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Multipole expansions of Bessel and Gaussian beams, suitable for use in Mie scattering calculations, are de-
rived. These results allow Mie scattering calculations to be carried out considerably faster than existing meth-
ods, something that is of particular interest for time evolution simulations where large numbers of scattering
calculations must be performed. An analytic result is derived for the Bessel beam that improves on a previ-
ously published expression requiring the evaluation of an integral. An analogous expression containing a
single integral, similar to existing results quoted, but not derived, in literature, is derived for a Gaussian beam,
valid from the paraxial limit all the way to arbitrarily high numerical apertures. © 2009 Optical Society of

America
OCIS codes: 290.4020, 170.4520.

1. INTRODUCTION

Generalized Lorenz—Mie theory (GLMT) is a powerful tool
for theoretical and numerical investigation of optical trap-
ping phenomena [1-3]. The computationally demanding
steps are solving for the field in the case of multiple scat-
tering between several nearby particles, the calculation of
the force on a particle, and the calculation of the beam
shape coefficients (BSCs). Several different approaches
exist for efficiently handling multiple scattering [4,5], and
series expressions for the force on a particle have been
published [6]. If these techniques are implemented effec-
tively, the speed of the calculation can be limited by the
time required to calculate the BSCs, which represent the
electromagnetic field in the form of a multipole expansion.
Hence there is a need for efficient ways to calculate the
beam shape coefficients for a given beam type. This is par-
ticularly important for time evolution simulations where
large numbers of scattering calculations must be per-
formed [7-9]

The BSCs can be determined for an arbitrary field E(r)
by exploiting the orthogonality of the vector spherical
harmonics and performing an eigenfunction transform, as
outlined below in Eq. (2). However this approach is slow
as it requires the evaluation of a surface integral. Alter-
native approaches involving systems of linear equations
[10] are fairly efficient at the focus of a tightly focused
beam, but are not suited to arbitrary positions or lower
numerical apertures (NAs). Fast approximate methods
exist that can be applied to particles whose radius is
smaller than the beam waist (the localized approximation
[11]) or for particles very close to the beam waist [12], but
there is often a need for a solution that does not fit these
constraints (see, for example, [13]).

For a plane wave Eq. (2) can be solved analytically to
determine the beam shape coefficients [1], but the calcu-
lation is more difficult for beams commonly used in opti-
cal trapping and manipulation experiments. Here we
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present a full analytic solution to the BSCs for a Bessel
beam through consideration of its plane wave spectrum.
This contrasts with existing published results that re-
quire the evaluation of a surface integral [8]. We also
show how a similar approach can be applied to a fully vec-
torial Gaussian beam to obtain results similar to those
published by Maia Neto and Nussenzveig [14] and Ma-
zolli et al. [15]. Finally we compare the time required for
the different approaches.

GLMT exploits the symmetry of a spherical particle
and expresses the electric field E(r) of the beam in terms
of the vector spherical harmonics M(l) and N(l) [1]. Here
we use the expansion

2n +1 (n, m)V
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(1)

Since the vector spherical harmonics form a complete or-
thogonal set we can recover the BSCs p,,, and gq,,,
through an eigenfunction transform,
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and similarly for q,,,, using M,,,,, instead of N,,,,,.

It is worth noting at this point that a number of differ-
ent conventions exist for the exact form of the beam ex-
pansion. Barton et al. [6] and Cizmar et al. [8] use a
slightly different version of Eq. (1). If ka is the size pa-
rameter of the sphere and n,,; is the refractive index of
the external medium, then their BSCs A;,, and By, are re-
lated to our p,,, and q,,,,
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2. BESSEL BEAM EXPANSION

The nondiffracting properties of Bessel beams make them
of interest for optical confinement experiments. CiZmar et
al. [8] derived a method of calculating BSCs for a Bessel
beam that required the evaluation of a single integral for
each coefficient. Here we derive an analytic result that
does not require the numerical evaluation of any integrals
and hence is considerably faster to compute.

Consider a sphere at position r¢=(x,y,z), which is ex-
posed to the field of an x-polarized Bessel beam propagat-
ing along the z axis. We represent the beam by a sum of
plane waves eye’®” making an angle 6 with the z axis [8],

27
E(r)=E, f eo(0, ple’ " d g, (4)

where k=(k,0,¢) (in polar coordinates) and ey=cos ¢i,
—sin @i,

The coefficients p,,, and q,,, for a plane wave eye’*™ ex-
panded about the sphere at rg, in terms of the modified
Legendre polynomial P}, are [16], Eq. (20)
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We substitute the plane wave expansion in Eq. (5) into
Eq. (4), giving
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The e’®70 term can be expanded, and sine and cosine re-
written in terms of exponentials, for p=k+yx2+y2sin 6 and
¢o=arctan(—y/x)—(m/2) to obtain
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Using result 9.1.21 from [17] the azimuthal integral can
be solved in terms of Bessel functions of the first kind to
give

I = (e V() £ R (0).(8)

The field described by Egs. (1) and (7) has been verified
to be the same as the explicit integral in Eq. (4). With the
integral eliminated, the BSCs can be calculated analyti-

cally in a fraction of the time required by existing pub-
lished methods.

3. FULLY VECTORIAL GAUSSIAN BEAM
EXPANSION

Representing a tightly focused Gaussian beam presents
challenges, and much effort has been devoted to increas-
ingly detailed nth order approximation to the beam
[18-20]. Such a perturbative approach cannot be applied
to optical tweezers, where the NA can be greater than 1.
It is, however, possible to accurately describe the far-field
of a tightly focused Gaussian beam, and Nieminen et al.
exploit this to build a system of linear equations that can
be solved to obtain the BSCs [10]. We refer to [10] for a
discussion of some of the issues relating to multipole ex-
pansion of tightly focused beams.

It is also possible to derive a single integral expression
for the BSCs from the far-field expansion, and results
have been published for a circularly polarized Gaussian
beam (without details of the derivation) by Maia Neta and
Nussenzveig [14] and Mazolli et al. [15]. Here we derive
analogous results for a linearly polarized Gaussian beam
and compare the performance of this method with the ap-
proach of Nieminen et al. [10]. Ours is a universal expan-
sion that can be applied to any Gaussian beam from the
plane wave limit through to high NA beams.

We exploit the orthogonality of the vector spherical har-
monics to solve the surface integral of Eq. (2). For math-
ematical convenience, we elect to evaluate the p,,,, surface
integral at radius kR=[2N 7+ (n/2)] and the q,,,, surface
integral at radius R R={2Nw+[(n+1)#w/2]}, in the limit of
large N. Under these conditions, the vector spherical har-
monics are

[2n+1(n-m)!|N,, ( T | T | )eim¢
47 (n+m)! | M, “\]: to —Ton 1o kR’
9

We represent a fully vectorial Gaussian beam in the far
field by [21],
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where v is the ratio of the focal length of the objective to
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the beam waist size of the (broad) Gaussian beam before
the objective. We have selected the global amplitude and
phase to be consistent with the plane wave result in Eq.
(5).

Substituting these into Eq. (2), and expressing the azi-
muthal integral as before in terms of I*, which we solved
in Eq. (8), we find

=U,| E' O] _ I'+4 _ I |sin 6d 6,

(11)

where E'(6)=(Eok?w?2/4)\cos fe~rsin 07gikz 03 0 and g is
the half-angle subtended by the objective at the beam fo-
cus.

It can be seen that this result is analogous to Doicu and
Wriedt’s Eq. (21) [18], which holds in the limit of low NA,
but the result here is valid for tightly focused beams as
well. Our result is also consistent with that quoted but
not derived by Mazolli et al. for a circularly polarized
beam [15]. Finally we note that since the 6 integral can-
not be solved analytically, the envelope E’(6) can be modi-
fied as required, and hence it is trivial to impose radially
symmetric modifications to the beam profile, such as
apodization.

4. PERFORMANCE COMPARISON

We compared the performance of our formulas to the ex-
isting algorithms for calculating the BSCs. The details of
the coefficients and methods compared are as follows:

e Sphere size parameter ka=19, selected as character-
istic of particles in our experiments. This leads to the re-
quirement that n,,,=32 [1,22] for low-NA beams, but
Nmax can take smaller values close to a high-NA focus, as
discussed in [10].

e Convergence condition on the calculated force was a
relative error below 1073, There is absolutely no need for
higher accuracy when comparing with experiments, since
there is liable to be considerably more uncertainty than
that on some of the experimental parameters.

e The execution time was measured for single-
threaded C code running on an Intel Core 2 Duo proces-
sor. Single-threaded performance is reported since in gen-
eral any threading of the code should be done at a higher
granularity than a single BSC calculation.

e For broad Gaussian beams, and the Bessel beam, the
BSCs for an off-axis sphere were calculated directly from
the relevant integrals. For these broad-waisted beams the
translation addition theorem is not used as described in
[10] as the advantage of it is lost when the beam waist
size is significantly larger than the particle radius: a pro-
hibitively large n . is required.

e For high-NA Gaussian beams we only report timings
for a particle at the beam focus, in recognition of the fact
that the most efficient way of determining the expansion
at other locations is to use the translation addition theo-
rem to transform the expansion at the beam focus [10].
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e Numerical integrations were performed using Simp-
son’s rule. For the specified convergence level, we typi-
cally found that the integrand was being evaluated a few
tens of times.

e In the on-axis case the rotational symmetry of the
beam was exploited to reduce the number of coefficients
requiring evaluation.

e In the two-sphere multiple scattering calculation
shown for comparison in Fig. 1, translation between
spheres made use of the recurrences and translation—
rotation decomposition techniques described in [4].

e When solving a linear system of equations (using far-
field fitting) to obtain the timings shown in Fig. 2, the ro-
tational symmetry of the beam was exploited and no over-
determination was present in the system of equations (in
order to obtain the fastest possible speed for comparison
with our method).

e The least-squares matrix calculation was performed
with the help of a commercial basic linear algebra subpro-
gram (BLAS) package provided by Apple Computer Inc.,
and all other performance-critical calculations were per-
formed using hand-optimized custom C code.

e Approximate methods such as the generalized mini-
mal residual (GMRES) algorithm might offer a faster al-
ternative way to carry out BSC calculation of Nieminen et
al. [10]. We investigated this briefly but found that al-
though this might in principle be faster, it was unusually
sensitive to what initial guess was provided for the BSCs
and so we did not pursue this avenue any further.

The speed of the BSC calculation is the limiting factor
in a single-sphere calculation when it takes longer than
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Fig. 1. (Color online) Execution time for alternative BSC calcu-
lation algorithms as a function of sphere radial position %r rela-
tive to the beam axis. For low NAs our single integral calculation
is shown to be roughly ten times faster than a double integral
calculation over the plane wave decomposition of the beam. For a
Bessel beam our analytical result is shown to be up to ten times
faster than a single integral calculation. For reference, execution
times are also shown for force calculation and for a two-sphere
multiple scattering calculation.
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Fig. 2. (Color online) Execution time for high-NA BSC calcula-
tion algorithms as a function of beam NA. Our single integral cal-
culation (labeled “Integral”) is shown to be over 100 times faster
than solving the appropriate linear system of equations (labeled
“Inversion”). For reference, execution times are also shown for
force calculation and for a two-sphere multiple scattering calcu-
lation. The timings are independent of particle size.

the force calculation. For a multisphere calculation, the
speed of the BSC calculation is the limiting factor when it
takes longer than the multiple scattering calculation.

Figure 1 shows the execution times for each algorithm.
It also shows the time required to calculate the force on a
single particle and the time required per sphere to calcu-
late the net scattering for a group of particles, which are
the other main steps in a Mie scattering calculation. Our
analytical result for Bessel beams can be evaluated faster
than the force on a sphere can be calculated, so the BSC
calculation no longer limits the speed of the calculation.
Our single-integral result for a low-NA beam (wy=8\) is
still slower to evaluate than the force calculation, but is
significantly faster than the double-integral alternative,
and will not limit the speed of a two-sphere multiple scat-
tering calculation.

For particles away from the origin, the execution time
for Nieminen’s approach grows very rapidly, while our in-
tegral method requires only a slightly longer execution
time. For this reason, as discussed earlier, a common ap-
proach for high-NA beams is to calculate the field at the
origin and then use the translation addition theorem to
determine the field at other points. Hence in this case it is
a fairer comparison to plot the execution time as a func-
tion of NA (see Fig. 2) instead of position or particle size.

Here too we see that our single-integral method is sev-
eral hundred times faster than the technique of Nieminen
et al. [10] using LU decomposition to solve the system of
linear equations. As a result, the BSC calculation is faster
than the force calculation even for a single particle,
whereas solving the system of linear equations is the
slowest part even of a two-sphere calculation.
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5. CONCLUSION

We have presented improved expressions for calculating
the beam shape coefficients (BSCs) for Bessel and Gauss-
ian beams, for use in Mie scattering calculations. Our
analytical result for Bessel beams allows the BSCs to be
calculated several orders of magnitude faster than pub-
lished results requiring numerical evaluation of integrals,
resulting in faster Mie scattering calculations.
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