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Multipole expansion for relativistic Coulomb excitation
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We derive a general expression for the multipole expansion of the electromagnetic interaction in relativistic
heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation.
The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and
relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent
results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.
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I. INTRODUCTION

The Coulomb excitation of nuclei at relativistic energi
is commonly calculated in first-order perturbation theory,
ing the formalism developed in Ref.@1#. The derivation is
restricted to distant collision, where the intrinsic radial co
dinates are smaller than the minimum distance between
colliding nuclei. In calculations of the Coulomb dissociatio
of proton halo nuclei, it is of interest also to consider clo
collisions, since the density of the valence proton can ext
to very large distances. Moreover, higher-order proces
may also play a role, as suggested by the nonrelativistic
culations of the8B breakup reported in Ref.@2#.

In order to calculate the Coulomb dissociation of ha
nuclei at energies where relativistic and higher-order effe
cannot be ignored, one would need realistic multipole fo
factors for the electromagnetic interaction. Such form fact
have recently been studied@3# but they were only determine
in the long-wavelength limit for distant collisions. We ther
fore find it timely to study the multipole decomposition
the interaction at relativistic energies, both for close and d
tant collisions. The form factors we derive can be applied
higher-order dynamical calculations of two-body breakup
actions, such as the continuum discretized coupled-chan
calculations@4#, or in numerical methods that evolve th
two-body wave function in coordinate space@5–7#.

We base our study on the so-called Lie´nard-Wiechert po-
tential and include the effect of the convection current. T
magnetization current, on the other hand, is ignored for s
plicity. We assume that the relative velocity of the interacti
nuclei is a constant, so that the retardation effect associ
with a time-dependent velocity can be ignored.

The multipole expansion of the interaction contains b
diagonal and off-diagonal multipole components. The o
diagonal components appear because of the Lorentz con
tion. Our approach is similar to the method developed
Baltz et al. @8# in their study of thee1e2 pair production in
relativistic heavy-ion collisions. We extend their study a
derive the multipole fields that are relevant to Coulomb
citation.

The multipole expansion of the Lie´nard-Wiechert poten-
tial is presented in Sec. II. There we also discuss how
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calculate the interaction associated with the convection c
rent. We propose in Sec. III a simple truncation in the s
over off-diagonal multipole components. We test this a
proximation in Sec. IV in first-order perturbation theory fo
distant collisions by comparing to the exact results of R
@1#. Section V contains our conclusions.

II. ELECTROMAGNETIC INTERACTION
WITH FAST CHARGED PARTICLE

The electromagnetic interaction of a fast charged part
~with atomic numberZ1) and a weakly bound proton in
target nucleus has the form@1#

Vem~r ,r 8!5Z1e2S f2
v

2mc2
@ p̂f1fp̂# D . ~1!

The charged particle is assumed to move with constant
locity v in the z direction on the straight-line trajectoryr 8
5b1vt, with impact parameterb with respect to the targe
nucleus. The coordinates of the proton in the target nucl
are denoted byr andp̂ is the conjugate momentum operato
The potentialf is the Liénard-Wiechert potential

f5
g

Aur'2r'8 u21g2~z2z8!2
, ~2!

where g51/A12b2, and b5v/c. The second part of the
interaction~1!, which contains the momentum operatorp̂, is
due to the convection current. We ignore the magnetiza
current but it could be included by replacing the moment
operator byp̂1\“3mp , wheremp is the magnetic momen
of the proton.

In the two-body breakup of a target nucleus, into a pro
and a core nucleus, one would actually have to consider
effect of two interactions with the projectile, namely, th
‘‘direct’’ interaction with the proton and the ‘‘recoil’’ inter-
action with the core. We will not discuss this complicatio
here, since the multipole expansion of the two interactio
can easily be generated from the formulation given below
©2002 The American Physical Society05-1
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A. Multipole expansion

The multipole expansion of the Lie´nard-Wiechert poten-
tial f can be obtained from the Fourier representation@8#

f5
4p

~2p!3E dq
eiq•(r2r8)

q'
2 1qz

2/g2

5
4p

~2p!3E dq
eiq•(r2r8)

q2

1

12b2 cos2~uq!
. ~3!

Except for the last factor, this is just the ordinary Coulom
potential. To proceed, we introduce the multipole expans
of the last term in Eq.~3!

1

12b2cos2~u!
5 (

l even
gl~b!Pl@cos~uq!#, ~4a!

where

gl~b!5~2l11!b21Ql~b21!, ~4b!

and

Ql~z!5
1

2E21

1

dt
Pl~ t !

z2t
~4c!

are Legendre polynomials of the second kind; see
~8.825! of Ref. @9# or Eq. ~8.8.3! of Ref. @10#. Explicit ex-
pressions and recursion relations forQl(z) are given in Ref.
@10#.

We can now insert the plane wave expansion

eiq"r54p(
lm

i l j l~qr !Ylm~ q̂!Ylm* ~ r̂ !

for the two plane waves in Eq.~3! and obtain

f54p (
lml8m8

i l 2 l 8Rll 8~r ,r 8!Alm,l 8m8~b!Ylm* ~ r̂ !Yl 8m8~ r̂ 8!,

~5a!

where

Rl ,l 8~r ,r 8!5
2

pE0

`

dq jl~qr ! j l 8~qr8!

5
1

Arr 8
E

0

`dq

q
Jl 11/2~qr !Jl 811/2~qr8! ~5b!

and

Alm,l 8m8~b!5^Yl 8m8u
1

12b2cos2~uq!
uYlm&

5 (
l even

gl~b!^Yl 8m8~ q̂!uPl~uq!uYlm~ q̂!&.

~5c!
02460
n
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The above expressions were derived for a trajectory w
constant velocity in thez direction. The matrix~5c! is there-
fore diagonal inm. Let us also give a more general resu
which does not refer to any specific coordinate system. T
can be done by noticing that the angleuq in Eq. ~5c! is
actually the angle betweenq and the velocityv. Thus by
insertingPl(uq)5(mDm0

l ( v̂)* Dm0
l (q̂) we obtain

Alm,l 8m8~b,v̂ !5 (
l ever

gl~b!(
m

~Dm0
l ~ v̂ !!* ^ lmlmu l 8m8&

3^ l 80l0u l0&, ~5d!

where the last two Clebsch-Gordan coefficients is the ma
element̂ Yl 8m8uDm0

l uYlm&.
We note that the expansion~5a! contains diagonal~i.e., l

5 l 8) as well as off-diagonal multipole components@i.e.,
( lm)Þ( l 8m8)#. The off-diagonal components are caused
the Lorentz contraction which destroys the spherical symm
try of the potentialf. The radial dependence is determin
by the integral~5b!, and analytic expressions and recursi
relations are derived in Appendix A. In numerical applic
tions one can include the finite size of the projectile simp
by multiplying the integrand in Eq.~5b! by the Fourier trans-
form of the charge distribution. However, we find it instru
tive to show the analytic expressions for point particles.

The radial dependence of the diagonal components is
termined by@see Eq.~A5!#

Rl ,l~r ,r 8!5
1

2l 11

r ,
l

r .
l 11

, ~6!

wherer ,5min(r,r8) and r .5max(r,r8). This is identical to
the dependence one has in the nonrelativistic limit. In fa
the well-known multipole expansion of the Coulomb inte
action is recovered from Eq.~5a!, when we insert the non
relativistic limit of Eq. ~5c!, viz Alm,l 8m8(b50)5d l l 8dmm8 .

The off-diagonal multipole contributions tof are more
complicated. The radial form factors have the symme
property

Rl ,l 8~r ,r 8!5Rl 8,l~r 8,r !. ~7a!

According to Eq.~5c!, we only need expressions for eve
values ofu l 2 l 8u. We show in Appendix A that

Rl ,l 1L~r ,r 8!50, for r>r 8 and L52,4, . . . . ~7b!

The explicit, nonzero expressions can be obtained from
~A4!. For L52 we obtain in particular@see Eq.~A5!#

Rl ,l 12~r ,r 8!5
1

2

r l

r 8 l 11 F12S r

r 8
D 2G , for r ,r 8. ~8!

One can exploit the properties~7a! and ~7b! and write
expressions forf that are valid for distant and close coll
sions, respectively. Thus we obtain for distant collisio
(r ,r 8)
5-2
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fdist5 (
lmm8

4pYlm* ~ r̂ ! (
L50,2,. . .

i LRl ,l 1L~r ,r 8!

3Alm,l 1Lm8Yl 1L,m8~ r̂ 8!. ~9a!

For close collisions (r .r 8) we can use the expression

fclose5 (
lmm8

4pYlm* ~ r̂ ! (
L50,2,. . .

i LRl ,l 2L~r ,r 8!

3Alm,l 2Lm8Yl 2L,m8~ r̂ 8!. ~9b!

The sum overL is finite for close collisions, sincel 2L
must be non-negative. This is a very nice feature, wh
makes it feasible to include all terms. For distant collisio
on the other hand, one would have to make a truncatio
the sum overL.

B. Convection current interaction

The contribution to the interaction~1! that originates from
the convection current is

f85
i\

2mc2 @~v•“ !f1f~v•“ !#

5
i\

2mc2@~v•~“f!12f~v•“ !#. ~10!

The operatorv•“ is effectively of dipole nature, as shown i
Appendix B. In practical numerical calculations it will ope
ate on an expression of the formr 21f (r )YLM( r̂ ). From Eq.
~B4! we then obtain

v•“S f ~r !

r
YLM~ r̂ ! D

5v(
m

~Dm0
1 ~ v̂ !!* (

L8M8
YL8M8~ r̂ !^YL8M8uDm0

1 uYLM&

3S 1

r

d f~r !

dr
2

f ~r !

2r 2 @L8~L811!2L~L11!# D . ~11!

We can also give an explicit expression for the te
c21v•(“f), which appears in second version of Eq.~10!.
Assuming thatv points in thez direction, we obtain from
Eq. ~3!

bS df

dzD5
4p

~2p!3E dq
eiq(r2r8)

q2

ibq cos~uq!

12b2cos2~uq!
.

We can now repeat the derivation that lead to Eq.~5! and
obtain

bS ]f

]z D54p i(
l l 8

i l 2 l 8Pll 8~r ,r 8!

3(
m

Bll 8m~b!Ylm* ~ r̂ !Yl 8m~ r̂ 8!, ~12a!
02460
h
,
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where

Pll 8~r ,r 8!5
2

pE0

`

dqq jl~qr ! j l 8~qr8!, ~12b!

and

Bll 8m~b!5^Yl 8mu
b cos~u!

12b2cos2~u!
uYlm&

5 (
lodd

gl~b!^Yl 8muPl„cos~u!…uYlm&. ~12c!

The last expression is similar to Eq.~5c! but the sum is now
over odd values ofl. The dependence on the radial coord
nates can be derived from Eqs.~A7!–~A8!. We note that
matrix elements off8 can be calculated in a much simple
way in first-order perturbation theory, as we shall see in S
IV.

III. SIGNIFICANCE OF RELATIVISTIC CORRECTIONS

In order to illustrate the significance of relativistic corre
tions at intermediate energies, we show in Fig. 1 the fu
tions gl(b) defined in Eq.~4b!. They are seen to decreas
rapidly as function ofl when (v/c)2,0.5. This suggests
that one would only need a few terms in the sum overL in
Eq. ~9a!.

In the next section we determine the range of velocit
where a truncation toL50,2 is reasonable for distant colli
sion. Thus we will apply the approximation

f lm
dist'

4p

2l 11

r l

r 8 l 11
Ylm* ~ r̂ !(

m8
H Alm,lm8~b!Ylm8~ r̂ 8!

2
2l 11

2
Alm,l 12,m8~b!Yl 12,m8~ r̂ 8!@12~r /r 8!2#J .

~13!

FIG. 1. The functionsgl(v/c), defined in Eq.~4b!, are shown as
functions of (v/c)2 for l50 –6.
5-3
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We assume a straight-line trajectory with constant velocity
the z-direction and calculate the Coulomb excitation in fir
order perturbation theory. We can then test the accurac
the truncation, Eq.~13!, by comparing to the exact resul
from Ref. @1#.

IV. TEST IN FIRST-ORDER PERTURBATION THEORY

In first-order perturbation theory for distant collisions o
needs the Fourier integral of the multipole fields

f lm~r ,v!5E
2`

`

dteivtf lm~r ,t !5A 4p

2l 11
r lYlm* ~ r̂ !Slm~v!,

~14a!

where\v is the excitation energy andSlm(v) are the so-
called orbital integrals

Slm~v!5A 4p

2l 11E2`

`

dt eivt
Ylm~R̂!

Rl 11
. ~14b!

For nonrelativistic Coulomb excitation and a straight li
trajectory, these integrals are@1#

Slm
NR~v!5

2

v

i l 1m

A~ l 1m!! ~ l 2m!!
S v

v
D l

Km~vb/v !. ~15!

Below we derive the orbital integrals for the truncated int
action ~13!.

A. Liénard-Wiechert potential

The Fourier transform~14a! of the multipole field~13!
can be expressed in terms of various combinations of
nonrelativistic orbital integrals~15!. This is obvious for the
first term in Eq.~13!, and the second term is calculated
Appendix C. A slight complication is the very last term
Eq. ~13! which contains the factor (r /r 8)2. It turns out to be
a factor of (vr /v)2 smaller than the dominant term so let
ignore it. Thus we obtain

Slm~v!5Allm~b!Slm
NR~v!2Al ,l 12,m~b!

2l 11

2
A 4p

2l 11

3E
2`

`

dteivt
Yl 12,m~R̂!

Rl 11
. ~16!

The latter integral is given in Eq.~C5!.

B. Convection current interaction

We also need to calculate the contribution from the c
vection current, Eq.~10!. Here we can again make the su
stitution ~B1!. Assuming that the single-particle potenti
commutes withr we can go a step further and replace t
momentum operator bypz5( im/\)@H,z#, where H is the
single-particle Hamiltonian. Thus we obtain
02460
n
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f852
ib

2\c
~@H,z#f1f@H,z# !

52
ib

2\c
~@H,zf#1fHz2zHf!. ~17!

We note that in first-order perturbation theory one can eff
tively replace the commutator@H,zf# by \vzf. The other
term,fHz2zHf, has to be considered more carefully.

Let us write the multipole expansion off8 as in Eq.
~14a!,

f85A 4p

2l 11
r lYlm~ r̂ !Slm8 .

Sincez in Eq. ~17! is a dipole operator, we see thatf lm8 can
receive contributions from bothf l 21,m andf l 11,m . The con-
tribution from the latter is smaller@by a factor of (vr /v)2# so
let us ignore it. Let us first consider the contribution from t
commutator@H,zf#. This leads to the expression

Slm8 ~@H,zf#!'2
ib2

2

v

v
Sl 21,mAl 22m2

2l 21
. ~18a!

For the dipole field we see that the second term in E
~17!, namely,f00Hz2zHf00, is identical to the first term
becausef00 commutes with the HamiltonianH. Thus we
obtain

S108 '2b2
iv

c
S00, S118 50. ~18b!

For the quadrupole field we can neglect the second term
Eq. ~17! It is identical to zero when we insertf10, whereas
inserting f11 leads to a magnetic type transition@}( l x
1 i l y)#. Thus we will use the approximation

S2m8 '2
ib2

2

v

v
S1,mA42m2

3
. ~18c!

C. Comparison to exact results

In order to illustrate the orbital integrals we obtain fro
the approximation~13!, it is useful to plot the reduced value

S̃lm5
Slm1Slm8

Nlm

, where Nlm5
2

v

i l 1mb2 l

A~ l 1m!! ~ l 2m!!
.

~19!

The results we obtain for dipole and quadrupole excitatio
are shown by the solid symbols in Figs. 2 and 3, respectiv
as functions of the adiabaticity parameterj5vb/v. Here we
have chosen the beam velocityv/c50.6

The full relativistic expression for electric transitions@1#,
which also includes a contribution from the convection c
rent, is

S̃lm
rel~v!5Slm

rel/Nlm5
1

g
Glm~b!j lKmS j

g D , ~20!
5-4
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whereGlm can be extracted from@1#

G105G205G2625
1

g
, G16151,G261512

b2

2
.

This result is shown by the solid curves in Figs. 2 and 3. T
dashed curves represent the nonrelativistic resultS̃lm

NR

5j lKm(j), cf. Eq. ~15!. It is seen that relativistic effects ar
significant and that the truncated calculation is in very go
agreement with the full result. If we choose a larger veloc
sayv/c50.8, some discrepancy starts to occur, so it will
necessary to include higher values ofL in the sum~9a!.

FIG. 2. The reduced values of orbital integrals, defined in
~19!, are shown for dipole excitations as functions of the adiaba
ity parameterj5vb/v. The beam velocity isv/c50.6. The solid
curves are the exact results, Eq.~20!, and the dashed curves are th
nonrelativistic results. The open symbols are the results of our
proximation discussed in Sec. IV.

FIG. 3. Similar to Fig. 2 but for quadrupole excitations.
02460
e
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V. CONCLUSION

The multipole expansion of the electromagnetic inter
tion in relativistic heavy-ion collisions that we have pr
sented is exact for a straight-line trajectory with const
velocity. It has not previously, as far as we know, been u
in calculations of the Coulomb excitation. The formulatio
is, in particular, applicable to reactions where close collisio
play a role, and it is also well suited for calculations
higher-order processes in the Coulomb dissociation of h
nuclei at intermediate energies.

The multipole expansion contains diagonal as well as o
diagonal components, associated with the intrinsic coo
nates and the coordinates for the relative motion of the c
liding nuclei. The off-diagonal multipole components a
caused by relativistic effects, essentially by the Lorentz c
traction of the Coulomb field; only the diagonal compone
survive in the nonrelativistic limit.

The number of off-diagonal multipole components is
nite for close collisions but it is, in principle, infinite fo
distant collisions. However, it is sufficient to include just
few off-diagonal terms at intermediate energies. Thus
find that the diagonal and first off-diagonal terms@i.e., L
50,2 in Eq.~9a!# give excellent results in first-order pertu
bation theory for distant collisions and for velocities up
v/c'0.6, i.e., up to about 200 MeV/nucleon.
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APPENDIX A: BESSEL FUNCTION INTEGRALS

Here we study the integral in Eq.~5b!

I m,m12m~a,b!5E
0

`dq

q
Jm~aq!Jm12m~bq!, ~A1!

wherem5 l 11/2 and 2m is an even number, according t
parity selection of Eq.~5c!. This integral is given in many
textbooks but we shall mainly refer to Abramowitz@10#. We
note that it has the symmetry

I m12m,m~a,b!5I m,m12m~b,a!, ~A2!

so it is sufficient to determine Eq.~A1! for all values ofa
andb.

Let us first assume thata,b. From Eq.~11.4.34! of Ref.
@10# we obtain~with n5m12m andl51)

I m,m12m~a,b!5
1

2 S a

bD m G~m1m!

G~m11!G~m11!2

3F1@m1m,2m; m11; ~a/b!2#.

~A3!

.
-

p-
5-5
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The hypergeometric function in Eq.~A3! is a polynomial of
degreem, which can be obtained directly for the series E
~15.1.1! of Ref. @10#. Inserting into that expression the Poc
hammer’s symbols@see Eq.~6.1.22! of Ref. @10## we obtain

I m,m12m~a,b!

5
1

2 S a

bD m

(
n50

m
~21!nG~m1m1n!

G~m112n!G~m111n!

~a/b!2n

n!
.

~A4!

For m50,1 and 2 we obtain in particular

I m,m~a,b!5
1

2m
~a/b!m,

I m,m12~a,b!5
1

2
~a/b!m@12~a/b!2#,

I m,m14~a,b!5
1

4
~a/b!m@12~a/b!2#

3@m112~m13!~a/b!2#. ~A5!

Using the symmetry property~A2! we see thatI m,m is con-
sistent with Eq.~6!.

Whena.b andm is nonzero we find that

I m,m12m~a,b!50, for a.b, m51,2, . . . . ~A6!

This result follows from Eq.~11.4.33! of Ref. @10# because
that expression will contain the factor 1/G(2m11) which is
zero form51,2,3, . . . .

The functionsPl ,l 8(r ,r 8) defined in Eq.~12a! can be ob-
tained from the relation

Pl ,l 811~r ,r 8!1Pl ,l 821~r ,r 8!5
2l 811

r 8
Rl ,l 8~r ,r 8!.

~A7!

This expression follows directly from the definitions in Eq
~5a! and~12a! and the recursion relation for spherical Bes
functions, z jl 21(z)1z jl 11(z)5(2l 11) j l(z). For l 85 l 11
we find explicitly @see Eq.~6.575! of Ref. @9##

Pl ,l 11~r ,r 8!5Pl 11,l~r 8,r !5
1

r 82 S r

r 8
D l

, for r<r 8,

~A8!

while it is zero whenr .r 8. The radial dependence can no
in general be derived from the recursion relation~A7!.

APPENDIX B: CURRENT OPERATOR

Here we derive an expression for the operatorv•“, which
appears in the contribution from the convection current
can be expressed in terms of a commutator with the Lap
operatorD as follows:
02460
.

.
l

It
ce

v•“5
1

2
@D,v•r #. ~B1!

Here we can insert

v•r5vr cos~uvr !5vr(
m

@Dm0
1 ~ v̂ !#* Dm0

1 ~ r̂ !, ~B2!

and express the Laplace operator in spherical coordinate

D5
d2

dr2 1
2

r

d

dr
2

L̂2

r 2
, ~B3!

whereL̂ is the angular momentum operator. Thus we obt

v•“5v(
m

@Dm0
l ~ v̂ !#* FDm0

l ~ r̂ !S d

dr
1

1

r D
2

1

2r
@ L̂2,Dm0

l ~ r̂ !#G . ~B4!

APPENDIX C: ORBITAL INTEGRAL

Here we derive an expression for the integral

Sl2m~v!5A 4p

2l 11E2`

`

dteivt
Yl 12,m~R̂!

Rl 11
, ~C1!

which appears in Eq.~16!. This integral can be calculated i
a simple way by observing that

Yl 12,m5A2l 15

2l 13 (
m521

1

Cm
1 Dm0

1 ~R̂!Yl 11,m2m~R̂!,

~C2!

where@use Eq.~14! of Appendix D in Ref.@11##

C0
15A~ l 121m!~ l 122m!

l 12
,

C21
1 5

1

A2
A~ l 112m!~ l 122m!

l 12
,

C1
15

1

A2
A~ l 111m!~ l 121m!

l 12
.

The trajectory we consider falls in thex-z plane, with
cos(u)5vt/R and sin(u)5b/R. The integral~C1! can therefore
be expressed in terms of the nonrelativistic orbital integr
~15! as follows:

Sl2m~v!5A2l 15

2l 11H C0
1vS 2 i

d

dv DSl 11,m
NR ~v!

1
b

A2
@C21

1 Sl 11,m11
NR ~v!2C1

1Sl 11,m21
NR ~v!#J .

~C3!
5-6



MULTIPOLE EXPANSION FOR RELATIVISTIC . . . PHYSICAL REVIEW C 65 024605
Working out the details this can be written explicitly as

Sl2m~v!5
1

v
A2l 15

2l 11

1

l 12

i l 121m

A~ l 121m!! ~ l 122m!!
S v

v D l

3$~2l 13!j@~ l 122m!Km11~j!

1~ l 121m!Km21~j!#

22~ l 11!~ l 121m!~ l 122m!Km~j!%, ~C4!
ys

02460
wherej5vb/v. Or even more compact

Sl2m~v!52
2

v
A2l 15

2l 11

i l 121m

A~ l 121m!! ~ l 122m!!
S v

v D l

3H @~ l 11!~ l 12!1m2#Km~j!

2
2l 13

2
j@Km21~j!1Km11~j!#J . ~C5!
v. A

l
d
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