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ABSTRACT

In this Perspective, we outline the recent progress, primary achievements, and further directions in the development of high refractive index
nanostructures and metasurfaces. In particular, we review the role of multipole lattice effects in resonant properties of underlying nanostruc-
tures and nanophotonic elements in detail. Planar optical designs with efficient light control at the nanoscale can be engineered based on
photonic lattices that operate in the translational regime between two and three dimensions. Such transdimensional lattices include 3D-engi-
neered nanoantennas supporting multipole Mie resonances and arranged in the 2D arrays to harness collective effects in the nanostructure.
Lattice effects in the periodic nanoparticle arrays have recently attracted a lot of attention as they enable not only spectrally narrow resonant
features but also resonance position tuning over a broad range. The recent results indicate that different nanoparticle multipoles not only
produce resonant spectral features but are also involved in the cross-multipole coupling, and these effects need to be accounted for in pho-
tonic designs. Multipole lattice phenomena provide an effective way to control nanoparticle resonances, facilitate excitation of additional
multipoles through a cross-multipole coupling, and enable light localization in planar photonic elements. We review different effects related
to the same- and cross-multipole interactions in the arrays. Both infinite and finite arrays, as well as lattices of complex-shape nanoparticles,
which allow out-of-plane multipole excitations, are considered.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024274

I. INTRODUCTION

Artificially designed materials, so-called metamaterials or
metastructures, are being actively explored and are generating
widespread interest within the photonics engineering field. These
studies are primarily focused on optimizing metastructure build-
ing blocks to address specific functional tasks. For example, it has
been proposed to use metastructures to achieve super-resolution
imaging, control the polarization and orbital angular momentum
of the light beam, realize electromagnetic “invisibility,” implement
high-bandwidth communication channels, etc. There are two
types of metastructures depending on the spatial distribution of
their building blocks. When the building blocks are arranged in
periodic three-dimensional (3D) lattices, one can obtain the bulk
metamaterials that control light propagation within the engineered
structure volume. In the case of a building block arrangement in

two-dimensional (2D) lattices, one gets surface metastructures (or
metasurfaces) that can significantly alter the incident light at a sub-
wavelength scale.

Nanoparticles and their clusters made of metals or dielectrics
are often used as building blocks of metastructures. Importantly,
these nanoparticles can support resonant optical responses that are
defined by the materials involved, the metastructure’s geometrical
parameters, and spectral range. In the case of metal nanoparticles,
collective vibrations of conduction electrons provide resonant interac-
tion with light due to localized plasmon resonance. High refractive
index dielectric and semiconductor nanoparticles can support
so-called Mie resonances associated with electric and magnetic res-
onant excitation of the displacement current. Compared to metal
nanoparticles, optical losses in dielectric ones can be negligible in
some spectral range, which explains the growing interest in
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exploring optical properties of dielectric metastructures and their
applications in nanophotonics.

Nanoparticle assemblies, such as oligomers and clusters,
exhibit a variety of unusual optical properties as they support a
broad range of resonances.1,2 Such nanostructures support strong
multipole resonances resulting in a high field concentration within
the proximity of or inside the nanostructure and provide more effi-
cient confinement as well as light manipulation at the nanoscale.

Multipole resonances in plasmonic and all-dielectric nanostruc-
tures put forth a number of exciting applications and are an impor-
tant emerging area in nanophotonics and optics.3 The resonant
multipole interplay can cause sharp features in the light reflection
and transmission spectra, including so-called Fano resonances,4 of
different nanoparticle structures. These sharp features can be utilized
in functional optical elements and metasurfaces where a narrow-
band response is required. Subwavelength nanophotonic structures
can significantly enhance light–matter interaction,5,6 including non-
linear effects,7–9 and enable a wide range of applications such as
optical nanoantennas,1 photovoltaic devices,10,11 scattering-type
near-field optical microscopy,12,13 etc.

Due to electromagnetic coupling between nanoparticles, meta-
surfaces exhibit important effects associated with excitation of lattice
resonances when the array period is comparable to the wavelength of
single nanoparticle resonance. These lattice resonances, being sensi-
tive to the lattice parameters (such as periods and type of the ele-
mentary cell), can significantly modify the profile of transmission
and reflection spectra by additional resonant features resulting in sig-
nificant field enhancement near the metasurface.14–22 These effects
are used in different applications including sensors,23 nanolasers,24

light-harvesting devices,25,26 modulators,27 and others.28 In the case
of high refractive index materials, the nanoparticle coupling can be
observed for both electric and magnetic resonances.21,29,30 This cou-
pling results in important optical effects,31 such as resonant suppres-
sion of reflection32 or transmission,33,34 the lattice invisibility
(anapole) effects,35 and others.

The entire multipole range of a nanostructure response has
attracted attention recently as it brings new opportunities in tailor-
ing and dynamically controlling metasurface properties and pho-
tonic elements. Subsequently, different types of interference effects
associated with the classical dynamic multipole radiation modes
have generated interest.36 Such interference phenomena enable
novel effects and related photonic functionalities with nanoscale
light manipulation.37 One can roughly differentiate the interference
effects in two categories: between multipoles from the same family
and cross-multipole effects. Furthermore, the resonant excitations
of multipoles and their interaction in a lattice offer a lot of possibil-
ities to control the light beams by leveraging diffraction effects.38

In this Perspective, we overview the recent progress and
achievements in theoretical studies of collective effects in high
refractive index metasurfaces and the role of multipole coupling
in their resonant properties. We demonstrate how analysis of
these processes provides a fundamental understanding of collec-
tive optical response, the effect applications in a metasurface, and
opportunities for further practical designs. Diffraction phenomena
have been a subject of attention for well over a century and have
stimulated a lot of research work after reported observations of
Wood’s anomalies. These studies ultimately resulted in active research

in the area of collective phenomena in optical structures39 even
before the interest shifted toward plasmonic effects.

The effect of collective nanoparticle resonances was first intro-
duced in plasmonic arrays and is commonly referred to as plas-
monic surface lattice resonances. An extensive review of general
properties, a broad variety of enabled functionalities, and applica-
tions of plasmonic lattice resonances can be found in the previous
publications.40,41 The nanoparticle interaction and excitation of
lattice resonances can be associated with the dipole coupling of
multiple particles in the cell.42

Here, our primary attention is paid to analytical and semi-
analytical multipole approaches applied to analyze nanoparticle lat-
tices. They provide possibilities to obtain information about the
roles of multipoles directly. In turn, it can be used as guidance in
the realization of collective optical effects in metasurfaces that
include nanoparticles with Mie resonances. It is important to note
that there are other more general numerical approaches for calcu-
lating the frequency band structure of infinite periodic particle
arrays and the transmission, reflection, and absorption coefficients
of array slabs.43–45

Eigenmodes are physical quantities that correspond to poles in
the complex frequency plane and give rise to resonances and reso-
nant enhancement of multipoles. In nonspherical particles, an
eigenmode can resonantly increase more than one multipole. The
study approach based on eigenmodes is an additional important
research method for investigations of the single resonators and
nanostructures. The methods based on an eigenmode analysis can
also be applied for the investigation of optical properties of
metasurfaces.46–48 Moreover, this approach can provide informa-
tion about multipole effects if one applies the technique of multi-
pole classifications for corresponding eigenmodes.49

In this Perspective, we focus on the overview of effects behind
the pronounced lattice features, lattices of uncoupled multipoles
considered so far (e.g., Refs. 21 and 22), and recently demonstrated
multipole coupling in the infinite arrays even under the normal
incidence of external light waves.50–52 We discuss how the processes
of electric and magnetic multipoles interplay, cross-multipole cou-
pling, resonance induction, and bianisotropic effects can enrich the
field by bringing both in-depth understandings of the optical
effects and their possible implementation in real-life devices.

While there are many different ways to outline recent techni-
ques of studying multipole lattice effects in a nanoparticle array, we
structure our Perspective as follows. First, we describe a general
case of a single nanoscatterer with electric and magnetic multipoles
(Subsection II A) and how it can be simplified for a spherical nano-
particle (Subsection II B). Next, we highlight multipole-specific
lattice effects for the first four multipoles (electric and magnetic
dipoles and quadrupoles) remaining in the approximation of the
spherical nanoparticle in the periodic array (Sec. III). Here, we also
consider lattice-induced cross-multipole coupling for the nanopar-
ticles with up to a quadrupole response (Subsection III E). Third,
we discuss the light scattering control in the nanostructures
(Sec. IV), including the resonant lattice Kerker effect and the lattice
anapole, that is, invisibility (Sec. IV C). The remainder of the
Perspective emphasizes the techniques that have the potential to
significantly advance in the nearest future, and we highlight further
directions at the end of some sections throughout the Perspective.

Journal of
Applied Physics

PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 129, 040902 (2021); doi: 10.1063/5.0024274 129, 040902-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


We describe the techniques of analysis that include periodic Green
functions (Sec. V). In what follows, we overview multipole excita-
tions and coupling in the arrays of finite size (Sec. VI). We also
highlight emerging techniques to calculate multipole moments
excited in the structure with full-wave numerical simulations, often
called multipole decomposition (Sec. VII). Finally, we outline
dipole coupling effects in the nanoparticles of complex shapes and
show how trapped modes with a high-quality factor can be excited
in the array (Sec. VIII). We wrap up this Perspective with the dis-
cussion of further possible development in the field (Sec. IX).

II. ELECTRIC AND MAGNETIC MULTIPOLES OF A
SINGLE NANOSCATTERER

Before discussing lattice multipole effects, let us briefly outline
several important positions relating to the multipole optical
response of single nanoparticles (nanoantennas).

A. General case of arbitrary-shaped particles

The external monochromatic electromagnetic field (with fre-
quency ω) acting on a dielectric nanoparticle induces displacement
current in its volume, which is characterized by the current density
j(r, ω), where r is the radius-vector of a point inside the nanoparti-
cle. The induced current is a source of second (scattered) waves in
the system. In the following text, we omit the monochromatic time
dependence exp(� iωt) for compactness.

To get multipole decomposition of the waves scattered by the
nanoparticle, one can use the following representation:

j(r) ¼
ð

j(r0)δ(r� r0)dr0, (1)

where the Dirac delta-function δ(r� r0) is expanded in a Taylor
series53 with respect to r0 around the origin of the Cartesian coordi-
nate system (it is convenient to choose this origin at the scatterer
center of mass54),

δ(r� r0) ¼ δ(r)� (r0 � ∇)δ(r)þ 1
2
(r0 � ∇)2δ(r)� � � � : (2)

Here, ∇ is the gradient operator with respect to r. Inserting Eq. (2)
into Eq. (1) and using the definitions of corresponding multipole
moments, one can write54

j(r) ¼ �iω pδ(r)þ iω

6
Q̂∇δ(r)þ [∇�mδ(r)]

� iω

6
Ô(∇∇δ(r))� 1

2
[∇� M̂∇δ(r)]þ � � � ,

(3)

where only several first multipole moments are explicitly presented:
p and m are the vectors of electric dipole (ED) and magnetic
dipole (MD) moments, respectively, and Q̂, M̂, and Ô are the
tensors of the electric quadrupole (EQ), magnetic quadrupole
(MQ), and electric octupole (EOC) moments, respectively.

Inserting the expansion equation (3) in the expression of the
electric field radiated by j, we obtain1

E(r) ¼ iωμ0

ð

Vs

ĜFF(r, r0)j(r0)dr0, (4)

where ĜFF(r, r0) is the far-field approximation of the Green’s tensor
for the system without the scattering object,1 μ0 is the vacuum
magnetic constant, and Vs is the scatterer volume; one obtains the
corresponding multipole decomposition,54

E(r) ¼ k20e
ikSr

4πε0r
[n� [p� n]]þ 1

cS
[m� n]

�

þ ikS

6
[n� [n� Q̂n]]þ ikS

2cS
[n� (M̂n)]

þ k2S
6
[n� [n� Ô(nn)]]þ � � �

�

: (5)

Here, k0 and kS are the wave numbers in vacuum and the sur-
rounding medium, respectively, ε0 is the vacuum dielectric cons-
tant, cS is the light speed in the surrounding medium, and n ¼ r=r
is the unit vector directed to the observation point.

The number of multipoles correctly describing the scattered
(radiated) fields depends on size, shape, illumination conditions, and
multipole definitions.55 If the size of a scatterer is much smaller than
the wavelength of the incident waves, already a small number of the
lowest-order Cartesian multipoles (dipoles and quadrupoles)
obtained in the long-wavelength approximation (LWA)56,57 provides
a required accuracy for calculation of the scattered fields.

For larger scatterers, the number of LWA multipoles providing
the same accuracy increases quickly. Therefore, in this case, it is
more convenient to use the exact multipole moments obtained from
the spherical harmonic expansion.55,57 Note that, frequently, the
LWA multipoles are called the Cartesian multipoles, whereas the
exact multipoles are referenced as the spherical ones.55,57,58 Here, we
would like to remind the reader that, in general, the multipole
moments depend on the choice of the point of their localization.59

However, for a homogeneous particle, it is convenient to choose its
center of mass. This choice is justified as, in this case, the number of
multipoles for providing the required accuracy is minimal.

The Cartesian multipole decomposition of the scattering
waves can be obtained from the Taylor expansion of an exponential
function.55 Because this expansion converges for any argument, the
Cartesian multipole expansion for a finite-size scatterer also con-
verges. However, for large scatterers, the number of Cartesian mul-
tipoles can significantly increase in comparison with the number of
spherical multipoles, providing the required accuracy.

Although the discussion of this Perspective is limited to lattice
effects and phenomena that appear considering multipoles beyond the
ED case, we would like to direct the reader to some literature pieces
that include multipole effects in a single nanoparticle. An extensive
discussion of multipole excitations and interference effects for a single
particle can be found in Ref. 36. A review of unconventional modes
and specific excitations, such as toroidal and anapole excitations, in
the single nanoparticle can be found in Refs. 60 and 61. The exact
spherical multipoles and their different presentations in photonics are
discussed in the review.62 Modal expansion concerning causality, non-
divergence, and nonresonant contribution can be found in Ref. 63.

Journal of
Applied Physics

PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 129, 040902 (2021); doi: 10.1063/5.0024274 129, 040902-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


B. Dipole and quadrupole polarizability of
homogeneous spheres

The most simple way to calculate multipole moments corre-
sponds to the case of homogeneous spherical nanoparticles. Using
the concept of multipole polarizabilities, multipole moments can be
written in proportion to the incident electric and magnetic fields
and their spatial derivatives. In the case of homogeneous nanoparti-
cles of a spherical shape, their multipole responses are characterized
by corresponding scalar polarizabilities, which can be expressed
through scattering coefficients of the Mie theory.64 Details of this
method for dipole and quadrupole polarizabilities can be found
elsewhere.21,22,51 Briefly, the exact dipole and quadrupole moments
of a spherical particle illuminated by a plane wave with electric E
and magnetic H fields are determined as

p ¼ αpE(r0), (6)

m ¼ αmH(r0), (7)

Q̂ ¼ αQ

2
[∇E(r0)þ E(r0)∇], (8)

M̂ ¼ αM

2
[∇H(r0)þH(r0)∇], (9)

where r0 is the position of the particle’s center. For tensorial terms,
we use the convention to define tensor elements ∇Fþ F∇ in a
Cartesian coordinate system as

(∇Fþ F∇)βγ ¼
@Fγ
@β

þ @Fβ
@γ

,

where F is a vector of an electric or a magnetic field, β, γ ¼ x, y, z.
The polarizabilities in Eqs. (6)–(9) can be written as

αp ¼ i
6πε0εS
k3S

a1, αm ¼ i
6π
k3S

b1, (10)

αQ ¼ i
120πε0εS

k5S
a2, αM ¼ i

40π
k5S

b2, (11)

where a1, a2, b1, and b2 are the corresponding scattering coefficients
of the Mie theory.64 In the Mie theory, contributions of all toroidal
moments are included in the scattering coefficients aj and bj deter-
mining the exact spherical multipole moments of the spherical
homogeneous particles. Therefore, our theoretical model with
spherical particles automatically takes into account the toroidal
moments associated with the considered coefficients a1, b1, a2, and
b2. In particular, the coefficient a1 includes a contribution of the
toroidal dipole moment. Definitions and a detailed discussion of the
toroidal multipoles can be found elsewhere.65,66

In the case of particles with a pure real permittivity value
(without absorption of electromagnetic energy), all Mie coefficients
in the polarizabilities are equal to 1 at the resonant conditions.67

Therefore, the resonant values of the polarizabilities in Eq. (10) are

purely imaginary,

αR
p ¼ i

6πε0εS
k3S

, αR
m ¼ i

6π
k3S

, (12)

αR
Q ¼ i

120πε0εS
k5S

, αR
M ¼ i

40π
k5S

: (13)

Note that the optical resonances of dielectric nanoparticles
(nanoantennas) are often called “Mie resonances” regardless of
nanoparticle shapes as opposed to plasmonic resonances of their
metallic counterparts.

III. MULTIPOLES IN AN INFINITE LATTICE OF
SPHERICAL PARTICLES

The transdimensional regime of a photonic lattice by definition
relates to in-between dimensionalities (2D and 3D). It combines
properties of 3D-engineered nanoantennas with excitation of multi-
pole Mie resonances and 2D arrays facilitating collective effects. In
earlier works, collective (or lattice) resonances have been mainly
considered in dipole approximation.14–20 Because of the strong
nanoparticle excitations, lattice resonances have been mainly
observed in the arrays of metal nanoparticles with surface plasmon
resonances, and they are often referred to as “plasmonic” or
“surface” lattice resonances.40 However, as we show below, the reso-
nant features can be found in many other optical structures and do
not necessarily require plasmonic particles. High refractive index
nanoparticles not only support electric resonant excitations, but also
enable a strong magnetic response because of the induced current
circulations within the nanoparticles. In this section, we study
lattice effects that are specific to particular multipole, and ED, MD,
EQ, and MQ multipoles are taken into consideration. These reso-
nances are strong for nanoparticles of semiconductor materials,
such as silicon or III–V compounds, and can be effectively con-
trolled by the lattice parameters.

Dipole or quadrupole coupling in one-dimensional chains and
two-dimensional nanoparticle arrays results in collective lattice
effects and multipole resonances with wavelengths flexibly tuned
by the lattice periods. Throughout the work, we consider a nor-
mally incident, monochromatic, and x-polarized light wave with
field components [Ex(r) ¼ E0 exp (ikSz), Hy(r) ¼ H0 exp (ikSz), 0].
The incident wave propagates in the medium with refractive
index nS, and medium wave number is kS ¼ nSk0, where k0 is the
wavenumber in vacuum related to the free-space wavelength λ0 as
k0 ¼ 2π=λ0. Schematics of the array under consideration are
shown in Fig. 1. For spherical nanoparticles that are considered
here, multipole polarizabilities, such as αp for ED, αm for MD, αQ

for EQ, and αM for MQ, can be calculated from Mie theory coef-
ficients, and the approach is shown above for dipoles and quadru-
poles and in Refs. 21, 22, and 51.

A. Electric dipole lattice

In the ED approximation, we consider dipole moments of
the nanoparticles having only in-plane components (determined
by the polarization of the incident waves). Under normal light
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incidence, each identical spherical nanoparticle arranged in the
infinite periodic array has the same ED moment p0 that is defined
by the equation

p0 ¼ αpEx þ
αp

ε0
S ppp0, (14)

where αp is the ED polarizability of the isolated particle, S pp is the
sum accounting for the electromagnetic interaction between the
EDs arranged into a periodic lattice, and ε0 is the vacuum permit-
tivity. More details of the derivations can be found in Refs. 15, 21,
22, and 51. The effective polarizability of the particle in the peri-
odic array can be introduced as

αeff
p ¼ p0

Ex
¼ 1

αp
� S pp

ε0

� ��1

: (15)

It exhibits singularity at the wavelength close to the period of the
lattice. In particular, for the case of Ex along the x-axis and the wave-
length close to Rayleigh anomaly λ � λRA�1 ¼ Dy, the lattice reso-
nances significantly modify the resonance profile of the particles in
the array in comparison with a single particle. At the same time, at
the wavelength close to another Rayleigh anomaly λ � λRA�2 ¼ Dx,
only slight changes of the resonance profile take place. Such behavior
is connected with spatial orientation of the particle dipole moments
induced by the incident light waves. For the considered example, due
to the polarization of the incident wave, the particles in the array have
induced ED moments directed along the x-axis. Therefore, the radia-
tion and far-field coupling between the particles is not realized along
the x-axis. As a result, the array period Dy (along the y-direction) has
the main contribution to the tuning of the lattice resonance.

B. Magnetic dipole lattice

One can show the possibility of the lattice effect for the particles
with significant MD resonance, such as silicon nanospheres21,68,69

and other simple shapes54,70 or plasmonic core-shell nanoparticles.

This effect is a counterpart of the lattice effect based on the ED
moment (Fig. 2). The MD moment m0 of identical particles in the
arrays is defined as

m0 ¼ αmHy þ αmSmmm0, (16)

where αm is the MD polarizability of the isolated nanoparticle and
Smm is the sum accounting for the electromagnetic interaction
between the MDs arranged in the periodic lattice. For more details,
see, e.g., Refs. 21 and 51.

Similar to EDs, effective polarizability of the nanoparticle in
the lattice can be defined as

αeff
m ¼ m0

Hy
¼ 1

αm
� Smm

� ��1

, (17)

and lattice resonances of magnetic counterparts can be spectrally
tuned and their wavelength is close to the Rayleigh anomaly
λ � λRA�2 ¼ Dx . As has been shown in the initial work,21 the
lattice of particles with ED and MD responses can be described
by the system of Eqs. (14) and (16), and the electric (magnetic)
dipoles can be considered independently from magnetic (electric)
counterparts, which is uncoupled. Note that the lattice resonan-
ces corresponding to the dipole coupling between nanoparticles
are determined by the expressions

Re
1
αeff
p

¼ 0 (18)

FIG. 1. Rectangular periodic nanoparticle array schematic under consideration.
Nanoparticles are surrounded by the uniform medium with the refractive index ns.
Ultra-thin photonic elements and optical nanostructures can be engineered based
on transdimensional photonic lattices that include three-dimensional-designed
nanoparticles to excite multipole resonances of interest and arranged in two-
dimensional arrays to enhance collective effects in the nanostructure.

FIG. 2. Extinction cross section per one nanoparticle of infinite Si nanoparticle
structures as a function of light wavelength. The narrow peaks at λ ¼ 495 nm
and λ ¼ 590 nm correspond to the ED and MD lattice resonances, respectively.
In the proximity to the Rayleigh anomalies and lattice resonance, the spectral
profile has a Fano line shape. The radius of the particles is 65 nm. The nano-
particle array with the rectangular elementary cell 480� 580 nm2 corresponds
to the nanoparticle system from Ref. 21.
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for ED coupling and

Re
1
αeff
m

¼ 0 (19)

for MD coupling.
Two-dimensional periodic arrays of silicon nanoparticles that

support lattice resonances due to the ED and MD nanoparticle reso-
nances have been recently analyzed for effects related to collective
multipole excitations.32 Because of the lattice-controlled resonance
effects, one can achieve a full overlap between the ED and MD nano-
particle resonances by adjusting lattice periods independently in each
mutual-perpendicular direction. What is more important, the strong
suppression of light reflection from the nanoparticle array occurs
due to destructive interference between the light scattered by EDs
and MDs of each nanoparticle in the backward direction with
respect to the incident light wave. With this approach, one can
realize the resonant lattice Kerker effect,32 which is resonant suppres-
sion of the backward-scattered waves and overall reflection from the
array (more details for the realization of this effect are provided in
Sec. IV and in Fig. 4). The findings have been supported by an
experimental proof of independent resonance control and the obser-
vation of a resonant lattice Kerker effect based on the overlap of
both ED and MD lattice resonances in silicon cubes.71

C. Electric quadrupole lattice

The particles of larger size and/or complex shape support higher
multipoles, and lattice resonances are not limited by the dipole
approximation. The work22 has outlined an idea that lattice resonan-
ces can be achieved with higher multipole resonances, which provide
broader opportunities for control of resonant features in the struc-
tures and designing optical elements based on them. Similar to the
case of EDs and MDs, it has been shown that the lattice of EDs and
EQs can be described by Eqs. (14) and (20), they are excited indepen-
dently, and they do not couple to their quadrupole or dipole counter-
part. In other words, EDs and EQs do not couple to each other in
the infinite array of spherical nanoparticles. Similar to the ED array,
the EQs can be described by the equation

Q0 ¼
αQikSEx(r0)

2
þ αQ

2ε0
SQQQ0, (20)

where αQ is the EQ polarizability, SQQ is the sum accounting for the
electromagnetic interaction between the EQs arranged in the periodic
array, and Q0 is the matrix element in the particle EQ moment
Q̂ ¼ Q0(x̂ẑ þ ẑx̂). In the case of EQ, the effective polarizability of the
nanoparticle in the lattice is defined as

αeff
Q ¼ 2Q0

ikSEx
¼ 1

αQ
� SQQ

2ε0

� ��1

: (21)

D. Magnetic quadrupole lattice

In the hypothetical case when the particles in the array have
only MQ response, the quadrupole coupling between the particles
is described by the equation

M0 ¼
αMikSHy

2
þ αM

2
SMMM0, (22)

where αM is the MQ polarizability, kS is the wave number in the
medium, SMM is the MQ sum accounting for the electromagnetic
interaction between the MQ of particles in the array, and M0 is the
matrix element in the particle MQ moment M̂ ¼ M0(ŷẑ þ ẑŷ). The
effective polarizability of the MQ in the lattice is defined as

αeff
M ¼ 2M0

ikSHy
¼ 1

αM
� SMM

2

� ��1

: (23)

The lattice resonances corresponding to the quadrupole coupling
are determined by the expressions such as Eqs. (18) and (19)
written for the quadrupole effective polarizabilities.

Resonant higher-order multipole coupling can be introduced
in a similar way. However, as a rule, with increasing particle size,
their optical response includes contributions of several first multi-
poles. Therefore, for the correct description of lattice resonances of
the arrays formed by these particles, the coupling models should
include all main multipole moments. In this case, cross-multipole
effects can be realized.

E. Lattice-induced cross-multipole coupling

The situation of particle interactions can drastically change in
the case when the lattice includes simultaneously contributions of
several multipoles. It has been shown in Refs. 50 and 51 that the
dipole–quadrupole interactions in the infinite lattices can lead to
either or both of MD–EQ and ED–MQ coupling effects even at the
conditions of the normal light incidence. In these cases, the lattice
sums SmQ and SQm (S pM and SMp), taking into account MD–EQ
(ED–MQ) interactions, are not equal to zero, indicating a cross-
multipole coupling of the corresponding dipole and quadrupole
moments in the lattices. These multipoles are excited and resonate in
response to different fields, for instance, magnetic for MD, MQ, and
electric for ED, EQ, and the array facilitates magneto-electric coupling.
The equation system describing the dipole and quadrupole moments
of the nanoparticle in the lattice and their coupling is the following:

p0 ¼ αpEx(r0)þ
αp

ε0
S ppp0 þ

ik0

c
S pMM0

� �

,

m0 ¼ αmHy(r0)þ αm Smmm0 þ
ck0

i
SmQQ0

� �

,

Q0 ¼
αQikSEx(r0)

2
þ αQ

2ε0

ik0

c
SQmm0 þ SQQQ0

� �

,

M0 ¼
αMikSHy(r0)

2
þ αM

2
ck0

i
SMpp0 þ SMMM0

� �

,

(24)

where the terms with SmQ and SQm correspond to the MD–EQ cross-
multipole coupling in the lattice. Similarly, the terms with S pM and
SMp correspond to ED–MQ cross-multipole coupling. The explicit
expressions for the lattice sums can be found in Ref. 51. Based on the
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equation system (24), one can derive effective nanoparticle polarizabil-
ities that include cross-multipole coupling,

1

α
eff , coup
p

¼
1� SMpα

eff
p � S pMα

eff
M k20=(2ε0)

αeff
p [1� S pMα

eff
M k2S=2]

, (25)

1

α
eff , coup
m

¼
1� SQmα

eff
m � SmQα

eff
Q k20=(2ε0)

αeff
m [1þ SmQα

eff
Q k20=(2ε0)]

, (26)

1

α
eff , coup
Q

¼
1� SQmα

eff
m � SmQα

eff
Q k20=(2ε0)

αeff
Q [1þ SQmαeff

m ]
, (27)

1

α
eff , coup
M

¼
1� SMpα

eff
p � S pMα

eff
M k20=(2ε0)

αeff
M [1� SMpαeff

p =(ε0εS)]
: (28)

Note that these complicated expressions are transformed to the more
simple ones (15), (17), (21), and (23), respectively, if the coupling
effects are neglected.

Some examples of effects on multipole coupling in the lattice
are shown in Fig. 3. To include considerable quadrupole effects, we
considered silicon nanoparticles of R ¼ 125 nm as opposed to
smaller ones with R ¼ 65 nm in Fig. 4. In the present case, the effec-
tive polarizabilities are calculated with Eqs. (15), (17), (21), and (23)
for the sphere in the array without cross-multipole coupling αeff

multipole

and Eqs. (25)–(28) taking into account coupling α
eff , coup
multipole.

Comparing the solid curves (taking into account the coupling
effects) with the dashed curves (without the coupling), one can see
that the coupling provides strong electromagnetic energy exchange
between dipole and quadrupole effective polarizabilities at the condi-
tions of the resonance. For instance, Fig. 3(a) demonstrates strong
suppression of an EQ particle response around the wavelength of
820 nm just due to the EQ–MD lattice coupling effect.

F. Lattice sums

As follows from the above text, lattice sums are paramount for
calculating the nanoparticles’ multipole moments in the arrays and
determining the array resonances. Due to their poor convergence,
the calculation of these sums requires special attention. There are
different techniques for the treatment of this problem, depending
on its dimension.83,84 Using Ewald’s method,85,86 the lattice sums
can be converted into two terms converging exponentially.
Implementation of this approach can be found, for example, in
Refs. 87–90. For the problem of a homogeneous environment, a
Fourier modal method has been recently suggested in Ref. 91.

Note that in the spectral regions outside the diffraction bands
(outside the Rayleigh anomalies), one can use a simple numerical
procedure (with possible next analytical polynomial approximations)
for accurate estimation of the lattice sums. For an infinite array, a
lattice sum S generally includes infinite number of terms Sn so that

S ¼ lim
N!1

SN ¼ lim
N!1

X

N

n¼1

Sn, (29)

where SN are the partial sums. For large but finite N , the values of
partial sums SN oscillate around the exact value S for different N .
Therefore, using an averaging procedure for a set of different N , one
can get an accurate estimate of total S,

FIG. 3. Comparisons of the multipole nanoparticle resonances in the individual
sphere and its periodic array accounting for lattice and cross-multipole coupling:
Absolute values of (a) MD and EQ and (b) ED and MQ multipole effective polar-
izabilities. The figure demonstrates an importance of the cross-multipole cou-
pling between dipole and quadrupole moments of nanoparticles in period
arrays. The solid lines in both panels (a) and (b) correspond to the dipole and
quadrupole polarizabilities αeff, coup (denoted “eff, coup”) calculated accounting
for the cross-multipole coupling effects. One can compare them with other polar-
izabilities calculated for nanoparticles in free space α (denoted “sing”) and in
the array neglecting of dipole–quadrupole cross-multipole coupling terms αeff

(denoted “eff”). One can see that due to the cross-multipole coupling effect, the
excitation of the multipole moments can be suppressed at certain spectral
points: (a) EQ(MD) moment is suppressed at the wavelength ≏820(670) nm
and (b) MQ(ED) moment is suppressed at the wavelength ≏680(695) nm. The
lattice periods are Dx ¼ Dy ¼ 285 nm, and silicon particles have R ¼ 125 nm.
Effective polarizabilities of MQ and EQ are multiplied by k20=4 and k20=12,
respectively, and effective polarizabilities of ED and EQ are divided by ε0.
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S � S0 ¼
X

L

l¼1

SNl

 !

=L, (30)

where L is the number of different N in the set (N1, N2, . . . , NL)
and is considered to be an averaging parameter determined by the
required accuracy of the performed estimates. Thus, the developed
approach allows us to replace the summation of infinite number
terms in (29) by the calculation of several finite-term sums.

In order to get an analytical polynomial presentation of spec-
tral dependence for S, one considers S0 as a function of wavelength
λ for which the averaging procedure (30) has been realized.
Applying the polynomial approximation of S0(λ) for the wave-
lengths from a given spectral range, one determines the coeffi-
cients of the polynomial approximation and thus obtains the
analytical representation. After that, the obtain polynomial can be
used for the simulation of different optical properties of similar
types of nanoparticle arrays. Notably, the analytical spectral repre-
sentations of the lattice sums might significantly simplify the sim-
ulations and investigations of lattice resonant effects. Applicability
of the suggested procedure is confirmed by the agreement between
results obtained using the above approach [Eq. (30)] and full-wave
numerical simulations.51

Additional information on calculation of poorly converging
sums related to lattice resonances can be found elsewhere.84,89,92,93

For more general approaches of dealing with the periodic arrange-
ments of scatterers and applicable to the structure with an arbi-
trary number of multipoles, we refer the interested readers to
Refs. 43–45 and 94.

IV. APPLICATIONS TO METASURFACES: LATTICE
EFFECTS FOR SCATTERING CONTROL

A. Resonant multipole suppression of light
transmission (resonant mirror effect)

Now, we demonstrate the case of dipole and quadrupole
responses: If dielectric (non-absorbing) particles in periodic infinite
arrays support a single multipole lattice resonance, this always
leads to the total suppression of light transmission at the resonant
wavelength for the non-diffracting regime. Note that the non-
absorbing regime can be effectively realized with silicon nanoparti-
cles in the infrared spectral range.95

Let us start with the dipole approximation for an infinite 2D
array of spherical nanoparticles. If the array periodicity is smaller
than the operating wavelengths of external, normally incident plane
waves, the electric field transmission coefficient t0 is written as21

t0 ¼ 1þ ikS

2SL
αeff , (31)

where SL is the area of the array unit cell, αeff is the effective
dipole polarizability: αeff ¼ αeff

p =ε0εS for the ED response, and
αeff ¼ αeff

m for the MD response. At the resonant conditions,
Eqs. (18) and (19) are fulfilled. Thus, from the definitions (15)
and (17), we obtain for EDs

1
αeff (R)

¼ i Im
ε0εS

αp
� εSImS pp

� �

(32)

FIG. 4. (a) Absorption and (b) reflection from the array for different periods Dy . The notations “MDR” and “ED-LR” correspond to magnetic dipole and electric dipole lattice
resonances, respectively. For the light polarization under consideration, the ED-LR is controlled by Dy. Silicon nanoparticles have R ¼ 65 nm, Dx ¼ 220 nm, and the sur-
rounding medium is uniform and has refractive index nS ¼ 1:5. Cyan lines “RA” show a wavelength of Rayleigh anomaly. The overlap of ED-LR and MD resonances
causes an increase of absorption [panel (a)] and decrease in reflectance [panel (b)] where the resonant lattice Kerker effect is achieved.

Journal of
Applied Physics

PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 129, 040902 (2021); doi: 10.1063/5.0024274 129, 040902-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


and for MDs

1
αeff (R)

¼ i Im
1
αm

� ImSmm

� �

: (33)

From the ratio between the extinction cross section, which is
calculated involving the optical theorem, and the scattering cross
section for a lossless ED or MD scatterer,96 one can obtain the
general equation for the imaginary part of 1=αp or 1=αm,

Im
ε0εS

αp
¼ Im

1
αm

¼ � k3S
6π

: (34)

For the case when the resonant wavelength is larger than the
lattice spacing (periodicity) so that all diffracted beams except
the zero-order beam are evanescent, the imaginary part of the
dipole sums has a simple analytical representation,97

εSImS pp ¼ ImSmm ¼ kS

2SL
� k3S
6π

: (35)

Inserting Eqs. (34) and (35) into Eqs. (32) and (33), one obtains
for the resonant effective polarizability,

αeff(R) ¼ � 2SL
ikS

, (36)

and then from Eq. (31) with Eq. (36), we obtain

t0 ¼ 1þ ikS

2SL
αeff (R)

; 0: (37)

Thus, the transmission is totally suppressed at the condition of
the ED or MD lattice resonance.

The same result is observed for separate EQ or MQ lattice
resonance if we take from Ref. 51 [see also Eq. (44) from
Subsection IV B] that

t0 ¼ 1þ ik3S
8SL

αeff
quadrupole, (38)

where αeff
quadrupole ¼ αeff

Q =3ε0εS for the EQs and αeff
quadrupole ¼ αeff

M

for MQs and also adopt for non-absorbing particles,

Im
3ε0εS
αQ

¼ Im
1
αM

¼ � k5S
40π

(39)

and

3εSImSQQ ¼ ImSMM ¼ k3S
4SL

� k5S
20π

: (40)

At the lattice resonant condition

Re
1

αeff
quadrupole

¼ 0, (41)

the resonant effective quadrupole polarizability αeff (R)
quadrupole is

1

α
eff (R)
quadrupole

¼ i Im
1
αM

� SMM

2

� �

¼ � ik3S
8SL

, (42)

that leads to t0 ¼ 0 for t0 defined by Eq. (38).
Note that similar consideration can be extended to higher-

order multipoles. If absorption, even very weak, exists in the
system, the transmission coefficient t0 cannot be equal to 0.

B. Resonant multipole suppression of light reflection
(resonant lattice Kerker effect)

1. Single nanoparticle

For a single dipole nanoparticle, the first Kerker condition can
be formulated as follows:98 if ED and MD polarizabilities of a
nanoparticle [Eq. (10)] satisfy the condition αp=ε0εp ¼ αm, the
light scattering from this nanoparticle is suppressed in the back-
ward direction.99,100 We note that in the original, seminal work,98

the first Kerker condition for a single nanoparticle is defined
through the dual nanoparticle. Nanoparticles with Mie coefficients
satisfying an ¼ bn for n ¼ 1, 2, . . . are called dual nanoparticles as
they have electromagnetic duality symmetry. The original work dis-
cusses the condition of ϵscat ¼ μscat for the particle material, where
ϵscat and μscat are the particle’s permittivity and permeability,
respectively. In engineering terms, it also corresponds to the effec-
tive impedance of the scatterer equal to the free-space impedance.
However, on further discussion, we always specify the multipole
order that the model is limited to, e.g., dipoles, electric quadrupole,
both quadrupoles, etc.

At the effect conditions, the strong suppression of light reflec-
tance in the structure appeared due to destructive interference
between electromagnetic waves scattered by ED and MD of every
nanoparticle in the backward direction with respect to the incident
light wave. Recently, this optical phenomenon became to be known
as the Kerker effect. For a single silicon spherical nanoparticle array,
ED and MD resonances do not overlap, and only non-resonant
Kerker effect can be observed.21,68,69,99–101 Starting with the pioneer-
ing work,102 a number of recent studies suggests that one can
achieve a spectral overlap of ED and MD resonances designing all-
dielectric nanoparticle shapes and using nanoparticles such as disks,
cubes, cones, pyramids, and others.70,101,103–105 Kerker conditions
have been generalized to include scattering waves from different mul-
tipoles106 and achieve directionality control with plasmonic,107,108

dielectric,109 or hyperbolic-material scatterers.81,82

2. Nanoparticle array

While the single nanoparticle and nanostructure of a finite
size are characterized by their scattering, an infinite array of nano-
particles requires introduction of reflection and transmission coeffi-
cients. In the case of a dipole–quadrupole system that includes four
multipoles and their cross-multipole coupling, the reflection and
transmission coefficients, both with respect to an electric field, are
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r0 ¼
ikS

2SL

1
ε0εS

αeff=coup
p � αeff=coup

m � k20
12ε0

α
eff=coup
Q

�

þ k2S
4

α
eff=coup
M

�

, (43)

t0 ¼ 1þ ikS

2SL

1
ε0εS

αeff=coup
p þ αeff=coup

m þ k20
12ε0

α
eff=coup
Q

�

þ k2S
4

α
eff=coup
M

�

: (44)

The expressions of Eqs. (43) and (44) can be obtained from the for-
mulas of the reflection and transmission coefficients presented in
Ref. 35 [or Eqs. (51) and (52) here], for the x-polarization, if one
writes the multipole moments of spherical nanoparticles through
the corresponding polarizabilities.

The concept of Huygens’ metasurfaces has been introduced
for the case when only substantial ED and MD resonances are
excited and compensate each other in the backward scattering
(in the analogy of Huygens’ source that has zero backscatter-
ing).103,104 Huygens’ metasurfaces based on the Kerker effect
have a rapid change of the transmitted light phase spanning the
whole 2π range. Another full-transparency regime is possible to
achieve when all four multipoles are involved and compensate the
contributions of each other in the forward- and backward-scattered
waves.35,70 It includes a Kerker-like condition for quadrupoles and
an anti-Kerker condition of the dipole–quadrupole scatterers (the
coherent dipoles are in a π phase relation with respect to the coher-
ent quadrupoles). This effect is referred to as lattice invisibility.
Alternatively, the term “transverse Kerker effect” has also been used
as the scattered power is redirected to the lateral direction.110,111 In
what follows, we highlight several examples when lattice-controlled
resonances overlap with each other and realize near-zero reflection,
in other words, the resonant lattice Kerker effect.

3. ED and MD overlap in silicon array

Collective effects and lattice resonances bring additional
mechanisms to control the spectral position of resonances. In par-
ticular, even in the case when resonances of the single nanoparticle
do not overlap, array periods can be chosen independently in each
mutual-perpendicular direction, and it is possible to overlap the
ED and MD lattice resonances of nanoparticles in the certain spec-
tral range. As a result, one can realize the resonant lattice Kerker
effect, that is, resonant suppression of the backward scattering or
reflection.32 We illustrate the effect of the lattice periodicity on
dipole resonance positions in Fig. 4. In particular, the figure shows
how the ED lattice resonance (ED-LR) position can be controlled
by the period Dy and that the ED-LR overlap with MD resonance
(MDR) results in near-zero reflection.32

The reflection and transmission coefficients are defined by ED
and MD polarizabilities as21

r0 ¼
ikS

2SL

1
ε0εS

αeff
p � αeff

m

� �

, (45)

t0 ¼ 1þ ikS

2SL

1
ε0εS

αeff
p þ αeff

m

� �

: (46)

From Eq. (45), one can see that the reflectance is totally suppressed
when the ED and MD effective polarizabilities are equal to each
other. As it has been shown in Subsection IV A, for the case of
non-absorbing particles, the effective ED and MD polarizabilities
αeff (R) have the same resonant value of (i2SL=kS) [see Eq. (36)].
Therefore, in this case, if the ED and MD moments of the parti-
cles in the array reach the resonances at the same wavelength, the
reflection goes to zero and the transmission coefficient becomes
equal to �1. The minus indicates that the transmitted light has a
π phase shift with respect to the incident wave. Such behavior is
considered the resonant lattice Kerker effect.

Again, note that for silicon nanoparticles, the electromag-
netic absorption is negligibly small in the near-infrared spectral
range; therefore, the above theory can be applied to such nano-
particles. If the absorption cannot be neglected, the transmission
efficiency cannot reach 100% at the conditions of the resonant
lattice Kerker effect.

4. ED and MD overlap in a core-shell nanoparticle array

The recent work has shown that an overlap of MD and ED
lattice resonances and a lattice Kerker effect can be achieved not
only for the array of silicon nanoparticles, but also for core-shell
nanoparticles.32 In contrast to silicon spherical nanoparticles,
where ED and MD resonances are spectrally separated, the
second case is for the nanoparticles where MD and ED resonan-
ces coincide and are in the near-infrared spectral range with
small optical losses. Also, to realize an overlap between MD and
ED lattice resonances, it is necessary to take arrays with square
elementary cells and with the size being larger than the wave-
length corresponding to both MD and ED resonances of an indi-
vidual particle in the array. In this case, one can see that both
lattice resonances can be tuned together, and zero reflectance can
be achieved. At the same time, the results demonstrate a very
high sensitivity of the lattice Kerker effect to the lattice periodic-
ity because of the narrow resonant increases of dipole sums in
the region of the dipole lattice resonances. As a result, only in the
narrow spectral region, the effective ED and MD polarizabilities
can be equal to each other providing realization of the resonant
lattice Kerker effect.

5. Generalized Kerker effect with ED, MD, and EQ
overlap51

The analysis of multipole resonances in the lattice has shown
that even in the case of the homogeneous environment, small
nanoparticles with a weak EQ and MD response enable excitation
of well-pronounced lattice resonance due to EQ and MD coupling
between nanoparticles in the array. Moreover, overlapping EQ and
MD resonances with the broad ED response outside its lattice reso-
nance, one can observe a suppression of total reflectance, which is
in its generalized form taking into account ED, EQ, and MD, and
their coupling in the lattice is defined as
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r0 ¼
ikS

2SL

1
ε0εS

αeff
p � αeff=coup

m � k20
12ε0

αeff=coup
q

� �

: (47)

The observed decrease in reflectance is achieved because the
Kerker condition of the directional scattering is satisfied. The
results of the calculations show that the EQ–MD coupling is critical
for correct calculations of the wavelength where the generalized
Kerker condition of directional scattering is satisfied. The direc-
tional scattering and the Kerker effect appear at the wavelength of
strong EQ and MD excitations. The resonant Kerker effect is
enabled by destructive interference between the ED resonance of a
single particle in the array and the EQ–MD lattice resonance of the
particle with the non-resonant contribution of EQ and MD
multipoles.

C. Lattice invisibility (anapole)

Recently, using the multipole decomposition approach, the
effect of the all-dielectric metasurface invisibility has been dem-
onstrated in metasurfaces formed by the resonant cubic silicon
nanoparticles.35 The effect is explained by simultaneous excitation
of both dipole and quadrupole moments in the nanoparticles of
the metasurface, which provide, due to interference, simultaneous
significant suppression of the forward and backward light scatter-
ing. Note that this effect, considered a lattice anapole effect, can
be realized in metasurfaces formed by nanoparticles of different
shapes and supporting resonant dipole and quadrupole responses.
By tuning lattice parameters to, for instance, Dx ¼ 500 nm and
Dy ¼ 440 nm, one can achieve almost total compensation of
waves scattered in the forward and backward directions by each
multipole (Fig. 5). This results in anapole-like states enabled by
the lattice effects.51 Figure 6 demonstrates the lattice invisibility
(anapole) effect in the metasurfaces formed by the spherical
silicon nanoparticles.51

Finally, we would like to once again mention the similarity
and difference between the resonant lattice Kerker effect and lattice
invisibility (anapole). In both cases, we aim to design structure
with strong interaction of light with matter and to achieve zero
reflection and near-unit transmission, as well as leverage collective
effects in the nanoparticle array. The main difference is that in the
anapole state, the phase of transmitted light almost coincides with
the phase of the incident light providing the invisibility effect. In
contrast, the resonant Kerker effect resulting in the maximum
transmission is accompanied by the phase differences between the
incident and transmitted light, spanning the 2π range. These and
other scattering effects discussed in the literature so far are sum-
marized in Fig. 7.

As for future directions, we anticipate that more effects based
on multipole interplay, interference, and coupling will be discov-
ered and applied to control the optical response of nanoscatterers
as building blocks of metasurfaces and photonic elements.

D. Role of coupling

To sum up the above discussion, we once again highlight the
optical phenomena that need to be accounted for in the metasurface

designs with recently demonstrated effects of same- and cross-
multipole coupling.

First of all, the nanoparticle arrangement in a periodic array
can significantly enhance the multipole response even in the case
when a single nanoparticle has a small, nearly negligible, multipole

FIG. 5. (a) Absolute values of multipole terms in the expressions (43) and (44)
determining the reflection and transmission coefficients, respectively, of the peri-
odic array of spheres. (b) Intensity reflection and transmission coefficients. Red
circles at the wavelength about 620–630 nm indicate the region where (i) the
contributions of multipole moments in the reflection and transmission coefficients
are comparable and (ii) the reflection is near zero and transmission is close to
unit due to the lattice invisible (anapole) effect. The lattice periods are
Dx ¼ 500 nm and Dy ¼ 440 nm, and silicon particles have R ¼ 125 nm.
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polarizability. It can result in the induced resonant spectral features
and magneto-electric response. For instance, the nanospheres of
noble metals with the radius in a range of tens of nanometers
appear to have only non-negligible ED polarizability of the single

nanoparticle. However, the particle arrangement in the lattice
results in excitation of a well-pronounced EQ collective resonance,
and the latter contributes to reflection, transmission, and absorp-
tion of light in the array.50

Second, in the case when only one multipole in the pair
ED-MQ or MD-EQ is pronounced and another is insignificant yet
non-zero, the small multipole excitation can be enhanced by the
counterpart. For instance, it has been shown that in the array of gold
nanospheres with a radius of 100 nm, the lattice resonance is affected
not only by EQ but also by lattice-induced MD (see Ref. 50). The
result becomes apparent by comparing calculations that do and do
not account for cross-multipole coupling with the full-wave simula-
tions. One can see that even in the nanoparticles without a signifi-
cant magnetic response, lattice resonances induce a magnetic
resonance in the nanoparticle periodic arrangement.

Third, special conditions can be satisfied for effective suppres-
sion of light reflection50 or transmission33 from the arrays due to
lattice multipole resonances. The effect concerning reflection has

FIG. 6. Total Ex field distribution (incident and scattered waves) in numerical
simulations of (a) and (b) a domain with a sphere in the 2D periodic array.
Simulations are performed at the wavelength corresponding to the lattice
anapole effect.51

FIG. 7. Effects related to scattering directionality and lattices. The effects can occur with either non-resonant or resonant values of multipole moments. The summary con-
cerns only multipole phase as the absolute value needs to compensate each other in magnitude. (a) Ref. 98; (b) Ref. 103; (c) Refs. 32 and 71; (d) Ref. 98; (e) Ref. 33; ( f )
Refs. 106 and 107; (g) Ref. 108; (h) Ref. 50; (i) Refs. 61 and 113–115; ( j) Refs. 110, 112, and 116; and (k) Refs. 35, 51, and 111.
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been experimentally observed in the earlier study of lattice resonan-
ces in transverse polarizations.80 The possibility of efficient control
of directional scattering, reflection, transmission, and absorption of
light in the arrays with a variety of multipoles81,82 can be applied to
control light beam in metasurfaces, metalenses, perfect absorbers,
and other photonic designs and light-harvesting devices.

Fourth, the resonance line shape associated with lattice reso-
nances needs to be brought up. Fano resonances are generally
defined as a resonant wave phenomenon that results in an asym-
metric line shape.73 It includes an interference between a broad,
background, and narrow, resonant, process regardless of whether
these resonant excitations interact (couple) or not.

Reflection and transmission spectra of a resonant Kerker effect
based on ED and MD is an example of a Fano profile for non-
interacting (un-coupled) resonances. The same goes for the gener-
alized Kerker effect resulting from the compensation of ED and
EQ, which are, again, uncoupled and do not affect each other.
Directional scattering related to single-particle Kerker effects also
has a Fano profile.73,79

In the plasmonic nanostructures and metamaterials, Fano res-
onances are often discussed in the context of interacting (coupled)
resonances.78,79 In this case, the asymmetric line shape appears not
only as an interference feature in reflection and transmission
spectra, but also as a modification of the resonance shape, e.g.,
absorption profile, stemming from excitation and coupling of two
resonances. Most impressively, we observe that the cross-multipole
coupling, discussed here for ED–MQ and MD–EQ pairs, results in
this kind of Fano resonances. Asymmetric shapes of effective polar-
izabilities in Fig. 3 are examples of such Fano resonances originat-
ing from resonance coupling.51

The Fano profile of the lattice resonance, corresponding to a
particular multipole, represents a special case of Fano resonances.
Here, non-interacting multipoles facilitate a collective effect result-
ing in effective polarizability with an asymmetric line shape. The
Fano profile of the lattice resonances arises owing to a general
mechanism related to the coupling between a bright broadband
mode and a narrow-band dark mode supported by a system.73 In
the periodic nanoparticle arrays, the Fano-like lattice resonances
emerge due to proximity of the single-particle resonances to a dif-
fraction edge. In this case, an evanescent diffractive wave next to
the Rayleigh anomaly corresponds to the transition of diffractive
order from a propagating state to an evanescent state.74–77

Note that the excitation of lattice resonances, leading to the
appearance of narrow Fano-like resonances in the spectral charac-
teristics of metasurfaces (see Fig. 2), can be associated with the
Rayleigh anomaly of any diffraction order under the condition of
appropriate resonant scattering of every particle in the lattice.72

More generally, the lattice resonances can emerge in the proximity
of Rayleigh anomaly corresponding to any arbitrary diffraction
order as long as its spectral position is appropriately tuned for the
Mie resonance of an isolated scatterer. However, for the wavelength
shorter than the zeroth-order diffraction limit, other diffractive
propagation directions are allowed. Therefore, the contribution of
single-particle resonances into lattice effects associated with higher
diffraction orders is assumed to be weaker.

On further studies, the addition of higher-order multipoles
can result in a novel cross-multipole coupling effect providing

more insight into the functional properties of metasurfaces for
manipulation of light.

V. BEYOND THE NORMAL-INCIDENCE MODEL:
PERIODIC GREEN FUNCTIONS

In addition to the spectral analyses of optical resonant and
multipole coupling effects of metasurfaces normally irradiated by
external light waves, it is possible to apply an alternative research
approach based on different irradiation conditions at fixed fre-
quencies. This consideration involves analysis in the reciprocal
(k, ω)-space as opposed to the analytical approach in the real-
coordinate space described above. The polarizability of each (iso-
lated) spherical nanoparticle forming the metasurface depends
only on the wavelength of light, and depending on irradiation con-
dition (the incidence angle), the additional resonances are driven
by collective effects providing information about multipole cou-
pling. Using this alternative approach, the dipole–quadrupole cou-
pling in two-dimensional arrays of spherical particles has been
theoretically studied in Ref. 117. The main results have been
obtained by the application of the periodic Green function techni-
que that has been developed specifically for periodic systems with
electric and magnetic dipole and quadrupole interactions.118

The reduction of the description of an array to a single unit
cell necessitates the calculations of periodic Green functions origi-
nating from radiative interactions between unit cells. Periodic
Green functions take the form of slowly convergent sums over the
lattice, and acceleration techniques, such as Ewald summation,
Kummer’s, Poisson’s, or Shank’s transformation, are required to
evaluate them. As has been shown in Ref. 118, one can use a gen-
eralization of an earlier approach and involve a dimensionality
reduction with the Poisson transformation and a singularity
removal. Considering the ED, MD, and EQ moments of each
emitter, one can derive a concise analytic form for the radiative
contributions to the periodic Green function dyadics that give rise
to radiation reaction fields. This description of the scattered light
explicitly satisfies the optical theorem, and the non-radiative con-
tributions that do not affect energy balance in the form of a
rapidly converging series are presented.

The work outlined in Ref. 117 emphasizes the importance of
understanding coupling mechanisms and the link between proper-
ties of lattice resonances and the lattice mode dispersion relations
in the nanoparticle arrays. Using periodic Green function dyadics
allows us to analyze the connection between the modes and the res-
onance spectrum in detail. Using the representation of periodic
Green function dyadics,118 it is possible to clarify and investigate
the sensitivity of lattice resonances to coupling and illumination
conditions as well as the frequency cutoff below which lattice reso-
nances are not found.

Importantly, the method involving periodic Green functions
provides a framework for studying lattice effects under the
oblique incidence of light. However, the approach is still prone to
the limitation and increased complexity the same as real-
coordinate space treatment. However, the extension of the
approach to nanoparticles of a complex shape (other than spheri-
cal) requires consideration of tensor polarizability and can signif-
icantly complicate the derivations.
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VI. BEYOND THE INFINITE MODEL: DIPOLE COUPLING
IN A FINITE-SIZE ARRAY

There are a number of real-life situations where we need to
study finite-size nanostructures that include nanoparticles of differ-
ent sizes and/or with a disordered space distribution. The rigorous
calculations of a general case of the finite-size array with different
nanoparticles involve constructing a matrix equation and solving a
large number of these linear equations. In the general form, the
equation for ED can be presented as

pj ¼ α̂j E0(rj)þ
k20
ε0

X

N

l=j

Ĝ
p
jlpl þ

X

N

l=j

h
multip
jl

0

@

1

A, (48)

where j ¼ 1, . . . , N , N is the number of particles in the system and

vector h
multip
jl describes the cross-multipole coupling between ED

and other multipoles (MD, EQ, MQ, etc). Similar expressions can
be written for other multipoles involved into considerations.

An example of a finite-size array with the spherical nanoparti-
cles with ED and EQ responses has been considered in Ref. 22. In
this case, every particle is characterized by eight unknown variables:
three independent components of a dipole moment (px , py , pz) and
five independent components of a symmetrical traceless quadru-
pole tensor (Qxx , Qyy , Qxy , Qxz , Qyz). Thus, one can construct and
solve a matrix equation, and this system of equations can be used
for the analysis of arbitrarily configured systems. For a system con-
sisting of N nanoparticles, the system required to solve has 8� N
unknown variables. It has been demonstrated that with the decrease
in the number of particles in the system and their polarizabilities,
the resonant diffractive features in the metasurface response
decrease rapidly. In the case of a nanoantenna with large polariz-
ability (such as a relatively large plasmonic nanoparticle), results
from Ref. 119 provide an insight into the characteristic length
scales for collective effects: (i) for arrays smaller than 5� 5 parti-
cles, the collective resonances are weak and their quality factors can
be lower than those of a single nanoparticle; (ii) for arrays larger
than 20� 20 particles, the quality factors of collective resonances
can saturate at a much larger value than those of a single nanopar-
ticle (in this case, the resonance quality factor is basically restricted
only by light absorption in the plasmonic nanostructure); and (iii)
in between, the quality factors of collective resonances are an
increasing function of the number of particles in the array. A
similar conclusion has also been made in Ref. 120.

In the case of dielectric nanoparticles, in which the absorption
can be significantly decreased, the sensitivity of the collective reso-
nances to the finite-size parameters of nanoparticle arrays can be
different. It has been recently reported in Ref. 121 that ED lattice
resonances in finite-sized dielectric arrays of dielectric converge to
the infinite-array model for about 50� 50 nanoparticles, and MD
lattice resonances in finite-sized arrays are quite different from the
ones of infinite arrays even for the array with about 100� 100
nanoparticles. Therefore, the use of numerical and theoretical
models for infinite arrays for the estimation of finite-size structure
properties needs to be separately examined for each specific case.

In addition to change of the collective resonances, the inclu-
sion of finite-size conditions for nanoparticle arrays can facilitate

cross-multipole coupling. For example, the equation system for the
case of ED–MD coupling in a finite-size array can be written as21

pj ¼ α̂p E0(rj)þ
k20
ε0

X

N

l=j

Ĝ
p
jlpl þ

ikS

ε0εScS

X

N

l=j

[g jl �ml]

0

@

1

A, (49)

mj ¼ α̂m H0(rj)þ k20

X

N

l=j

εSĜ
p
jlml � ikScS

X

N

l=j

[g jl � pl]

0

@

1

A, (50)

where tensor Ĝ
p
jl and vector g jl describe the interaction between

dipoles and particularly, the terms containing g jl describe cross-
dipole coupling. As has been reported in Ref. 21, ED–MD cross-
interactions in a finite-size array leads to excitation of the longitu-
dinal (perpendicular to the structure plane) near-field compo-
nents, values of which strongly depend on the resonances of the
total array. The creation of these longitudinal electric and mag-
netic components arises as a boundary effect due to the finite size
of the array. As a consequence, the maxima of the dipole longitu-
dinal components are concentrated on the boundary of the struc-
tures. Examples of the spatial distributions of magnetic and
electric near fields in the silicon nanoparticle arrays for the condi-
tions of magnetic and electric diffractive resonances are shown in
Figs. 8(a) and 8(b), respectively.

In most cases, the realization of nanoparticle arrays employs
either a top-down (lithographic) fabrication approach with good
precision of a nanoparticle position and size or a bottom-up tech-
nique with a large dispersion of sizes and little control of nanopar-
ticle position. The developed theoretical framework and its results,
shown in Ref. 122, indicate that ED and MD interactions are a key
aspect in inter-particle coupling even in random arrays. The work
brings an understanding of how the stochastic mutual interplay of
the scattered fields in a random or amorphous array of high refrac-
tive index nanoparticles influences the array’s optical properties in
terms of its ED and MD resonances. Comprehensive numerical
investigations of the ED and MD lattice resonances in disordered
arrays of Si nanospheres have recently been reported in Ref. 123.

Future work most likely will include particles supporting
higher-order multipole resonances that can significantly increase
degrees of freedom for manipulations of light properties at
subwavelength scales.

VII. FULL-WAVE NUMERICAL MODELING AND
MULTIPOLE DECOMPOSITION

So far, we only paid attention to the metasurfaces formed by
spherical nanoparticles. Naturally, there is a question: how we can
extend a similar framework to the case of the metasurfaces formed
by non-spherical (arbitrary) shaped nanoparticles. Below, we high-
light an advanced technique to account for collective effects and
multipole excitations in metasurfaces with complex-shape building
blocks and flexibility in light illumination and material treatment.

For the nanoparticle where analytical or semi-analytical sol-
utions are not available, one can apply the following procedure.
First, the total electric field in nanoparticles arranged into the
infinite 2D array is calculated numerically using some full-wave
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numerical simulations (for example, commercial packages COMSOL
Multiphysics or CST Microwave Studio or any other implementa-
tions of a finite-difference time-domain, a finite element, or another
method solving Maxwell’s equations). Then, the multipole moments
of the nanoparticles are calculated following their definitions pre-
sented in Ref. 57. Finally, the multipole contribution to the reflec-
tion and transmission coefficients can be estimated on the basis of
the equations for the electric field reflection r and transmission t
coefficients, which are written in multipole presentations. Under

normal incident of light on the nanoparticle lattice, each identical
nanoparticle forming an infinite periodic metasurface has the same
multipole moments due to translational symmetry of the nanostruc-
ture (and periodic boundary conditions in the calculation domain).
For these conditions and for x-polarized incident light (xy-plane is
the metasurface plane), the r and t coefficients are35

r ¼ ikS

E02SLε0εS
px �

1
cS
my þ

ikS

6
Qxz

�

� ikS

2cS
Myz �

k2S
6
Oxzz

�

, (51)

t ¼ 1þ ikS

E02SLε0εS
px þ

1
cS
my �

ikS

6
Qxz

�

� ikS

2cS
Myz �

k2S
6
Oxzz

�

: (52)

For the y-polarization, the coefficients are

r ¼ ikS

E02SLε0εS
py þ

1
cS
mx þ

ikS

6
Qyz

�

þ ikS

2cS
Mxz �

k2S
6
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�

, (53)

t ¼ 1þ ikS

E02SLε0εS
py �

1
cS
mx �

ikS

6
Qyz

�

þ ikS

2cS
Mxz �

k2S
6
Oyzz

�

: (54)

Here, kS is the wave number in the surrounding medium, SL is the
area of a lattice unit cell, ε0 is the vacuum permittivity, εS is the per-
mittivity of the surrounding medium, E0 is the electric field of the
normally incident plane waves at the metasurface plane, and cS ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0εS
p

is the speed of light in the surrounding medium. In con-
trast to the cases including spherical particles, where the transmis-
sion and reflection coefficients are expressed in terms of the
polarizabilities [Eqs. (43) and (44)], here, certain components of
multipole moments are used. Equations (51)–(54) include contribu-
tions of several first multipoles up to the electric octupole: p and m

are the vectors of ED and MD moments and Q̂, M̂, and Ô are the
tensors of the EQ, MQ, and electric octupole moments, respectively.
The intensity transmission and reflection coefficients are jtj2 and
jrj2, respectively.

The method of multipole decomposition is a versatile tool to
analyze the excitation of different multipoles in the nanostructure
with nanoparticles of a complex shape. Another important advan-
tage of the multipole decomposition method is a straightforward
possibility to implement higher-order multipoles in the analysis of
metasurface optical properties without derivation of effective multi-
pole polarizabilities. For example, including the contribution of
octupole moment can be easily done by expanding Eqs. (51)–(54)
for next higher-order multipoles using a multipole representation

FIG. 8. The z-component field magnitudes of induced (a) MD and (b) ED (in
a.u.) in periodic arrays of 21� 21 nanoparticles.21 (a) Dx ¼ 300 nm,
Dy ¼ 480 nm—the wavelength corresponds to the global maximum of mz . (b)
Dx ¼ 580 nm, Dy ¼ 300 nm—the wavelength corresponds to the global
maximum of pz . Radius of the nanoparticles is 65 nm. Reproduced with permis-
sion from Evlyukhin et al., Phys. Rev. B 82, 045404 (2010). Copyright 2010
American Physical Society.
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of scattered electric fields from Ref. 55. The number of multipoles
that are enough for correct analysis can be determined from the
comparison of the analytic results with numerical simulations
without multipole decomposition.

While the multipole decomposition technique has flexibility
in the number of multipoles included, the full-wave numerical
modeling in itself provides an opportunity to analyze the structure
without imposing limitations on what multipoles are considered.
However, the physical interpretation of the numerically obtained
results is rather difficult without multipole application.

VIII. BIANISOTROPY AND LIGHT TRAPPING WITH
NANOPARTICLES OF A COMPLEX SHAPE

If the nanoparticle has an inhomogeneous internal structure
or some complex shape, its optical response can include anisotropic
or bianisotropic behavior. In the case of anisotropy, the induced
ED or MD moment of the nanoparticle is not co-linear to the
external incident field. In the case of bianisotropy, the electric
(magnetic) dipole moment can be excited by both electric and
magnetic fields of external incident waves.

A. Dipole coupling in metasurfaces formed by
bianisotropic nanoparticles

In the case when the metasurface is formed by the nanoparti-
cles with bianisotropic optical properties, their ED and MD
moments are induced by both electric and magnetic fields in the
system. In this dipole approximation, one can write124

pl ¼ α̂ee
l D

loc(rl)þ
1
cS
α̂em
l Hloc(rl),

ml ¼ α̂mm
l Hloc(rl)þ cS α̂

me
l Dloc(rl),

(55)

where pl and ml are the ED and MD moments of a particle with
number l at the particle coordinate rl excited by the local electric
Eloc(rl) and magnetic Hloc(rl) fields; α̂ee

l , α̂
mm
l , α̂em

l , and α̂me
l are

the electric, magnetic, electromagnetic, and magnetoelectric polar-
izability tensors of the particle with number l, respectively;
Dloc(rl) ¼ ε0εSE

loc(rl) is the local displacement field; and cS is the
light speed in the surrounding matter. The local fields are created
by external waves and the dipole moments of all other nanoparti-
cles (with number j= l) form the structure. In the case of linear
constituent materials, the relation α̂em ¼ (� α̂me)T is satisfied.
Note that the bianisotropic optical properties of the nanoparticles
can be a result of spatially broken symmetry of their shape or
internal structure.125,126

Due to periodicity, under normal-incidence conditions of an
external electromagnetic plane wave, all nanoparticles forming the
infinite array bear the same electric p and magnetic m dipole
moments. However, unlike the case of isotropic metasurfaces, now
nanoparticles can have dipole components perpendicular to the
planes of the metasurface.126 Excitation of these out-of-plane com-
ponents is related to the magnetoelectric and electromagnetic bia-
nisotropic polarizabilities, which are induced due to the broken
in-plane symmetry of the nanoparticles. Furthermore, the
out-of-plane dipole components do not collectively radiate waves in
the direction perpendicular to the metasurface plane. Thus, these

out-of-plane dipole components are associated with the existence
of lattice trapped modes,127–129 which are closely related to the
concept of symmetry-protected bound states in the continuum
(BICs).46,130 For metasurfaces formed by isotropic lossless dipole
particles, the trapped modes are their (embedded) eigenmodes that
do not have a channel to light radiation. Therefore, they cannot
be excited by free propagating light waves. However, the introduc-
tion of bianisotropy into particles can open a channel for the
trapped mode excitation by electromagnetic plane waves normally
incident on the metasurface. However, this channel also leads to
the energy leakage transforming non-radiating trapped mode to
the radiating, which is considered to be a quasi-trapped mode.
Since the resonant excitation of the quasi-trapped modes is real-
ized in narrow spectral intervals, this leads to the appearance of
the high-quality-factor Fano resonances in the transmission and
reflection spectra of all-dielectric bianisotropic metasurfaces129 as
well as the concentration of electromagnetic energy in the meta-
surface plane.131 Additional analytical details of the trapped
modes are discussed below. Note the experimental demonstrations
and numerical results for the quasi-trapped modes excited in
dielectric metasurfaces for the nonlinear and thermal processes
have been recently reported.131,132 The obtained results have con-
vincingly demonstrated the practical importance of the system
supporting the quasi-trapped mode response.

Additionally, multi-resonant bianisotropic meta-gratings,
achieving efficient and directional diffraction in the mid-infrared
spectral range, were recently designed and experimentally realized
in Ref. 133. A metasurface formed by the all-dielectric bianisotropic
particles with a broken symmetry has been fabricated and experi-
mentally studied in the GHz frequency range as well.134 The 2π
phase change in the reflection spectrum with the value close to 1
inside the frequency range has been demonstrated.

B. Trapped modes

In the ED or MD approximation, the dipole moments of
nanoparticles forming a periodic metasurface can be presented as
Eq. (14) or (16). Note that in these cases, the dipole moments have
only in-plane components that are determined by the polarization
of normally incident external waves. Let us check a hypothetical
case where all particles in the infinite array possess only dipole
moment d0 (p0 or m0) without any external field sources so that
Eqs. (14) and (16) are reduced in general to the equation

(1� αdSd)d0 ¼ 0, (56)

where αd is the dipole polarizability and Sd is the dipole sum of a
metasurface. For EDs αd ¼ αp=ε0εS and Sd ¼ εSS pp, and for MDs,
αd ¼ αm and Sd ¼ Smm. The nontrivial solution (d0 = 0), which is
called a trapped (embedded) mode, can be realized only if the fol-
lowing condition is satisfied:

αdSd ¼ 1: (57)

Introducing notations αd ¼ α0 þ iα00 and Sd ¼ S0 þ iS00, where
α0 and S0 are the real parts and α00 and S00 are the imaginary parts
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of the corresponding values, Eq. (57) can be written as

S0 ¼ α0

α02þα002 ¼ Re 1
αd
,

S00 ¼ � α00

α02þα002 ¼ Im 1
αd
:

(58)

Outside the diffracting regime, when the periods of the parti-
cle array D , 2π=kS, the imaginary part of the dipole sum S00 has
the following value:97,126

S00 ¼
� k3S

6π for out-of-plane dipoles,
kS
2SL

� k3S
6π for in-plane dipoles,

8

<

:

(59)

where SL is the area of the array unit cell.
The general condition on the imaginary part of 1=αd is

96

Im
1

α0 þ iα00 ¼ � α00

α02 þ α002 � � k3S
6π

: (60)

Right- and left-hand sides of Eq. (60) are equal only in the case of
lossless dipole scatterers. Comparing Eqs. (59) and (60), one can
see that the second condition for S00 in Eq. (58) cannot be satisfied
for metasurfaces with the in-plane dipole excitation because it is
always that S00 . Im(1=αd) in this case.

On the other side, the condition S00 ¼ Im(1=αd) can be satis-
fied for metasurfaces formed by lossless scatterers with the out-of-
plane dipole moments oriented perpendicular to the metasurface
plane. In this case, the condition of the trapped mode existence is
reduced to the first equation in the system (58), which can be satis-
fied by tuning the lattice periodicity, as it has been demonstrated in
Ref. 126. Thus, the trapped mode is an in-phase oscillation of the
out-of-plane dipole moments of all particles in the metasurface.
Because the out-of-plane dipoles generate only strong near fields
and do not radiate collectively electromagnetic waves away from
the metasurface plane into the far-field zone, the electromagnetic
energy is saved and concentrated in the metasurface.

Since the trapped modes do not radiate the electromagnetic
energy to the far-field zone, these trapped modes cannot be
directly excited by propagating waves. However, the trapped
modes can be excited in the nanostructures in some way if, for
instance, the constituent building blocks are perturbed, for
example, by breaking their in-plane symmetry. The example is
discussed in Subsection VIII A.

Nanoparticles with complex shapes can generate more sophis-
ticated modes. The above analysis of a bianisotropic response is
limited to the dipole approximation, but it is interesting to explore
the extension of the concept to a more general case of magneto-
electric anisotropy of nanostructures with higher multipoles. Chiral
surface lattice resonances have recently been reported in an experi-
mental study demonstrating handedness-dependent excitations in
arrays of chiral plasmonic crescents.135

IX. FURTHER DEVELOPMENT

The analysis of cross-multipole coupling contribution in
Refs. 50 and 51 allowed the identification of the coupling role and

compared the optical response of the array with and without cou-
pling. Furthermore, extending the study to higher multipoles is
needed for larger nanoparticles since the previous works have pre-
sented derivations only for ED, MD, EQ, and MQ. This Perspective
mainly discusses the cases of lattices with multipole-specific and
cross-multipole coupling effects for dipoles and quadrupoles of both
electric and magnetic nature. Similarly, we anticipate that subsequent
higher-order multipoles need to be included in the full equation
system, and most likely, such theoretical models will result in the
effects of cross-multipole coupling facilitated by the lattice.

It has recently been demonstrated that it is possible to realize
nanoparticles with purely higher-order multipole light scattering
(e.g., octopole, hexadecapole).58 Therefore, the higher-order multi-
poles need to be included in the analytical and semi-analytical
models of nanoparticles, starting from certain dimensions and of
some materials. This requirement comes not only with the advan-
tage of broader analysis but also with the necessity of having all
multipoles at the same time. In addition to that, nanoparticles with
complex shapes and consequently tensorial polarizability have to
be considered in those models developed in the future.

One can capitalize on the properties of dual nanoparticles to
achieve unusual optical properties for engineered nanostructures.
Dual nanoparticles are those with Mie coefficients satisfying
an ¼ bn for n ¼ 1, 2, . . .. Recent work suggests that such dual
nanoparticles can be used in metasurfaces as an alternative to
dipole Huygens’ metasurfaces.112 One can substitute effective polar-
izabilities of the single nanoparticle from Eqs. (10) and (11) into
expression for reflection coefficient r0 [Eq. (43)]. In this case, one
can see that duality condition an ¼ bn always results in r0 ¼ 0. It
has proven to be a challenge to realize the case of single (i.e., iso-
lated) dual nanoparticles with natural materials. As a further devel-
opment of this direction, we envision that this challenge can be
overcome, and lattice contribution to effective polarizability can
bring an additional degree of freedom in designing metasurfaces
with required parameters.

The requirement of considering complex-shape nanoparticles,
higher-order multipoles, and uncertainty in excited multipoles
results in the development of multipole analysis incorporated into
the full-wave numerical simulations. This technique is drastically
different from all analytical and semi-analytical methods, where
each multipole and their coupling can be “turned on and off”
(included or excluded) whenever needed. Moreover, the multipole
analysis can be applied to the arrays with complex nanoparticle
structures in the elementary cells.136 In such cases, the elementary
cell can be considered a set of point multipoles determined by
certain multipole polarizabilities calculated in advance.137

The application of multipole methods to investigate lattice
electromagnetic effects is directly associated and determined by dif-
ferent analytical representations of the Green functions correspond-
ing to different multipole sources. The radiative contributions to all
the periodic Green function dyadics are exact and can be presented
in an analytical form that identifies radiation reaction terms associ-
ated with each diffracted beam.117,118 In turn, the non-radiative
contributions are found in the form of a rapidly converging series,
and they all involve summations over linear combinations of a few
functions. The preliminary analysis has shown that all the singular-
ities associated with the appearance of new diffracted orders can be

Journal of
Applied Physics

PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 129, 040902 (2021); doi: 10.1063/5.0024274 129, 040902-17

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


identified. Further research is needed to understand underlying
mechanisms better.

One can introduce the lattice modes of dipole and multipole
character to analyze the diffractive coupling. It is particularly
crucial for diffractive coupling to those modes indicated by lattice
resonances and accounting for energy balance in the system.
Lattice modes are lossy due to both (i) absorption in the nanopar-
ticle (non-radiative loss) and (ii) the very radiative coupling that
allows access to them by incident light. With the use of the intro-
duced representation of periodic Green function dyadics,118 one
can identify precisely the part of the coupling that leads to the
radiative loss. In turn, one can also introduce the hypothetical
“ideal” lattice modes by neglecting both the absorption and the
radiative loss. We can understand the illumination conditions
required for the lattice resonances to appear from the resulting
ideal dispersion relations. Having linked lattice resonances to ideal
lattice modes, one can further introduce a simplified model of the
ideal lattice mode dispersion relations that explains their novel fea-
tures, such as the sensitivity of lattice resonances to coupling and
illumination conditions as well as the frequency cutoff below
which lattice resonances are not found.

Another promising direction is to apply a nanoparticle lattice
in designing large-angle diffraction metasurfaces. As mentioned
above, nanoparticles of a complex shape or a combination of differ-
ent nanoparticles can exhibit directional scattering due to construc-
tive or destructive interference that can further be enhanced by
arranging the nanoparticles into a lattice and bringing additional
degrees of freedom to engineer the optical response. An extension
of the layer-multiple-scattering method appears to be very promis-
ing for designing lattices with different types of scatterers in the
unit cell.38 Further possible investigations include rendering the
layer-multiple-scattering method in engineering complex metasur-
faces with large supercells, including commensurate Moiré patterns.
Interesting foreseeing applications extend to efficient diffraction of
light in transmission and reflection modes at large angles as well as
split of an optical beam in the direction of a transmitted and
reflected diffraction channel.

X. CONCLUDING REMARKS

This article of lattice effect perspectives has been devoted to
discussions of multipole implementations for analysis of metasur-
face optical properties. A general case of nanoparticles and their
array with the electric and magnetic dipole and quadrupole
moments has been considered theoretically. We have highlighted
an analytical model based on coupled dipole–quadrupole equations
to study the optical responses of nanoparticle arrays supporting
dipole and quadrupole resonances. Furthermore, we have shown
how the developed model can be applied to optical properties of
infinite periodic arrays of identical high refractive index spheres.
We discussed how the effect of single multipole resonant transpar-
ency and a lattice Kerker effect in the nanoparticle array can be
applied for efficient control of light scattering. We also showed that
excitation of all dipole and quadrupole moments in the silicon
nanoparticle arrays could lead to the realization of a lattice anapole
state, which corresponds to a condition when particle multipoles
are excited, but neither the amplitude nor the phase of the

transmitted wave changes. The effects of nanoparticle coupling in
finite-size structures and arrays have also been considered. The
influence of finite-size parameters on the collective resonances and
cross-multipole coupling has been discussed. Combined semi-
analytical approaches to multipole analysis of optical properties of
the metasurfaces formed by the nanoparticles of non-spherical
shapes have been described in detail. Finally, for the nanoparticles
of more complex shapes with broken symmetry (or introduced
defect), we discussed approaches to concentrate energy in the meta-
surface plane due to the quasi-trapped modes’ excitation.

The optical collective effects and the presented analytical,
semi-analytical, and numerical techniques can be used for develop-
ing nanoparticle structures, metasurfaces, and ultra-thin photonic
elements with different functional optical properties. Compared to
other physical–chemical approaches to the synthesis of new
materials,138–140 the development of new artificial metamaterials
and metasurfaces based on multipole resonances of their building
blocks can be considered a viable alternative for expanding the
material platform of modern physics research studies.
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