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We describe the numerical verifications of a multipole formulation for calculating the electromagnetic proper-
ties of the modes that propagate in microstructured optical fibers. We illustrate the application of this for-
mulation to calculating both the real and the imaginary parts of the propagation constant. We compare its
predictions with the results of recent measurements of a low-lossmicrostructured fiber and investigate the
va~ations in fiber dispersion with geometrical parameters. We also show that the formulation obeys appro-
pnate symmetry rules and that these rules may be used to improve computational speed. © 2002 Optical
Society ofAmerica
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1. INTRODUCTION
In a previous paper, hereafter referred to as Part 1,1we
described the development of a multipole formulation for
calculating the propagation and field characteristics of
microstructured optical fibers (MOFs). Here we discuss
numerical aspects ofthe formulation, the choice of its pa-
rameters to guarantee accurate results, and its numerical
verification. The last is achieved through internal con-
sistency tests and through a comparison both with other
methods/ and with recent experimental results obtained
with a low-loss MOF structure.i' We also present nu-
merical results that illustrate important features of
MOFs, such as the variation of the geometric loss of the
modes that propagate in them and of their dispersion
characteristics with MOF parameters. The numerical
results given here and in Part I illustrate some key fea-
tures of the formulation: incorporation of mode symme-
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try to answer definitively questions related to modal de-
generacy, accurate and sensitive characterization of the
geometric loss of modes, ability to deliver other modal
data such as dispersion and field profiles, and modest
computational requirements.

The description of numerical strategies here is of neces-
sity detailed, because the location of modes requires the
finding of an approximate zero of the determinant of a
large complex matrix. Such zeros are often difficult to
distinguish at first sight from false minima, and it is nec-
essary to employ various validation criteria for the modes
that correspond to the various putative zeros to identify
physically meaningful solutions. It is of course valuable
to have numerical or experimental values for similar sys-
tems to guide the mode search, and the curves and tables
that we provide here and in Part I should provide a com-
prehensive aid to workers in the future.

© 2002 Optical Society ofAmerica
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Fig. 1. Top, internal and bottom, Wijngaard expansions compared for !}t(Ez) and J(Ez), respectively, for an air core MOF, with M
= 5 for both the central air hole and all other air holes (3 rings; 54 air holes of diameter 4.0271 JLm; core hole diameter, 13.0714 JLm;

jacket diameter, 50 JLm; n , = 1.39; n ; = 1.00; no = 1.39 + 10-Bi; A = 5.78157 JLm; ~ = 3.846 JLm).
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2. VALIDATION AND SELF-CONSISTENCY
The formulation presented in Part I requires the finding
of modes to satisfy a homogeneous equation or field iden-
tity of the form

[I - R(i=t + !TBoRo !T0B)]B '" MB = O. (1)

This identity expresses the equality of two sets of field
representations: a local expansion in the neighborhood
of each cylindrical inclusion in the MOF,

M

e, = L: [A~IJm(k1rl) + B~lm;;)(k1rl)]exp(im81),
m=-M

and a global, or Wijngaard, expansion,

N,

s, = L: L: B~IH~)(k1Irll)exp[im arg(r - ell]
1=1 m

+ L: A~oJm(k1r)exp(im8).
m

The Wijngaard expansion is expressed in local coordi-
nates by use of Graf's addition theorem, truncated to the
chosen multipole order M and equated with local expan-
sion (2). The two expansions for Ez and the correspond-
ing expansions for the scaled magnetic-field component
K, match perfectly only for untruncated fields (M ---> 00),
so their numerical difference on cylinder surfaces can be
used as a powerful indicator of truncation errors and of
the quality of the matrix null vector location. We illus-

0.1

0.05

o

-0.05

-0.1

-0.15 L...:.:...:'==========!.-----'-o
o 2 4

I Re(Ewijn _ Eint) I
z z

0.06 ,----~--~---_____r_"l

0.05

0.04

0.03

0.02

0.01

Kuhlmey et at.

(2)

trate this with an example, shown in Figs. 1 and 2, of an
air-core MOF. Figure 1 shows significant field errors oc-
curring near the boundary of the larger central air hole.
As well, the low-frequency modulation of the field discrep-
ancies indicates some imprecision in the minimization of
the determinant. In Fig. 2 the multipole truncation or-
der on the central hole has been increased to M = 19,
whereas the truncation order on the smaller holes has
been kept at 5. The decrease in field matching errors is
evident (note the change in scale in between the bottom
panels of Fig. 1 and those of Fig. 2) as is a slight improve-
ment in the quality of the determinant minimization,
manifested as a reduction in the low-frequency modula-
tion. One clear sign of adequate convergence in the for-
mulation is obtained from these comparison plots. When
enough terms are included, the error term oscillates like
the first neglected term in field expansions {i.e., like
exp[i(M + 1)B]}.

A second test of convergence is of course provided by
the stability of neff with respect to increase of M, as is il-
lustrated in Table 1, where we also introduce

f IE~oca\(1) - E:ijngaard( (1)ld81
C1

W=----::---------

f IE:ijngaard( (1)ld81
c1

(3)

(4)

W is a measure of the accuracy of the equality between
the local [Eq. (2)] and the Wijngaard [Eq. (3)] expansions.
With increasing M, W decreases and neff stabilizes, as ex-
pected.
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Fig. 2. As for Fig. 1 but with M = 19 for the core hole and M = 5 for all other holes. Note that the Wijngaard and internal expansions
now match with graphic accuracy.

Table 1. Convergence of neff with M"

M !R(neff) J(neff) X 106 W

3 1.43852886240663 6.918242988502046 9.7 X 10-2

4 1.43838719374803 1.749096334333127 4.6 X 10-2

5 1.43836672605884 1.373925319699950 1.5 X 10-2

6 1.43836499998690 1.414928166193201 2.7 X 10-3

7 1.43836493475660 1.416468499483090 9.3 X 10-4

8 1.43836493461317 1.416459892560528 7.7 X 10-4

9 1.43836493424529 1.416475747100788 2.5 X 10-4

aResults are for the p = 1 mode of the MOF in Table 1 of Part I at
h = 1.45 uix». Here W from Eq. (4) gives the degree of accuracy of the
equality between Wijngaard and local expansions. The integrals are
taken over the boundary of cylinder 1 situated at r = 6.75 us», 0 = O.

We have found that the choice of truncation parameter
M should be made such that this quantity clearly exceeds
(by a factor of -1.5) the largest argument of Bessel func-
tions on the boundary of inclusions. This choice of M
guarantees that the cylindrical functions of largest order
in field expansions behave as cylindrical multipoles of
electrostatics to leading order [i.e., as r" exp(imO) and
r-n exp(imO)] and ensures rapid convergence with in-
creasing m. This criterion is manifest in Figs. 1 and 2,
where many more Bessel terms are necessary for the
large central hole than for other, smaller holes.

A powerful way to validate a new formulation is to com-
pare its results with those of a well-established method.
A comparison has already been made2 of the results of our
method with those of the scalar and vector beam propa-
gation methods, for a MOF fiber that has a single ring of

inclusions, and with the imaginary part of neff = j3/ko of
order 10-5. We note that we have successfully used our
formulation to study the effects of increasing the number
of rings of inclusions, pushing the imaginary part of neff
down to -10-11 by direct means before losing accuracy in
its determination. In Section 5 we discuss an indirect
method, which is capable of reaching lower values of the
imaginary part.

As we also included in our software the extension ofthe
present formalism to simulate the diffraction of incident
light by the structure, we were able to validate the code
thoroughly against results from other, well-established
diffraction codes. Comparisons with a fictitious source
code" and with other multipolelike codes5,6 in conical in-
cidence with complex or real permittivities in various ge-
ometries gave excellent agreement, to at least eight deci-
mal places, for the radar cross section, validating each
part of the code separately as well as in its entirety.

3. SYMMETRY
The incorporation of field symmetry into the multipole
formulation has two benefits: First, it enables definitive
statements to be made about the degeneracy of modes,
even in the presence of the accidental degeneracies that
arise when normally distinct modal trajectories cross
each other. Second, it greatly reduces computational
burdens, enabling accurate answers for quite large MOF
structures to be obtained rapidly on personal computers
(PCs).

In applying the multi pole formulation to large sixfold
symmetric MOFs it is highly advantageous to exploit the
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symmetry properties in Fig. 3 of Part I to reduce the size
of matrix M. This can be achieved because only multi-
pole coefficients for inclusions lying in the minimum sec-
tor indicated in Fig. 3 of Part I need be specified; those for
holes outside the minimum sector can be obtained by mul-
tiplying by the appropriate geometric phase factor [re-
lated to exp(27Ti/6)]. The resultant reduction in the order
of matrix M depends on the type of mode that is ad-
dressed; it is maximal for the nondegenerate modes in
Fig. 3 of Part I and is -3.5 for degenerate modes, leading
to considerable reductions in processing time. See Ap-
pendix A for further details.

4. IMPLEMENTATION
Here we discuss the implementation of our method to find
modes and dispersion characteristics of a given fiber
structure.

A. Finding Modes
For the task of finding modes we need an algorithm aimed
at finding all the zeros of the determinant of M in a re-
gion of the complex neff plane. The algorithm should be
economical in function calls, as each evaluation of the de-
terminant is computationally expensive for large struc-
tures. As shown in Fig. 2 of Part I, the zeros are sharp,
so a highly accurate first estimate of the zero is necessary
for most simple root-finding routines. More-specific algo-
rithms for finding zeros of analytic or meromorphic
functionsb" have good convergence for simple structures
(with six cylinders, for example) but fail for more-complex
structures, even with good initial guesses. Our present
approach to root finding seems computationally efficient.
We first compute a map of the modulus of the determi-
nant over the region of interest and then use the local
minima of this map as initial points for a mixed zooming
and modified Broyden'' algorithm (an iterative minimiza-
tion algorithm, guaranteed to converge for parabolic
minima). Further details ofthis method are given in Ap-
pendix B.

The initial scanning region has to be chosen in accor-
dance with the physical problem studied: If the fiber is
air cored, and air guided modes are sought, we choose
9t(neff) < 1, whereas if the fiber has a solid core we usu-
ally choose to search for modes in a region where 9t(neff)
lies between the optical indices of the inclusions and the
matrix. In the latter case hundreds of modes may exist
for small 9t(neff), which are of little interest because of
their high losses. We therefore often concentrate on a
smaller neff scanning region near the highest index of the
structure. A scanning region for J(neff) that gives good
results in almost any case is 10-12 < J(neff) < 10-3.

B. Dispersion Characteristics
The process of finding modes as described above is carried
out for a specific wavelength. We could repeat the search
for modes for many different wavelengths to obtain dis-
persion characteristics, but this process would be quite la-
borious. We have found two other methods to be of value.
One computes and identifies the modes for three or four
different wavelengths, then uses a spline interpolation to
estimate the neff values for other wavelengths, and refines
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the estimate with the mixed zooming and Broyden algo-
rithm. Each newly determined point of the nerlA) curve
can be used to enhance the spline estimate. The second
(and often more efficient) method is to compute the modes
for only one wavelength, AQ, then slightly perturb the
wavelength to get neriAQ + oJ, with nerlAQ) used as a first
guess, and then use a first-order estimate of neff at the
next wavelength. One can then compute neriA + mo.,,),
using a first-order estimate computed from the two pre-
ceding values. For both methods the wavelength step
has to be chosen very small: For small steps more points
are necessary for computing the dispersion characteris-
tics in a given wavelength range, but for large steps the
first-order guess becomes inaccurate and the convergence
of the zooming and Broyden algorithm unacceptably slow.
Having small steps and therefore numerous numerical
values on the dispersion curve is also of benefit when one
is evaluating second-order derivatives, as is necessary to
compute the group-velocity dispersion.

One can include material dispersion easily by changing
the optical indices according to the current wavelength at
each step, using, for example, a Sellmeier approxima-
tion 10 for silica.

The method described here can be adapted to a study of
the change of neff of a mode for any continuously varying
parameter, for example, cylinder radius, cylinder spacing,
and optical index. One problem that can occur when one
is following the evolution of a mode with a continuously
varying parameter is mode crossing. Mode crossing re-
sults in wrong data but can easily be detected in most
cases through a discontinuity of derivatives and can also
easily be eliminated by restarting of the algorithm with
the correct mode on the other side of the crossing.

The correct choice for o~ strongly depends on wave-
length and structure, so no general advice can be given.
However, as a rough guide, satisfactory results have gen-
erally required -1000 points per unit VA on curves.

C. Using the Symmetry Simplifications
When the structure of interest presents symmetries,
these can be used as described in Ref. 11 to improve the
computations considerably, as mentioned in Subsection
3.B of Part I and detailed in Appendix A. The search for
modes changes slightly in this case.

To obtain all the modes we now have to check for each
class of mode separately. This entails going through the
entire process of evaluating a determinant map and refin-
ing each local minimum once per nondegenerate mode
class and once for each degenerate pair of mode classes.
For a structure with C6v symmetry, six determinant maps
have to be evaluated [classes 1-3,5,7 and 8; the modes of
classes 4 and 6 are deduced from those of classes 3 and 5
(cf Fig. 3 of Part I)]. But, as the matrix size is reduced
by a factor ranging from 3.5 to more than 6, and the com-
putations scale as the size ofthe matrix cubed, the overall
efficiency gain of using the symmetries remains high.
The gain is even higher when dispersion figures are com-
puted for a given mode, as only one symmetry class is
then concerned.

D. Software and Computational Demands
We have developed a FORTRAN 90 code to exploit the con-
siderations detailed above. For symmetric structures the
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suggested optimizations are used and the software can
therefore deal, even on PCs, with large structures (modes
for fibers with 180 holes have so far been computed on
current PCs). Once the structure has been defined, the
software is able to find automatically all the modes within
a given region of the complex plane for neff and can op-
tionally track a mode as a function of wavelength to ob-
tain dispersion characteristics. Material dispersion can
be included, if desired.

Computational demands are relatively modest: The
complete set of modes with M = 5 in the region of inter-
est, 1.4 < !)t(neff) < 1.45 for the structure used in Figs. 2
and 4-6 of Part I, can be computed on a Pentium III (733-
MHz) PC in less than 3 min, using less than 2 Mb of
memory. Of course the load rises for larger structures,
but the complete set of modes for a structure of three lay-
ers of holes in a hexagonal arrangement as used in Sub-
section 5.B of this paper takes less than 1 h (and -15 Mb
of memory) on a Compaq workstation. Dispersion curves
can be computationally more expensive: The loss curves
in Subsection 5.B took -0.5 h (for d/ A = 0.075, where we
used M = 5) to several hours (for d/A = 0.7, where
M = 7 was needed for accuracy).

5. FIBER GEOMETRY AND MODE
PROPERTIES
A. Dispersion in Microstructured Optical Fibers
One of the important features of MOFs is the powerful
control that their geometry exerts over the dispersion
characteristics of modes.12 In a standard single-mode fi-
ber, the total dispersion consists of material and wave-
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guide contributions, whose combination is normal in the
near infrared for wavelengths up to ')..zc = 1.31 ussx and is
anomalous beyond that.lO Dispersion-shifted fibers can
shift the zero-dispersion point to longer wavelengths,
whereas dispersion can be reduced over a range of wave-
lengths by other designs.

In Fig. 3 we show the evolution of key dispersion pa-
rameters with both wavelength and hole radius for a
solid-core MOF with three rings of holes, for which the in-
dex of silica is modeled by the Sellmeier equation. The
parameters displayed are !)t(neff), J(neff), vg/c, and D,
where

(
dn )-1

"e = C neff + W d~ff (5)

is the group velocity'" and

D= (6)

is the dispersion parameter. Noticeable trends in the
four quantities are the steady decrease in !)t(neff) as the
hole size increases, the decrease in the loss or J(neff) with
increasing hole size and better confinement; the steady
increase in group velocity with increasing air fraction;
and the movement of ')..zc with hole diameter, initially
above the step-index fiber value and then back down
through it and sweeping toward the visible as d/ A in-
creases further. This ability to vary the zero-dispersion
point by a wavelength factor that approaches 2 offers ex-
citing possibilities for fiber designs.P
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Fig. 4. Confinement loss figures for the fundamental mode of a
MOF with three rings of air holes of various diameters and
pitches. All curves are for ~ = 1.55 us»,
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Fig. 5. Confinement loss figures for the first three modes of a
MOF with three rings of air holes as a function of pitch. Here
d/ A = 0.4, ~ = 1.55 {.Lm.

B. Confinement Losses
As modes in MOFs are not strictly confined but lossy, it is
important to be able to evaluate the confinement losses
that are intrinsically related to the MOF geometry. We
studied the case of a silica MOF perforated with cylindri-
cal air holes whose centers are arranged hexagonally and
computed the loss figures for the first few modes at a
wavelength of 1.55 /--Lm, varying pitch, diameter-to-pitch
ratio, and number of rings. In this study the jacket was
taken to be made from silica.

Figure 4 shows the loss values for the fundamental
mode of a solid-core MOF with three rings of holes with
various pitches for different diameter-to-pitch ratios. It
is clear that guidance becomes better for bigger holes, and
our simulations show that larger pitches are favorable for
lower losses. This can be explained phenomenologically
as follows: The real part of the effective index ofthe fun-
damental mode tends to the refractive index of silica, so
the propagation becomes increasingly parallel to the fiber
axis. Interaction with the confining structure is thus
minimized.

This behavior is also found for nonfundamental modes.
Figure 5 shows the loss values with various pitches for
the first three modes of a MOF with three rings of holes,
for a diameter-to-pitch ratio of d/ A = 0.4. Note that
nonfundamental modes always exist, even for structures
claimed to be single mode, but can be much more lossy
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than the fundamental mode. As losses vary continually
with parameters and no truly bound modes exist in the
case of MOFs, the definition of a single-mode MOF can be
only relative. Moreover, it emerges from our numerical
results that introducing an air jacket about the MOF
makes these three modes truly bound [J(neff) = 0], while
others remain leaky. This phenomenon shows the impor-
tance of the jacket and is currently under investigation.

Data showing confinement loss as a function of the
number of rings and their diameter-to-pitch ratio, with
A = 2.3 /--Lm, for a wavelength A = 1.55 /--Lm, have al-
ready been reported.P Depending on the value of d/A,
as many as eight rings of holes were necessary to reduce
confinement loss below 1 dB/m.

6. THEORY AND EXPERIMENT
We compared results from our simulations with experi-
mental data published by Kubota et al. 3 The MOF used
for their experiments was a silica fiber with approxi-
mately seven rings of air holes disposed in a regular hex-
agonal lattice whose core is created by a missing hole
(Fig. 6). For our simulations we used the geometrical
data as published but varied the number of rings from
one to seven. We used the Sellmeier approximation for
the index of silica.

A first result is that there is no need to have a large
number of rings to reach confinement losses of the order
of losses of conventional fibers. Figure 7 shows the loss
figures for the first three modes versus the number of
rings at a wavelength of 0.76 psi». These figures include
only confinement losses, not absorption or Rayleigh scat-
tering; they show the limitations that are due to the con-
finement by a MOF structure.

With two rings, the fiber exhibits single-mode behavior
for kilometric lengths, as only the fundamental mode
propagates without significant losses, but with more than
two rings other modes become virtually lossless. This re-
sult is in agreement with the multimode behavior ob-
served experimentally for seven rings of holes. Clearly,
three rings of holes are theoretically enough to ensure

Fig. 6. Scanning-electron micrograph of a cleaved end face of
the MOF fabricated by Kubota et at.3 used in our comparisons.
Figure supplied by H. Kubota.
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Fig. 7. Loss of the first three modes as a function of number of
rings for the structure published by Kubota et al.,3 at a wave-
length of 0.76 /Lm. Only confinement losses are included.

guidance that is limited only by losses caused by absorp-
tion or structural imperfections. We confirm that the
losses observed by Kubota et at. (7.1 dB/km at 850 nm)
are due not to the limitation imposed by the MOF geom-
etry of the fiber but mainly to Rayleigh scattering, struc-
tural imperfections, or absorption.

The imaginary parts of neff that correspond to Fig. 7 are
well below those that can be determined directly by deter-
minant minimization. Instead we must proceed through
the evaluation ofJ(neff) by an energy flux argument, once
the real part of neffhas been determined to high accuracy
by determinant minimization. Loss coefficient a is ob-
tained through the conservation ofthe time-averaged flux
of Poynting vector S through a cylinder of elementary
length 8z centered at the origin and with a radius R such
that the cylinder includes all inclusions. We have

I I !R[S(p, e, z)] . uzpdpde
O,p<R

8z fo!R[S(R, e, z)] . urRde

+ I f !R[S(p, e, z + 8z)] . uzpdpde, (7)
O,p<R

where Uz and ur are the usual unit vectors of the local ba-
sis in cylindrical coordinates. As S varies as e -az, we
have

S(p, e, Z + 8z) = (1 - a8z)S(p, e, z),

so Eq. (7) becomes

all !R[S(p, e, z)] . uzpdpde
p<R,O

fO!R[S(R, e, z)] . urRde.

Isolating a gives

a= (10)

I ( !R[Sz(p, e, z)]pdpde'
)O,P<R
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where we have introduced S z and S r s components of Sin
cylindrical coordinates. The imaginary part of the effec-
tive index is then given by

a
J(neff) = -.

2ko

We computed dispersion figures for the fundamental
mode of the Kubota structure. We first observed that, for
this structure, the number of rings has little influence on
the actual dispersion curve, as the fundamental mode is
already well confined with one ring. We therefore used a
one-ring structure in subsequent simulations to improve
computational speed without losing significant accuracy
for dispersion parameters. Although we observed a shift
of the zero-dispersion wavelength to the 800-nm band, we
did not find exact agreement with the experimental zero-
dispersion wavelength of 810 nm. With the given geo-
metrical data we found a zero-dispersion wavelength of
889 nm. Kubota et at. found similar results with a finite-
difference time-domain method. To explain the differ-
ence from experimental data we computed the zero-
dispersion wavelength for various hole pitches and
diameters: In Fig. 8, pitch is varied and diameter is held
constant; in Fig. 9, diameter is varied and pitch is held
constants; in Fig. 10, pitch and diameter are both varied
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Fig. 8. Zero-dispersionwavelength as a function ofpitch for the
structure published by Kubota et al.,3 with constant diameter
d = 1.51/Lm.
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Fig. 9. Zero-dispersionwavelength as a function of hole diam-
eter for the structure published by Kubota et al.,3 with constant
pitch A = 2.26 /Lm.
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Fig. 10. Zero-dispersion wavelength as a function of pitch for
the structure published by Kubota et al.,3 with constant
diameter/pitch ratio d/A = 0.67.

and the pitch/diameter ratio is held constant. These fig-
ures show that a variation of -15% in pitch with a con-
stant diameter or of 25% in pitch with a constant
diameter/pitch ratio is necessary to produce the experi-
mental zero dispersion wavelength.

7. CONCLUSIONS
The accuracy and computational speed of the multipole
formulation described above offer important advantages
for understanding or exploiting the properties of MOF fi-
bers. The results presented show clearly the details of
field structures and symmetry properties. The formula-
tion is at present limited to designs composed of non inter-
secting circular inclusions; nevertheless, it can be em-
ployed in studies ranging over a wide parameter space:
hole radius, spacing, number of rings, packing geometry,
air or solid core, etc. As we saw, the strong index con-
trast between air and silica means that fiber parameters
can be tuned across a wide range as these parameters
vary, so MOF fibers may well offer a new generation offi-
ber devices with novel properties. Multipole formula-
tions will be a valuable tool in the quest to develop these
devices.

One interesting issue that merits further investigation
was raised in Section 5. The structure formulated by
Kubota et al. 3 was shown to be single moded for two rings
of air holes and multimoded for kilometric lengths with
three or more rings. The identification of the number of
modes that are physically significant at a particular
wavelength depends on the fiber length in question,
which dictates the upper limit on mode loss, which is one
factor in deciding how many modes can compete to carry
energy from one end of the fiber to the other. As we have
seen, mode loss varies strongly with mode number, hole
spacing and size, and number of rings of holes. Thus a
comprehensive numerical study will be necessary to pro-
vide data on mode loss as a function of these parameters
from which a useful definition of mode number in MOFs
may emerge.

Finally, we add a few remarks that place our multipole
method in the context of the range of competing tech-
niques for numerically studying MOF's. First, as we
have shown, the multipole method is capable of yielding
the geometric loss of finite MOF confining structures,
with J(neff) accessible to 10-14 or lower. This is a prop-
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erty that is not likely to be emulated easily by other meth-
ods and is certainly unique at this time. Second, the
method has been constructed in such a way that symme-
try properties of modes can be enforced within the formu-
lation, so questions of degeneracy are exactly answered.
Third, it delivers highly accurate data on propagation
constants and field patterns for modes by using quite
modest computing resources if the MOF contains a rea-
sonable number of air holes. There are drawbacks to the
method, of course: It is at present restricted to circular
air holes, and mode searching for an unfamiliar geometry
may be difficult and time consuming. Nevertheless, the
multipole formulation is likely to prove highly valuable in
coming years, as designers move to exploit the manifold
possibilities afforded by a new generation of optical fibers.

APPENDIX A: SYMMETRIZATION OF
MODES
We consider waveguides with C6v symmetry, such as the
structures in Fig. 6. As was shown by Mclsaac.l" such
structures have eight mode classes, four of which occur as
two degenerate pairs, as shown in Fig. 3 of Part I. For
the purpose of this example we are interested in the de-
generate fundamental modesp = 3 andp = 4 and in the
lowest-order nondegenerate modes p = 1 and p = 2.
The minimum waveguide segments illustrated in Fig. 3 of
Part I represent the smallest segment of fiber required for
fully defining the modal fields of the complete structure.
We relate the multipole coefficients for a secondary cylin-
der outside the minimum segment to those of the corre-
sponding primary cylinder inside the segment.

From Fig. 3 of Part I, nondegenerate mode classes 1
and 2 have minimum waveguide segments of 1r/6, so 3 pri-
mary cylinders are required for describing the IS-hole
structure shown in Fig. 11. The holes are labeled P s ,
where P is the primary cylinder and S is the label given to
the secondary cylinder. Hole 11 is primary cylinder 1
and lies in the inner shell; the other primary cylinders, 21

and 31, lie in the second shell. As they are not degener-
ate, these modes must exhibit the full sixfold symmetry of
the structure.

@ @ @

G) G) G) 31

C0 G 11 C0
@ G) G) ®

© ® ®
Fig. 11. Primary (bold circles) and secondary cylinders of the
nondegenerate p = 1 and p = 2 mode classes of a two-ring MOF
structure.
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Fig. 12. Primary (bold circles) and secondary cylinders of the
degenerate p = 3 and p = 4 mode classes of a two-ring MOF
structure.

In terms of the multipole coefficients of the electric field
b~ , the relation between those on secondary cylinders to
those on primary cylinders can be expressed in the form

b~(PS) = b~(P,) exp[im(S - 1)7T/3] ,

and similarly for the magnetic-field coefficients.
For degenerate mode classes 3 and 4, the number of

secondary cylinders that correspond to a given primary
cylinder depends on the position of the primary cylinder.
If the primary cylinder lies on a symmetry axis of the
mode, in this case either the x or the y axis, then only one
other cylinder is related to it. A primary cylinder that is
not on a symmetry axis has three associated secondary
cylinders. A cylinder positioned at the center of the
structure has no secondary cylinders. The related pri-
mary and secondary cylinders are shown in Fig. 12.

For classes 3 and 4 the fields are either symmetric or
antisymmetric about the transverse axes. The relation
between primary and secondary cylinders is obtained by
appropriate combinations of reflections and inversions to
give the correct symmetry properties.

For mode p = 3 the multipole coefficients on a second-
ary cylinder lying on the x axis are related to those on the
corresponding primary cylinder by a simple reflection of
Ez and antireflection of K, across the y axis:

bE(P2) = _bEep,) bK(P2) = bK(P,)
m -m' m -m·

Similarly, for a secondary cylinder on the y axis the re-
lations are

b~(P2) = (-l)mb~~') , b~(P2) = (-l)m+1b~~').

As mentioned above, a primary cylinder that does not
lie on either axis has three associated secondary cylin-
ders. The relations are again combinations of reflections
and antireflections about the axes:

bE(P2) = _bE(P,) bK(P2) = bK(P,)
m -m' m -m'

bE(P3) = (_l)m+1bE(P,) bK(P3) = (_l)m+lbK(P,)
m m' m m '
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We obtain the relations for the second degenerate mode
class p = 4 simply by swapping the b~ and b~ coeffi-
cients in the equations above.

These symmetry relations are used in our method to re-
express field identity (1) in terms ofthe primary cylinders
only. This reduces the matrix dimensions by a factor of
3.5-6, depending on the mode class, thus greatly increas-
ing the calculation speed and allowing larger structures
to be studied.

APPENDIX B: ALGORITHM
We compute the determinant for a number of points
o .;; i; .;;N; over 0 .;; i, .;;N, lines parallel to the real
axis, with imaginary parts varying exponentially with i.:
The exponential variation of the imaginary part is neces-
sary, as different modes can have losses that differ by sev-
eral orders of magnitude. Local minima of this array are
computed through simple data analysis, and better initial
guesses of the minima are estimated through interpola-
tion of the points adjacent to each minimum. This guess
is used as a starting point for a Broyden-like algorithm.
If the algorithm fails, a new map of the determinant is
computed over the region in which the first mapping
showed that there is a local minimum. This refinement
map uses a region of 5 X 5 points, with a linear scale for
both real and imaginary parts. If the only minima ofthe
refined region are on its border, the region is extended un-
til a minimum lies inside the region. During the enlarge-
ment of the region, care is taken to prevent regions from
overlapping regions in which computing errors can occur
(negative or excessive imaginary or real part). If a mini-
mum is found in the refined region (excluding the bor-
ders), the routine tries the Broyden-like algorithm again.
If multiple minima are found in the region, each mini-
mum is added to the initial minima list and is treated
separately: Missing a zero thus becomes highly unlikely.
During the Broyden algorithm a calculation of singular
values is performed (see Subsection 3.A of Part I) each
time the modulus ofthe determinant for the current point
is less than a parameterized threshold, and we analyze
the modules of the eigenvalues to determine whether an
acceptable solution has been found (see the discussion in
Subsection 3.A of Part I).

The routine continues to alternate Broyden and zoom-
ing algorithms until one of the following occurs:

• An acceptable solution is found,
• The extended mapping region concentrates near a

border of the initial region,
• The refined region becomes too small,
• The extended mapping region includes a minimum

of the initial determinant map that has already been
treated, or

• A maximum number of iterations is reached.

Depending on the width of the initial scanning region
and the complexity of the structure, the pertinent choice
of N, varies from -50 to several hundreds: Structures
with a substantial number of cylinders have a higher den-
sity of modes and therefore need a better resolution on
~he .initial determinant map. The value of Ni, even for
mtncate structures, does not need to be high and is usu-
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ally taken from 4 to 8. As shown in Fig. 2 of Part I, zeros
are usually associated with valleys parallel to the imagi-
nary axis, so precise maps parallel to the real axis for a
few values of the imaginary part are sufficient for finding
a first estimate of the zeros.
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