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By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation

by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and

surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically

excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different

nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field.

We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes

(two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of

these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive

for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a

design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with

silicon-based photonic circuits, as well as methods of nonlinear diagnostics.
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I. INTRODUCTION

Being stimulated by rapid progress in nanofabrication
techniques, dielectric resonant nanostructures with high re-
fractive index are currently employed in various applications of
nanophotonics, offering a competitive alternative to plasmonic
nanoparticles [1]. The advantageous optical properties of high-
index dielectric nanoparticles, such as low dissipative losses,
optical magnetic response, and multipolar resonances, imply
unique capabilities for light manipulation at subwavelength
scales, especially in the nonlinear regime [2].

Acting as optical nanoantennas, high-permittivity dielectric
nanoparticles exhibit strong interaction with light due to the
excitation of both electric and magnetic Mie resonances they
support. Compared to plasmonic nanoscale structures, where
the electric field is strongly confined to the surfaces, the
electric field of the resonant modes in dielectric nanoparticles
penetrates deep inside their volume, thus enhancing intracavity
light-matter interactions in a bulk material. Such a strategy
of utilizing the Mie resonances in the subwavelength dielec-
tric geometries has been recently recognized as a promising
route for improving the nonlinear conversion processes at the
nanoscale [3–9].

Second-harmonic generation in plasmonic nanostructures

is known to be governed mainly by the surface nonlinear

response, which can be enhanced at the geometric plasmon

resonances [10–20]. Primarily, the electric dipole response

associated with the surface plasmon resonance is most widely

exploited for deeply subwavelength metallic particles and their

composites, and the nonlocal bulk contribution to second-

harmonic generation (SHG) is largely ignored [21,22]. The

excitation of multipolar resonances driven by displacement

currents in dielectric nanostructures can significantly reshape

the nonlinear scattering, in particular, due to the bulk nonlinear

response altered by the field gradients distributed over the vol-

ume. One of the most promising materials for implementation

of all-dielectric nanophotonics is silicon, due to its comple-

mentary metal-oxide-semiconductor (CMOS) compatibility

and strong optical nonlinearities [23,24]. In particular, silicon

was employed in most of the works on the trapped magnetic

dipole resonances [25,26] and the associated enhancement of

third-order nonlinear processes [3,4,6,27,28]. Though silicon,

both crystalline and amorphous, is a centrosymmetric mate-

rial and thus similar to noble metals, its bulk second-order

nonlinear response is inhibited [29], the light confinement

and enhancement due to excitation of the resonant modes

increases the efficiency of the frequency conversion, and the

quite high yield of SHG from individual nanowires [30,31] and

nanoparticles [32] can be achieved.

In this paper, we investigate the characteristic features

of SHG from dielectric nanoparticles made of high-index

centrosymmetric materials and optically excited in the vicinity

of the pronounced low-order Mie resonances, with a particular

focus on the magnetic dipole resonance. We take into account

the contributions of both surface- and bulk-induced nonlinear

sources described in the framework of the phenomenological

model [30,31,33]. We reveal that the second-harmonic (SH) ra-

diation is dominated by dipolar and quadrupolar contributions,

specifically by two axially symmetric electric quadrupoles

(oriented along the magnetic and electric fields, respectively, of

the incident wave), an electric dipole (directed along the wave

vector of the incident wave), and a magnetic quadrupole. We

emphasize that the case we study is essentially distinct from the

Rayleigh limit, small plasmonic particles, and the Rayleigh-

Gans-Debye model, or the first Born approximation (assuming

a low-refractive-index mismatch between the interior of the

particle and the host medium) [11,34,35]. By contrast, in the

small-particle limit the SH field is described by one electric

quadrupole and one electric dipole [11]. In the experimental

study of Ref. [34], it was further discussed that the octupolar

contribution to SH scattering appears for the nonresonant

polysterene nanoparticle as corrections to the Rayleigh-limit

SHG [11] when increasing the size parameter.
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FIG. 1. Schematic of the geometry. Laser radiation of frequency

ω is scattered by the nanoparticle. As a result of nonlinear interaction,

the second-harmonic light of 2ω is generated.

Here we derive the excitation coefficients of the nonlinearly

generated multipoles with an original procedure based on

the use of the Lorentz lemma. It can be regarded as a more

practical alternative to the nonlinear Mie theory analysis

[11,12,16,36]. Our approach can be applied to Mie-resonant

nanoparticles made not only from centrosymmetric but also

noncentrosymmetric high-index materials actively employed

for nonlinear nanophotonics [9,37–39]. In addition, we provide

a detailed analytical solution for the resonantly enhanced SHG

driven by the pronounced magnetic dipole excitation with

the approach previously reported in Ref. [5]. The validity of

the developed theory and analytically described multipolar

expansion of the SH field is confirmed by direct full-wave

numerical calculations.

II. MULTIPOLAR ANALYSIS OF NONLINEAR

SCATTERING

We consider a high-permittivity spherical dielectric particle

of radius a, excited by the linearly polarized plane wave

E(r) = x̂E0e
ik0z propagating in the z direction, as illustrated

schematically in Fig. 1. The analysis we perform also gives

a qualitatively correct picture of the SH fields generated by

an arbitrary single-scale nanoscale object (e.g., a finite-extent

nanorod whose cross-sectional diameter is of the order of

its length). The particle is characterized by the frequency-

dependent dielectric constant ε(ω). The homogeneous host

medium is air. The problem of linear light scattering by a sphere

is solved using the multipole expansion in accord with Mie

theory. The resultant scattering efficiency is plotted in Fig. 2 for

a silicon nanoparticle excited at wavelength λ0 = 1050 nm in

the range of radii featuring magnetic dipolar (MD) and electric

dipolar (ED) resonances.

In the frequency range between the MD and ED resonances,

the electric field at the fundamental frequency inside the

nanoparticle is well approximated by a superposition of only
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FIG. 2. Linear scattering efficiency (blue solid curve) calculated

for a spherical silicon nanoparticle at the pump wavelength λ0 =
1050 nm. The labeled MD and ED contributions are shown by green

dashed and red dotted lines, respectively.

MD and ED modes, as evidenced by Fig. 2,

E
(ω)
in ≈ E0

[

1

k(ω)
AE

1,1∇ × j1(k(ω)r)[X1,1(θ,ϕ) − X1,−1(θ,ϕ)]

+AM
1,1j1(k(ω)r)[X1,1(θ,ϕ) + X1,−1(θ,ϕ)]

]

, (1)

where k(ω) = k0

√
ε(ω) is the wave number in the medium,

k0 = ω/c, j1(k(ω)r) is the spherical Bessel function of or-

der l = 1, X1,±1(θ,ϕ) are vector spherical harmonics (in the

spherical coordinate system associated with z axis), and AE
1,1

and AM
1,1 are coefficients known from Mie theory [40]. The

pronounced character of the low-order Mie resonances is

essential for many applications of high-permittivity dielectric

nanoparticles in a low-index environment [1,41] and for the

analysis we develop below. We specifically focus on Mie-

resonant dielectric nanoparticles, whose sizes correspond to

the resonant excitation of the leading magnetic dipole and

electric dipole modes at the laser fundamental wavelength,

as shown in Fig. 2. The analysis of SHG from high-index

dielectric nanoparticles exhibiting dipolar resonances is impor-

tant for modern nanoscale optics, given the increasing interest

in the rapidly expanding field of all-dielectric nanophotonics

and growing number of nonlinear experiments currently being

done by many research groups worldwide exactly under the

conditions associated with resonant excitation of the low-order

Mie modes [2].

The second-order polarization for the particles made of

centrosymmetric homogeneous materials can be written as a

superposition of dipolar surface (local) and quadrupolar bulk

(nonlocal) contributions [30,31,33,42,43]

P(2ω) = P
(2ω)
surf + P

(2ω)
bulk , (2a)

P
(2ω)
surf = δ(r − a + 0)

[

r̂0

{

χ
(2)
⊥⊥⊥

(

E(ω)
r

)2 + χ
(2)
⊥‖‖

(

E(ω)
τ

)2}

+ 2τ̂ 0χ
(2)
‖⊥‖E

(ω)
r E(ω)

τ

]

, (2b)

P
(2ω)
bulk = [βE(ω)

∇ · E(ω) + γ∇(E(ω) · E(ω))

+ δ′(E(ω) · ∇)E(ω)]�(a − 0 − r), (2c)

where E(ω)
r and E(ω)

τ are the radial and tangential components

of the electric field on the spherical surface and r̂0 and τ̂ 0 are
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the corresponding unit vectors. The coefficients γ , β, δ′, χ
(2)
⊥⊥⊥,

χ
(2)
⊥‖‖, and χ

(2)
‖⊥‖ are material parameters of the dielectric, the β

term vanishes in the bulk, ∇ · E(ω) = 0 due to the homogeneity

of the material, δ(r̃) is the Dirac delta function, and the

step function �(r̃) is defined by �(r̃) = {0,r̃ < 0; 1,r̃ > 0}.
Importantly, the γ term exhibits a surfacelike behavior and

it is often referred to as a nonseparable bulk contribution

[16,31]. We assume that the phenomenological model (2)

is qualitatively valid for amorphous and crystalline silicon

nanoparticles, disregarding any anisotropy effects [30,31,33].

The specifics of SHG from nanocrystalline silicon nanoparti-

cles were studied experimentally and numerically in Ref. [32].

According to Eq. (2b), the nonlinear surface sources P
(2ω)
surf

are defined by the field E(ω) at the pump wavelength inside

the nanoparticle. Introducing the functions δ(r − a + 0) and

�(a − 0 − r) in Eqs. (2b) and (2c) allows us to formalize

mathematical derivations.

Plugging Eqs. (2) into Maxwell’s equations, the SH elec-

tromagnetic field E(2ω),H(2ω) is the forced solution of a set of

equations

∇ × E(2ω) = 2ik0H(2ω), (3a)

∇ × H(2ω) = −2ik0ε
(2ω)(r)E(2ω) +

4π

c
j(2ω), (3b)

where j(2ω) = −2iω(P
(2ω)
surf + P

(2ω)
bulk ) is the current density in-

duced due to the quadratic nonlinearity and

ε(2ω)(r) =
{

ε(2ω), r � a

1, r > a
(4)

is the dielectric permittivity distribution at the second-

harmonic frequency. Note that, in the considered frequency

range under the approximation (1), the polarization sources,

and consequently the external current j(2ω), constitutes the

quadratic form of the electric field E(ω), which is defined

predominantly by the electric and magnetic dipolar modes

excited at the fundamental frequency ω. Since these two modes

depend linearly on sine and cosine functions of the polar

angle, multipolar expansion of the generated SH field to the

leading order contains only dipolar and quadrupolar spherical

harmonics.

Similar to the work in Ref. [37], we analyze the induced

nonlinear multipolar sources by employing general expres-

sions for the electric and magnetic multipolar coefficients

at the SH wavelength as defined by the overlap integrals of

the sources with spherical harmonics [40]. Our calculations

show that within the framework of the approximation (1),

the multipolar composition features two axially symmetric

electric quadrupolar (EQ) components, whose amplitudes are

proportional to (AE
1,1)2 and (AM

1,1)2, as well as ED and magnetic

quadrupolar (MQ) modes with amplitudes proportional to

(AE
1,1A

M
1,1). Thus, outside the nanoparticle, the SH magnetic

field assumes the form

H(2ω)(r > a) ≈ E0
2

[

(

AM
1,1

)2
qE

1 h
(1)
2 (2k0r)X2,0(θ1) +

(

AE
1,1

)2
qE

2 h
(1)
2 (2k0r)X2,0(θ2) + AE

1,1A
M
1,1d

Eh
(1)
1 (2k0r)X1,0(θ )

−
i

2k0

AE
1,1A

M
1,1q

M
∇ ×

[

h
(1)
2 (2k0r){X2,1(θ1,ϕ1) − X2,−1(θ1,ϕ1)}

]

]

. (5)

Here Xl,m are spherical functions, (θ,ϕ), (θ1,ϕ1), and (θ2,ϕ2)

are polar and azimuthal angles of the spherical coordinate

systems associated with the z, y, and x axes, respectively, and

h
(1)
l is the spherical Hankel function of the first kind of order

l. In Eq. (5), the terms proportional to qE
1 and qE

2 describe the

fields emitted by the electric quadrupoles which are axially

symmetric to the y and x axes, the term proportional to dE

is the radiation field of the electric dipole oriented along the

propagation direction z of the incident wave, and the term

proportional to qM is due to the presence of the magnetic

quadrupolar component in the source. The far-field diagrams

of the generated SH multipoles

FdE (θ ) ∝ sin2 θ,

FqE
1

(θ1) ∝ sin2 (2θ1),

FqE
2

(θ2) ∝ sin2 (2θ2),

FqM (θ1,ϕ1) ∝ cos2 (2θ1) sin2 ϕ1 + cos2 θ1 cos2 ϕ1

are visualized in Fig. 3.

The excitation coefficients of the multipolar modes, qE
1 ,

qE
2 , dE , and qM , are linear functions of the phenomenological

parameters γ , β, δ′, χ
(2)
⊥⊥⊥, χ

(2)
⊥‖‖, and χ

(2)
‖⊥‖. Analytical expres-

sions for the multipolar amplitudes can be found using the

Lorentz lemma [40,44]. The Lorentz lemma is widely applied

in electrodynamics for calculation of amplitude coefficients of

the guided modes excited by external sources and radiation

diagrams of emitters. Here we show that the methodology

based on the Lorentz lemma can be adopted for the analysis

of the nonlinear scattering. This approach facilitates mathe-

matical derivations, especially in the treatment of the bulk

nonlinearity, and, more importantly, it allows for generalization

to nanoparticles of nonspherical shapes. For our problem, it

can be formulated as follows. We introduce the auxiliary elec-

tromagnetic field {E(2ω)
1 ,H

(2ω)
1 } satisfying Maxwell’s equations

in the medium with the dielectric permittivity ε(2ω)(r) in the

absence of the external sources,

∇ × E
(2ω)
1 = 2ik0H

(2ω)
1 , (6a)

∇ × H
(2ω)
1 = −2ik0ε

(2ω)(r)E
(2ω)
1 . (6b)

We then apply scalar multiplication to Eqs. (3a) and (6b) by

H
(2ω)
1 and E(2ω), respectively, and subtract one from the other

H
(2ω)
1 ∇ × E(2ω) − E(2ω)

∇ × H
(2ω)
1

= 2ik0

[

ε(2ω)(r)E
(2ω)
1 E(2ω) + H

(2ω)
1 H(2ω)

]

. (7)
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FIG. 3. Radiation patterns of the nonlinearly generated SH mul-

tipoles: z-aligned electric dipole dE , y-axially symmetric electric

quadrupole qE
1 , x-axially symmetric electric quadrupole qE

2 , and

magnetic quadrupole qM .

In a similar manner, we find

H(2ω)
∇ × E

(2ω)
1 − E

(2ω)
1 ∇ × H(2ω)

= 2ik0

[

ε(2ω)(r)E
(2ω)
1 E(2ω) + H

(2ω)
1 H(2ω)

]

−
4π

c
j(2ω)E

(2ω)
1 . (8)

Subtracting Eq. (8) from Eq. (7), we obtain

∇ ·
[

E(2ω) × H
(2ω)
1

]

− ∇ ·
[

E
(2ω)
1 × H(2ω)

]

=
4π

c
j(2ω)E

(2ω)
1 ,

(9)

as a consequence of the Lorentz lemma. We next integrate

Eq. (9) over the volume V , bounded by a spherical surface

S(V ) of radius R ≫ πc/ω,
�

S(V )

(

E(2ω) × H
(2ω)
1 − E

(2ω)
1 × H(2ω)

)

· dŜ

=
4π

c

�

V

j(2ω)E
(2ω)
1 dV. (10)

As an auxiliary solution {E(2ω)
1 ,H

(2ω)
1 }, we choose the elec-

tromagnetic field, which at r > a constitutes the incident and

reflected multipolar electric or magnetic mode. For the electric

multipolar mode it acquires the form

H
(2ω)
1 (r > a) =

[

h
(2)
l (2k0r) + ηE

l h
(1)
l (2k0r)

]

Xl,m,

H
(2ω)
1 (r < a) = tEl jl(2k0

√

ε(2ω)r)Xl,m,

E
(2ω)
1 (r > a) =

i

2k0

∇ × H
(2ω)
1 ,

E
(2ω)
1 (r < a) =

i

2k0ε(2ω)
∇ × H

(2ω)
1 (11)

and for the magnetic multipolar mode

E
(2ω)
1 (r > a) =

[

h
(2)
l (2k0r) + ηM

l h
(1)
l (2k0r)

]

Xl,m,

E
(2ω)
1 (r < a) = tMl jl(2k0

√

ε(2ω)r)Xl,m,

H
(2ω)
1 = −

i

2k0

∇ × E
(2ω)
1 . (12)

Here the Hankel function of the second kind h
(2)
l (2k0r) cor-

responds to the incident spherical wave, while the Hankel

function of the first kind h
(1)
l (2k0r) describes the reflected

outgoing mode. The spherical Bessel function jl(2k0

√
ε(2ω)r)

describes the auxiliary field inside the nanoparticle. Reflection

(transmission) coefficients η
E,M
l (t

E,M
l ) are derived from the

condition of the continuity for the tangential component of the

electric field and magnetic fields at the interface r = a:

ηM
l = −

h
(2)
l (2k0r)∂r [rjl(2k0

√
ε(2ω)r)] − jl(2k0

√
ε(2ω)r)∂r

[

rh
(2)
l (2k0r)

]

h
(1)
l (2k0r)∂r [rjl(2k0

√
ε(2ω)r)] − jl(2k0

√
ε(2ω)r)∂r

[

rh
(1)
l (2k0r)

]

∣

∣

∣

∣

∣

r=a

,

tMl =
i

k0a

{

jl(2k0

√

ε(2ω)r)∂r

[

rh
(1)
l (2k0r)

]

− h
(1)
l (2k0r)∂r [rjl(2k0

√

ε(2ω)r)]
}−1∣

∣

r=a
,

ηE
l = −

[ε(2ω)]−1h
(2)
l (2k0r)∂r [rjl(2k0

√
ε(2ω)r)] − jl(2k0

√
ε(2ω)r)∂r

[

rh
(2)
l (2k0r)

]

[ε(2ω)]−1h
(1)
l (2k0r)∂r [rjl(2k0

√
ε(2ω)r)] − jl(2k0

√
ε(2ω)r)∂r

[

rh
(1)
l (2k0r)

]

∣

∣

∣

∣

∣

r=a

,

tEl =
i

k0a

{(

jl(2k0

√

ε(2ω)r)∂r

[

rh
(1)
l (2k0r)

]

− [ε(2ω)]−1h
(1)
l (2k0r)∂r [rjl(2k0

√

ε(2ω)r)]
}−1∣

∣

r=a
. (13)

Note that |ηE,M
l | = 1 in Eq. (13).

Substituting Eqs. (11) and (12) into Eq. (10) and taking into account the expansion (5) and the orthogonality condition for

spherical harmonics, we get the excitation coefficients of the multipolar modes at the SH frequency:

qE
1 =

4πik0

c

tE2

E2
0

(

AM
1,1

)2
ε(2ω)

�

r<a

dV j(2ω) · ∇ × {j2(2k0

√

ε(2ω)r)X2,0(θ1)},

qE
2 =

4πik0

c

tE2

E2
0

(

AE
1,1

)2
ε(2ω)

�

r<a

dV j(2ω) · ∇ × {j2(2k0

√

ε(2ω)r)X2,0(θ2)},
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dE =
4πik0

c

tE1

E2
0A

E
1,1A

M
1,1ε(2ω)

�

r<a

dV j(2ω) · ∇ × {j1(2k0

√

ε(2ω)r)X1,0(θ )},

qM =
8πk2

0

c

tM2

E2
0A

E
1,1A

M
1,1

�

r<a

dV j(2ω) · j2(2k0

√

ε(2ω)r){X2,1(θ1,ϕ1) − X2,−1(θ1,ϕ1)}. (14)

The coefficients qE
1 , qE

2 , dE , and qM are in different ways related to the phenomenological parameters γ , δ′, χ
(2)
⊥⊥⊥, χ

(2)
⊥‖‖, and

χ
(2)
‖⊥‖. In particular, calculating the integrals on the right-hand side of Eqs. (14), one can show that

qE
1 = a1γ + a2δ

′ + a3χ
(2)
⊥‖‖,

qE
2 = b1γ + b2δ

′ + b3χ
(2)
⊥⊥⊥ + b4χ

(2)
⊥‖‖ + b5χ

(2)
‖⊥‖,

dE = c1γ + c2δ
′ + c3χ

(2)
⊥‖‖,

qM = f χ
(2)
‖⊥‖,

(15)

where the coefficients ai , bk , cj , and f depend on the frequency, the particle size, and the dielectric permittivity. Remarkably, the

magnetic quadrupolar component qM depends only on one parameter χ
(2)
‖⊥‖ and hence it vanishes at χ

(2)
‖⊥‖ = 0.

At long distances from the particle, where 2k0r ≫ 1, the electric field emitted at the second harmonic takes the following

form:

E(2ω)(r) ≈ E0
2

[

−
1

4

√

15

2π

(

AM
1,1

)2
qE

1 sin 2θ1θ̂1 −
1

4

√

15

2π

(

AE
1,1

)2
qE

2 sin 2θ2θ̂2

+AE
1,1A

M
1,1

{

−
i

2

√

3

2π
dE sin θ θ̂ −

√

5

4π
(cos 2θ1 sin ϕ1ϕ̂1 − cos θ1 cos ϕ1θ̂1)qM

}]

exp (2ik0r)

2k0r
. (16)

Here θ̂1, θ̂2, and θ̂ are the unit vectors directed along the

increasing polar variables in spherical coordinate systems

associated with the y, x, and z axes, respectively, and ϕ̂1

is the corresponding azimuthal unit vector. The study of the

SH radiation pattern in different cross sections may assist in

estimating the relative values of the nonlinear phenomenolog-

ical parameters γ , δ′, χ
(2)
⊥⊥⊥, χ

(2)
⊥‖‖, and χ

(2)
‖⊥‖ of the quadratic

nonlinearity of the dielectric material the nanoparticle is made

of [30,31].

Note that, being based on Lorentz lemma, our approach

can be regarded as a more practical alternative to the analysis

suggested in Refs. [12,16,45]. In particular, the contribution

of the truly volume separable δ′ polarization source is found

here not requiring a more involved treatment based on the

Green’s function formalism. While usually disregarded for

metal nanostructures, the δ′ source dependent on spatial deriva-

tives of the fields inside the nanoparticle is not necessarily

negligible in dielectric nanoparticles. For the surface nonlin-

earity, we additionally check that the excitation coefficients for

the dominating SH multipoles obtained with Eqs. (14) in fact

coincide with those recovered with the use of the nonlinear Mie

theory for SHG from a spherical centrosymmetric nanoparticle

[11,12]. For comparison, we employed the formulas given in

Supplemental Material of Ref. [12].

The interference of the nonlinearly generated multipoles

could be employed for engineering the radiation directionality.

Figure 4 clearly demonstrates the possibility to implement

a nonlinear antenna which generates the second-harmonic

light directionally. This directivity is achieved due to the

excitation of the mutually perpendicular electric quadrupoles

and a dipole, which are oriented along the x, y, and z axes. The

exemplary radiation pattern in Fig. 2 is plotted, assuming that

the contribution of the magnetic quadrupole is small and the

amplitudes of the ED and EQ modes in the SH radiation field

are of the same order of magnitude.

Our analytical considerations are confirmed by full-wave

numerical modeling performed with the finite-element solver

COMSOL Multiphysics, following the procedure described in

Refs. [5,6,9,28,37]. These simulations allow for solving the

full scattering problem at the SH frequency using the induced

nonlinear polarization within the undepleted pump approxi-

mation in the presence of the dielectric environment. Then the

multipolar amplitude coefficients dependent on the geometry

and a refractive-index contrast are retrieved [46]. Because

the values of the phenomenological nonlinear coefficients for

silicon are yet not well established, we examined different

FIG. 4. (a) Radiation pattern of the second-harmonic radiation

and (b) its cross section by the xz plane for (AM
1,1)2qE

1 ≈ (AM
1,1)2qE

2 ≈
−iAE

1,1A
M
1,1dE , |dE | ≫ |qM |.
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FIG. 5. Numerically calculated multipolar decomposition of

SHG from a spherical silicon nanoparticle of radius a = 145 nm under

plane-wave excitation at the pump wavelength λ0 = 1050 nm and

corresponding SH emission patterns for different nonlinear sources.

Stacked bars visualize contributions of the dominating dipolar (l = 1)

and quadrupolar (l = 2) orders normalized to the total SH radiated

power.

terms in nonlinear sources (2) separately, as if they acted

independently, for silicon nanoparticles exhibiting overlapped

MD and ED resonances, varying the radius in the range as

shown in Fig. 2. In agreement with our theoretical model,

for smaller radii a � 170 nm the leading contributions to the

radiated SH field stem from the dipolar and quadrupolar modes

we distinguished, as exemplified in Fig. 5 for the nanoparticle

of radius a = 145 nm. Figure 5 evidences that the multipolar

expansion of SHG up to the order l = 2 well approximates the

total radiated power, while the higher-order corrections l � 3

appear small. In this regime the SHG process is essentially

governed by two dipolar modes excited at the fundamental

wavelength, because of their resonant character (Fig. 2), which

distinguishes the case under study, e.g., from the SHG by small

nonresonant nanoparticles and low-index-contrast polysterene

nanoparticles in water described in the literature [11,34,35].

The COMSOL results additionally confirm that when defining

the SH nonlinear source through the bulk and surface nonlinear

polarizations, one may, to a high degree of accuracy, restrict

oneself to taking into account electric and magnetic dipolar

modes only. This is reasonably explained by sufficiently high

quality factors of the dipolar resonances exhibiting by the

high-index nanoparticles of the corresponding sizes.

We expect the total conversion efficiency to be dispersive

and size dependent. It is strongly affected by the hierarchy of

Mie resonances and modal overlaps, as was shown experimen-

tally for Mie-resonant nanoparticles in recent works [9,32,37].

Direct numerical simulations performed with COMSOL reveal

that with increasing the nanoparticle’s size (closer to a = 200

nm), the higher orders (up to l = 4) show up in the multipolar

expansion of the SH field. Based on the data and discussions

in Refs. [31,33,47,48], we approximately estimate the SHG

efficiency and bulk and surface relative contributions for a

silicon nanoparticle under plane-wave illumination (Fig. 6).

For calculations we take χ
(2)
⊥⊥⊥ = 65 × 10−19 m2/V and set the
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FIG. 6. Second-harmonic conversion efficiency calculated nu-

merically from a spherical silicon nanoparticle at the incident intensity

I0 = 1 GW/cm2 and laser wavelength λ0 = 1050 nm. The depen-

dences of different source contributions on the nanoparticle radius

were computed independently: χ
(2)
⊥‖‖ (thick solid gray curve), χ

(2)
‖⊥‖

(thick dashed gray curve), γ (thin dashed purple curve), and δ′ (thin

solid purple curve). The inset shows χ
(2)
⊥⊥⊥ SHG efficiency (dotted

gray curve).

other nonlinearity parameters to be roughly of the same order

of magnitude, χ
(2)
⊥‖‖ = χ

(2)
‖⊥‖ = γ = 3.5 × 10−19 m2/V. Using

the polarizability model [33], we estimate δ′ ≈ γ (ε(ω) −
4ε(2ω) + 3)/[ε(2ω) − 1]. The pronounced enhancement in

the SH scattering occurs near MD resonance at the pump

wavelength. The dominant peaks are exhibited by χ
(2)
⊥‖‖ surface

and γ and δ′ bulk sources, which we analyze in detail in Sec. III.

However, the volume response can be attributed exclusively

to the separable bulk δ′ term. The above-mentioned quasisur-

face character of the bulk γ term [16,31] can be inferred from

Eqs. (14). Since qM depends only on χ
(2)
‖⊥‖, we inspect the

amplitudes of electric modes qE
1,2 and dE . For the γ source,

they can be transformed to the surface integrals as

qE
1,2,d

E ∝ γ
�

r<a

dV ∇
(

E
(ω)
in

)2 · [∇ × {j2(1)X2(1),0}]

= γ
�

r<a

dV ∇ ·
[

∇ ×
{(

E
(ω)
in

)2
j2(1)X2(1),0

}]

= γ
�

r=a

dŜ
(

E
(ω)
in

)2
[∇ × j2(1)X2(1),0], (17)

justifying that the bulk γ term contributes to the effective

surface response.

III. SECOND-HARMONIC GENERATION DRIVEN

BY THE MAGNETIC DIPOLE MODE

In this section, we consider in more detail and derive an an-

alytical solution for SHG from a high-index dielectric particle

driven by the MD mode. This particular case describes well

the pronounced magnetic dipole resonance [5]. Alternatively,

it may be realized in experiment by irradiating the nanoparticle

with the azimuthally polarized beam whose structure imitates

the MD mode polarization distribution. In this instance, a

solution can be obtained from the analysis developed in Sec. II
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by setting AE
1,1 = 0. However, for the sake of methodological

clarity, here we take a different way and solve this basic

nonlinear problem not by involving the Lorentz lemma but

following the approach outlined in Ref. [5], where the third-

harmonic generation by resonant silicon nanoparticles was

described.

We employ a single-mode approximation and assume that

the fields inside the nanoparticle at r < a are given by MD

mode profile as

E
(ω)
in ≈ A(ω)j1(k(ω)r){θ̂ cos ϕ − sin ϕ cos θ ϕ̂},

H
(ω)
in ≈

A(ω)

ik0

∇ × [j1(k(ω)r){θ̂ cos ϕ − sin ϕ cos θ ϕ̂}],
(18)

where A(ω) = E0A
M
1,1

1
2

√

3
π

. We rewrite expressions (18) in

the spherical coordinate system associated with the y axis

codirected with the induced magnetic dipole moment:

E
(ω)
in ≈ A(ω)j1(k(ω)r) sin θ1ϕ̂1,

H
(ω)
in ≈

A(ω)

ik0

{

r̂

2 cos θ1

r
j1(k(ω)r) − θ̂1

sin θ1

r
∂r [rj1(k(ω)r)]

}

.

(19)

Substituting the fields (19) into Eqs. (2), the nonlinear polar-

izations are recast to the surface source caused solely by the

tensor component χ⊥‖‖,

P
(2ω)

surf = r̂χ⊥‖‖
(

E
(ω)
in

)2
δ(r − a + 0)

= r̂A2(ω)χ⊥‖‖j
2
1 (k(ω)r) sin2 θ1δ(r − a + 0)

= r̂P
(2ω)

s δ(r − a + 0), (20)

and the bulk source consisting of two regrouped contributions

P
(2ω)

bulk = {γ∇(E(ω) · E(ω)) + δ′(E(ω) · ∇)E(ω)}�(a − r − 0)

=
{

(γ + δ′/2)∇
(

E
(ω)
in

)2 − δ′[E
(ω)
in × ik0H

(ω)
in

]}

×�(a − r − 0)

= P
(2ω)

bulk1 + P
(2ω)

bulk2. (21)

For clarity, we consider the response of the structure driven by

the nonlinear sources P
(2ω)

surf, P
(2ω)

bulk1, and P
(2ω)

bulk2 sequentially.

The normal surface polarization (20) in the driven Maxwell

equations is equivalent to the dipole layer. Alternatively, in

electrodynamic equations it may be formally replaced by the

fictitious surface magnetic current whose density is defined by

j
(2ω)M
surf1 =

c

ε(2ω)

[

∇P
(2ω)

s × r̂

]

∣

∣

∣

r=a−0
. (22)

Thus, the tangential θ1 component of the electric field at the

spherical boundary r = a undergoes a jump expressed through

the derivative ∂θ1
P

(2ω)

s :

E
(2ω)
θ1

∣

∣

r=a+0
− E

(2ω)
θ1

∣

∣

r=a−0

= −
4π

ε(2ω)a

∂P
(2ω)

s

∂θ1

= −4π (ε(2ω)a)−1χ⊥‖‖A
2(ω)j 2

1 (k(ω)a) sin 2θ1. (23)

Considering the term P
(2ω)

bulk1, which is a gradient of the scalar

function, we represent the electric field as a sum of the vortex

and potential vector fields

E(2ω) = E(2ω)
v −

4π

ε(2ω)
∇

(

E
(ω)
in

)2

(

γ +
δ′

2

)

×
{

1, r < a

0, r > a.

(24)

The vortex part E(2ω)
v is therefore found by solving the Maxwell

equations with the substitution (24) transformed to

∇ × E(2ω)
v = 2ik0H(2ω),

∇ × H(2ω) = −2ik0E(2ω)
v ε(2ω)(r),

(25)

with the boundary conditions at the nanoparticle surface

H (2ω)
ϕ1

∣

∣

r=a+0
= H (2ω)

ϕ1

∣

∣

r=a−0
, (26a)

E
(2ω)
vθ1

∣

∣

r=a+0
− E

(2ω)
vθ1

∣

∣

r=a−0
=

4π

c

[

j
(2ω)M
surf2 (2ω)ϕ̂1

]

∣

∣

∣

∣

r=a

,

(26b)

where, to account for the electric field discontinuity at the

interface r = a, we have again introduced the surface magnetic

current given by

j
(2ω)M
surf2 = −

c

ε(2ω)
(γ + δ′/2)

[

r̂ × ∇
(

Ein
(ω)

)2]

= −
c

ε(2ω)
A2(ω)

(

γ +
δ′

2

)

1

a
j 2

1 (k(ω)a) sin 2θ1ϕ̂1.

(27)

Noticeably, the boundary conditions (23) and (26b) can be

additively combined to

E
(2ω)
vθ1

∣

∣

r=a+0
− E

(2ω)
vθ1

∣

∣

r=a−0

= −
4π

aε(2ω)
(χ⊥‖‖ + γ + δ′/2)A2(ω)j 2

1 (k(ω)a) sin 2θ1.

(28)

With the second part of the bulk source, being nonzero only

if δ′ 	= 0,

P
(2ω)

bulk2 = −δ′A2(ω)

{

j1(k(ω)r)
1

r

∂

∂r
rj1(k(ω)r) sin2 θ1 r̂

+
1

r
j 2

1 (k(ω)r) sin 2θ1θ̂1

}

�(a − r − 0), (29)

inside the particle at r < a − 0 we solve the inhomogeneous

wave equation

∇ × ∇ × H(2ω) − 4k2
0ε(2ω)H(2ω) = 8πik0∇ × P

(2ω)

bulk2. (30)

The solution is sought in the form H(2ω) = H (r) sin 2θ1ϕ̂1,

consistent with the angular structure of the source. Remark-

ably, this corresponds to the electric quadrupole SH radiation

in the far field.

Thereby, for the radial function H (r) at r < a we have the

equation

d2H

dr2
+

2

r

dH

dr
−

6

r2
H + 4k2

0ε(2ω)H =f (r), (31)
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with the source function f (r) on the right-hand side:

f (r) = −4πik0δ
′A2(ω)

{

r
∂

∂r

(

j 2
1 (k(ω)r)

r2

)

�(a − r − 0) − 2
j 2

1 (k(ω)r)

r
δ(r − a + 0)

}

. (32)

The solution of the inhomogeneous second-order differential equation (31) is then found using the Wronskian

H (r < a) = C1j2(2k0

√

ε(2ω)r) + 2k0

√

ε(2ω)

(

y2(2k0

√

ε(2ω)r)

∫ r

0

dr ′r ′2f (r ′)j2(2k0

√

ε(2ω)r ′)

− j2(2k0

√

ε(2ω)r)

∫ r

a

dr ′r ′2f (r ′)y2(2k0

√

ε(2ω)r ′)

)

, (33)

where y2(2k0

√
ε(2ω)r) is the spherical Neumann function.

Outside the nanoparticle at r > a the magnetic field of the

radiated SH electromagnetic quadrupolar wave is

H(2ω)(r > a) = C2h
(1)
2 (2k0r) sin 2θ1ϕ̂1. (34)

The efficiency of the SH quadrupolar radiation is determined

by the coefficient C2.

As follows from conditions (26a) and (28), at the boundary

r = a the magnetic field H (2ω)
ϕ1

is continuous, while the θ1

component of the electric field experiences a jump caused

by the fictitious surface magnetic current. Matching these

boundary conditions, we find the coefficient C2 to be of the

form

C2 = −
8πk2

0a

ε(2ω)
tE2 A2(ω)

{(

χ
(2)
⊥‖‖ + γ +

3

2
δ′

)

×j 2
1 (k(ω)a)j2(2k0

√

ε(2ω)a) +
δ′

a

∫ a

0

dr ′
(

j 2
1 (k(ω)r ′)

−
r ′

2

∂

∂r ′ j
2
1 (k(ω)r ′)

)

j2(2k0

√

ε(2ω)r ′)

}

. (35)

Substituting nonlinear sources (20) and (21) into Eqs. (14) and

getting qE
1 , it can be seen that the amplitude of the electric

quadrupolar mode given by

C2 = E2
0

(

AM
1,1

)2 i

4

√

15

2π
qE

1 (36)

is consistent with Eq. (35). Thus, both methods, based on

(i) the Lorentz lemma (Sec. II) and (ii) direct calculations

of SH fields (Sec. III), yield the same result. However, in

more involved situations, when SHG is governed by several

multipoles excited at the fundamental frequency, approach

(i) enables an easier way to recover analytical expressions for

coefficients of multipolar expansion of nonlinear scattering.

Figures 7(a)–7(c) show numerically calculated SH field

near-field profiles generated by different nonzero source po-

larizations, associated with χ
(2)
⊥‖‖, δ′, and γ , for the case of

pure MD mode excitation at the fundamental frequency. The

χ
(2)
‖⊥‖ and χ

(2)
⊥⊥⊥ SH sources vanish, given the absence of

the electric-field component normal to the surface. The total

powers radiated by the nonzero sources relate in proportions

consistent with Eq. (35). In agreement with our analytical

results, in all three cases the simulated far-field manifests an

EQ structure, as depicted in Fig. 7(d).

IV. CONCLUSION

We have developed a theoretical model of the second-
harmonic generation from high-index dielectric nanoparticles
made of centrosymmetric materials (with a focus on silicon)
excited by laser radiation in the frequency range covering the
magnetic and electric dipolar Mie resonances at the fundamen-
tal frequency. We have shown that the multipolar decomposi-
tion of the generated second-harmonic field is dominated by the
dipolar and quadrupolar modes. With the adjusted parameters,
interference of these modes can ensure good directivity of the
SHG radiation.

We specifically focused on the magnetic dipole resonance

inherent to high-permittivity dielectric nanoparticles and its

influence on the nonlinear scattering. It should be emphasized

that magnetic modes bring different physics to simple dielectric

geometries [1,2,5,37] that differs substantially from the fun-

damentals of nonlinear nanoplasmonics largely appealing for

the electric dipole resonances and electric modes, associated

with surface plasmons [10–12,14–16,18,20]. In particular, the

multipolar nature of nonlinear scattering is concerned. As

was established, both theoretically and experimentally, for the

Rayleigh limit of SHG from a spherical metal nanoparticle

under x-polarized plane-wave illumination, the z-aligned dE

electric dipole and x-axially symmetric qE
2 electric quadrupole

provide leading contributions to SH radiation, with zero SH

signal in the forward direction. By contrast, the excitation of

the magnetic dipole mode in dielectric nanoparticles may lead

to generation of magnetic multipoles [5,37]. For instance, a

silicon nanoparticle with cubic bulk nonlinearity excited in the

vicinity of magnetic dipole resonance produces third-harmonic

radiation composed of a magnetic dipole and octupole [5]. The

predominant generation of SH magnetic multipoles was also

demonstrated experimentally in noncentrosymmetric AlGaAs

nanodisks by tuning polarization of the optical pump [37].

Here we have shown that while the SH radiated field in the

centrosymmetric nanoparticle driven by the magnetic dipole

mode alone solely consists of the qE
1 electric quadrupole spher-

ical wave, the overlap of MD and ED modes under plane-wave

excitation enriches the multipolar composition and includes the

magnetic quadrupole qM component. The distinctive feature

attributed to the magnetic dipole mode excitation is that the axis

of the generated SH electric quadrupole qE
1 is aligned with the

magnetic moment at the pump wavelength, as illustrated in

Fig. 1.

Our approach based on the Lorentz lemma is of a general

nature and, in combination with numerical calculations, it

can be applied to describe the harmonic generation (such as
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FIG. 7. Second-harmonic generation in a Si nanoparticle driven by the MD mode. Simulated SH field distributions were generated by

different SH nonlinear sources stemming from (a) χ
(2)
⊥‖‖, (b) δ′, and (c) γ . The nonlinear response is set to be driven by the MD mode associated

with the y-polarized magnetic dipole moment at the fundamental frequency. The SH field magnitude |E2ω|(ξ,ζ ) is shown in color, being

normalized to the maximum value for each source. Labels ξ and ζ in the function’s parentheses correspond to the horizontal and vertical axes

in images, respectively, as indicated for each column at the top of the figure. (d) The nanoparticle radiates SH light as EQ in all three cases,

computed for the pump wavelength λ0 = 1050 nm and nanoparticle radius a = 145 nm.

SHG and THG) by Mie-resonant dielectric nanoparticles of an

arbitrary shape, including those made of noncentrosymmetric

materials, e.g., AlGaAs [9,37] and BaTiO3 [38,39], which pos-

sess large-volume quadratic susceptibility of a tensorial form.

Our study and analytical approaches developed may therefore

be instructive for the design of efficient nonlinear all-dielectric

nanoantennas with controllable radiation characteristics.
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