well when it
is excited by the diffracted field of an aperture causes the
enhancement of quadrupole transitions, giving rise to a
modified absorption spectrum of the quantum well. Fur-
thermore, absorption properties may also be modified as a
result of nonlocal spatial dispersion, as described in Ref.
7. Recently Knorr et al. formulated a general theoreti-
cal, self-consistant multipolar formalism for solids. This
formalism can even be extended to account for delocalized
charges.8 The spectral response that originates from the
interaction between semiconductor quantum dots and the
optical field generated by a small aperture has been dis-
cussed in Refs. 9–11. References 10 and 11 account for
the highly inhomogeneous excitation field produced by
the subwavelength aperture.

In this paper we focus on the interaction of a spherical
semiconductor quantum dot with a highly confined optical
near field. It has been shown that such fields can be gen-
erated near laser-illuminated sharply pointed tips.12–14

Here we adopt this geometry and approximate the fields
near the tip by an oscillating electric dipole oriented along
the tip axis. In the research reported in Ref. 15 it was
demonstrated that this is a reasonable approximation
and that the dipole moment can be related to the compu-
tationally determined field enhancement factor. Fur-
thermore, our analysis relies only on the field distribution
and does not depend on the actual enhancement factor.
We consider here a spherical quantum dot in the strong
confinement limit.

The interaction between a quantum dot and the optical
near field is described semiclassically by use of the multi-
polar expansion. For far-field excitation the first term in
this expansion, the electric dipole term, gives rise to a re-
sponse that is considerably stronger than the response
produced by subsequent terms. This is so because the
physical dimension of the quantum dot is much smaller
than the wavelength of optical radiation and is due to the
weak spatial variation of the exciting far field. However,
the spatial variations of optical near fields are much
stronger, and, as consequence, it is suspected that the
contribution of higher terms in the multipolar expansion
cannot a priori be neglected. In this paper we analyze
the strength of electric quadrupole absorption compared
with the strength of electric dipole absorption. Our
study is motivated by a search for the answers to two ba-
sic questions: (1) to what extent are standard selection
rules modified by higher-order multipolar transitions in
confined optical fields and (2) can optical resolution be im-
proved by selective excitation of higher-order multipole
transitions. To keep the analysis as simple as possible
we neglect Coulomb interaction between hole and elec-
tron as well as the spin of these particles.

The paper is organized as follows: The semiclassical
multipolar Hamiltonian formalism is presented in Section
2. In the same section we review the wave functions for
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the hole and the electron in an ideal spherical quantum
dot and outline the field operator representation. In Sec-
tion 3 we discuss the absorption rate in the electric dipole
approximation, and then, in Section 4, derive the absorp-
tion rate that arises from the electric quadrupole term in
the multipolar expansion. In Section 5 the theory is ap-
plied to a quantum dot near a laser-illuminated metal tip.
We use approximated parameters for GaAs to estimate
the absorption rate for electric dipole transitions and elec-
tric quadrupole transitions. Finally, the results are dis-
cussed and our conclusions are presented in Section 7.

2. PRELIMINARY CONCEPTS

A. Multipolar Hamiltonian
We use a semiclassical approach to describe the interac-
tion of a quantum dot with the electromagnetic field. In
this approach the electromagnetic field obeys Maxwell’s

equations, and the Hamiltonian of the system (Ĥ) can be
separated into two contributions as

Ĥ 5 Ĥo 1 ĤI , (1)

where Ĥo and ĤI are the unperturbed Hamiltonian (ab-
sence of fields) and the interaction Hamiltonian, respec-
tively. In the Coulomb gauge they are defined as

Ĥo 5

1

2m
p̂2

1 V~r!, (2)

ĤI 5 2

e

m
p̂ • A~r, t ! 1

e2

2m
A2~r, t ! 1 ef~r, t !, (3)

where V(r) is the potential energy, p̂ is the canonical mo-
mentum, A(r, t) is the vector potential, and f(r, t) is the
scalar potential. The multipolar Hamiltonian is obtained

by use of canonical transformation Û 5 exp(iz/\), in
which z is given by16,17

z 5 E P̃~r! • A~r, t !d3r [ 0, (4)

where P̃(r) is the polarization. If vector potential A(r, t)
and scalar potential f(r, t) are expanded in a Taylor se-
ries with respect to a reference charge distribution at R,
as follows:

A~r, t ! 5 (
n50

`
1

~n 1 2 !n!
@~r 2 R! • ¹#nB~R, t !

3 ~r 2 R!, (5)

f~r, t ! 5 (
n50

`
21

~n 1 1 !!
~r 2 R!@~r 2 R! • ¹#n

• E~R, t !,

(6)

then this choice of A(r, t) and f(r, t) satisfies condition
(4). By substituting Eqs. (5) and (6) into Eq. (3) we ob-
tain

ĤI 5 ĤE
1 ĤM

1 ĤQ
1 ... . (7)

Here ĤE, ĤM, and ĤQ are the first three terms of the
multipolar expansion, namely, the electric dipole, the
magnetic dipole, and the electric quadrupole, respectively,
which are defined as

ĤE
5 2d • E~r, t !ur5R , (8a)

ĤM
5 2m • B~r, t !ur5R , (8b)

ĤQ
5 2¹1 • QIE~r1 , t !ur15R . (8c)

d, m, and QI are the electric dipole moment, the magnetic
dipole moment, and the electric quadrupole moment, re-
spectively, with respect to a reference charge distribution
at R. Nabla operator ¹1 acts only on the spatial coordi-
nates r1 of the electric field. It is important to mention
that m depends on the canonical momentum. However,
for weak fields the canonical momentum can be approxi-
mated as the mechanical momentum.

B. Quantum Dot Wave Functions (Strong Confinement)
We assume that a spherical quantum dot is made from a
direct bandgap semiconductor for which the bulk electric
dipole transitions are allowed between the valence band
and the conduction band. In a generic manner we as-
sume that the valence band has a p-like character and
that the conduction band has an s-like character. The
latter assumption is commonly encountered for several
semiconductors such as GaAs. We also assume that an
electron and a hole are completely confined in a sphere
with radius a by the potential energy

V~r ! 5 H 0 r < a

` r . a
, (9)

where r is the radial coordinate. Also, we assume that
the electron (hole) has the same effective mass me (mh)
as in the bulk material. This assumption is valid if the
volume of the sphere is much larger than the volume of a
primitive cell in the crystal. Strong confinement is
achieved if the Bohr radii of electron be and hole bh are
much larger than the radius of the quantum dot, a. By
assuming the aforementioned conditions we can express
the wave function of the electron in the conduction band
as

Ce~r! 5

1

AVo

uc,0~r!ze~r!. (10)

Here uc,0(r) is the conduction band Bloch function (with
lattice periodicity) that has the corresponding eigenvalue
k 5 0, and Vo is the volume of the unit cell. Similarily,
the corresponding wave function for the hole in the va-
lence band is

Ch~r! 5

1

AVo

uv,0~r!zh~r!, (11)

where uv,0(r) is the valence band Bloch function with ei-
genvalue k 5 0. ze(r) and zh(r) are the envelope func-
tions, which vary spatially much more slowly than uv,0(r)
and uc,0(r). Roughly, the energy difference between ad-
jacent electron (hole) energy levels is (\2/mea

2)
@\2/(mha2)#. If this energy difference is much larger
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than Coulomb interaction e2/(4p«oea2), the electron–

hole interaction can be neglected. Under this assump-
tion, envelope function ze(h)(r) for the electron (hole) sat-
isfies the time-independent Schrödinger equation in
which the potential energy is given by Eq. (9). The solu-
tion in spherical coordinates (r, u, f ) is given by

zn,l,m
e~h ! ~r, u, f ! 5 Lnl~r !Y l,m~u, f !. (12)

Here Y l,m(u, f ) are the spherical harmonics, and the ra-
dial function Lnl(r) is

Lnl~r ! 5 A 2

a3

1

j l11~bnl!
j lS bnl

r

a
D . (13)

j l is the lth-order spherical Bessel function and bnl is the
nth root of j l , that is, j l(bnl) 5 0. The corresponding en-
ergy levels E

e,h are found to be

E
e

5 Eg 1

\2

2me
S bnl

a
D 2

, (14)

E
h

5

\2

2mh
S bnl

a
D 2

, (15)

where Eg is the bulk energy bandgap. Figure 1 shows the
resultant level scheme. According to Eqs. (14) and (15)
the energy is independent of quantum number m; thus
energy level nl is (2l 1 1)-fold degenerate.

C. Field Operator Representation

The annihilation carrier field operator $Ĉ% can be ex-
pressed as a linear combination of hole creation operators
in the valence band and electron annihilation operators in
the conduction band, that is,18,19

Ĉ~r! 5 (
n,l,m

F 1

AVo

uc,0~r!znlm
e ~r! f̂nlm

1

1

AVo

uv,0~r!znlm
h ~r!ĝnlm

† G . (16)

f̂nlm is the annihilation operator for an electron in the
conduction band with envelope function znlm

e (r); ĝnlm
† is

the creation operator for a hole in the valence band with
envelope function znlm

h (r). Creation carrier field opera-

tor Ĉ† is the adjoint of Eq. (16).

3. ABSORPTION IN THE ELECTRIC DIPOLE
APPROXIMATION

We consider a monochromatic electric field oscillating
with frequency v as

E~r, t ! 5 Ẽ~r!exp~2ivt ! 1 c.c. (17)

Here Ẽ(r) is the spatial complex amplitude and c.c.
means a complex conjugate. By setting origin O at the
center of the quantum dot and using the rotating-wave
approximation we arrive at an electric dipole transition
rate aE for photon absorption18,19:

aE
5 Ke (

nml
(
rst

d̃nrd̃ lsd̃mtd@\v 2 ~E nl
e

1 E rs
h !#, (18)

where d̃ is the Kronecker delta tensor, d is the Dirac delta
function, and Ke is the absorption strength, given by

Ke 5

2p

\
e2uẼ~0! • Pcvu2, (19)

Pcv 5

1

Vo

E
UC

uc,0* ~r8!r8uv,0~r8!d3r8

5 2

\

mov
mcv . (20)

Here mcv is defined as

mcv [
1

V0
E

UC

uc,0* ~r8!¹8uv,0~r8!d3r8, (21)

where UC denotes the volume of the unit cell. In Eq. (20)
we have used the fact that r̂ [ 2ip̂/mov (mo and e are
the rest mass and the charge of the electron, respec-
tively). From Eq. (18) we notice that the absorption
strength (Ke) depends only on the bulk material proper-
ties of the quantum dot. That is, it depends on Bloch
functions uc0 and uv0 , and it is not influenced by the en-
velope functions znlm

e,h (r). Also, Eq. (18) indicates that
the allowed transitions are those for which electron and
hole have the same quantum numbers, that is,

n 5 r, l 5 s, m 5 t.

These relationships define the selection rules for electric
dipole transitions in a semiconductor quantum dot.

Fig. 1. Energy-level diagram of a spherical quantum dot accord-
ing to Eqs. (14) and (15). Each energy level is characterized by
quantum numbers n and l, and its degeneracy corresponds to
quantum number m. Differently from the case of a hydrogen
atom, quantum number n does not restrict the number of subor-
bitals l.
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4. ABSORPTION ARISING FROM THE
QUADRUPOLE TERM

A. Electric Quadrupole Hamiltonian

The electric quadrupole interaction Hamiltonian ĤQ can
be represented as

ĤQ
5 E Ĉ†~r!HQ~r!Ĉ~r!d3r, (22)

HQ~r! 5 2¹1 • QI ~r!E~r1 , t !ur150 , (23)

where the QI (r) is the quadrupole moment:

QI ~r! 5 ~1/2!err. (24)

Here and in what follows, the subsequent listing of two
vectors [as in Eq. (24)] denotes the outer product (dyadic
product). The interband terms are found by substitution
of Eq. (16) and its adjoint into Eq. (22), thus:

ĤQ
5 2¹1 • F(

nlm
(
rst

f̂nlm
† ĝrst

† E uc,0* ~r!z nlm
e
* ~r!

3 QI ~r!uv,0~r!zrst
h ~r!d3rGE~r1 , t !U

r150

1 h.c.,

(25)

where (h.c.) denotes the Hermitian conjugate. We calcu-
late the integral on the right-hand side of Eq. (25) by de-
composing it into a sum of integrals over the volume oc-
cupied by each of the unit cells. Applying the coordinate
transformation r8 5 r 2 Rq , where Rq is a translational
lattice vector (the lattice remains unchanged when it is
translated by Rq), yields for Eq. (25)

ĤQ
5 2¹1 • F e(

nlm
(
rst

(
q

f̂ nlm
† ĝ rst

† E
UC

uc,0* ~r8 1 Rq!

3 znlm
e
* ~r8 1 Rq!QI ~r8 1 Rq!uv,0~r8 1 Rq!

3 zrst
h ~r8 1 Rq!d3r8GE~r1 , t !U

r150

1 h.c. (26)

Because u i,0(r8 1 Rq) 5 u i,0(r8) (i 5 c, v) and the func-
tions znlm

h (r8 1 Rq) and znlm
e (r8 1 Rq) are practically

constant in each unit cell volume, Eq. (26) can be approxi-
mated as

ĤQ ' 2¹1 • F e (
nlm

(
rst

(
q

f̂ nlm
† ĝ rst

† znlm
e
* ~Rq!zrst

h ~Rq!

3 ~1/2 RqPcv 1 1/2 PcvRq 1 QI cv!GE~r1 , t !U
r150

1 h.c. (27)

Here Pcv is given by Eq. (20) and QI cv is defined as

QI cv 5

1

2Vo

E
UC

uc,0* ~r8!r8r8uv,0~r8!d3r8. (28)

The term containing RqRq has vanished because of the or-

thogonality of the Bloch functions, i.e., ^u i,0uu j,0& 5 d̃ ij ; i,

j 5 c, v. QI cv vanishes because we are assuming that the

valence band is p like and the conduction band is s like.

Thus, using QI cv 5 0 and replacing (q → *dR yield for re-
lation (27)

ĤQ
5 2¹1 • F e(

nlm
(
rst

f̂
nlm

† ĝ
rst

†@1/2 PcvDnmlrst

1 1/2 DnmlrstPcv#GE~r1 , t !ur1 5 0 1 h.c. (29)

Here Dnmlrst is defined as

Dnmlrst [ E znlm
e
* ~R!Rzrst

h ~R!d3R, (30)

with the integration running over the volume of the quan-
tum dot. Equation (29) is the final expression for electric

quadrupole Hamiltonian ĤQ. The factor Dnmlrst depends
only on the envelope functions. Using the definition of
znlm

e,h (R) given by Eq. (12) yields for Dnmlrst

Dnmlrst 5 AnlrsB lmBstX Cst

2~2l 1 1 !
~nx 6 iny!

3 $d̃ ~m11 !t@ d̃ l~s21 ! 1 d̃ l~s11 !#

1 d̃ ~m21 !t@~l 2 m 1 1 !~l 2 m 1 2 !d̃ l~s21 !

2 ~1 1 m !~l 1 m 2 1 !d̃ l~s11 !#%

1 nzC lmd̃mtF l 1 m 1 1

2l 1 3
d̃ l~s21 !

1

l 2 m

2l 2 1
d̃ l~s11 !G C, (31)

where nx, ny, and nz are the Cartesian unitary vectors,
and the coefficients Anlrs , B lm , and C lm are given by

Anlrs [ 2p E
0

a

R3Lnl~R !Lrs~R !dR, (32a)

B lm [ F ~2l 1 1 !

4p

~l 2 m !!

~l 1 m !!
G1/2

, (32b)

C lm [
2~l 1 m !!

~2l 1 1 !~l 2 m !!
. (32c)

B. Electric Quadrupole Selection Rules and Absorption
Rate
Using the Fermi Golden Rule yields the electric quadru-
pole transition rate (aQ) for photon absorption:

aQ
5

2p

\
(
nlm

(
rst

u^nml; rstuĤ int
Q u0&u2d @\v

2 ~E nl
e

1 E rs
h !#. (33)

Here u0& is the ground state of the quantum dot. By sub-
stituting Eq. (29) into Eq. (33) we obtain the electric
quadrupole transition rate:
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aQ
5

2p

\
e2 (

nlm
(
rst

u¹1 • ~1/2 PcvDnmlrst

1 1/2 DnmlrstPcv!Ẽ~r1!ur150u2d @\v 2 ~E nl
e

1 E rs
h !#.

(34)

We find that the electric quadrupole absorption rate con-
tains the dyadic product of Pcv and Dnmlrst and vice versa.
Whereas Pcv depends on the bulk material properties,
Dnmlrst depends on the quantum dot properties [see Eqs.
(20) and (31)]. This term implies that the allowed elec-
tric quadrupole transitions occur when the quantum
numbers l, s, m, and t fulfill

m 2 t 5 61, l 2 s 5 61

or

m 2 t 5 0, l 2 s 5 61.

These relationships form the selection rules for the elec-
tric quadrupole transitions in a semiconductor quantum
dot. Figure 2 illustrates the first few allowed quadrupole
transitions. We find that the quadrupole selection rules
exclude any electric dipole allowed transitions and there-
fore allow us to separate the electric quadrupole transi-
tions spectroscopically from the electric dipole transi-
tions.

5. ABSORPTION RATES IN STRONGLY
CONFINED OPTICAL FIELDS

To compare the electric dipole and the electric quadrupole
absorption rates in strongly confined optical fields we con-
sider a quantum dot in the vicinity of a laser-illuminated
metal tip. This situation is encountered in so-called ap-
ertureless schemes of near-field optical microscopy. The
strongest light confinement is achieved when the metal
tip is irradiated with light polarized along the tip’s axis.

For this situation Fig. 3(a) shows field distribution (uEu2)
rigorously calculated by the multiple multipole method20

near a gold tip with a 10-nm end diameter and irradiated
with l 5 800-nm light.21 In the multiple multipole
method, electromagnetic fields are represented by a series
expansion of known analytical solutions of Maxwell’s
equations. To determine the unknown coefficients in the
series expansion we impose boundary conditions at dis-
crete points on the interfaces between adjacent homoge-
neous domains. The calculated field distribution for our
particular geometry can be well approximated by the field
generated by an electric dipole aligned along tip axis z

and located at the origin of tip curvature. Figure 3(b)
demonstrates the validity of this dipole approximation:
rigorously calculated field strength (uEu2) for the metal tip
is plotted along the z axis (solid curve) and compared with
the corresponding field generated by the dipole (dashed
curve).15 The only adjustable parameter is dipole mo-
ment po , which can be related to the computationally de-
termined field enhancement factor. Because of this very
good approximation, we simply replace the laser-
illuminated metal tip with a dipole.

Electric field E(r) generated by an oscillating electric
dipole with moment po located at ro and oscillating at an-
gular frequency v can be represented as

Ẽ~r! 5

ko
2

«o

GI ~r, ro , v !po . (35)

Here ko 5 v/c, where c is the vacuum speed of light, and
GI (r, ro , v) is the free-space dyadic Green’s function.22

We consider the situation depicted in Fig. 4 for which a
sharp metal tip illuminated with light polarized along the
tip’s axis (z axis) is replaced by a dipole with magnitude
po and oriented in the z direction. The dipole is located
at ro 5 zonz , and the quantum dot coordinates are r

5 xnx 1 yny . The quantum dot is scanned in the plane
z 5 0 while the position of the exciting dipole is kept
fixed.

Fig. 2. Diagram of the allowed electric quadrupole transitions
in a spherical quantum dot. The energy levels are labeled by
the quantum numbers nlm (electron) and rst (hole). The selec-
tion rules are [l 2 s 5 61 and (m 2 t 5 61 or m 2 t 5 0)].
The allowed electric quadrupole transitions exclude the allowed
electric dipole transitions.

Fig. 3. (a) Computed field distribution (uEu2) near a gold tip ir-
radiated by a plane wave polarized along the tip’s axis. Loga-
rithmic scaling with a factor of 2 between successive contour
lines. (b) Comparison of the computed field (uEu2, solid curve)
with the corresponding field of a dipole (uEu2, dashed curve) ori-
ented along the tip’s axis and located inside the tip. Both fields
are evaluated along tip axis z, where z 5 0 coincides with the
tip’s surface.
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To calculate electric quadrupole absorption rate (aQ)
and electric dipole absorption rate (aE) we consider Bloch
functions for the valence band and the conduction band
that are similar to those of GaAs. If we ignore spin–orbit
coupling and spin degeneracy, the p-like valence band is
threefold degenerate. The Bloch functions are calculated
by the empirical pseudo-potential method with param-
eters taken from Ref. 23. GaAs has a lattice constant of
d 5 0.565 nm, and the effective masses of electron and
hole are me 5 0.067mo and mh 5 0.080mo (light hole),
respectively. Inclusion of the heavy hole will shift the
hole energy levels only as long as the heavy-hole Bohr ra-
dius is larger than the quantum dot radius.

We consider the lowest allowed electric dipole transi-
tion, i.e., the transition with the lowest allowed energy
difference between initial and final states. During this
transition an electron with quantum numbers (100) and a
hole with quantum numbers (100) are created. As there
is no preferential coordinate axis we take the rotational
average of Eq. (18). Also, taking into account the degen-
eracy of the valence band (threefold) yields as the aver-
aged electric dipole absorption rate

^aE& 5 ^Ke&d @\v 2 ~E 10
e

1 E 10
h !#, (36)

where ^Ke& is

^Ke& 5

2p

\
e2uẼ~0 !u2uPu2 (37)

and

uPu 5 uPcv1
u 5 uPcv2

u 5 uPcv3
u. (38)

By computing numerically the integral of Eq. (20) over a
unit cell of the crystal we obtain that uPu ' 0.75d.

The lowest energy allowed electric quadrupole transi-
tion creates a hole with quantum numbers (110), (11-1), or
(111) (threefold degeneracy) and an electron with quan-
tum numbers (100). Again, there is no preferential coor-
dinate axis, so the rotational average of Eq. (34) has to be
evaluated. Because the electric quadrupole moment is
the dyadic product of two vectors with independent orien-

tations, the rotational average of Eq. (34) is obtained in a
straightforward manner. After the average is evaluated
and the degeneracy of the valence band and the hole en-
ergy level are taken into account, the averaged electric
quadrupole absorption rate becomes

^aQ& 5 ^KQ&d @\v 2 ~E 10
e

1 E 10
h !#. (39)

Here ^KQ& corresponds to

^KQ& 5

2p

\

e2

2
uPu2uDu2

3 (
i, j

FU ]

]x i

Ẽ j~0!U2

1

]

]x i

Ẽ j~0!
]

]x j

Ẽ i
*~0!G .

(40)

The ith Cartesian coordinate is denoted x i , and Ẽ i(r) is
the ith Cartesian component of the electric field Ẽi(r).
uDu corresponds to

uDu 5 uD100110u 5 uD100111u 5 uD1001121u. (41)

The integration of Eq. (41) over the quantum dot volume
renders a value uDu ' 0.3a.

6. DISCUSSION OF THE
NEAR-FIELD–QUANTUM DOT
INTERACTION

We analyze absorption rates for quantum dots with the
two different radii, a 5 5 nm and a 5 10 nm. For a

5 5 nm the electric quadrupole transition is excited at a
wavelength of l ' 500 nm; the electric dipole transition,
at l ' 550 nm. The quadrupole transition for a quan-
tum dot of radius a 5 10 nm occurs at l ' 615 nm, and
the electric dipole transition at l ' 630 nm.

For a quantum dot that is just beneath the exciting di-
pole (r 5 0), Figure 5 shows the ratio of the quadrupole
absorption rate and the dipole absorption rate
(^aQ&/^aE&) as a function of normalized separation zo /l.
The vertical dashed lines indicate the minimum physical
distance between the quantum dot and the dipole, i.e., the
limit at which the tip and the quantum dot would touch
(we assume a tip radius of 5 nm).

For the quantum dot with radius a 5 5 nm and an ex-
citation wavelength of l 5 550 nm the normalized mini-
mum distance is zo

min/l ' 0.018. Similarly, for the quan-
tum dot with radius a 5 10 nm and a wavelength of l

5 630 nm the minimum distance is 15 nm, which corre-
sponds to a normalized distance of zo

min/l ' 0.024. The
important finding is that the ratio ^aQ&/^aE& can be as
high as 0.3 for a 5-nm quantum dot [see Fig. 5(a)] and
even 0.6 for a 10-nm quantum dot [see Fig. 5(b)]. These
values are roughly 3 orders of magnitude larger than
those obtained by use of far-field excitation [for plane-
wave excitation the ratio is of the order of (a/l)2]. Thus
we find that, in the extreme near field (zo , l/10), quad-
rupole transitions become important and the electric di-
pole approximation is not sufficiently accurate.

Fig. 4. Simplified configuration of a quantum dot (r 5 xnx

1 yny) interacting with a laser-illuminated metal tip. The tip
is replaced with a vertical dipole (ro 5 zonz) with moment po

and oriented along the z axis.
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We generated the plots in Figs. 6 and 7 by scanning the
quantum dot in the xy plane while keeping the exciting
dipole at constant height zo . Figure 6 shows the electric
dipole absorption rate ^aE&, whereas Fig. 7 shows the
electric quadrupole absorption rate ^aQ&. Both plots are
symmetrical with respect to the z axis. For ^aE& this
symmetry is generated by the dominant field component
Ẽz , whereas for ^aQ& the symmetry is due to the strong
field gradient ]Ẽz /]z. The electric dipole absorption rate
is proportional to the square of the particle dipole mo-
ment po and to the square of the lattice constant of the
crystal d. The quadrupole absorption rate is also propor-
tional to the square of (a/l), as is evident from Fig. 7,
where the ratio a/l in Fig. 7(b) is twice the ratio a/l in
Fig. 7(a). A comparison of the widths of the curves in
Figs. 6 and 7 shows that no improvement of spatial reso-

Fig. 5. Ratio of electric quadrupole absorption rate ^aQ& and
electric dipole absorption rate ^aE& as a function of normalized
distance (zo /lo) between excitation dipole (ro 5 zonz) and quan-
tum dot center (r 5 0). The quantum dot radius is (a) a

5 5 nm and (b) a 5 10 nm. Vertical dashed lines: minimum
physical separation between the center of the quantum dot and
the exciting dipole. This separation corresponds to a t 1 a,
where a t 5 5 nm is the radius of curvature of the metal tip.

Fig. 6. Electric dipole absorption rate ^aE& as a function of nor-
malized lateral coordinates (x/l, y/l). The height of the exci-
tation dipole is zo 5 0.025l. e, d, and po denote the elementary
charge, the lattice constant, and the dipole moment, respectively.

Fig. 7. Electric dipole absorption rate ^aQ& as a function of nor-
malized lateral coordinates (x/l, y/l). The height of the exci-
tation dipole is zo 5 0.025l. e, d, and po denote the elementary
charge, the lattice constant, and the dipole moment, respectively.
The quantum dot radius is (a) a 5 0.01l and (b) a 5 0.02l.
The width of the curve is roughly the same as in Fig. 6, which
indicates that no improvement of resolution can be achieved by
quadrupole transitions.
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lution can be achieved by selective probing of optical
quadrupole transitions.

7. CONCLUSIONS

We have analyzed higher-order multipole interactions be-
tween a semiconductor quantum dot and a strongly con-
fined optical field. Expressions have been derived for the
electric quadrupole interaction Hamiltonian, the associ-
ated absorption rate, and selection rules. It has been as-
sumed that the quantum dot has a p-like valence band
and an s-like conduction band. Also, the Bohr radii of
electron and hole were assumed to be larger than the
sphere radius (strong confinement limit), and no Coulomb
interactions between hole and electron have been taken
into account. Because they have different selection
rules, electric dipole and electric quadrupole interband
transitions can be separated and selectively excited. The
electric quadrupole absorption strength depends on the
bulk properties of the material (Bloch functions) as well
as on the envelope functions (confinement functions). In
this way it differs from the electric dipole absorption
strength, which depends only on the bulk properties of
the semiconductor. When the quantum dot with radius a

interacts with the confined optical field produced by a
sharply pointed tip, the ratio between the electric quad-
rupole absorption rate and the electric dipole absorption
rate can be as high as 0.3 for a 5 5 nm and even 0.6 for
a 5 10 nm. Electric quadrupole transitions cannot be
ignored in the extreme near field, i.e., for separations be-
tween tip and quantum dot smaller than l/10. The in-
clusion of electric quadrupole transitions modifies the ab-
sorption spectra of quantum dots in the extreme near
field. However, we have shown that no improvement in
spatial resolution can be achieved by selective probing of
electric quadrupole transitions. Future studies will be
directed at electric quadrupole excitonic interactions.
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