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Multipole expansions of Bessel and Gaussian beams, suitable for use in Mie scattering calculations, are de-
rived. These results allow Mie scattering calculations to be carried out considerably faster than existing meth-
ods, something that is of particular interest for time evolution simulations where large numbers of scattering
calculations must be performed. An analytic result is derived for the Bessel beam that improves on a previ-
ously published expression requiring the evaluation of an integral. An analogous expression containing a
single integral, similar to existing results quoted, but not derived, in literature, is derived for a Gaussian beam,
valid from the paraxial limit all the way to arbitrarily high numerical apertures. © 2009 Optical Society of
America

OCIS codes: 290.4020, 170.4520.
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. INTRODUCTION
eneralized Lorenz–Mie theory (GLMT) is a powerful tool

or theoretical and numerical investigation of optical trap-
ing phenomena [1–3]. The computationally demanding
teps are solving for the field in the case of multiple scat-
ering between several nearby particles, the calculation of
he force on a particle, and the calculation of the beam
hape coefficients (BSCs). Several different approaches
xist for efficiently handling multiple scattering [4,5], and
eries expressions for the force on a particle have been
ublished [6]. If these techniques are implemented effec-
ively, the speed of the calculation can be limited by the
ime required to calculate the BSCs, which represent the
lectromagnetic field in the form of a multipole expansion.
ence there is a need for efficient ways to calculate the
eam shape coefficients for a given beam type. This is par-
icularly important for time evolution simulations where
arge numbers of scattering calculations must be per-
ormed [7–9]

The BSCs can be determined for an arbitrary field E�r�
y exploiting the orthogonality of the vector spherical
armonics and performing an eigenfunction transform, as
utlined below in Eq. (2). However this approach is slow
s it requires the evaluation of a surface integral. Alter-
ative approaches involving systems of linear equations
10] are fairly efficient at the focus of a tightly focused
eam, but are not suited to arbitrary positions or lower
umerical apertures (NAs). Fast approximate methods
xist that can be applied to particles whose radius is
maller than the beam waist (the localized approximation
11]) or for particles very close to the beam waist [12], but
here is often a need for a solution that does not fit these
onstraints (see, for example, [13]).

For a plane wave Eq. (2) can be solved analytically to
etermine the beam shape coefficients [1], but the calcu-
ation is more difficult for beams commonly used in opti-
al trapping and manipulation experiments. Here we
1084-7529/09/020278-5/$15.00 © 2
resent a full analytic solution to the BSCs for a Bessel
eam through consideration of its plane wave spectrum.
his contrasts with existing published results that re-
uire the evaluation of a surface integral [8]. We also
how how a similar approach can be applied to a fully vec-
orial Gaussian beam to obtain results similar to those
ublished by Maia Neto and Nussenzveig [14] and Ma-
olli et al. [15]. Finally we compare the time required for
he different approaches.

GLMT exploits the symmetry of a spherical particle
nd expresses the electric field E�r� of the beam in terms
f the vector spherical harmonics Mmn

�1� and Nmn
�1� [1]. Here

e use the expansion

E = − i�2n + 1

4�

�n − m�!

�n + m�!�n=1

�

�
m=−n

n

�pmnNmn
�1� + qmnMmn

�1� �.

�1�

ince the vector spherical harmonics form a complete or-
hogonal set we can recover the BSCs pmn and qmn
hrough an eigenfunction transform,

pmn = i� 4�

2n + 1

�n + m�!

�n − m�!
�

�
0

2��
0

�

E · Nmn
* sin �d�d�

�
0

2��
0

�

�Nmn�2 sin �d�d�

,

�2�

nd similarly for qmn, using Mmn instead of Nmn.
It is worth noting at this point that a number of differ-

nt conventions exist for the exact form of the beam ex-
ansion. Barton et al. [6] and Čižmár et al. [8] use a
lightly different version of Eq. (1). If ka is the size pa-
ameter of the sphere and next is the refractive index of
he external medium, then their BSCs Alm and Blm are re-
ated to our p and q ,
mn mn
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Alm =
ipmn

2��ka�
, Blm =

nextqmn

2��ka�
. �3�

. BESSEL BEAM EXPANSION
he nondiffracting properties of Bessel beams make them
f interest for optical confinement experiments. Čižmár et
l. [8] derived a method of calculating BSCs for a Bessel
eam that required the evaluation of a single integral for
ach coefficient. Here we derive an analytic result that
oes not require the numerical evaluation of any integrals
nd hence is considerably faster to compute.
Consider a sphere at position r0= �x ,y ,z�, which is ex-

osed to the field of an x-polarized Bessel beam propagat-
ng along the z axis. We represent the beam by a sum of
lane waves e0eik·r making an angle � with the z axis [8],

E�r� = E0�
0

2�

e0��,��eik·rd�, �4�

here k= �k ,� ,�� (in polar coordinates) and e0=cos �i�

sin �i�.
The coefficients pmn and qmn for a plane wave e0eik·r ex-

anded about the sphere at r0, in terms of the modified
egendre polynomial Pn

m, are [16], Eq. (20)

�pmn

qmn
� = Un	e�� �̃mn

�̃mn
� − ie���̃mn

�̃mn
�
e−im�eik·r0,

Un =
4�in

n�n + 1�
,

�̃mn�cos �� =�2n + 1

4�

�n − m�!

�n + m�!

m

sin �
Pn

m�cos ��,

�̃mn�cos �� =�2n + 1

4�

�n − m�!

�n + m�!

d

d�
Pn

m�cos ��. �5�

We substitute the plane wave expansion in Eq. (5) into
q. (4), giving

�pmn

qmn
� = E0Un ��

0

2� �cos���� �̃mn

�̃mn
�

+ i sin�����̃mn

�̃mn
��e−im�eik·r0d�. �6�

he eik·r0 term can be expanded, and sine and cosine re-
ritten in terms of exponentials, for �=k�x2+y2sin � and
0=arctan�−y /x�− �� /2� to obtain

�pmn

qmn
� = E0Uneikz cos � � �� �̃mn

�̃mn
�I+ + ��̃mn

�̃mn
�I−� ,
I± =
1

2�0

2�

ei�1−m��ei� cos�+�0+��/2��d�

±
1

2�0

2�

ei�−1−m��ei� cos�+�0+��/2��d�. �7�

sing result 9.1.21 from [17] the azimuthal integral can
e solved in terms of Bessel functions of the first kind to
ive

I± = ��ei�m−1��0J1−m��� ± ei�m+1��0J−1−m����. �8�

The field described by Eqs. (1) and (7) has been verified
o be the same as the explicit integral in Eq. (4). With the
ntegral eliminated, the BSCs can be calculated analyti-
ally in a fraction of the time required by existing pub-
ished methods.

. FULLY VECTORIAL GAUSSIAN BEAM
XPANSION
epresenting a tightly focused Gaussian beam presents
hallenges, and much effort has been devoted to increas-
ngly detailed nth order approximation to the beam
18–20]. Such a perturbative approach cannot be applied
o optical tweezers, where the NA can be greater than 1.
t is, however, possible to accurately describe the far-field
f a tightly focused Gaussian beam, and Nieminen et al.
xploit this to build a system of linear equations that can
e solved to obtain the BSCs [10]. We refer to [10] for a
iscussion of some of the issues relating to multipole ex-
ansion of tightly focused beams.
It is also possible to derive a single integral expression

or the BSCs from the far-field expansion, and results
ave been published for a circularly polarized Gaussian
eam (without details of the derivation) by Maia Neta and
ussenzveig [14] and Mazolli et al. [15]. Here we derive
nalogous results for a linearly polarized Gaussian beam
nd compare the performance of this method with the ap-
roach of Nieminen et al. [10]. Ours is a universal expan-
ion that can be applied to any Gaussian beam from the
lane wave limit through to high NA beams.
We exploit the orthogonality of the vector spherical har-
onics to solve the surface integral of Eq. (2). For math-

matical convenience, we elect to evaluate the pmn surface
ntegral at radius kR= 2N�+ �n� /2�� and the qmn surface
ntegral at radius kR= �2N�+ �n+1�� /2��, in the limit of
arge N. Under these conditions, the vector spherical har-

onics are

�2n + 1

4�

�n − m�!

�n + m�!�Nmn

Mmn
� = 	� �̃mn

i�̃mn
�i� + � i�̃mn

− �̃mn
�i�
 eim�

kR
.

�9�

We represent a fully vectorial Gaussian beam in the far
eld by [21],

E =
E0k2w0

2

2ikR
�cos �e−�� sin ��2

eikReir·ir�cos �i� − sin �i��,

�10�

here � is the ratio of the focal length of the objective to
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he beam waist size of the (broad) Gaussian beam before
he objective. We have selected the global amplitude and
hase to be consistent with the plane wave result in Eq.
5).

Substituting these into Eq. (2), and expressing the azi-
uthal integral as before in terms of I±, which we solved

n Eq. (8), we find

�pmn

qmn
� = Un�

0

�0

E����	� �̃mn

�̃mn
�I+ + ��̃mn

�̃mn
�I−
sin �d�,

�11�

here E����= �E0k2w0
2 /4���cos �e−�� sin ��2eikz cos � and �0 is

he half-angle subtended by the objective at the beam fo-
us.

It can be seen that this result is analogous to Doicu and
riedt’s Eq. (21) [18], which holds in the limit of low NA,

ut the result here is valid for tightly focused beams as
ell. Our result is also consistent with that quoted but
ot derived by Mazolli et al. for a circularly polarized
eam [15]. Finally we note that since the � integral can-
ot be solved analytically, the envelope E���� can be modi-
ed as required, and hence it is trivial to impose radially
ymmetric modifications to the beam profile, such as
podization.

. PERFORMANCE COMPARISON
e compared the performance of our formulas to the ex-

sting algorithms for calculating the BSCs. The details of
he coefficients and methods compared are as follows:

• Sphere size parameter ka=19, selected as character-
stic of particles in our experiments. This leads to the re-
uirement that nmax=32 [1,22] for low-NA beams, but
max can take smaller values close to a high-NA focus, as
iscussed in [10].
• Convergence condition on the calculated force was a

elative error below 10−3. There is absolutely no need for
igher accuracy when comparing with experiments, since
here is liable to be considerably more uncertainty than
hat on some of the experimental parameters.

• The execution time was measured for single-
hreaded C code running on an Intel Core 2 Duo proces-
or. Single-threaded performance is reported since in gen-
ral any threading of the code should be done at a higher
ranularity than a single BSC calculation.

• For broad Gaussian beams, and the Bessel beam, the
SCs for an off-axis sphere were calculated directly from

he relevant integrals. For these broad-waisted beams the
ranslation addition theorem is not used as described in
10] as the advantage of it is lost when the beam waist
ize is significantly larger than the particle radius: a pro-
ibitively large nmax is required.
• For high-NA Gaussian beams we only report timings

or a particle at the beam focus, in recognition of the fact
hat the most efficient way of determining the expansion
t other locations is to use the translation addition theo-
em to transform the expansion at the beam focus [10].
• Numerical integrations were performed using Simp-
on’s rule. For the specified convergence level, we typi-
ally found that the integrand was being evaluated a few
ens of times.

• In the on-axis case the rotational symmetry of the
eam was exploited to reduce the number of coefficients
equiring evaluation.

• In the two-sphere multiple scattering calculation
hown for comparison in Fig. 1, translation between
pheres made use of the recurrences and translation–
otation decomposition techniques described in [4].

• When solving a linear system of equations (using far-
eld fitting) to obtain the timings shown in Fig. 2, the ro-
ational symmetry of the beam was exploited and no over-
etermination was present in the system of equations (in
rder to obtain the fastest possible speed for comparison
ith our method).
• The least-squares matrix calculation was performed

ith the help of a commercial basic linear algebra subpro-
ram (BLAS) package provided by Apple Computer Inc.,
nd all other performance-critical calculations were per-
ormed using hand-optimized custom C code.

• Approximate methods such as the generalized mini-
al residual (GMRES) algorithm might offer a faster al-

ernative way to carry out BSC calculation of Nieminen et
l. [10]. We investigated this briefly but found that al-
hough this might in principle be faster, it was unusually
ensitive to what initial guess was provided for the BSCs
nd so we did not pursue this avenue any further.

The speed of the BSC calculation is the limiting factor
n a single-sphere calculation when it takes longer than

ig. 1. (Color online) Execution time for alternative BSC calcu-
ation algorithms as a function of sphere radial position kr rela-
ive to the beam axis. For low NAs our single integral calculation
s shown to be roughly ten times faster than a double integral
alculation over the plane wave decomposition of the beam. For a
essel beam our analytical result is shown to be up to ten times

aster than a single integral calculation. For reference, execution
imes are also shown for force calculation and for a two-sphere
ultiple scattering calculation.
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he force calculation. For a multisphere calculation, the
peed of the BSC calculation is the limiting factor when it
akes longer than the multiple scattering calculation.

Figure 1 shows the execution times for each algorithm.
t also shows the time required to calculate the force on a
ingle particle and the time required per sphere to calcu-
ate the net scattering for a group of particles, which are
he other main steps in a Mie scattering calculation. Our
nalytical result for Bessel beams can be evaluated faster
han the force on a sphere can be calculated, so the BSC
alculation no longer limits the speed of the calculation.
ur single-integral result for a low-NA beam �w0=8	� is

till slower to evaluate than the force calculation, but is
ignificantly faster than the double-integral alternative,
nd will not limit the speed of a two-sphere multiple scat-
ering calculation.

For particles away from the origin, the execution time
or Nieminen’s approach grows very rapidly, while our in-
egral method requires only a slightly longer execution
ime. For this reason, as discussed earlier, a common ap-
roach for high-NA beams is to calculate the field at the
rigin and then use the translation addition theorem to
etermine the field at other points. Hence in this case it is
fairer comparison to plot the execution time as a func-

ion of NA (see Fig. 2) instead of position or particle size.
Here too we see that our single-integral method is sev-

ral hundred times faster than the technique of Nieminen
t al. [10] using LU decomposition to solve the system of
inear equations. As a result, the BSC calculation is faster
han the force calculation even for a single particle,
hereas solving the system of linear equations is the

lowest part even of a two-sphere calculation.

ig. 2. (Color online) Execution time for high-NA BSC calcula-
ion algorithms as a function of beam NA. Our single integral cal-
ulation (labeled “Integral”) is shown to be over 100 times faster
han solving the appropriate linear system of equations (labeled
Inversion”). For reference, execution times are also shown for
orce calculation and for a two-sphere multiple scattering calcu-
ation. The timings are independent of particle size.
. CONCLUSION
e have presented improved expressions for calculating

he beam shape coefficients (BSCs) for Bessel and Gauss-
an beams, for use in Mie scattering calculations. Our
nalytical result for Bessel beams allows the BSCs to be
alculated several orders of magnitude faster than pub-
ished results requiring numerical evaluation of integrals,
esulting in faster Mie scattering calculations.
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