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Abstract. The purpose of the paper is to develop a thermodynamic theory of con-
stitutive equations of multipolar viscous fluids. The restrictions which the principle
of material frame-indifference and the Clausius-Duhem inequality place on the con-
stitutive equations are derived. Explicit forms of the viscous stresses are obtained
for linear viscous fluids.

1. Introduction. In the classical Navier-Stokes theory, the viscosity of fluids is
modelled by the dependence of the stress on the first spatial gradients of velocity.
It is well known that the corresponding mathematical theory contains a number of
unsolved problems; in particular, there is no adequate existence theory for compress-
ible flows of such fluids. These problems have led the present authors to believe that
a stronger mechanism of dissipation and viscosity, namely the dependence of the
stress on the higher gradients of velocity, must occur in the flows of viscous fluids.
In a work in progress, the authors together with A. Novotny [ 1 ] show that a satisfac-
tory existence theory can be developed for materials of this type (see also Necas and

O
Ruzicka [2] for an analogous treatment of viscous incompressible solids).

In materials in which the higher gradients of velocity and the higher gradients
of deformation influence the response, the rate of work of internal forces cannot
be expected to be only the product of the usual second order stress tensor with the
first gradient of velocity; instead of this, a more general expression must be assumed
containing additionally the sum of products of higher order multipolar stress tensors
with the higher gradients of velocity. Otherwise such materials cannot be compatible
with the Clausius-Duhem inequality. The general theory of multipolar materials
is due to Green and Rivlin [3, 4], However, they consider only the constitutive
equations of elastic, nonviscous materials. (See also Buchacek [5] for the theory of
multipolar materials with fading memory.)

The purpose of this paper is to develop a thermodynamic theory of constitu-
tive equations of multipolar viscous fluids within the framework of the theory of
Green and Rivlin. The postulated constitutive equations express the Helmholtz free
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energy, entropy, heat flux vector, and the multipolar stress tensors as functions of
the following variables: the density and its gradients up to a fixed order, gradients of
velocity up to a fixed order, the temperature, and the gradient of temperature. We
derive the general restrictions which the principle of material frame-indifference and
the Clausius-Duhem inequality place on the constitutive functions of the fluid. Then
we restrict our attention to linear fluids for which the constitutive quantities depend
on the gradients of velocity and temperature linearly, with the coefficients indepen-
dent of temperature and gradients of density. Using the representation theorems for
isotropic linear functions, we obtain explicit forms of the viscous stresses. The corre-
sponding scalar coefficients in front of the gradients of velocity in these expressions
generalize (and include as special cases) the classical viscosities of the fluid. As in
the classical case, the Clausius-Duhem inequality gives the nonnegativeness of the
viscous work which, in the strengthened form, plays a crucial role in the existence
theory [1, 2],

2. Balance equations and the Clausius-Duhem inequality. We refer to Green and
Rivlin [3, 4] for a detailed exposition of the thermomechanics of multipolar bodies.

We use the spatial description of the processes of the fluid. The fields associated
with the processes are functions of the actual position x = (jc;) (i = 1, 2, 3) of the
points of the fluid and of time t. Let N > 1 be an integer. A thermodynamic process
of a multipolar fluid R of grade N is a collection of 8 + N functions of position
and time: v,0,p,e,rj,b,r,q, T[k) {k = 0, 1 , ... , N - 1), whose interpretation
and tensorial nature is as follows:

- v = (i>() is the velocity field,
- 9 is the field of positive absolute temperature,
- p is the actual density,
- e is the specific internal energy,
- t] is the specific entropy,
- b = (&,) is the specific external body force,
- r is the rate of the external communication of heat to the body,
- q = (qt) is the heat flux vector,

Tik] = {T(k) ,.) is the spatial multipolar stress tensor of order k + 2 , k =
-.(k)0, 1, ... , N-1; it is assumed that T is symmetric in the indices j{ • • • jk .

(k)The symmetry is motivated by the fact that the tensor T enters the basic
equations only through its product with the spatial gradient of velocity which
has the same type of symmetry (cf. (2.2) below).

It is also assumed that any function occurring in this paper is as many times con-
tinuously differentiable as needed to make the expressions meaningful. Each process
satisfies the equations of balance of mass, energy, linear and angular momentum, and
the Clausius-Duhem inequality. Their local forms read as follows:

p + pvil = 0 or dp/dt + {pvi)i = 0, (2.1)
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P {e + \V'V) = (~q< + E + pbiVi + pr> (2"2)
k=o

pvj = T^i + pbj, (2.3)

p(w,y=(vie Tpi + ejkP Tpki), /+Pejkpxkbp> (2-4)

M>-(!) . + />J. (2.5)
Here a superimposed dot denotes the material time derivative, and a comma followed
by an index (or several indices) denotes the partial derivative with respect to the
coordinate corresponding to the index (or indices). Green and Rivlin [3, 4] show that
the equations of balance of linear and angular momenta follow from the equation
of balance of energy and the principle of material frame-indifference. We also note
that the higher order stresses T(1), r(2), ... do not enter the equation of balance of
linear momentum while only the first two stresses r(0', r(1) enter the equation of
balance of angular momentum.

Routine manipulations with the balance equations give the reduced forms of the
balance equations:

pe = V(T^ . . + 7^+1- . )v ■ — q + pr, (2.6)
k=o

=W(7'™ + C,») = 0' <2-7>

pBH > pe - £<j*> + <*•«>
k=0

In (2.6) and in what follows we use the convention that

T[k) = 0 for k > N. (2.9)

Another equivalent form of the Clausius-Duhem inequality is the dissipation inequal-
ity which reads

'* s EcCv + -v- »i6 ~<2-10>
k=0

where
y/ = e - Or] (2.11)

is the Helmholtz free energy.

3. Constitutive equations of multipolar viscous fluids. We postulate the constitutive
equations in the following form:

f = f(p,vp,..., vM~lp, vv,...,vKv,e,vd), (3.1)
where M, K > 1 are prescribed positive integers, and / stands for any of the func-
tions e, r), yy, q, T^ , k = 0, 1, ... , TV - 1 . The functions occurring on the right-
hand side of (3.1), i.e., the functions e, t], t// , q , T(k), are given smooth functions of
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their arguments defined on the natural domain given by the physical interpretation of
the arguments; the functions e, rj, y/ naturally satisfy the relation (2.11). The values
of / on the left-hand side of (3.1) as well as the arguments on the right-hand side of
(3.1) are evaluated at (x, t). The postulated form of the constitutive equations can
be motivated by the general definition of fluids in terms of the symmetry group of the
material. (See Noll [6], Cross [7], Samohyl [8], and Gurtin, Vianello, and Williams
[9] for various particular cases.) We assume that the integers N, M, K take their
least possible values. If N, M, K are so chosen, then the material is called a mul-
tipolar viscous fluid of type (N, M, K). If M > 1 or K > 1 , then the material is
nonsimple in the sense of Truesdell and Noll [10].

In addition to the symmetry which has already been taken into account, we shall
use two general principles to restrict the form of the constitutive functions: the prin-
ciple of material frame-indifference and the requirement that the Clausius-Duhem
inequality be satisfied in every process. We shall take these two principles in turn
and combine them with the idea of linearization with respect to the nonequilibrium

— Kparameters Vi>, ... , V v, V9 .
Consider a change of frame of the form

xt = Qu{t)Xj + ct{t), (3.2)
where Q{t) = (G,,(0) is a time-dependent orthogonal matrix,

Qumlk(t) = d]k, (3.3)
and c(t) = (ct{t)) is a time-dependent vector. The principle of material frame-
indifference postulates that under the changes of frame (3.2) the quantities 6, p, e,
tl, r, q , and T(k) transform in the following way:

6 = 6, r}=t], e = e, p = p, r = r, (3.4)
?i = C„-9j. (3-5)

= <«>
The quantities on the two sides of the above equations are evaluated at the same
material point; since the spatial description is used, the arguments on the left-hand
side are (x, t), while the arguments on the right-hand side are (x, t). Consequently,
we have the following transformation laws for the gradients of density, velocity, and
temperature:

v.^Q.Q^v, m+Wir (3.8)
Wtl = Q,„QJm, wu = -wjr (3.9)

v. . . = Q .Q ■■ Q v, (k> 2), (3.10)
6 j - QijOj- (3.11)

Let us also note that in view of (3.8) and (3.9), the symmetric part D = (Dij) of the
gradient of velocity,

= + (3-12>
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transforms as
VtJ = QuQjmDlm. (3-13)

Proposition 3.1. A multipolar viscous fluid of type (N, M, K) satisfies the prin-
ciple of material frame-indifference if and only if the following two conditions are
satisfied:

(1) The functions e, rj, yj, q, T[k) depend on the first spatial gradient of velocity
only through its symmetric part D, i.e.,

f(p, Vp,... , Vv, ... , V%, 0, V0)
= f(p,Vp,..., vM'lp,D, V2v, ... , V%, 0, V0),

where / stands for any of the functions e, rj, y/, q, T(k).
(2) The constitutive functions e, rj, y/, q, T{k) are isotropic scalar-, vector-, or

tensor-valued functions of the scalar, vector, or tensor arguments p, Vp, ... , VM_ 1 p,
D, V2v, ... , VKv, 0, V0.

The proof is omitted. We only note that the fact that the response can depend
on the first gradient of velocity only through its symmetric part is related with the
occurrence of the skew tensor W in the transformation law (3.8) and this in turn
depends on the admittance of the time-dependent rotations in the statement of the
principle of material frame-indifference (cf., e.g., Truesdell [11]). Assertion (2) means
that, for instance, the constitutive function T^k) satisfies the functional equation of
the form

rflj (p, v~p,..., vw-1p, d, v2f, ..., vKv,e, V0)
J1 Jk+2

= e« - •»„> v" V. vv». v»j.
^ (3.15)

Using this equation and a similar one for q , we shall derive explicit expressions for
the functions q and T[k) (see Sec. 5).

4. The consequences of the Clausius-Duhem inequality. We now demand, follow-
ing Coleman and Noll [12], that the Clausius-Duhem inequality be satisfied in every
process compatible with the constitutive equations and the equations of balance of
energy and linear momentum. These contain the external sources r and b respec-
tively and it is essential to admit that r and b can be arbitrary functions of x, t.
In view of the form of the constitutive equations this means that all possible motions
and evolutions of the absolute temperature are admitted.

To facilitate the statement of the restrictions which the Clausius-Duhem inequal-
ity places on the constitutive functions, we introduce the following quantities and
functions:

- the equilibrium part of the multipolar stress T[k'E),
T(k'E)(p,Vp,...,VM-lp,6)

= T(k)(p,Vp, ... ,VM'lp,0, ... , 0,0,0)

(k = 0, 1,...), as the multipolar stress corresponding to the zero values of
the gradients of velocity and the zero value of the gradient of temperature;
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- the viscous part of the multipolar stress T,

T{k'V\p,Vp,... , VM~lp, Vv,...,VKv,d,V6)

= T{k)(p, V/>, ... , VM'Xp, Vv, ... , VKv,6,V6) (4-2)

-r \p, vp,..., v ^,0),
fc = 0, 1,... ;

- the variable a is defined by

a = \np, (4.3)

so that the dependence of the constitutive quantities on p and its gradients
can be replaced by the dependence on a and its gradients.

We say that a multipolar viscous fluid R satisfies the second law of thermodynam-
ics if the Clausius-Duhem inequality (2.5) holds in every process compatible with the
constitutive equations (3.1) and the equations of balance of mass (2.1), energy (2.2),
and linear momentum (2.3).

Theorem 4.1. A multipolar viscous fluid of type (N, M, K) satisfies the second
law of thermodynamics if and only if the following two conditions are satisfied in
every process:

(1) The generalized Gibbs equation,

k=0 k=1

(2) The residual dissipation inequality,

E<«.++E "«.».,/»^ »■ <«)
k=0 k=1

The Clausius-Duhem inequality or equivalently the dissipation inequality thus
splits into the generalized Gibbs equation and the residual dissipation inequality.
Further consequences of the generalized Gibbs equation will be given in Theorem
4.2, below, while the consequences of the residual dissipation inequality will be an-
alyzed in the next section.

Theorem 4.2. If a multipolar viscous fluid of type (N, M, K) satisfies the second
law of thermodynamics then the following two assertions hold:

(1) The constitutive functions y/, q, e a re independent of the gradients of velocity
and of the gradient of temperature, i.e.,

f(p, Vp, ... , VM~Xp, Vv, ... , vV 6, V0) = f(p, Vp, ... , 6) (4.6)
throughout the domain of the constitutive functions, where / stands for any of the
functions y, rj, e .

(2) The entropy relation
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and the generalized stress relations

Sym(Tji,'E)j,< + ft " «> - -"Sym (slV-y) • <4'8)
\ h"'h J

k = 0, 1, ... , hold throughout the domain of the constitutive functions; here the
constitutive functions are taken as functions of a and its gradients, and Sym denotes
the symmetrization with respect to the indices j, • ■ • jk i.

In (4.8) we have used our earlier convention that for k > N, we have set T^k] = 0
and hence also, as a consequence of this, = r(fe'K) = 0 (cf. (2.9), (4.1), (4.2)).

Proof of Theorems 4.1 and 4.2. We shall use the dissipation inequality (2.10) which
is equivalent to the Clausius-Duhem inequality. We express the constitutive functions
as functions of a and its gradients, e.g.,

yt = y/(a, Va VM~Xa, Vv, ... , VKv , 6, V<9), (4.9)

etc. This form of the constitutive functions together with the definitions of the elastic
and viscous parts of the stress and the continuity equation in the form

& + vkk = 0 (4.10)

give the following explicit version of the dissipation inequality:

( v* 9a dyy x A
P ( " ^ dai . Vl<U\ 'm + 51 dv Vj'h-in + Jo +d(Ti •' )

\ m=0 l\"'lm n= 1 J>J\--Jn »1 J

N-\ ( M— 1 af(lc+l<E) \
<-prie+y Tik'E).+ y iJ^ipg. . +±T{k+l:E)e U ..
- ^ 1 ^ \ JJr-Jk' ^ a dd Jh-Jk'P 'P J.h-h'k=0 V m=0 'h -'mP J

N-1 / M-1 f)rr(k+l' v)
+ y T(k'n .+ y a .

^ jjr-jk' da >>\-'mp
k= 0 V m=0 >'i

a: aj-<'k+l'V^ Q n-r(k+l,V)

^ dv, , , I'h -Kp^ de ih-ik'P >p^ dd , U-'P
n= 1 '.'i

0

' f :
.7r •■./*' ,1'

(4.ii)
The values of y/, t], q, ' *' and of their partial derivatives are evaluated at

(<t, Vcj, ... , V^'er, Vu, , V%, 0, V0) (4.12)

while the values of T( ,£) and their derivatives are evaluated at

(a, Vff, ... , 0). (4.13)
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The above inequality must be satisfied in every thermodynamic process. In view of
the remarks made at the beginning of this section this means that the gradients of
velocity, gradients of acceleration, time derivatives of temperature and its gradients,
and the gradients of temperature occurring in (4.11) may be chosen in a completely
arbitrary way. Observing that the inequality contains the variables

vjj,..jn,e.,e (4.i4)
linearly, and using the independence of the variables (4.14) of the remaining variables
in (4.11), we see that (4.11) implies

A n ,A in0, ao —0, t] — . (4.15)dvi . ' dd , ' ' do
In particular, the function y/ is independent of the gradients of velocity and of the
gradient of temperature,

y/= y/(a, Va, ... , VM~l a , d). (4.16)

The entropy relation (4.15), also implies that rj is a function of the variables (4.13),
and finally by (2.11) this completes the proof of assertion (1) of Theorem 4.2 and of
(4.7).

Inequality (4.11) now simplifies in the following way: on the left-hand side the
terms containing the derivatives of yj with respect to 9 , and gradients of v and 6
may be omitted and on the right-hand side the term prjd may be omitted. Using
the independence of the gradients of velocity and temperature of the variables (4.13),
we see that the gradients Vv, V2v, ... , V(9, V20 , can be replaced systematically by
aVv , aV2v , ... , aV6 , aV20 at a given point, where a > 0 is an arbitrary number.
The inequality so obtained is written symbolically as follows:

M-1
T-7m+1qV V

M-\ a^(k+\,E) aT.(fc+l ,£) \
T,( k,E) oT T7m+1 I y I T7^+1-.,
T +S av-v ? g+ se °v" ° "

m=0 /
(M-\ „T(t+l, V) K arr(k+ \,V)

r(k,V) Oi O J n+1T + ) —T^m V a + >  v^ dVno ^ dVnv
m=0 n= 1

r\rr<{k+\,V) r\ rr^(k+\ , V) \
„ dT r-,k+i a in

+—00—Q + dve ) v-q^eje,
(4.17)

where the derivatives of the viscous stresses and of q are evaluated at
(Vr(7, aVmv, 6, aV6), (4.18)

and the derivatives of y and of the equilibrium stresses are evaluated at (4.16). The
tensorial indices are omitted from (4.17); their position is analogous to that of the
corresponding terms in (4.11). We now divide (4.17) by a and let a tend to 0. The
arguments of the derivatives of y/ and of the equilibrium parts of the stresses remain
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unchanged while the arguments of the viscous parts of the stresses, their derivatives,
and the arguments of q tend to (Vra ,0,0,0). The limiting procedure thus gives

M— 1 „ N-1 / M— 1 arr(k+l,E) \E Oty nw+1 ^ / -r(k,E) V—> 01 _m+l \ ~-,k +1»<Elr +E-8VV-* ")-v "
m=0 k=0 \ m=0 J

M-1 „_(A:+l,F) \
T(k,V) , r-rm+1 \ V7^+1

m=0 /

(4.19)
where the viscous stresses, their derivatives, and q are evaluated at (Vrcr ,0,0,0).
But for these values of arguments we have T(k'K) = 0 by the very definition and
hence, as a consequence, dT(k' ^/dVro = 0 also. Furthermore, since the only term
containing V6 is the heat conduction term, we deduce from (4.19) that

q(Vo, 0, 6, 0) = 0. (4.20)
All these facts further simplify (4.19) to

M-\ N-1/ Af-l flT(it+l,£) \
Eoy/ „m+1 . V-^ / „(k,E) ^ T r-Tm + 1 1 n':+1 / /i in»<Hr +E-av^~v " v (4'21)
m=0 fe=0 \ m=0 /

As this inequality is linear in the gradients of velocity, relations (4.8) follow. The
proof of Theorem 4.2 is complete.

Obviously, the assertions of Theorem 4.2 imply assertion (1) of Theorem 4.1, i.e.,
the generalized Gibbs equation. The subtraction of the generalized Gibbs relation
form the full dissipation inequality (4.11) gives the residual dissipation inequality.
We have thus shown that the second law of thermodynamics implies assertions (1),
(2) of Theorem 4.1. Conversely, the addition of the generalized Gibbs equation with
the residual dissipation inequality gives the full dissipation inequality, i.e., assertions
(1), (2) imply the second law. The proof is complete.

Proposition 4.1. If a multipolar viscous fluid of type (N, M, K) satisfies the sec-
ond law of thermodynamics and k > max{M, K + 1} , we have

= 1 <4-22>

in every process. If 7t is symmetric in jl ■ ■ ■ jki for k > max{M, K + 1},
then

N<K+ 1, N < M. (4.23)
(4.22) says that the multipolar stresses T{k), with k exceeding the number of

gradients of density and the number of gradients of velocity, essentially vanish, i.e.,
they vanish modulo the symmetrization indicated. These stresses vanish exactly if
the mentioned symmetry holds; consequently, we have the inequalities (4.23). Thus
we have essentially an upper bound for the number of nonvanishing stresses N in
terms of the number of gradients of density and the number of gradients of velocity.
For the specific model to be treated in the next two sections, we shall also give a
lower bound for N in terms of K .
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Proof. We first split the working term in the dissipation inequality (4.11) as fol-
lows:

N-1
^(T(fc) + div T(k+X]) ■ \>k+Xv
k=0

= J2 (7,(fc+1) + div r(fc+1)) • Vfc+1v (4.24)
k=0

+ (r(i) + div T{k+l)) ■ Vk+lv ,
k=N0

where N0 is defined by
N0 = max{Af, K + 1}. (4.25)

We now insert the split expression in the dissipation inequality (4.11) and examine
the dependence of various terms of the resulting inequality on the gradients of veloc-
ity of different orders. We first consider all the terms except for the second sum on
the right-hand side of (4.24). We have the following dependences: iff depends on

Vv,...,VMv, (4.26)

T(k) and its divergence depend on

Vu, ... , V*+1u, (4.27)

and the working terms in the first sum in (4.24) depend explicitly on

Vv, ... , V%. (4.28)
We have N0 > M, N0 > K + 1 and hence, except for the second term in (4.24),
everything else depends on the variables in (4.28). On the other hand, the second
term in (4.24) depends explicitly on

VN°+lv , VN°+2v , ... (4.29)

and the coefficients in front of these gradients are independent of (4.29). To sum-
marize, the dissipation inequality depends on the variables (4.29) only through the
second sum in (4.24), and the dependence is linear. Equation (4.22) then follows.
The rest is obvious. The proof is complete.

We concludle this section with a proposition concerning the validity of the reduced
equation of balance of angular momentum (2.7). Its simple proof is omitted.

Proposition 4.2. If a multipolar viscous fluid satisfies the reduced equation of bal-
ance of angular momentum in every process compatible with the constitutive equa-
tions, then

and

in every process.

eijk {Tkj + Tkjp,p + QQTkJP 9 n ) - 0 (4-31)
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5. Linear viscous fluids. Starting from this section we restrict ourselves to the
case when only the density and not its gradients enter the constitutive equations, i.e.,
M - 1, and to the case when the viscous stresses and the heat flux vector depend
linearly on the gradients of velocity and the gradient of temperature.

Proposition 5.1. If a multipolar viscous fluid of type (N, 1, K) satisfies the second
law of thermodynamics and the principle of material frame-indifference, then

7?j'E) = -pSij, (5.1)
where p = p(p, 8) is given by

if k is odd, then

if k is even and k > 0, then

and

(52>

Tik-E) = 0; (5.3)

T(k,E) = r(k,E)^

s>-mr!"v = 0' <">
where Sym denotes the symmetrization with respect to the indices jx - ■ ■ jki.

Proof. We first note that the transformation law (3.15) for the total multipolar
stress implies analogous laws for the equilibrium and viscous parts of the stress.
Hence T(k'E) (p, 6) = Q. ■■■Q T[k'E) (p,6) (5.6)

' ^lwl ^h+7mk+l m\"mk+2 ' y '

for every orthogonal tensor Q. Consequently, T{k'E) is an isotropic tensor of order
k-1-2 . If k is odd, then the only isotropic tensor of order k+2 is 0 (it is enough to set
Qij = -Sij in (5.6)). This proves (5.3). Formulas (5.1) and (5.2) are a combination
of the generalized stress relation (4.8) for k = 0 with the fact that = 0 by
(5.3). If k is even and k > 0, then the generalized stress relation (4.8) with k
replaced by k - 1 gives

+ (5J)

But since k - 1 is odd, the first term in (5.7) vanishes by (5.3); moreover, the
symmetrization is irrelevant as Tjk'Ej ip is symmetric in jl ■ • ■jk_li ■ Thus

d ,£) _
~Q~p jj\ - jk-iipP<p ~ <5'8)

~T(k'E) . =0 (5.9)
dp JJr-Jk-i'P y '

and hence also (5.4). Finally, combining the generalized stress relation (4.8) with the
fact that T(k+X'E) = o for k even, we obtain (5.5). The proof is complete.

which implies
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The analysis of the viscous part of stresses will be given only for linear fluids. A
multipolar viscous fluid of type (N, M, K) is said to be linear if M = 1 and if for
every p, 6 the quantities

T(k'V\p,Vv,...,VKv,6,Vd) (5.10)

and

q(p, Vv,...,VKv,6, V0) (5.11)

depend linearly on Vv, ... , V v ,V6.

Proposition 5.2. If a linear viscous fluid of type (N, 1, K) satisfies the principle
of material frame-indifference, then

(1) T(k'V) with k even depends on p, 6 , and on the odd-order gradients of v ;

T(k,V) _ T(k,V)^p^ e^ Vv^ y3^ ^ ^ vLy). (5J2^

(2) q and T(k'1' with k odd depend on p, 6, and on the even-order spatial
gradients of v:

q = q(p, 0, V2u, , Vl~lv,\/6), (5.13)
T(k,v) = T(k,v)^p^ e ^ ^ ^ vi_lw , V0); (5.14)

here L is a suitable odd number depending on K .
Proof. By linearity, the expressions for q and T(k'V) are sums of a number of

terms depending linearly on the gradients of velocity of different orders and of a
term depending linearly on V0 . The transformation laws for the stresses and the
heat flux vector under changes of frame must be satisfied by each of these linear
terms separately. Using these transformation laws with Ql} = -Sij and counting the
number of rotations in these transformation laws for each of the linear terms, one
readily learns that only the terms with the orders of gradients of velocity indicated
in assertions (1), (2) can be nonzero. The details are omitted.

Theorem 5.1. We have the following expressions for r(0'F); \ and q in a
linear viscous fluid satisfying the principle of material frame-indifference:

T?i'V) = l-vk,ksij + +

t.Mjf A.r+1„. , »(f> Ar+10

r=0
n(r) * r+l , ('*) a r \

vj.i + y Avk,klJ)>
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P
t(I.J') V"V (r) r Ar+1 , (r) z Kr
Tijk = Z>1 SUA vk + 2 SijA Vn, nk

r=0
ir) ! A r+! , (r) ? A r+ c, d-,A v +ei o,A?)' 3 ik j ' 4 ik m,mj

+ 4'SJk A'*'"i + CVSikA'Vm . ml (5-1 6)
+c\" A'vIJt+c<;>A\u
+ c{r)Arv +c{r)Ar~lv )
+ C9 ^ Uj,ki + cl0a Um,mijk>

+ C\\dije,k + C\2Sike,j +C\3Sjkd,i>

Qi = + 4r)Ar+lVi) - kO r (5.17)
r=0

Here X, n, a(r), fl[r), p{2r}, y(r), c[r), ... , , d[r), d^ , and k are scalar functions

of p, 6 such that c|q satisfies c|q = 0 and P is an appropriate integer determined
by K. If the body satisfies the reduced equation of balance of angular momentum,
then

fif + cy + ct^fiF + cV + c? (5.18)

for r = 0, 1, ... , P.
Similar but more complicated expressions can be obtained also for T(k'1' with

k> 2.
Proof. In view of the transformation laws for T(k) and q under changes of frame,

the coefficients in the expressions for q and T{k) in front of the gradients of velocity
and the gradient of temperature must be isotropic tensors. Using the general forms
of isotropic tensors (see Spencer [13]) and the symmetry of the gradients of v , one
eventually arrives at (5.15)—(5.17). The details are omitted.

The following proposition shows that for linear viscous materials for which the
scalar coefficients in the linear expressions for T{k''' and q are independent of
p,6, the residual dissipation inequality (5.5) splits into two independent inequali-
ties. For simplicity we make the assumption that

T(k'E) = 0 (5.19)

for k > 1, which, at least for k odd, is a consequence of the second law (cf. (5.3)-
(5.5)).

Proposition 5.3. Consider a linear viscous fluid such that T{k'1 1 and q are inde-
pendent of p, 6 and (5.19) holds identically. If the fluid satisfies the principle of
material frame-indifference and the second law, then the following two inequalities
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hold:
N-1

[T(k'V). + T(k+x'V) )v. . ..>0, (5.20)
jJr-Jk'P-P'

k=0
& even

y" (r(fc'K). + T{k+l'V) )V. . - q d 16 > 0. (5.21)
Z-' v JJi—Jk'P'P' J'J\---Jkl ' >•' — y '
k= 1

<: odd

The expressions for q, T{k'V), and its divergences are linear in the gradients
of velocity and in the gradients of temperature. When these linear expressions are
inserted in (5.20), (5.21), these inequalities express nonnegativeness of quadratic
forms. Sylvester's criterion can be used to find the inequalities which the coefficients
of the linear expressions for Tik'V) and q must satisfy in order that (5.20), (5.21)
be guaranteed. We do not pursue this possibility here.

Proof. Under the hypothesis of the proposition, the residual dissipation inequality
(5.5) can be written as the sum of the left-hand sides of (5.20) and (5.21). Now the
left-hand side of (5.20) depends on

Vu, V3u, ... , Vi+1v, V26», (5.22)

while the left-hand side of (5.21) depends on

V2V ,V4V , ,V6 (5.23)

(cf. Proposition 5.2). As the sets (5.22), (5.23) are disjoint and the expressions are
quadratic, the splitting of the residual inequality into (5.20), (5.21) follows. The
proof is complete.

We are now going to show that for linear materials the Clausius-Duhem inequality
restricts the dependence of the viscous stresses T(k) on the gradients of order larger
than 2N - 1 — k very strongly. The effect of the restriction will be shown to be so
severe that the terms with the gradients of velocity of order larger than 2N — 1 — k
do not contribute to the equations of balance of energy and linear momentum. (See
Propositions 5.4 and 5.5 below for precise statements.)

We introduce additional notation to state the results. We shall deal exclusively
with linear fluids for which the viscous stresses and the heat flux do not depend on
p, 6. We split the viscous stresses and the heat flux into the regular and singular
parts, denoted T{k'R), Tik'S), q[R], q[S> as follows:

T(k,v) = T(k,R)^v^ ; v2N~1~kv, V<9)
(5.24)^2N-k+l . v '

+ T '(V V, V V, ...),
k = 0, 1, ... , N- 1

q = qiR)(Vv, vV..., V%, V0)
(S) ,—N+\ _iV+2 , I • i+ q (V v , V v, ...),

so that the lower the order of the stress tensor, the bigger the number of the gradients
of velocity in the regular part T{k'R) of the stress. In particular, the highest order
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regular stress rr(-N~l'R] depends on the gradients of velocity up to the order N, while
the lowest order regular stress T(0"R) depends on the gradients of velocity up to the
order 2N - 1 . The singular part of the stresses depends on the complementary set of
variables. The singular parts of the stresses will eventually turn out to be negligible
from the point of view of the balance equations. Also note that in view of Proposition
5.2 the viscous stresses and q depend either on only the even-order gradients or on
only the odd-order gradients, but this is irrelevant here.

Proposition 5.4. Consider a linear viscous fluid such that and q are inde-
pendent of p, 6 and (5.19) holds identically. If the fluid satisfies the second law of
thermodynamics, then the following three assertions hold:

(1) The inequality

X^<T{k'R) .+ T(k+l'R) )v. ■ . . - q{R)d 16 > 0 (5.26)
k=0

holds in every process.
(2) We have the following relations:

<?!5) = 0, (5.27)
<5-28>

+ ,,) = <), (5.29)

k = 0, \, N-2.
r(k . V)
Jh-Jk'

K < 2N - 1. (5.30)

(3) If ]Vj . is symmetric in j\ ■ ■ ■ jki for every k with 1 < k < N — 1, then

Assertion (1) says that the regular parts of the stresses satisfy the residual dissipa-
tion inequality similar to that satisfied by the total viscous stresses. Equations (5.27)
to (5.29) of assertion (2) say that the singular part of the heat flux vanishes and that
also the singular stresses vanish modulo the symmetrization. The singular stresses
vanish exactly if the stresses are symmetric in the indicated indices and hence the
fluid satisfies inequality (5.30). Recall, on the other hand, that we also have inequal-
ity (4.23) of Proposition 4.1. We thus have a lower and an upper bound for N in
terms of K for linear viscous fluids.

Proof. Consider first the residual dissipation inequality with the following choice
of the arguments:

Vv - V2v = ••• = VNv = 0, (5.31)

V^+V , VJV+2v , ... , ve arbitrary. (5.32)

The inequality then reduces to

(qlR) + qf))d , < 0, (5.33)
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where q{R) is evaluated at the velocity gradients indicated in (5.32). The linearity
of the dependence of qlS) on the arguments , ... then gives

<7,(5)0,,<O. (5.34)

Since V0 is arbitrary and qlS) is independent of it, equation (5.27) follows.
Next consider the residual dissipation inequality with the following choice of the

arguments: let k e {0, 1, ... , N - 1} be given and set

Vmv = 0 if 1 < m < N, m # k + 1, (5.35)
Vmv arbitrary if m > N or if m — k + 1, (5.36)

V<9 = 0. (5.37)

The residual inequality then reduces to

(T{k'R) + divT{k+l,R) + T{k'S) + divT{k+l'S))Vk+iv > 0, (5.38)

where T(k'R^ and divr(/c+1'S) are evaluated at the arguments

(0, 0, ... , Vk+lv, 0, ... , VN+lv, ... , V2N-l~kv,V9), (5.39)

while T(k 'S) and divr(/c+I S) are evaluated at the arguments
, — 2N—k _2JV—fc+1 , ,.(V v, V v, (5.40)

These can have arbitrary values and in view of (5.24) they do not enter the regular
parts of the stresses and their divergences occurring in (5.38). The linearity of the
dependences on the variables (5.40) together with r(A ~S) = 0 (cf. (2.9)) gives (5.28)
and (5.29). This proves assertion (2).

Assertion (1) now follows from the residual dissipation inequality and the relations
of assertion (2). Also assertion (3) is an obvious consequence of assertion (2). The
proof is complete.

Proposition 5.5. Consider a linear viscous fluid of type (N, 1, K) such that T{k'l)
and q are independent of p, 6 and (5.19) holds identically. If K > 2N - 1 and
if the fluid satisfies the second law of thermodynamics, then there exists another
linear viscous fluid satisfying the second law of thermodynamics such that it is of
type (N, I, K'), K' < IN - 1 , and the equations of balance of linear momentum
and energy of the two fluids are identical. (This means that when the constitutive
functions of the two fluids are inserted in the balance equations, then the resulting
differential equations for the unknown functions v(x, t) and 6(x, t) are the same
for the two fluids.) The new fluid is defined as follows: its constitutive functions
y/, rj, e, q , T[k'E] are identical with those of the original fluid, but its constitutive
functions for the viscous stresses are the regular parts of the viscous stresses of the
original fluid. Hence the singular parts of the stresses of the new fluid vanish.

If the boundary conditions of the fluid are formulated in terms of the stresses,
they may be different for the two fluids.
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Proof. It is clear from (5.27)-(5.29) that the new fluid has the power of the viscous
stresses identical to that of the original fluid, i.e.,

J2(T{k-R) + divT{k+l,R)) ■ Vk+lv = ^2(T{k'V) + div T(k+i'V]) ■ Vk+lv. (5.41)
k=0 k=0

Since the other quantities of the two fluids are identical by the definition, it is then
clear that the reduced equation of balance of energy and the dissipation inequalities
of the two fluids are identical. Hence, in particular, the new fluid satisfies the second
law of thermodynamics.

We shall now prove that the equations of balance of linear momentum of the two
fluids coincide. These two equations can differ only in the term and our task
is to prove that

Tj0p'Sp] = 0. (5.42)

But using (5.29) with k = 0, 1, ... , N-2 , this term can be rewritten in the following
way:

JjiJi ~ [ jjJiJi'Ji ~ K JJJi 'Jih
= +(T{2'S) . ) = +y{2'S) .. (543)

Jhhh>h''hh JJihh.hhh ^ '

^ > iix-is A'

We have omitted the symmetrization symbols in the above computation because of
the interchangeability of the partial derivatives occurring above. To complete the
proof of (5.42), it is enough to note that the last term in (5.43) vanishes in view
of (5.28). Hence the equations of balance of linear momentum of the two fluids
coincide. As we have already proved, the reduced equations of balance of energy
also coincide. Since the full equation of balance of energy is a consequence of these
two, we see that the full equations of balance of energy of the two fluids also coincide.
The proof is complete.

6. Dipolar fluids. Dipolar materials provide the lowest order example (N = 2) of
a genuine multipolar material. We shall restrict here to linear dipolar fluids. It is
assumed that the fluid satisfies the principle of material frame-indifference and the
second law. In addition to the notation introduced in (5.24) and (5.25) concerning
the regular and singular parts of the stresses, we also write

T(0,r) = r(o,i^Vw) + r(0,3)^v3^ (6 ^
T(l ,R) = ^(1,2)^2^ + r(l,0)(V^ ^ 2)

q{R) = q{d\vd) + q(2)(W2v), (6.3)

to split the dependences of the regular parts of the viscous stresses on the gradients
of velocity of different orders.

Theorem 6.1. If a dipolar linear fluid of type (2, 1, K) satisfies the principle of
material frame-indifference and the second law of thermodynamics and if r<0 ,)
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and r"'' 1 are independent of p and 6 , then

T^l)vtj>0, (6.4)
rri(0 , 3) rp{ \ ,2) ^ n.Tij =-TUP,P> ^

T?jpe)p = 0. (6-6)

(7^2) + T^e))vi jk + + q^e je > 0, (6.7)

<?,(5) = 0, (6.8)

Tijk =~Tikj > (6«9)
r(0'5) = _r(i'5). (6.10)ij ijp,p K '

The proof of this proposition is similar to that of Proposition 5.4 and is omitted.
Propositions 5.4(3) and 5.5 show that for dipolar fluids the response depends most

typically on the gradients of velocity up to order 3 (i.e., K = 3) and we conclude this
section with explicit expressions for the viscous stresses and the heat flux in materials
of type (2, 1,3).

Proposition 6.1. If a linear viscous fluid of type (2, 1,3) satisfies the principle of
material frame-indifference and the second law of thermodynamics, then

T!j'V) = *vk,kdij + H(vij + Vjj)

+ aAvk,ksu + fii Ai,j + 02Avj,i + yvk,kij -

TUkV) =ClSUAVk+C2SijVm,mk
4- c->S , Av + c,S , v1 3 ik j 1 4 ik m ,mj

+ Ccd , Av + Crdv (6.12)5 jk i 6 jk m, mi v '

+ C7Vi,jk+CSVk,ij + C9Vj,ki

+ C\0Sij6,k +CllSikdJ + C\2Sjkd,,>

(6.11)

and
q. = -kdi+d]vmmi + d2Avi, (6.13)

where X, p, a, , /?2, y, c,, ... , cn, k, d{, d2 are real-valued functions of p and
6 . If these functions are independent of p, 6 , then the following relations hold:

a + Cj + Cj = 0, (6.14)

+ C5 -|- c? = 0, (6.15)
^2 + c3 + c9 = 0, (6.16)

y + c4 + c6 + cg = 0, (6.17)
C10 = C11 +C12 = °- (6'18)

If the body satisfies the reduced equation of balance of angular momentum, then

P\ + Cj + c-j = /?2 + + Cy. (6.19)
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Proof. Formulas (6.11)—(6.13) and (6.19) are just specializations of the corre-
sponding general formulas of Theorem 5.1. Equations (6.14)—(6.18) follow from
Eqs. (6.5), (6.6) of Theorem 6.1. The details are omitted.
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