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Multipole expansion for relativistic Coulomb excitation
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We derive a general expression for the multipole expansion of the electromagnetic interaction in relativistic
heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation.
The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and
relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent
results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.
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[. INTRODUCTION calculate the interaction associated with the convection cur-
rent. We propose in Sec. Il a simple truncation in the sum
The Coulomb excitation of nuclei at relativistic energiesover off-diagonal multipole components. We test this ap-
is commonly calculated in first-order perturbation theory, usroximation in Sec. IV in first-order perturbation theory for
ing the formalism developed in Refl]. The derivation is distant collisions by comparing to the exact results of Ref.
restricted to distant collision, where the intrinsic radial coor-[1]. Section V contains our conclusions.
dinates are smaller than the minimum distance between the
colliding nuclei. In calculations of the Coulomb dissociation Il. ELECTROMAGNETIC INTERACTION
of proton halo nuclei, it is of interest also to consider close WITH FAST CHARGED PARTICLE
collisions, since the density of the valence proton can extend o . .
to very large distances. Moreover, higher-order processes 'The elegtromagnetlc interaction of a fast charged p'artlcle
may also play a role, as suggested by the nonrelativistic cafWith atomic numberZ;) and a weakly bound proton in a

culations of the®B breakup reported in Ref2]. target nucleus has the forfa]
In order to calculate the Coulomb dissociation of halo
nuclei at energies where relativistic and higher-order effects N> 2 VoL -
cannot be ignored, one would need realistic multipole form Venl,1")=2,6% ¢ 2mc2[p¢+¢p] : @

factors for the electromagnetic interaction. Such form factors

have recently been S‘“d'@ﬂ but they were (.mly determined The charged particle is assumed to move with constant ve-
in the long-wavelength limit for distant collisions. We there- locity v in the z direction on the straight-line trajectory

fore find it timely to study the multipole decomposition of —b+vt, with impact parameteb with respect to the target

the interaction at relativistic energies, both for close and d'shucleus. The coordinates of the proton in the target nucleus

tant collisions. The form factors we derive can be applied in q db b is th )
higher-order dynamical calculations of two-body breakup re-27€ denoted by andp is the conjugate momentum operator.
he potentialg is the Lienard-Wiechert potential

actions, such as the continuum discretized coupled-channeT
calculations[4], or in numerical methods that evolve the

two-body wave function in coordinate space-7]. Y
We base our study on the so-called aed-Wiechert po- ¢= J ——————, )
tential and include the effect of the convection current. The [ro=ril*+y%(z=2)

magnetization current, on the other hand, is ignored for sim-
plicity. We assume that the relative velocity of the interactingwhere y=1/y1— g%, and g=v/c. The second part of the
nuclei is a constant, so that the retardation effect associatadteraction(1), which contains the momentum operagpris
with a time-dependent velocity can be ignored. due to the convection current. We ignore the magnetization
The multipole expansion of the interaction contains bothcurrent but it could be included by replacing the momentum
diagonal and off-diagonal multipole components. The off-operator byp+#V X u,, wherepu, is the magnetic moment
diagonal components appear because of the Lorentz contracf the proton.
tion. Our approach is similar to the method developed by In the two-body breakup of a target nucleus, into a proton
Baltz et al.[8] in their study of thee™ e~ pair production in and a core nucleus, one would actually have to consider the
relativistic heavy-ion collisions. We extend their study andeffect of two interactions with the projectile, namely, the
derive the multipole fields that are relevant to Coulomb ex-“direct” interaction with the proton and the “recoil” inter-
citation. action with the core. We will not discuss this complication
The multipole expansion of the Liard-Wiechert poten- here, since the multipole expansion of the two interactions
tial is presented in Sec. Il. There we also discuss how taan easily be generated from the formulation given below.
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A. Multipole expansion The above expressions were derived for a trajectory with
The multipole expansion of the Liard-Wiechert poten- constant velocity in the direction. The matrix5¢) is there-

tial ¢ can be obtained from the Fourier representafigh ~ [ore diagonal inm. Let us also give a more general result
which does not refer to any specific coordinate system. This

oy gla(r=r") can be done by noticing that the anglg in Eq. (50) is

b= 3J actually the angle betweeq and the velocityv. Thus by
(277) q +q /’y . . N Nk RN /2 .
z insertingP, (04) =% ,D},0(v)* D ,0(q) we obtain

|q(rr) 1
awﬁf i TRy Ay (B:9)= 3 00(B)Z (Do(0))*" (mull’m')

Except for the last factor, this is just the ordinary Coulomb x(1"0\0|10), (5d)
potential. To proceed, we introduce the multipole expansion
of the last term in Eq(3) where the last two Clebsch-Gordan coefficients is the matrix
. element(Y; /Dol Yim).
_ We note that the expansidba) contains diagonali.e., |
1— B%cos(0) Agengh(ﬁ)PA[cos(aq)], “a =1") as well as off-diagonal multipole componerise.,
(Im)# (I’'m")]. The off-diagonal components are caused by
where the Lorentz contraction which destroys the spherical symme-
71 . try of the potential¢. The radial dependence is determined
W(B)=(2A+1)B""Q\(B ), (4b) by the integral(5b), and analytic expressions and recursion

relations are derived in Appendix A. In numerical applica-
tions one can include the finite size of the projectile simply
P.(1) by multiplying the integrand in Eq5b) by the Fourier trans-

A (4c)  form of the charge distribution. However, we find it instruc-
z—t tive to show the analytic expressions for point particles.

The radial dependence of the diagonal components is de-
are Legendre polynomials of the second kind; see Edtermined by[see Eq(A5)]

(8.825 of Ref.[9] or Eq. (8.8.3 of Ref.[10]. Explicit ex-

pressions and recursion relations @y(z) are given in Ref. 1

[10]. Ry (r,r')=
We can now insert the plane wave expansion

and

11
Q@-3| a

r<

2A+1 ©®

wherer _=min(r,r') andr.=max(,r’). This is identical to

eiq'r=477% 5100 Yim(Q) Yien(T) the dependence one has in the nonrelativistic limit. In fact,
the well-known multipole expansion of the Coulomb inter-
for the two plane waves in E43) and obtain action is recovered from Ed5a), when we insert the non-

relativistic limit of Eq. (50), Viz Ay 1/m/ (8=0)= 6\ Smnr -
The off-diagonal multipole contributions t¢ are more

p=4m 2 IR ) A (B)Y (D) Y (T, complicated. The radial form factors have the symmetry
Iml”m’ roperty
(58 P

where Ry (r,r’)=Ry (r',r). (7a)

2 (e According to Eq.(5c), we only need expressions for even
Ry (r,r')= ;j dg ji(gr)j;.(qr’) values of|l —1'|. We show in Appendix A that
0
Rijcalr,r’)=0, for r=r" and A=24,.... (7b

1 [=dq
:\/F_,foEJ|+1/2(qr)J|'+1/2(qr') (5b)

The explicit, nonzero expressions can be obtained from Eq.
(A4). For A=2 we obtain in particulafsee Eq(A5)]

st

One can exploit the properti€§a and (7b) and write

and
|

r
Riicor,r’)=5

5 ie1 for r<r’. (8
r

1
Amirm (B)=(Y | mww

= > BB 1m (D[P0 Yim(d)). expressions forp that are valid for distant and close colli-
»even sions, respectively. Thus we obtain for distant collisions
(5o  (r<r’)
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bas= > AmY] (r) 2

Imm’

XAm i+ am Yiea,m ().

|ARI,I+A(r1r,)

(9a)

For close collisionsi>r') we can use the expression

Delose™ 2 47TYIm I’) E IAR|’|,A(I’,I")

Imm’

X At —am Yi—am (1) (9b)

The sum overA is finite for close collisions, sincé— A

must be non-negative. This is a very nice feature, which
makes it feasible to include all terms. For distant collisions,
on the other hand, one would have to make a truncation in

the sum over.

B. Convection current interaction

The contribution to the interactioil) that originates from
the convection current is

if
&' = 53 [V )b+ by V)]

if
_2:11_02[(V.(v¢)+2¢(v-V)]. (10)

The operatow- V is effectively of dipole nature, as shown in
Appendix B. In practical numerical calculations it will oper-

ate on an expression of the fonm *f(r)Y,_y(r). From Eq.
(B4) we then obtain

(r) )

_YLM(r)
:Ué (Dio(l;))* E YL'M'(F)<YL'M'|D;1L0|YLM>
L'm’

d

We can also give an explicit expression for the term
¢ lv-(V ¢), which appears in second version of E(0).
Assuming thatv points in thez direction, we obtain from

Eqg. (3)
)=tz ¢

4

We can now repeat the derivation that lead to Exj.and

obtain
ol el

ol

1 df(r)

f(r)
r dr 2r?

HzlL/(L'+ 1) -L(L+1)]]. (1D

41
(2m)

de
dz

9" igq cog by)
2 1-PB°cos(fy)’

d¢

P A4mi > i7VPy(r )

I’

XZ Bim(B)Yin(NDYym(r'), (128
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FIG. 1. The functiong, (v/c), defined in Eq(4b), are shown as
functions of ¢/c)? for \=0-6.

where
2 (= . .
Puf(r,r’)=;f0dqu.(qr)Jw(qr'), (12b
and
0g 0)
Bii'm(B)= <Y|/m|%|Y m)
=%dgx(ﬁ)<vaIPx(cos(ﬁ))lY|m>- (120

The last expression is similar to E¢rc) but the sum is now
over odd values ok. The dependence on the radial coordi-
nates can be derived from Eq&7)—(A8). We note that
matrix elements oy’ can be calculated in a much simpler
way in first-order perturbation theory, as we shall see in Sec.
IV.

IIl. SIGNIFICANCE OF RELATIVISTIC CORRECTIONS

In order to illustrate the significance of relativistic correc-
tions at intermediate energies, we show in Fig. 1 the func-
tions g, (B) defined in Eq.(4b). They are seen to decrease
rapidly as function of\ when @/c)?<0.5. This suggests
that one would only need a few terms in the sum a¥ein
Eq. (9a.

In the next section we determine the range of velocities
where a truncation te\ =0,2 is reasonable for distant colli-
sion. Thus we will apply the approximation

4 r'

i~ 2|+1 I |m(r)2’ Alm,lm’(,B)Ynnr(f/)

Im

2l+1

= =5 A2 (B)Yisom (FL=(r/r)?] .

(13
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We assume a straight-line trajectory with constant velocity in
the zdirection and calculate the Coulomb excitation in first- P'= 2ch:([H z]¢+ ¢[H,z])
order perturbation theory. We can then test the accuracy of

the truncation, Eq(13), by comparing to the exact results iB
from Ref.[1]. == 57=([H,z¢]+ pHz—ZzHg). (17
2hc
IV. TEST IN FIRST-ORDER PERTURBATION THEORY We note that in first-order perturbation theory one can effec-

tively replace the commutat¢H,z¢] by Zwz¢. The other
In first-order perturbation theory for distant collisions oneterm, Hz—zHd¢, has to be considered more carefully.

needs the Fourier integral of the mUltipOle fields Let us write the mu]tipo|e expansion qi,’ as in Eq
(1437
T ot AT ik o
Sin(f,0)= | dte“'bin(r,0)= \| 511" Yii(F)Sim( @), T e
(14 "=\ 7" Yim()Sim-
wherefiw is the excitation energy anfi,(w) are the so- Sincezin Eq. (17) is a dipole operator, we see thaf, can
called orbital integrals receive contributions from botth, _, , and ¢, ;. The con-
tribution from the latter is smalldby a factor of r/v)?] so
( ) let us ignore it. Let us first consider the contribution from the
(@)= /2| +1f dt € 'm ) (14b) commutatof H,z¢]. This leads to the expression
182 |2_m2
For nonrelativistic Coulomb excitation and a straight line Sim([H, Z¢])~—— S-1m SI-1 (1839

trajectory, these integrals ar&]
For the dipole field we see that the second term in Eq.

2 jl+m o\ (17), namely, pooHz—zHdqy, is identical to the first term
NR(w)=— (—) Kn(wblv). (15  becausepy, commutes with the Hamiltoniakl. Thus we
U (I +Fm)l(l=myt\v obtain
Below we derive the orbital integrals for the truncated inter- S o~ 2i_“’ S.=0. 18b)
aCtion (13) 10 IB c SOOv 11 ( )

For the quadrupole field we can neglect the second term of

Eq. (17) It is identical to zero when we insedt;,, whereas
The Fourier transforn{14a of the multipole field(13) inserting ¢,, leads to a magnetic type transitidre(l,

can be expressed in terms of various combinations of the-ily)]. Thus we will use the approximation

nonrelativistic orbital integral§l5). This is obvious for the

first term in Eq.(13), and the second term is calculated in ;o '[32 /4—m2

Appendix C. A slight complication is the very last term in Som™ — 2 p Stm 3

Eq. (13) which contains the factor(r’)?2. It turns out to be

a factor of @r/v)? smaller than the dominant term so let us

ignore it. Thus we obtain

A. Lienard-Wiechert potential

(189

C. Comparison to exact results

In order to illustrate the orbital integrals we obtain from
21+1 A the approximatior{13), it is useful to plot the reduced values
Sim(©)=Ajm(B)SIN(@) = Al om(B) —5— 71

~  Smt+Sh 2 i
Sm=—"—, Wwhere Nj,=— .
f grgor V12n(R) (16) " Nim " vy -my
|+1 (19)
The latter integral is given in EGCS). The results we obtain for dipole and quadrupole excitations

are shown by the solid symbols in Figs. 2 and 3, respectively,
as functions of the adiabaticity parameger wb/v. Here we
have chosen the beam velocityc= 0.6

We also need to calculate the contribution from the con- The full relativistic expression for electric transitiofts,
vection current, Eq(10). Here we can again make the sub- which also includes a contribution from the convection cur-
stitution (B1). Assuming that the single-particle potential rent, is
commutes withr we can go a step further and replace the
momentum operator bp,=(im/4)[H,z], whereH is the
single-particle Hamiltonian. Thus we obtain

B. Convection current interaction

"’rel rel :E | é
Sim(@) = Sim/Nim=—Cim(B) & K| 7, (20)
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T T T T TTTT T T T T 11T V. CONCLUSION

The multipole expansion of the electromagnetic interac-
. tion in relativistic heavy-ion collisions that we have pre-
sented is exact for a straight-line trajectory with constant
velocity. It has not previously, as far as we know, been used
in calculations of the Coulomb excitation. The formulation
_ is, in particular, applicable to reactions where close collisions
play a role, and it is also well suited for calculations of
higher-order processes in the Coulomb dissociation of halo
— nuclei at intermediate energies.

The multipole expansion contains diagonal as well as off-
diagonal components, associated with the intrinsic coordi-
] nates and the coordinates for the relative motion of the col-
. liding nuclei. The off-diagonal multipole components are
0 il Y - caus_ed by relativistic effe_cts, essentially by the Lorentz con-
0.1 05 1 5 10 traction pf the Couloml_) _f|e_ld;_on_ly the diagonal components

wbiv survive in the nonrelativistic limit.
The number of off-diagonal multipole components is fi-

FIG. 2. The reduced values of orbital integrals, defined in Eq.njte for close collisions but it is, in principle, infinite for
(19), are shown for dipole excitations as functions of the adiabaticyjstant collisions. However, it is sufficient to include just a
ity parameteré=wb/v. The beam velocity i®/c=0.6. The solid  fe\y off-diagonal terms at intermediate energies. Thus we
curves are the exact results, Eg0), and the dashed curves are the find that the diagonal and first off-diagonal terfis., A
nonrglatiyistic_ results. The open symbols are the results of our ap-_ 0,2 in Eq.(9a)] give excellent results in first-order pertur-
proximation discussed in Sec. IV. bation theory for distant collisions and for velocities up to
v/c~0.6, i.e., up to about 200 MeV/nucleon.

whereG,,, can be extracted frorfi]
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dashed curves represent the nonrelativistic resHif

=K, (£), cf. Eq.(15). It is seen that relativistic effects are

significant and that the truncated calculation is in very good

agreement with the full result. If we choose a larger velocity, Here we study the integral in E¢Gb)

sayv/c=0.8, some discrepancy starts to occur, so it will be

necessary to include higher values/ofin the sum(9a).

APPENDIX A: BESSEL FUNCTION INTEGRALS

I/L,;L+2m(a1b):J’0 EJ#(aQ)J#+2m(bQ)a (Al)

T IIIIIIII T T F T TTT1T

where u=1+1/2 and 2Zn is an even number, according to
parity selection of Eq(5¢). This integral is given in many
textbooks but we shall mainly refer to Abramowjti0]. We
note that it has the symmetry

I/,L+2m,ﬂ(alb):IM,M+2m(b’a)i (AZ)

£
zu)N 1
10" so it is sufficient to determine E@A1) for all values ofa
andb.
Let us first assume tha<b. From Eq.(11.4.34 of Ref.
[10] we obtain(with v=u+2m and\=1)
q l/a\* T'(w+m)
10'2 i 1111 |||| 1 S B A ¥ I#vﬂ+2m(a’b)=§ B F(M+1)1"(m+1)2
1 0.5 1 5 10
ob/v XF{u+m,—m; u+1; (a/b)?].
FIG. 3. Similar to Fig. 2 but for quadrupole excitations. (A3)
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The hypergeometric function in EA3) is a polynomial of 1

degreem, which can be obtained directly for the series Eq. v-V=35[Av-r]. (BY)
(15.1.9 of Ref.[10]. Inserting into that expression the Poch-

hammer’s symbol§see Eq(6.1.29 of Ref.[10]] we obtain  Here we can insert

| a,b - R
s 2m(2,0) V-r=or cog8,,)=vr > [Do(0)]*Do(1), (B2
C1lla|r S (—D)T(wtmtn)  (a/b)? "
2\b) & T(m+1-nI(uw+1+n) n! and express the Laplace operator in spherical coordinates
- o =t s, (B3)
Form=0,1 and 2 we obtain in particular dr? " r dr r

1 (i .
1, (ab)= ﬂ(a/b)#' wherel is the angular momentum operator. Thus we obtain

V-V =03 [Dh(0)]*| Dho(F)| 5+ =
o

I,L,,M(a,b):%(a/b)ﬂ[l—(a/bm,
1 . -~
—E[LZ,DQOU)]}. (B4)
(a,b)= —(a/b)“[l—(a/b)z]

,u pta
APPENDIX C: ORBITAL INTEGRAL

_ 2
X[+ 1=(pt3)(@/b)7]. (A5) Here we derive an expression for the integral

Using the symmetry propert{A2) we see that, , is con- 7
sistent with Eq.(6). Sl @ | 4w f dte I+2m( R) D
Whena>b andm is nonzero we find that 21+1 R

|, eom(@,0)=0, for a>b, m=12,.... (AB) whi_ch appears in Eq_'LG)._ This integral can be calculated in
a simple way by observing that
This result follows from Eq(11.4.33 of Ref. [10] because

that expression will contain the factodI{—m+ 1) which is 2I +5 . .
zero fo[r)m:1,2,3 o Yiiom= 2 C O(R)Y,va,M(R),
The functionsP, |.(r,r") defined in Eq(12a can be ob- (C2)

tained from the relation
where[use Eq.(14) of Appendix D in Ref[11]]

21" +1
Prirsa(r,r)+Pypoq(r,r’)= Ry (r,r’). \/(I+2+m) (I+2-m)
r’ ' ,
[+2
(A7)
This expression follows directly from the definitions in Egs. ct lzi\/(l +1-m) +2—m),
(58 and(12g and the recursion relation for spherical Bessel - I+2
functions, zj,_1(2) + zj;+1(2) = (21 +1)j,(2). ForI'=1+1
we find explicitly[see Eq(6.575 of Ref.[9]] 1 \/(I +1+m)(l+2+m)
| 2 | +2
r
PLica(rr) =Py (r 'r):ﬁ(r_/) » for r=r’, The trajectory we consider falls in the-z plane, with

(A8) cos@)=vt/R and sin@)=b/R. The integraC1) can therefore
be expressed in terms of the nonrelativistic orbital integrals
while it is zero wherr >r’. The radial dependence can now (15) as follows:
in general be derived from the recursion relati&Y).

21+5| |
Siom(w) = m C )S+1m
APPENDIX B: CURRENT OPERATOR
Here we derive an expression for the operatdv , which L
appears in the contribution from the convection current. It + T[C 1S e 1(@) = CIS o a(@)] |
can be expressed in terms of a commutator with the Laplace
operatorA as follows: (C3
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Working out the details this can be written explicitly as where = wb/v. Or even more compact
2

. | s ( ):__ 21 +5 i|+2+m (g)l
s.zm(w):}\/ZHS ! ! (3) 2m I N 2T+ L s 21 m) (T 2—m)t | 0

v V2I+11+2 [+ 2+m)(1+2—m)! \v

XA+ 3) (1 +2—m)K s 1(6) XL+ 1) (1+2) +m? K n(€)
+(1+2+m)Kp-1(£)] i3
—20+ DI+ 2+m)(1+2-mKn(8)),  (CA T2 §[Km—1(§)+Km+l(§)]]' €9
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