MULTIPOLE METHOD TO COMPUTE THE CONDUCTIVE HEAT FLOWS TO AND BETWEEN PIPES IN A COMPOSITE CYLINDER

Johan Bennet
Johan Claesson
Göran Hellström

January 1987

Dep. of Building Technology and Mathematical Physics

Notes on Heat Transfer 3-1987
MULTIPOLE METHOD TO COMPUTE THE CONDUCTIVE HEAT FLOWS TO AND BETWEEN PIPES IN A COMPOSITE CYLINDER

Johan Bennet, Johan Claesson, Göran Hellström
Lund institute of Technology
January 1987

CONTENTS

$\begin{array}{lll}9.3 & \text { Test of Maxwell's reciprocity theorem } & 23 \\ 9.4 & \text { An example with } 15 \text { pipes } & 24\end{array}$
An example with 15 pipes ,
9.4

INTRODUCTION
THERMAL PROBLEM 4

LINE SOURCE FOR THE COMPOSITE REGION 5

MULTIPOLES FOR THE COMPOSITE REGION 8

GENERAL EXPRESSION FOR THE TEMPERATURE 10
EQUATIONS FROM THE BOUNDARY CONDITION AT THE OUTER CIRCLE 1
EQUATIONS FROM THE BOUNDARY CONDITION AT THE PIPES 13
FINAL EQUATIONS AND ITERATIVE SOLUTION 18
REQUIRED NUMBER OF MULTIPOLES 21
Error on the boundary circles 21
A three-pipe problem 22

COMPUTER MODEL. EXECUTION TIMES 25

MANUAL FOR THE COMPUTER CODE 26

REFERENCES 31
Appendix 1. LISTING OF COMPUTER CODE 32

1.INTRODUCTION

A so-called multipole method to compute the conductive heat flows to and between pipes in a cylinder is presented in [1]. The steady-state heat conduction is two-dimensional in a circular region perpendicular to the pipes. The region is homogeneous. In this paper the method is extended to the case of a composite cylinder. The pipes lie in an inner circular region, which is surrounded by an annulus of different thermal conductivity.

The applications for which the method has been developed concern so-called heat extraction boreholes and certain types of heat stores in the ground. The boreholes are used for heat extraction or as heat exchangers for heat injection/extraction. The heat carrier fluid may for example flow in a U-shaped tube in the borehole. Outside the tubes the borehole may be filled with sand. The local thermal problem in and near the borehole is quite important for the heat transfer capacity of the heat exchanger. This problem is essentially a steady-state one in the region between the fluid in the pipes and a suitably chosen cylinder around the borehole. The pipes are imbedded in a composite cylinder with an internal boundary at the borehole wall. The thermal resistance between the pipes and the outer circle is of particular interest. We are also interested in the thermal resistances between the pipes. The presented method and the computer program give a very rapid and accurate way to obtain these resistances and the complete temperature field. The method is used extensively in [2].

Figure 1.1. An example showing the temperature field for a case with 3 pipes. Data according to (8.12).

Figure 1.1 shows the computed temperature field for an example with three pipes. The fluid temperatures in the pipes and on the outer circle are indicated in the figure. One of the pipes has as indicated a thermal resistance layer. The complete set of data for the example is given by (8.12). The computer
time for this case is only a few seconds on a main frame computer (Norsk Data ND-500) or about 40 seconds on an IBM-PC AT-3 (10 MHz) with a 80287 math coprocessor.

2. THERMAL PROBLEM

Figure 2.1 shows the considered thermal problem. There are N pipes ($N \geq 1$), which lie within the inner circular region with the radius $r_{b}(b=b o r e h o l e)$. The inner circle is surrounded by an annular region of another material. The outer circle has the radius r_{c}.

Figure 2.1 Steady-state heat conduction in a composite circular region with heat flows between the N pipes and the outer circle.

The outer radius of pipe n is $r_{p n}$, and its center lies at $\left(x_{n}, y_{n}\right)$. The fluid in pipe n has the constant temperature $T_{f n}$, while the temperature outside the outer circle is T_{c}.

The annular region, $r_{b}<r<r_{c}$, is homogeneous with the thermal conductivity λ. The inner circular region outside the pipes has the thermal conductivity λ_{b}. The steady-state temperature $T(x, y)$ satisfies the heat conduction equation in the annular region and in the inner circle:

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0 \tag{2.1}
\end{equation*}
$$

Cartesian, complex and polar coordinates will be used:

$$
\begin{equation*}
z=x+i y=r e^{i \phi} \tag{2.2}
\end{equation*}
$$

The center of pipe n is in complex coordinates:

$$
\begin{equation*}
z_{n}=x_{n}+i y_{n} \tag{2.3}
\end{equation*}
$$

We will use the local polar coordinates ρ_{n}, ψ_{n} from the center of any pipe n. See Figure 2.2 .

$$
\begin{equation*}
z-z_{n}=\rho_{n} e^{i \psi_{n}} \tag{2.4}
\end{equation*}
$$

Figure 2.2. Local polar coordinates ρ_{n}, ψ_{n} from the center of pipe n.

The temperature and the radial heat flux are continuous at the inner boundary $r=r_{b}$:

$$
\begin{align*}
\left.T\right|_{r_{b}-0} & =\left.T\right|_{r_{b}+0} \\
\left.\lambda_{b} \frac{\partial T}{\partial r}\right|_{r_{b}-0} & =\left.\lambda \frac{\partial T}{\partial r}\right|_{r_{b}+0} \tag{2.5}
\end{align*}
$$

The boundary conditions at the pipes and the outer circle $r=r_{c}$ are the same as in [1]. The boundary condition at pipe n is:

The boundary condition at the outer circle is:

$$
\begin{array}{cc}
T+\beta_{c} r_{c} \frac{\partial T}{\partial r}=T_{c} & r=r_{c} \tag{2.7}\\
& 0 \leq \phi \leq 2 \pi
\end{array}
$$

The dimensionless coefficient β_{n} determines the thermal resistance between the fluid in pipe n and the material just outside the pipe. This resistance is $\beta_{n} r_{p n} / \lambda_{b}\left(\mathrm{~K} /\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$. The corresponding thermal resistance $R_{p n}(\mathrm{~K} /(\mathrm{W} / \mathrm{m}))$ per unit pipe length is obtained by division with the perimeter $2 \pi r_{p n}$:

$$
\begin{equation*}
R_{p n}=\frac{\beta_{n}}{2 \pi \lambda_{b}} \quad(K /(W / m)) \tag{2.8}
\end{equation*}
$$

The thermal resistance per unit length (in the axial direction) of the outer circle is:

$$
\begin{equation*}
R_{p c}=\frac{\beta_{c}}{2 \pi \lambda} \quad(K /(W / m)) \tag{2.9}
\end{equation*}
$$

The thermal resistance per unit area at the outer circle is $\beta_{c} r_{c} / \lambda=2 \pi r_{c} R_{p c}\left(\mathrm{~K} /\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$. The thermal resistance coefficients β_{n} and β_{c} may take any non-negative value: $0 \leq \beta_{n} \leq \infty, 0 \leq \beta_{c} \leq \infty$. The value $\beta_{n}=+\infty$ means zero heat flux, $\frac{\partial T}{\partial \rho_{n}}=0$. The value of $T_{f n}$ is then redundant.

3. LINE SOURCE FOR THE COMPOSITE REGION

The solution in the previous paper [1] for pipes in a homogeneous region is based on the line source solution in complex form. Suitable derivatives gave the multipoles, which were needed for the solution. We will here in the same way use the line source for a composite region.

The thermal problem for the basic line source solution is shown in Figure 3.1. The thermal conductivity is λ_{b} in the circle $0 \leq r<r_{b}$, and λ in the infinite region outside the circle, $r_{b} \leq r<\infty$. There is a line source with the strength $+q_{n}(W / m)$ at the point $\left(x_{n}, y_{n}\right)$, which lies within the circle ($r_{n}<r_{b}$).

The solution to this problem is given in [2].

$$
0 \leq r \leq r_{b}:
$$

$$
\begin{equation*}
T(x, y)=\frac{q_{n}}{2 \pi \lambda_{b}}\left\{\ln \left(\frac{r_{b}}{\sqrt{\left(x-x_{n}\right)^{2}+\left(y-y_{n}\right)^{2}}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2} / r_{n}}{\sqrt{\left(x-x_{n} r_{b}^{2} / r_{n}^{2}\right)^{2}+\left(y-y_{n} r_{b}^{2} / r_{n}^{2}\right)^{2}}}\right)\right\} \tag{3.1}
\end{equation*}
$$

$r_{b} \leq r<\infty:$

$$
\begin{equation*}
T(x, y)=\frac{q_{n}}{2 \pi \lambda}\left\{(1-\sigma) \ln \left(\frac{r_{b}}{\sqrt{\left(x-x_{n}\right)^{2}+\left(y-y_{n}\right)^{2}}}\right)+\sigma \cdot \ln \left(\frac{r_{b}}{\sqrt{x^{2}+y^{2}}}\right)\right\} \tag{3.2}
\end{equation*}
$$

We have introduced the notation:

$$
\begin{equation*}
\sigma=\frac{\lambda_{b}-\lambda}{\lambda_{b}+\lambda} \quad(-1<\sigma<1) \tag{3.3}
\end{equation*}
$$

The case $\sigma=0$, i.e. $\lambda_{b}=\lambda$, is the one studied in [1].

Figure 3.1. Fundamental line source problem for the composite region.

The first term in (3.1) represents a line $\operatorname{sink}+q_{n}$ at $\left(x_{n}, y_{n}\right)$ in a material with the thermal conductivity λ_{b}. The second term is due to the fact that the thermal conductivity is λ for $r>r_{b}$. This term represents a line sink with the strength σq_{n} situated at the mirror point $\left(x_{n} r_{b}^{2} / r_{n}^{2}, y_{n} r_{b}^{2} / r_{n}^{2}\right)$. The mirror point lies on the same radius as $\left(x_{n}, y_{n}\right)$. The product of the distances to the center is $r_{n} \cdot r_{b}^{2} / r_{n}=r_{b}^{2}$. The temperature field (3.2) in the outer region $r \geq r_{b}$ consists of a line sink with the strength $q_{n}(1-\sigma)$ at $\left(x_{n}, y_{n}\right)$ and another one with the remaining heat $q_{n} \cdot \sigma$ at the $(0,0)$. It shall be observed that the thermal conductivity is λ in (3.2) and λ_{b} in (3.1).

The solution (3.1-2) is rewritten in the complex form using the following expressions:

$$
\begin{gather*}
\ln \left(\frac{r_{b}}{\sqrt{\left(x-x_{n}\right)^{2}+\left(y-y_{n}\right)^{2}}}\right)=\operatorname{Re}\left[\ln \left(\frac{r_{b}}{z-z_{n}}\right)\right] \tag{3.4}\\
\ln \left(\frac{r_{b}}{\sqrt{x^{2}+y^{2}}}\right)=\operatorname{Re}\left[\ln \left(\frac{r_{b}}{z}\right)\right] \tag{3.5}
\end{gather*}
$$

$$
\begin{align*}
& \ln \left(\frac{r_{b}^{2} / r_{n}}{\sqrt{\left(x-x_{n} r_{b}^{2} / r_{n}^{2}\right)^{2}+\left(y-y_{n} r_{b}^{2} / r_{n}^{2}\right)^{2}}}\right) \\
& =\ln \left(\frac{r_{b}^{2} /\left|z_{n}\right|}{\left|z-z_{n} r_{b}^{2} / r_{n}^{2}\right|}\right)=\ln \left(\frac{r_{b}^{2}}{\left|\bar{z}_{n}\right| \cdot\left|z-z_{n} r_{b}^{2} /\left(z_{n} \bar{z}_{n}\right)\right|}\right) \tag{3.6}\\
& =\ln \left(\frac{r_{b}^{2}}{\left|r_{b}^{2}-\bar{z}_{n} z\right|}\right)=\ln \left(\frac{r_{b}^{2}}{\left|r_{b}^{2}-\bar{z} z_{n}\right|}\right)=\operatorname{Re}\left[\ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-\bar{z} z_{n}}\right)\right]
\end{align*}
$$

In the last two lines we used that $r_{n}^{2}=\left|z_{n}\right|^{2}=z_{n} \bar{z}_{n}$ and $|w|=|\bar{w}|$ for any complex number w and its conjugate \bar{w}.

The temperature (3.1-2) may now be written in the following form:

$$
\begin{equation*}
T(x, y)=\frac{q_{n}}{2 \pi \lambda_{b}} \cdot \operatorname{Re}\left[W_{n o}\right] \tag{3.7}
\end{equation*}
$$

The complex-valued function $W_{n o}$ is from (3.1-7) defined by:

$$
\begin{cases}W_{n o}=\ln \left(\frac{r_{b}}{z-z_{n}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-\bar{z} z_{n}}\right) & r \leq r_{b} \tag{3.8-9}\\ W_{n o}=(1+\sigma) \ln \left(\frac{r_{b}}{z-z_{n}}\right)+\frac{\lambda_{b}}{\lambda} \sigma \cdot \ln \left(\frac{r_{b}}{z}\right) & r \geq r_{b}\end{cases}
$$

The factor $1+\sigma$ in (3.9) is in accordance with (3.3) equal to $\lambda_{b}(1-\sigma) / \lambda$. The simplicity of the expressions (3.7-9) is noteworthy.

Let us verify that (3.7-9) is indeed the solution to the fundamental line source problem for the composite region shown in Figure 3.1. The expression (3.9) is a regular (analytic) function in the region $r>r_{b}$, since the sources lie within the circle. Its real part $R e\left[W_{n o}\right]$ satisfies the heat conduction equation $\nabla^{2} T=0$. The expression (3.8) is also a regular function in $r<r_{b}$ except at the point $z=z_{n}$. It remains to verify that the boundary conditions (2.5) at $r=r_{b}$ are satisfied. We have at the circle $z=r_{b} \cdot e^{i \phi}$:

$$
\begin{align*}
\begin{aligned}
\left.W_{n o}\right|_{r_{b}-0} & =\ln \left(\frac{r_{b}}{r_{b} \cdot e^{i \phi}-z_{n}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-r_{b} e^{-i \phi} \cdot z_{n}}\right) \\
& =\ln \left(\frac{r_{b}}{r_{b} \cdot e^{i \phi}-z_{n}}\right)+\sigma \cdot \ln \left(\frac{r_{b} \cdot e^{i \phi}}{r_{b} e^{i \phi}-z_{n}}\right) \\
\left.W_{n o}\right|_{r_{b}+0} & =(1+\sigma) \ln \left(\frac{r_{b}}{r_{b} \cdot e^{i \phi}-z_{n}}\right)+\frac{\lambda_{b}}{\lambda} \sigma \cdot \ln \left(e^{-i \phi}\right)
\end{aligned}
\end{align*}
$$

The difference is

$$
\left.W_{n o}\right|_{r_{b}-0}-\left.W_{n o}\right|_{r_{b}+0}=\sigma \cdot i \phi-\frac{\lambda_{b}}{\lambda} \sigma \cdot(-i \phi)
$$

,or

$$
\begin{equation*}
\left.W_{n o}\right|_{r_{b}-0}-\left.W_{n o}\right|_{r_{b}+0}=\frac{\lambda_{b}-\lambda}{\lambda} \cdot i \phi \tag{3.12}
\end{equation*}
$$

This difference contains only an imaginary part. The temperature, which is given by the real part, is therefore continuous at $r=r_{b}$.

For the radial heat flux at $r=r_{b}$ we have:

$$
\begin{align*}
\left.\lambda_{b} \frac{\partial W_{n o}}{\partial r}\right|_{r_{b}-0} & =\lambda_{b}\left\{\frac{-e^{i \phi}}{r_{b} e^{i \phi}-z_{n}}+\sigma \cdot \frac{(-)\left(-z_{n}\right) e^{-i \phi}}{r_{b}^{2}-r_{b} e^{-i \phi} z_{n}}\right\} \\
& =-\frac{\lambda_{b}}{r_{b}} \cdot \frac{r_{b} e^{i \phi}-\sigma z_{n}}{r_{b} e^{i \phi}-z_{n}} \tag{3.13}
\end{align*}
$$

$$
\begin{align*}
\left.\lambda \frac{\partial W_{n o}}{\partial r}\right|_{r_{b}+0} & =\lambda\left\{(1+\sigma) \cdot \frac{-e^{i \phi}}{r_{b} e^{i \phi}-z_{n}}+\frac{\lambda_{b}}{\lambda} \sigma \cdot \frac{-e^{i \phi}}{r_{b} e^{i \phi}}\right\} \\
& =\ldots=-\frac{\lambda_{b}}{r_{b}} \cdot \frac{r_{b} e^{i \phi}-\sigma z_{n}}{r_{b} e^{i \phi}-z_{n}} \tag{3.14}
\end{align*}
$$

The heat flux, i.e. the real parts of (3.13-14), is therefore continuous at $r=r_{b}$. This is in fact true also for the imaginary part of $W_{n o}$:

$$
\begin{equation*}
\left.\lambda_{b} \frac{\partial W_{n o}}{\partial r}\right|_{r_{b}-0}=\left.\lambda \frac{\partial W_{n o}}{\partial r}\right|_{r_{b}+0} \tag{3.15}
\end{equation*}
$$

4. MULTIPOLES FOR THE COMPOSITE REGION

The multipoles of order j were in complex form given by $\left(z-z_{n}\right)^{-j}$ in the case of a single region, [1]. They were obtained by derivatives of the complex logarithm $\ln \left(z-z_{n}\right)$. Let $W_{n 1}$ be the derivative of $W_{n o},(3.8-9)$, with respect to the complex variable z_{n} :

$$
\begin{equation*}
W_{n 1}=\frac{\partial}{\partial z_{n}}\left(W_{n o}\right) \tag{4.1}
\end{equation*}
$$

We get from (3.8) and (3.9):

$$
\begin{array}{ll}
W_{n 1}=\frac{1}{z-z_{n}}+\sigma \cdot \frac{\bar{z}}{r_{b}^{2}-\bar{z} z_{n}} & r \leq r_{b} \\
W_{n 1}=(1+\sigma) \cdot \frac{1}{z-z_{n}} & r \geq r_{b} \tag{4.3}
\end{array}
$$

The function $W_{n 1}$ is regular. Thus, the real and imaginary parts, $\operatorname{Re}\left(W_{n 1}\right)$ and $\operatorname{Im}\left(W_{n 1}\right)$, both satisfy $\nabla^{2} T=0$, except at the point $z-z_{n}$. At the boundary $r=r_{b}$ the function $W_{n o}$ satisfies (3.12) and (3.15). The identities are valid for any z_{n}, and hence for the derivative with respect to z_{n}. But the derivative of $\phi(=\arctan (y / x))$ in (3.12) with respect to z_{n} is zero. Therefore we have:

$$
\begin{align*}
\left.W_{n 1}\right|_{r_{b}-0} & =\left.W_{n 1}\right|_{r_{b}+0} \tag{4.4}\\
\left.\lambda_{b} \frac{\partial W_{n 1}}{\partial r}\right|_{r_{b}-0} & =\left.\lambda \frac{\partial W_{n 1}}{\partial r}\right|_{r_{b}+0} \tag{4.5}
\end{align*}
$$

This means that $W_{n 1}$ and the radial heat flux are continuous at $r=r_{b}$. This is true both for $\operatorname{Re}\left(W_{n 1}\right)$ and $\operatorname{Im}\left(W_{n 1}\right)$.

The multipole of any order j is given by the j :th derivative of $W_{n o}$ with respect to z_{n}. We define $W_{n j}$ by:

$$
\begin{equation*}
W_{n j}=\frac{1}{(j-1)!} \cdot \frac{\partial^{j}}{\partial z_{n}^{j}}\left(W_{n o}\right) \tag{4.6}
\end{equation*}
$$

From (3.8) and (3.9) we get the neat expressions:

$$
\begin{cases}W_{n j}=\frac{1}{\left(z-z_{n}\right)^{j}}+\sigma \cdot\left(\frac{\bar{z}}{r_{b}^{2}-\bar{z} z_{n}}\right)^{j} & r \leq r_{b} \tag{4.7-8}\\ W_{n j}=(1+\sigma) \frac{1}{\left(z-z_{n}\right)^{j}} \quad r \geq r_{b}\end{cases}
$$

The expressions (4.7-8) are regular functions, which implies that the real and imaginary parts satisfy $\nabla^{2} T=0$, except at $z=z_{n}$. The boundary conditions (4.4) and (4.5) may be derived with respect to z_{n} any number of times. This means that $W_{n j}$ and the radial heat flux are continuous at $r=r_{b}$ for any j :

$$
\begin{align*}
\left.W_{n j}\right|_{r_{b}-0} & =\left.W_{n j}\right|_{r_{b}+0} \tag{4.9}\\
\left.\lambda_{b} \frac{\partial W_{n j}}{\partial r}\right|_{r_{b}-0} & =\left.\lambda \frac{\partial W_{n j}}{\partial r}\right|_{r_{b}+0} \tag{4.10}
\end{align*}
$$

The multipole (4.7) expressed in local polar coordinates around $z=z_{n}$ becomes:

$$
\begin{equation*}
W_{n j}=\frac{1}{\left(\rho_{n} e^{i \psi_{n}}\right)^{j}}+\sigma \cdot\left(\frac{\bar{z}_{n}+\rho_{n} e^{-i \psi_{n}}}{r_{b}^{2}-r_{n}^{2}-\rho_{n} e^{-i \psi_{n}} \cdot z_{n}}\right)^{j} \tag{4.11}
\end{equation*}
$$

,or

$$
\begin{equation*}
W_{n j}=\left(\cos \left(j \psi_{n}\right)-i \cdot \sin \left(j \psi_{n}\right)\right) \cdot \rho_{n}^{-j}+\sigma \cdot\left(\frac{\bar{z}_{n}+\rho_{n} e^{-i \psi_{n}}}{r_{b}^{2}-r_{n}^{2}-\rho_{n} e^{-i \psi_{n}} \cdot z_{n}}\right)^{j} \quad\left(\rho_{n}<r_{b}-r_{n}\right) \tag{4.12}
\end{equation*}
$$

The first part represents a pure multipole behaviour, while the second part is a correction to account for the effect of the different thermal conductivity λ for $r>r_{b}$. The real part of $W_{n j}, \operatorname{Re}\left(W_{n j}\right)$, gives a variation $\cos \left(j \psi_{n}\right)$ around the point $z=z_{n}$, and the imaginary part, $\operatorname{Im}\left(W_{n j}\right)$, gives a variation $\sin \left(j \psi_{n}\right)$. The temperature field from the general multipole of order j at $z=z_{n}$ is:

$$
\begin{equation*}
\left.T=\operatorname{Re}\left(P_{n j} \cdot W_{n j}\right)=\operatorname{Re}\left(\left(c_{n j}+i \cdot s_{n j}\right) W_{n j}\right)\right)=c_{n j} \cdot \operatorname{Re}\left(W_{n j}\right)-s_{n j} \cdot \operatorname{Im}\left(W_{n j}\right) \tag{4.13}
\end{equation*}
$$

Here $P_{n j}$ is an arbitrary complex number.
The line sink and multipoles at z_{n} can be used to represent an arbitrary temperature solution outside pipe n. We need a corresponding representation for the outer boundary circle $r=r_{c}$. Here we need a solution in the composite region inside $r=r_{c}$. The solution in complex form shall vary as $e^{i \cdot j \phi}$ on $r=r_{c}$. We have the corresponding solutions to $\nabla^{2} T=0$ in polar coordinates in $r_{b}<r<r_{c}$:

$$
\begin{equation*}
r^{j} \cdot e^{i \cdot j \phi}=z^{j} \quad r^{-j} e^{i \cdot j \phi}=\frac{1}{\bar{z}^{j}} \tag{4.14}
\end{equation*}
$$

In the inner region $0 \leq r<r_{b}$ we can use only the first solution z^{j}, since the second one is infinite at $r=0$ or $z=0$.

Therefore we start with the following expressions:

$$
\begin{align*}
& W_{c j}=A \cdot z^{j} \quad 0 \leq r \leq r_{b} \\
& W_{c j}=z^{j}+B / \bar{z}^{j} \quad r_{b} \leq r \leq r_{c} \tag{4.15}
\end{align*}
$$

Continuity at $z=r_{b} \cdot e^{i \phi}$ requires:

$$
\begin{equation*}
A r_{b}^{j}=r_{b}^{j}+B / r_{b}^{j} \tag{4.16}
\end{equation*}
$$

The radial heat flux is also continuous at $z=r_{b} e^{i \phi}$:

$$
\begin{align*}
\left.\lambda_{b} \cdot \frac{\partial W_{c j}}{\partial r}\right|_{r_{b}-0} & =\lambda_{b} A \cdot j r_{b}^{j-1} \cdot e^{i \cdot j \phi}=\left.\lambda \frac{\partial W_{c j}}{\partial r}\right|_{r_{b}+0} \\
& =\lambda \cdot j \cdot e^{i \cdot j \phi}\left(r_{b}^{j-1}-B / r_{b}^{j+1}\right) \tag{4.17}
\end{align*}
$$

The constants A and B are determined by (4.16-17). This gives the following basic expressions:

$$
\left\{\begin{array}{l}
W_{c j}=(1-\sigma) z^{j} \quad r \leq r_{b} \tag{4.18}\\
W_{c j}=z^{j}-\sigma \cdot\left(r_{b}^{2} / \bar{z}\right)^{j} \quad r \geq r_{b}
\end{array}\right.
$$

We will call these solutions $W_{c j}$ multipoles at infinity. The index c refers to the fact that they are needed at the outer boundary $r=r_{c}$. The multipole of order j can represent the variation $e^{i \cdot j \phi}$ or in real form any combination of $\cos (j \phi)$ and $\sin (j \phi)$ at $r=r_{c}$.

5. GENERAL EXPRESSION FOR THE TEMPERATURE

The general expression for the temperature field uses all the line sinks and the multipoles of all orders at the pipes and at infinity. We have the following general expression:

$$
\begin{align*}
T=T_{o} & +R e\left[\sum_{n=1}^{N} P_{n} \cdot W_{n o}\right. \\
& \left.+\sum_{n=1}^{N} \sum_{j} P_{n j} \cdot r_{p n}^{j} \cdot W_{n j}+\sum_{j} P_{c j} r_{c}^{-j} W_{c j}\right] \tag{5.1}
\end{align*}
$$

Here $W_{n o}$ is given by (3.8-9), $W_{n j}$ by (4.7-8) and $W_{c j}$ by (4.18). The factors $r_{p n}^{j}$ and r_{c}^{-j} are introduced for dimensional reasons. The dimension of $P_{n}, P_{n j}$, and $P_{c j}$ is that of a temperature.

The strength of the line source q_{n} is in accordance with (3.7) related to P_{n} by:

$$
\begin{equation*}
P_{n}=\frac{q_{n}}{2 \pi \lambda_{b}} \tag{5.2}
\end{equation*}
$$

The multipole factors $P_{n j}$ and $P_{c j}$ are complex numbers, while P_{n} of course is real. The temperature T_{o} is an arbitrary constant. The summation in j runs from 1 to infinity for an exact solution, and from 1 to J in the truncated approximate solution. The multipoles are not used in the case $J=0$.

The general temperature (5.1) becomes with the explicit formulas (3.8-9), (4.7-8) and (4.18):

$$
r \leq r_{b}
$$

$$
\begin{align*}
T=T_{o} & +R e\left[\sum_{n=1}^{N} P_{n}\left\{\ln \left(\frac{r_{b}}{z-z_{n}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-\bar{z} z_{n}}\right)\right\}\right. \\
& +\sum_{n=1}^{N} \sum_{j=1} P_{n j}\left\{\left(\frac{r_{p n}}{z-z_{n}}\right)^{j}+\sigma\left(\frac{r_{p n} \bar{z}}{r_{b}^{2}-z_{n} \bar{z}}\right)^{j}\right\} \tag{5.3}\\
& \left.+\sum_{j=1} P_{c j}(1-\sigma)\left(\frac{z}{r_{c}}\right)^{j}\right]
\end{align*}
$$

$r_{b} \leq r \leq r_{c}:$

$$
\begin{align*}
T=T_{o} & +R e\left[\sum_{n=1}^{N} P_{n}\left\{(1+\sigma) \cdot \ln \left(\frac{r_{b}}{z-z_{n}}\right)+\frac{\lambda_{b}}{\lambda} \sigma \cdot \ln \left(\frac{r_{b}}{z}\right)\right\}\right. \\
& +\sum_{n=1}^{N} \sum_{j=1} P_{n j}(1+\sigma)\left(\frac{r_{p n}}{z-z_{n}}\right)^{j} \tag{5.4}\\
& \left.+\sum_{j=1} P_{c j}\left\{\left(\frac{z}{r_{c}}\right)^{j}-\sigma \cdot\left(\frac{r_{b}^{2}}{r_{c} \bar{z}}\right)^{j}\right\}\right]
\end{align*}
$$

The general expressions (5.1) or (5.3-4) satisfy the heat conduction equation (2.1) everywhere except at the points $z=z_{n}$ for any choice of the real constants T_{o}, P_{n} and of the complex ones, $P_{n j}$ and $P_{c j}$. Each term satisfies the boundary conditions (2.5) at $r=r_{b}$. The constants T_{o} and $P_{c j}$ are chosen so that the boundary condition (2.7) at the outer circle is fulfilled. This is done in the next chapter, while Chapter 7 deals with the boundary conditions at the pipes. We will get a set of equations for $T_{o}, P_{n}, P_{n j}$ and $P_{c j}$.

The method of solution presented in this paper and in [1] is essentially to use Fourier series expansions; one for each pipe and one for the outer circle. The problem is to transform the coordinates of the different
components into polar coordinates for each pipe and for the outer circle. A basic idea in the present method is to use the complex form, which greatly facilitates the derivation of the equation system for the boundary conditions.

6. EQUATIONS FROM THE BOUNDARY CONDITION AT THE OUTER CIRCLE

The expressions (5.3) and (5.4) shall satisfy the boundary conditions (2.6-7). In the previous study [1], each type of term was analysed separately (in Chapter 5 of [1]). We will here use a slightly different approach. The temperature (5.3) is first expressed directly in the local polar coordinates of the considered pipe. Then the expression is inserted in the boundary condition (2.6), and we get an equation system that determines the line sinks P_{n} and the multipoles $P_{n j}$. This is done in the next chapter.

In this chapter we consider the boundary condition (2.7) at the outer circle $r=r_{c}$. Our first goal is to express the temperature (5.4) for the outer region $r_{b} \leq r \leq r_{c}$ in polar coordinates: $T=T(r, \phi)$. This is achieved by putting $z=r e^{i \phi}$ in (5.4). We will need to distinguish between different powers $\left(e^{i \phi}\right)^{k}$ or z^{k} in the subsequent analysis. The functions of z in (5.4) are therefore expanded in Taylor series.

For the logarithm of (5.4) we have:

$$
\begin{equation*}
\ln \left(\frac{r_{b}}{z-z_{n}}\right)=\ln \left(\frac{r_{b}}{z}\right)+\ln \left(\frac{1}{1-z_{n} / z}\right) \tag{6.1}
\end{equation*}
$$

We need the Taylor series:

$$
\begin{equation*}
\ln \left(\frac{1}{1-s}\right)=\sum_{k=1}^{\infty} \frac{1}{k} s^{k} \quad|s|<1 \tag{6.2}
\end{equation*}
$$

Then we have:

$$
\begin{equation*}
\ln \left(\frac{r_{b}}{z-z_{n}}\right)=\ln \left(\frac{r_{b}}{z}\right)+\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{z_{n}}{z}\right)^{k} \quad\left|z_{n}\right|<|z| \tag{6.3}
\end{equation*}
$$

We also need a Taylor expansion of the multipole term $\left(r_{p n} /\left(z-z_{n}\right)\right)^{j}$ in (5.4). We have:

$$
\begin{equation*}
\left(\frac{r_{p n}}{z-z_{n}}\right)^{j}=\left(\frac{r_{p n}}{z}\right)^{j} \cdot \sum_{k^{\prime}=0}^{\infty}\binom{j+k^{\prime}-1}{j-1}\left(\frac{z_{n}}{z}\right)^{k^{\prime}} \quad\left|z_{n}\right|<|z| \tag{6.4}
\end{equation*}
$$

Here we have used a Taylor series given in [1]:

$$
\begin{equation*}
\frac{1}{(1-s)^{j}}=\sum_{k=0}^{\infty}\binom{j+k-1}{j-1} s^{k} \quad|s|<1 \tag{6.5}
\end{equation*}
$$

The multipoles (6.4) are summed over j in (5.4). We need to rearrange the double sum in the following way:

$$
\begin{align*}
& \sum_{j=1}^{\infty} P_{n j}\left(\frac{r_{p n}}{z-z_{n}}\right)^{j}=\sum_{j=1}^{\infty} \sum_{k^{\prime}=0}^{\infty} P_{n j}\left(\frac{r_{p n}}{z}\right)^{j}\binom{j+k^{\prime}-1}{j-1}\left(\frac{z_{n}}{z}\right)^{k^{\prime}} \\
& =\left[j+k^{\prime}=k\right]=\sum_{k=1}^{\infty} \sum_{j=1}^{k} P_{n j}\binom{k-1}{j-1} \frac{r_{p n}^{j} z_{n}^{k-j}}{z^{k}} \tag{6.6}
\end{align*}
$$

The change of summation from j, k^{\prime} to k, j means that j varies between 1 and k for $k=1,2 \ldots$
We insert (6.3) and (6.6) in (5.4) and put $z=r e^{i \phi}$. Consider first the terms containing $\ln (z)$. For these we have from (5.4) and (6.3):

$$
\begin{align*}
R e & {\left[\sum_{n=1}^{N} P_{n}\left\{(1+\sigma) \cdot \ln \left(\frac{r_{b}}{r e^{i \phi}}\right)+\frac{\lambda_{b}}{\lambda} \sigma \cdot \ln \left(\frac{r_{b}}{r e^{i \phi}}\right)\right\}\right] } \tag{6.7}\\
& =\sum_{n=1}^{N} P_{n}\left(1+\sigma+\frac{\lambda_{b}}{\lambda} \sigma\right) \cdot \ln \left(\frac{r_{b}}{r}\right)=\sum_{n=1}^{N} P_{n} \frac{\lambda_{b}}{\lambda} \cdot \ln \left(\frac{r_{b}}{r}\right)
\end{align*}
$$

In the last line we used the definition (3.3) for σ. The temperature as a function of r and ϕ is now using (5.4), (6.3), (6.6) and (6.7) with z equal to $r e^{i \phi}$:

$$
\begin{align*}
T(r, \phi) & =T_{o}+\sum_{n=1}^{N} P_{n} \frac{\lambda_{b}}{\lambda} \cdot \ln \left(\frac{r_{b}}{r}\right)+R e\left[\sum_{n=1}^{N} \sum_{k=1}^{\infty} P_{n}(1+\sigma) \frac{1}{k}\left(\frac{z_{n}}{r}\right)^{k} e^{-i \cdot k \phi}\right. \\
& +\sum_{n=1}^{N} \sum_{k=1}^{\infty} \sum_{j=1}^{k} P_{n j}(1+\sigma)\binom{k-1}{j-1} \frac{r_{p n}^{j} z_{n}^{k-j}}{r^{k}} \cdot e^{-i \cdot k \phi} \tag{6.8}\\
& \left.+\sum_{k=1}^{\infty} P_{c k}\left\{\left(\frac{r}{r_{c}}\right)^{k}-\sigma \cdot\left(\frac{r_{b}^{2}}{r_{c} r}\right)^{k}\right\} e^{i \cdot k \phi}\right] \quad\left(r_{b} \leq r \leq r_{c}\right)
\end{align*}
$$

The summation index is in the last line changed from j to k.
The temperature (6.8) shall satisfy the boundary condition (2.7). For the radial derivative of any power of r we have:

$$
\begin{align*}
\left.\beta_{c} r_{c} \frac{\partial}{\partial r}\left(r^{k}\right)\right|_{r=r_{c}} & =\beta_{c} r_{c} \cdot k \cdot r_{c}^{k-1}=k \beta_{c} \cdot r_{c}^{k} \\
\left.\beta_{c} r_{c} \frac{\partial}{\partial r}\left(r^{-k}\right)\right|_{r=r_{c}} & =-k \beta_{c} \cdot r_{c}^{-k} \tag{6.9}
\end{align*}
$$

We will separate different k, i.e. different orders in $e^{-i \cdot k \phi}$. The last line of (6.8) has a positive exponent, which is changed by complex conjugation:

$$
\begin{equation*}
\operatorname{Re}\left[P_{c k} \cdot e^{i \cdot k \phi}\right]=\operatorname{Re}\left[\bar{P}_{c k} \cdot e^{-i \cdot k \phi}\right] \tag{6.10}
\end{equation*}
$$

The boundary condition (2.7) may now be written:

$$
\begin{align*}
T_{c} & =\left.\left(T+\beta_{c} \frac{\partial T}{\partial r}\right)\right|_{r=r_{c}}=T_{o}+\sum_{n=1}^{N} P_{n} \frac{\lambda_{b}}{\lambda}\left\{\ln \left(\frac{r_{b}}{r_{c}}\right)+\beta_{c} r_{c} \cdot \frac{-1}{r_{c}}\right\} \\
& +\sum_{k=1}^{\infty} R e\left[e ^ { - i \cdot k \phi } \cdot \left\{\sum_{n=1}^{N} P_{n}(1+\sigma) \frac{1}{k}\left(1-k \beta_{c}\right)\left(\frac{z_{n}}{r_{c}}\right)^{k}\right.\right. \\
& +\sum_{n=1}^{N} \sum_{j=1}^{k} P_{n j}(1+\sigma)\binom{k-1}{j-1}\left(1-k \beta_{c}\right) \frac{r_{p n}^{j} z_{n}^{k-j}}{r_{c}^{k}} \tag{6.11}\\
& \left.\left.+\bar{P}_{c k}\left(\left(1+k \beta_{c}\right) \cdot\left(\frac{r_{c}}{r_{c}}\right)^{k}-\sigma\left(1-k \beta_{c}\right)\left(\frac{r_{b}^{2}}{r_{c} \cdot r_{c}}\right)^{k}\right)\right\}\right] \quad 0 \leq \phi \leq 2 \pi
\end{align*}
$$

Equation (6.11) is valid for $0 \leq \phi \leq 2 \pi$. The constant part (independent of ϕ) must vanish. This determines T_{o} :

$$
\begin{equation*}
T_{o}=T_{c}+\sum_{n=1}^{N} P_{n} \frac{\lambda_{b}}{\lambda}\left(\ln \left(\frac{r_{c}}{r_{b}}\right)+\beta_{c}\right) \tag{6.12}
\end{equation*}
$$

This equation relates the temperature level T_{o} to the temperature T_{c} at the outer circle and the line sources P_{n}.

The remaining part of (6.11) is an equation of the following type:

$$
\begin{align*}
0 & =\sum_{k=1}^{\infty} \operatorname{Re}\left[e^{-i \cdot k \phi} \cdot Z_{k}\right] \tag{6.13}\\
& =\sum_{k=1}^{\infty}\left\{\cos (k \phi) \cdot \operatorname{Re}\left(Z_{k}\right)+\sin (k \phi) \cdot \operatorname{Im}\left(Z_{k}\right)\right\} \quad 0 \leq \phi \leq 2 \pi
\end{align*}
$$

All coefficients before $\cos (k \phi)$ and $\sin (k \phi)$ must vanish. This means that the complex factor Z_{k} is zero for all k. We have the following equations:
$k=1,2, \ldots$:

$$
\begin{align*}
& P_{c k} \cdot\left\{1-\sigma \frac{1-k \beta_{c}}{1+k \beta_{c}}\left(\frac{r_{b}}{r_{c}}\right)^{2 k}\right\} \\
& +(1+\sigma) \frac{1-k \beta_{c}}{1+k \beta_{c}} \cdot\left\{\sum_{n=1}^{N} P_{n} \frac{1}{k}\left(\frac{z_{n}}{r_{c}}\right)^{k}+\sum_{n=1}^{N} \sum_{j=1}^{k} P_{n j}\binom{k-1}{j-1} \frac{r_{p n}^{j} z_{n}^{k-j}}{r_{c}^{k}}\right\}=0 \tag{6.14}
\end{align*}
$$

This equation relates the value of a multipole $P_{c k}$ at infinity to the values of line sources P_{n} and the multipoles $P_{n j}$ at the pipes up to order $j=k$.

7. EQUATIONS FROM THE BOUNDARY CONDITION AT THE PIPES

The boundary condition at pipe m is from (2.6):

$$
\begin{equation*}
T_{f m}=\left.\left(T-\beta_{m} r_{p m} \frac{\partial T}{\partial \rho_{m}}\right)\right|_{\rho_{m}=r_{p m}} \quad 0 \leq \psi_{m} \leq 2 \pi \tag{7.1}
\end{equation*}
$$

The temperature is given by (5.3). We will first express this temperature in the local polar coordinates ρ_{m}, ψ_{m} of pipe m, which are given by (2.4):

$$
\begin{equation*}
z-z_{m}=\rho_{m} e^{i \psi_{m}} \tag{7.2}
\end{equation*}
$$

We want to separate different powers $\left(z-z_{m}\right)^{k}$ or $\left(e^{i \psi_{m}}\right)^{k}$. We therefore expand the various terms of (5.3) in Taylor series in $z-z_{m}$.

We will use the following expressions.
A. $n \neq m$

$$
\begin{align*}
& \ln \left(\frac{r_{b}}{z-z_{n}}\right)=\ln \left(\frac{r_{b}}{z-z_{m}+z_{m}-z_{n}}\right) \\
& =\ln \left(\frac{r_{b}}{z_{m}-z_{n}}\right)+\ln \left(\frac{1}{1-\frac{z-z_{m}}{z_{n}-z_{m}}}\right) \tag{7.3}
\end{align*}
$$

The second logarithm is expanded in the Taylor series (6.2).
B.

$$
\begin{align*}
& \ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-z_{n} \bar{z}}\right)=\ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-z_{n} \bar{z}_{m}-z_{n}\left(\bar{z}-\bar{z}_{m}\right)}\right) \\
& =\ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)+\ln \left(\frac{1}{1-\frac{z_{n}\left(\bar{z}-z_{m}\right)}{r_{b}^{2}-z_{n} \bar{z}_{m}}}\right) \tag{7.4}
\end{align*}
$$

The second logarithm is expanded in the Taylor series (6.2).
C. $n \neq m$

$$
\begin{equation*}
\left(\frac{r_{p n}}{z-z_{n}}\right)^{j}=\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j} \cdot \frac{1}{\left(1-\frac{z-z_{m}}{z_{n}-z_{m}}\right)^{j}} \tag{7.5}
\end{equation*}
$$

The second factor is expanded with the Taylor series (6.5).
D.

$$
\begin{align*}
& \left(\frac{r_{p n} \bar{z}}{r_{b}^{2}-z_{n} \bar{z}}\right)^{j}=\left(\frac{r_{p n}\left(\bar{z}_{m}+\bar{z}-\bar{z}_{m}\right)}{r_{b}^{2}-z_{n} \bar{z}_{m}-z_{n}\left(\bar{z}-\bar{z}_{m}\right)}\right)^{j} \\
& =\left(\frac{r_{p n}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j} \cdot\left(\bar{z}_{m}+\bar{z}-\bar{z}_{m}\right)^{j} \cdot \frac{1}{\left(1-\frac{z_{n}\left(\bar{z}-\bar{z}_{m}\right)}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}} \tag{7.6}
\end{align*}
$$

The second factor in expanded as a binominal. The third factor is expanded in the series (6.5):

$$
\begin{gather*}
\left(\bar{z}_{m}+\bar{z}-\bar{z}_{m}\right)^{j}=\sum_{j^{\prime}=0}^{j}\binom{j}{j^{\prime}}\left(\bar{z}-\bar{z}_{m}\right)^{j^{\prime}} \cdot \bar{z}_{m}^{j-j^{\prime}} \tag{7.7}\\
\frac{1}{\left(1-\frac{z_{n}\left(\bar{z}-\bar{z}_{m l}\right.}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}}=\sum_{k^{\prime}=0}^{\infty}\binom{j+k^{\prime}-1}{j-1}\left(\frac{z_{n}\left(\bar{z}-\bar{z}_{m}\right)}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{k^{\prime}} \tag{7.8}
\end{gather*}
$$

The product of (7.7) and (7.8) is a double sum containing the powers $\left(\bar{z}-\bar{z}_{m}\right)^{k^{\prime}+j^{\prime}}$. We change the summation from k^{\prime} and j^{\prime} to $k=k^{\prime}+j^{\prime}$ and j^{\prime}. The index k will vary from 0 to infinity. The values of j^{\prime} run from 0 to $\min (j, k)$. We have the expansion:

$$
\begin{align*}
&\left(\frac{r_{p n} \bar{z}}{r_{b}^{2}-z_{n} \bar{z}}\right)^{j}= \sum_{k=0}^{\infty} \sum_{j^{\prime}=0}^{\min (j, k)}\binom{j}{j^{\prime}}\binom{j+k-j^{\prime}-1}{j-1} \\
& \cdot \frac{r_{p n}^{j} \bar{z}_{m}^{j-j^{\prime} z_{n}^{k-j^{\prime}}}}{\left(r_{b}^{2}-z_{n} \bar{z}_{m}\right)^{j+k-j^{\prime}}} \cdot\left(\bar{z}-\bar{z}_{m}\right)^{k} \tag{7.9}
\end{align*}
$$

E.

$$
\begin{align*}
& \sum_{j=1}^{\infty} P_{c j}(1-\sigma)\left(\frac{z}{r_{c}}\right)^{j}=\sum_{j=1}^{\infty} P_{c j}(1-\sigma)\left(\frac{z_{m}+z-z_{m}}{r_{c}}\right)^{j} \\
& =\sum_{j=1}^{\infty} \sum_{k=0}^{j} P_{c j}(1-\sigma)\binom{j}{k} \frac{z_{m}^{j-k} \cdot\left(z-z_{m}\right)^{k}}{r_{c}^{j}} \tag{7.10}
\end{align*}
$$

The summation order is changed. Then we have:

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sum_{k=0}^{j} \ldots=\sum_{k=0}^{\infty} \sum_{j=\max (1, k)}^{\infty} \ldots \tag{7.11}
\end{equation*}
$$

The temperature (5.3) may now with the use of (7.2-11) be written in the following way:

$$
\begin{align*}
& T=T_{o}+P_{m} \ln \left(\frac{r_{b}}{\rho_{m}}\right) \\
& +R e\left[\sum_{n=1}^{N} P_{n}\left\{\ln \left(\frac{r_{b}}{z_{m}-z_{n}}\right)+\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{\rho_{m}}{z_{n}-z_{m}}\right)^{k} \cdot e^{i \cdot k \psi_{m}}\right\}\right. \\
& +\sum_{n=1}^{N} P_{n} \sigma\left\{\ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-\bar{z}_{m} z_{n}}\right)+\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{z_{n} \rho_{m}}{r_{b}^{2}-\bar{z}_{m} z_{n}}\right)^{k} \cdot e^{-i \cdot k \psi_{m}}\right\} \\
& \tag{7.12}\\
& +\sum_{j=1}^{\infty} P_{m j}\left(\frac{r_{p m}}{\rho_{m}}\right)^{j} \cdot e^{-i \cdot j \psi_{m}} \\
& \\
& +\sum_{n=1}^{N} \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} P_{n j}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}\binom{j+k-1}{j-1}\left(\frac{\rho_{m}}{z_{n}-z_{m}}\right)^{k} \cdot e^{i \cdot k \psi_{m}} \\
& +\sum_{n=1}^{N} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \sum_{j^{\prime}=0}^{m i n(j, k)} P_{n j} \sigma\binom{j}{j^{\prime}}\binom{j+k-j^{\prime}-1}{j-1} \cdot \frac{r_{p n}^{j} \bar{z}_{m}^{j-j^{\prime}} z_{n}^{k-j^{\prime}} \cdot \rho_{m}^{k}}{\left(r_{b}^{2}-z_{n} \bar{z}_{m}\right)^{j+k-j^{\prime}} \cdot e^{-i \cdot k \psi_{m}}} \\
& \left.+\sum_{k=0}^{\infty} \sum_{j=m a x(1, k)}^{\infty} P_{c j}(1-\sigma)\binom{j}{k} \frac{z_{m}^{j-k} \cdot \rho_{m}^{k}}{r_{c}^{j}} e^{i \cdot k \psi_{m}}\right]
\end{align*}
$$

The summation index on the fourth line (concerning $P_{m j}$) is changed to k. The dependence on ψ_{m} lies in the exponents $e^{i \cdot k \psi_{m}}$ and $e^{-i \cdot k \psi_{m}}$. The latter terms may be changed to the positive exponent $e^{i \cdot k \psi_{m}}$ by taking the complex conjugate as in (6.10). Expression (7.12) is with these modifications inserted in the boundary condition (7.1) for pipe m. The derivatives of powers of ρ_{m} are simple. We have as in (6.9):

$$
\begin{align*}
& -\left.\beta_{m} r_{p m} \frac{\partial}{\partial \rho_{m}}\left(\rho_{m}^{k}\right)\right|_{\rho_{m}=r_{p m}}=-k \beta_{m} r_{p m}^{k} \\
& -\left.\beta_{m} r_{p m} \frac{\partial}{\partial \rho_{m}}\left(\rho_{m}^{-k}\right)\right|_{\rho_{m}=r_{p m}}=k \beta_{m} r_{p m}^{-k} \tag{7.13}
\end{align*}
$$

We finally get the following expression for the boundary condition at pipe m :

$$
\begin{align*}
& T_{f m}=\left.\left(T-\beta_{m} r_{p m} \frac{\partial T}{\partial \rho_{m}}\right)\right|_{\rho_{m}=r_{p m}} \\
& =T_{o}+P_{m}\left\{\ln \left(\frac{r_{b}}{r_{p m}}\right)-\beta_{m} r_{p m} \cdot \frac{-1}{r_{p m}}\right\} \\
& +\sum_{\substack{n=1 \\
n \neq m}}^{N} P_{n} \ln \left(\frac{r_{b}}{r_{m n}}\right)+\sum_{n=1}^{N} P_{n} \sigma \cdot \ln \left(\frac{r_{b}^{2}}{\left|r_{b}^{2}-\bar{z}_{m} z_{n}\right|}\right) \\
& +R e\left[\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{\infty} P_{n j}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}+\sum_{n=1}^{N} \sum_{j=1}^{\infty} P_{n j} \sigma\left(\frac{r_{p n} \bar{z}_{m}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}\right. \\
& \left.+\sum_{j=1}^{\infty} P_{c j}(1-\sigma)\left(\frac{z_{m}}{r_{c}}\right)^{j}\right] \\
& +R e\left[\sum _ { k = 1 } ^ { \infty } e ^ { i \cdot k \psi _ { m } } \left\{\sum_{\substack{n=1 \\
n \neq m}}^{N} P_{n}\left(1-k \beta_{m}\right) \frac{1}{k}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k}\right.\right. \tag{7.14}\\
& +\sum_{n=1}^{N} P_{n} \sigma\left(1-k \beta_{m}\right) \frac{1}{k}\left(\frac{\bar{z}_{n} r_{p m}}{r_{b}^{2}-z_{m} \bar{z}_{n}}\right)^{k} \\
& +\bar{P}_{m k}\left(1+k \beta_{m}\right)\left(\frac{r_{p m}}{r_{p m}}\right)^{k} \\
& +\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{\infty} P_{n j}\left(1-k \beta_{m}\right)\binom{j+k-1}{j-1}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k} \\
& +\sum_{n=1}^{N} \sum_{j=1}^{\infty} \sum_{j^{\prime}=0}^{m i n(j, k)} \bar{P}_{n j} \sigma\left(1-k \beta_{m}\right)\binom{j}{j^{\prime}}\binom{j+k-j^{\prime}-1}{j-1} \cdot \frac{r_{p n}^{j} r_{p m}^{k} z_{m}^{j-j^{\prime}} \bar{z}_{n}^{k-j^{\prime}}}{\left(r_{b}^{2}-\bar{z}_{n} z_{m}\right)^{j+k-j^{\prime}}} \\
& \left.\left.+\sum_{j=k}^{\infty} P_{c j}(1-\sigma)\left(1-k \beta_{m}\right)\binom{j}{k} \frac{z_{m}^{j-k} r_{p m}^{k}}{r_{c}^{j}}\right\}\right] \quad 0 \leq \psi_{m} \leq 2 \pi
\end{align*}
$$

The first four lines on the right-hand side give the constant part; i.e. the part independent of ψ_{m}. The length $\boldsymbol{r}_{m n}$ denotes the distance between the centers of pipes m and n :

$$
\begin{equation*}
r_{m n}=\left|z_{m}-z_{n}\right|=\sqrt{\left(x_{m}-x_{n}\right)^{2}+\left(y_{m}-y_{n}\right)^{2}} \tag{7.15}
\end{equation*}
$$

Equation (7.14) is valid for all ψ_{m} around the pipe. The last six lines of (7.14) contain the part that depends on ψ_{m}. It must be equal to zero. The expression is of the same type as (6.13). The complex factor for each component $e^{i \cdot k \psi_{m}}$ must vanish. We get the following equations, which determine the multipoles $P_{n j}$:

$$
\begin{align*}
m=1, \ldots N \quad & ; k=1,2, \ldots: \\
& P_{m k}+\frac{1-k \beta_{m}}{1+k \beta_{m}}\left\{\sum_{\substack{n=1 \\
n \neq m}}^{N} P_{n} \frac{1}{k}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k}+\sum_{n=1}^{N} P_{n} \sigma \frac{1}{k}\left(\frac{r_{p m} \bar{z}_{n}}{r_{b}^{2}-z_{m} \bar{z}_{n}}\right)^{k}\right. \\
& +\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{\infty} P_{n j}\binom{j+k-1}{j-1}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k} \tag{7.16}\\
& +\sum_{n=1}^{N} \sum_{j=1}^{\infty} \sum_{j^{\prime}=0}^{\min (j, k)} \tilde{P}_{n j} \sigma\binom{j}{j^{\prime}}\binom{j+k-j^{\prime}-1}{j-1} \cdot \frac{r_{p n}^{j} r_{p m}^{k} z_{m}^{j-j^{\prime} \bar{z}_{n}^{k-j^{\prime}}}}{\left(r_{b}^{2}-\bar{z}_{n} z_{m}\right)^{j+k-j^{\prime}}} \\
& \left.+\sum_{j=k}^{\infty} P_{c j}(1-\sigma)\binom{j}{k} \frac{z_{m}^{j-k} r_{p m}^{k}}{r_{c}^{j}}\right\}=0
\end{align*}
$$

The constant part of (7.14) must also vanish. This means that the first four lines on the right-hand side are equal to $T_{f m}$. We can eliminate T_{o} from (6.12). Then we get the following equations:

$$
\begin{align*}
& T_{f m}-T_{c}=\sum_{n=1}^{N} q_{n} \cdot R_{m n}^{o} \\
& +R e\left[\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{\infty} P_{n j}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}+\sum_{n=1}^{N} \sum_{j=1}^{\infty} P_{n j} \sigma\left(\frac{r_{p n} \bar{z}_{m}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}\right. \tag{7.17}\\
& \left.+\sum_{j=1}^{\infty} P_{c j}(1-\sigma)\left(\frac{z_{m}}{r_{c}}\right)^{j}\right]
\end{align*}
$$

The first line involves on the right-hand side the line sources P_{n}. We have returned to q_{n} via (5.2). The coefficients $R_{m n}^{o}$ are given by:

$$
\begin{array}{ll}
R_{m m}^{o}=\frac{1}{2 \pi \lambda_{b}}\left\{\beta_{m}+\ln \left(\frac{r_{b}}{r_{p m}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-r_{m}^{2}}\right)\right\}+\frac{1}{2 \pi \lambda}\left\{\ln \left(\frac{r_{c}}{r_{b}}\right)+\beta_{c}\right\} & m=1, \ldots N \\
R_{m n}^{o}=\frac{1}{2 \pi \lambda_{b}}\left\{\ln \left(\frac{r_{b}}{r_{m n}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{\left|r_{b}^{2}-z_{n} z_{m}\right|}\right)\right\}+\frac{1}{2 \pi \lambda}\left\{\ln \left(\frac{r_{c}}{r_{b}}\right)+\beta_{c}\right\} \quad & m \neq n \tag{7.18}\\
m, n=1, \ldots N
\end{array}
$$

8. FINAL EQUATIONS AND ITERATIVE SOLUTION

The final equations for q_{n} (or P_{n}), $P_{n j}$ and $P_{c j}$ are (7.17-18), (7.16) and (6.14). Multipoles of all orders are needed in an exact solution. In the numerical one we truncate the equation system and consider multipoles up to order J at each pipe and at infinity. The sine- and cosinevariation around the pipes and around the outer circle can then be satisfied up to order J only. The truncation error is discussed in the next chapter.

We have from (7.17), (7.16), (5.2) and (6.14) the following final equations:
$m=1, \ldots, N$:

$$
\begin{align*}
& T_{f m}-T_{c}=\sum_{n=1}^{N} q_{n} \cdot R_{m n}^{o} \\
& +R e\left[\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{J} P_{n j}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}+\sum_{n=1}^{N} \sum_{j=1}^{J} P_{n j} \sigma\left(\frac{r_{p n} \bar{z}_{m}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}\right. \tag{8.1}\\
& \left.+\sum_{j=1}^{J} P_{c j}(1-\sigma)\left(\frac{z_{m}}{r_{c}}\right)^{j}\right]
\end{align*}
$$

$$
\begin{align*}
& \bar{P}_{m k}+\frac{1-k \beta_{m}}{1+k \beta_{m}}\left\{\sum_{\substack{n=1 \\
n \neq m}}^{N} \frac{q_{n}}{2 \pi \lambda_{b}} \frac{1}{k}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k}+\sum_{n=1}^{N} \frac{q_{n}}{2 \pi \lambda_{b}} \sigma \frac{1}{k}\left(\frac{r_{p m} \bar{z}_{n}}{r_{b}^{2}-z_{m} \bar{z}_{n}}\right)^{k}\right. \\
& +\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{J} P_{n j}\binom{j+k-1}{j-1}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k} \tag{8.2}\\
& +\sum_{n=1}^{N} \sum_{j=1}^{J} \sum_{j^{\prime}=0}^{\min (j, k)} \bar{P}_{n j} \sigma\binom{j}{j^{\prime}}\binom{j+k-j^{\prime}-1}{j-1} \cdot \frac{r_{p m}^{j} r_{p m}^{k} z_{m}^{j-j^{\prime}} \tilde{z}_{n}^{k-j^{\prime}}}{\left(r_{b}^{2}-\bar{z}_{n} z_{m}\right)^{j+k-j^{\prime}}} \\
& \left.+\sum_{j=k}^{J} P_{c j}(1-\sigma)\binom{j}{k} \frac{z_{m}^{j-k} r_{p m}^{k}}{r_{c}^{j}}\right\}=0
\end{align*}
$$

$$
m=1, \ldots N \quad ; \quad k=1, \ldots J
$$

$$
k=1, \ldots J
$$

$$
\begin{align*}
& \bar{P}_{c k} \cdot\left\{1-\sigma \frac{1-k \beta_{c}}{1+k \beta_{c}}\left(\frac{r_{b}}{r_{c}}\right)^{2 k}\right\} \\
& +(1+\sigma) \frac{1-k \beta_{c}}{1+k \beta_{c}} \cdot\left\{\sum_{n=1}^{N} \frac{q_{n}}{2 \pi \lambda_{b}} \frac{1}{k}\left(\frac{z_{n}}{r_{c}}\right)^{k}+\sum_{n=1}^{N} \sum_{j=1}^{k} P_{n j}\binom{k-1}{j-1} \frac{r_{p n}^{j} z_{n}^{k-j}}{r_{c}^{k}}\right\}=0 \tag{8.3}
\end{align*}
$$

The thermal resistances $R_{m n}^{o}$ are given by (7.18):

$$
\begin{array}{ll}
R_{m m}^{o}=\frac{1}{2 \pi \lambda_{b}}\left\{\beta_{m}+\ln \left(\frac{r_{b}}{r_{p m}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{r_{b}^{2}-r_{m}^{2}}\right)\right\}+\frac{1}{2 \pi \lambda}\left\{\ln \left(\frac{r_{c}}{r_{b}}\right)+\beta_{c}\right\} \quad & m=1, \ldots N \\
R_{m n}^{o}=\frac{1}{2 \pi \lambda_{b}}\left\{\ln \left(\frac{r_{b}}{r_{m n}}\right)+\sigma \cdot \ln \left(\frac{r_{b}^{2}}{\left|r_{b}^{2}-z_{n} \bar{z}_{m}\right|}\right)\right\}+\frac{1}{2 \pi \lambda}\left\{\ln \left(\frac{r_{c}}{r_{b}}\right)+\beta_{c}\right\} \quad m \neq n \tag{8.4}
\end{array}
$$

$$
m, n=1, \ldots N
$$

There are N real-valued equations (8.1) and $N \cdot J+J$ complex-valued ones (8.2-3). This corresponds to the N line sources q_{n} and the $N \cdot J+J$ complex-valued multipoles $P_{n j}$ and $P_{c j}$.

The equation system (8.1-4) is solved iteratively as in [1]. Let $K_{m n}^{o}$ be the elements of the inverse matrix of the resistance matrix with the elements $R_{m n}^{o}$:

$$
\begin{equation*}
\left(K_{m n}^{o}\right)=\left(R_{m n}^{o}\right)^{-1} \tag{8.5}
\end{equation*}
$$

Inversion of (8.1) gives the heat fluxes:

$$
\begin{align*}
& q_{m^{\prime}}=\sum_{m=1}^{N} K_{m^{\prime} m}^{o}\left\{T_{f m}-T_{c}\right. \\
& -\operatorname{Re}\left[\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{J} P_{n j}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}+\sum_{n=1}^{N} \sum_{j=1}^{J} P_{n j} \sigma\left(\frac{r_{p n} \bar{z}_{m}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}\right. \tag{8.6}\\
& \left.\left.+\sum_{j=1}^{J} P_{c j}(1-\sigma)\left(\frac{z_{m}}{r_{c}}\right)^{j}\right]\right\}
\end{align*}
$$

Let $q_{n}^{\nu}, P_{n j}^{\nu}$ and $P_{c j}^{\nu}$ denote the values of our variables for iteration step ν. We start for $\nu=0$ with the values:

$$
\begin{align*}
& P_{n j}^{o}=0 \quad P_{c j}^{0}=0 \\
& q_{m^{\prime}}^{o}=\sum_{m=1}^{N} K_{m^{\prime} m}^{o}\left(T_{f m}-T_{c}\right) \tag{8.7}
\end{align*}
$$

This means that we start without multipoles and compute the heat fluxes with (8.6).
For $\nu=1,2 \ldots$ we use the following recursive formulas in accordance with (8.2), (8.3) and (8.6):
$m=1, \ldots N \quad ; \quad k=1, \ldots J:$

$$
\begin{align*}
& \bar{P}_{m k}^{\nu+1}=-\frac{1-k \beta_{m}}{1+k \beta_{m}}\left\{\sum_{\substack{n=1 \\
n \neq m}}^{N} \frac{q_{n}^{\nu}}{2 \pi \lambda_{b}} \frac{1}{k}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k}+\sum_{n=1}^{N} \frac{q_{n}^{\nu}}{2 \pi \lambda_{b}} \sigma \frac{1}{k}\left(\frac{r_{p m} \bar{z}_{n}}{r_{b}^{2}-z_{m} \bar{z}_{n}}\right)^{k}\right. \\
& +\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{J} P_{n j}^{\nu}\binom{j+k-1}{j-1}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k} \tag{8.8}\\
& +\sum_{n=1}^{N} \sum_{j=1}^{J} \sum_{j^{\prime}=0}^{m i n(j, k)} \bar{P}_{n j}^{\nu} \sigma\binom{j}{j^{\prime}}\binom{j+k-j^{\prime}-1}{j-1} \cdot \frac{r_{p n}^{j} r_{p m}^{k} z_{m}^{j-j^{\prime} \bar{z}_{n}^{k-j^{\prime}}}}{\left(r_{b}^{2}-\bar{z}_{n} z_{m}\right)^{j+k-j^{\prime}}} \\
& \left.+\sum_{j=k}^{J} P_{c j}^{\nu}(1-\sigma)\binom{j}{k} \frac{z_{m}^{j-k} r_{p m}^{k}}{r_{c}^{j}}\right\}
\end{align*}
$$

$k=1, \ldots J:$

$$
\begin{align*}
& \bar{P}_{c k}^{\nu+1} \cdot\left\{1-\sigma \frac{1-k \beta_{c}}{1+k \beta_{c}}\left(\frac{r_{b}}{r_{c}}\right)^{2 k}\right\}= \\
& -(1+\sigma) \frac{1-k \beta_{c}}{1+k \beta_{c}} \cdot\left\{\sum_{n=1}^{N} \frac{q_{n}^{\nu}}{2 \pi \lambda_{b}} \frac{1}{k}\left(\frac{z_{n}}{r_{c}}\right)^{k}+\sum_{n=1}^{N} \sum_{j=1}^{k} P_{n j}^{\nu+1}\binom{k-1}{j-1} \frac{r_{p n}^{j} z_{n}^{k-j}}{r_{c}^{k}}\right\} \tag{8.9}
\end{align*}
$$

$$
\begin{align*}
& m^{\prime}=1, \ldots N: \\
& \\
& \left.\left.\qquad \begin{array}{l}
q_{m}^{\nu+1}=\sum_{m=1}^{N} K_{m^{\prime} m}^{o}\left\{T_{f m}-T_{c}\right. \\
\\
\\
-\operatorname{Re}\left[\sum_{\substack{n=1 \\
n \neq m}}^{N} \sum_{j=1}^{J} P_{n j}^{\nu+1}\left(\frac{r_{p n}}{z_{m}-z_{n}}\right)^{j}+\sum_{n=1}^{N} \sum_{j=1}^{J} P_{n j}^{\nu+1} \sigma\left(\frac{r_{p n} \bar{z}_{m}}{r_{b}^{2}-z_{n} \bar{z}_{m}}\right)^{j}\right. \\
\\
\\
\\
\\
\end{array} \sum_{j=1}^{J} P_{c j}^{\nu+1}(1-\sigma)\left(\frac{z_{m}}{r_{c}}\right)^{j}\right]\right\} \tag{8.10}
\end{align*}
$$

The iterative solution (8.7-10) is physically reasonable. Consider an iteration step ν. There is an approximate solution with line sinks and multipoles. The equations (8.1-3) are not satisfied exactly. The equations (8.8) and (8.9) mean that we change the multipoles so that the variation vanishes exactly (up to order J) at the considered boundary circle. But the difference $P_{m k}^{\nu+1}-P_{m k}^{\nu}$ will induce a multipole behaviour at the other pipes. These secondary disturbances are however damped with factors of the type:

$$
\left(\frac{z_{n}}{r_{c}}\right)^{k} \quad ; \quad\left(\frac{r_{p m}}{r_{c}}\right)^{k^{\prime}} \quad ; \quad\left(\frac{r_{p m}}{z_{n}-z_{m}}\right)^{k^{\prime \prime}}
$$

The convergence of the iterative procedure is therefore rapid.
The iteration procedure is quite robust. It has worked without any problems for all cases that we have tested. An example is given below.

The iterations are performed until the following criterion is satisfied.

$$
\begin{array}{ll}
\frac{\left|P_{n j}^{\nu+1}-P_{n j}^{\nu}\right|}{\max _{1 \leq k \leq j}\left|P_{n k}\right|}<\epsilon & \text { for all } n \text { and all } j(j \leq J) \text { with }\left|P_{n j}\right| \neq 0 \\
\frac{\left|P_{c j}^{\nu+1}-P_{c j}^{\nu}\right|}{\max _{1 \leq k \leq j}^{\nu}\left|P_{c j}\right|}<\epsilon & \text { for all } j(j \leq J) \text { with }\left|P_{c j}\right| \neq 0 \tag{8.11}
\end{array}
$$

Here ϵ is a measure of the iteration accuracy. The multipole differences are divided by the largest multipole up to the same order j according to the expression in the denominators. Normally, this is the multipole of first order. This will mean that ϵ gives the accuracy relative to the magnitude of the strongest multipole.

Example 8.1. Three pipes with different temperatures. We take the following data:

$$
\begin{array}{lllll}
N=3 & \lambda_{b}=0.6 & \lambda=3.6 & & \\
r_{b}=2 & r_{c}=4 & \beta_{c}=0 & T_{c}=0 & \\
x_{1}=1 & y_{1}=0 & \beta_{1}=0 & T_{f 1}=1 & r_{p 1}=0.5 \\
x_{2}=0 & y_{2}=1.5 & \beta_{2}=0 & T_{f 2}=-3 & r_{p 2}=0.25 \\
x_{3}=-1 & y_{3}=-0.5 & \beta_{3}=0.5 & T_{f 3}=2 & r_{p 3}=0.5 \tag{8.12}
\end{array}
$$

The temperature field of this case is shown in Figure 1.1 (and on the cover).
The number of iterations in order to obtain the required accuracy ϵ is given in Table 8.1 for different J and ϵ.

	$\epsilon=10^{-4}$	10^{-5}	10^{-6}
$\mathrm{~J}=1$	6	7	8
2	6	7	8
3	6	8	9
5	6	8	9
10	6	8	9
15	6	8	9
20	6	8	9

Table 8.1. Required number of iterations in example 8.1.

We have found as in [1] that the value of ϵ is not critical. One may use $\epsilon=10^{-4}$ or 10^{-5}.

9. REQUIRED NUMBER OF MULTIPOLES

The boundary conditions at the pipes and the outer circle are satisfied up to the order J in Fourier terms i.e. up to the order $\cos \left(J \psi_{m}\right)$ and $\sin \left(J \psi_{m}\right)$. The approximation becomes better, when J is increased, but the computational effort and the execution time also increase. It is an important question what value of J to choose in any particular case. One can always increase J, until the solution does not change.

The accuracy as a function of J will be studied and illustrated in this chapter with a few examples.

9.1 ERROR ON THE BOUNDARY CIRCLES

The example shown in Figure 9.1.1. is used to illustrate the error on the boundary circles.

Figure 9.1.1. Example with two pipes.
The following data are used:

$$
\begin{array}{llrrr}
N=2 & \lambda_{b}=1 & \lambda=5 & \epsilon=10^{-5} & \\
r_{b}=2 & r_{c}=10 & \beta_{c}=0 & T_{c}=1 & \\
x_{1}=1 & y_{1}=0 & \beta_{1}=0 & T_{f 1}=0 & r_{p 1}=1 \\
x_{2}=-1 & y_{2}=0 & \beta_{2}=0 & T_{f 2}=0 & r_{p 2}=1 \tag{9.1.1}
\end{array}
$$

The heat fluxes q_{1} and q_{2} are equal. The computed values for different J are given in Table 9.1.1. The computer model described in the following chapters is used. We see that $J=1$ gives an error for q_{1} of 2
$\%$, and it is 0.3% for $J=3$. The first order, $J=1$, is sufficient in this case in order to calculate the heat fluxes.

J	0	1	2	3	4	5	10
q_{1}	-4.8560	-6.4986	-6.5596	-6.6044	-6.6174	-6.6206	-6.6247
$q_{1}(J) / q_{1}(10)$	0.73	0.981	0.990	0.997	0.9989	0.9994	1

Table 9.1.1. Calculated heat fluxes for example (9.1.1) for different J.

The polar coordinates of pipe 1 are ρ_{1}, ψ_{1}. The temperature on the uninsulated pipe is $T\left(1, \psi_{1}\right)$. In an exact solution $T\left(1, \psi_{1}\right)$ is equal to $T_{f 1}=0$, but for a finite J there will be a certain error or variation around the pipe. This boundary temperature is shown in Figure 9.1.2 for $J=10$. The calculations are made with the computer program described in Chapters $10-11$. The temperature $T\left(1, \psi_{1}\right)$ is obtained from the general formula (5.1) with summation in j up to $J=10$.

Figure 9.1.2. Temperature variation on pipe 1.
Data according to (9.1.1) with $J=10$.

The largest deviation from $T_{f 1}=0$ is 0.002 . The largest error of boundary temperature is therefore 0.2% (of the temperature difference $T_{c}-T_{f 1}$).

9.2 A THREE-PIPE PROBLEM

As a second example we take the three-pipe problem of example 8.1. The data are given by (8.12). The temperature field of this case is shown in Figure 1.1. Table 9.2 gives the calculated heat fluxes and the temperatures in a few points for different J.

J	0	1	2	3	5	10	15
q_{1}	3.702	3.747	3.775	3.776	3.776	3.776	3.776
q_{2}	-8.121	-8.644	-8.685	-8.688	-8.689	-8.689	-8.689
q_{3}	4.570	4.766	4.792	4.792	4.792	4.792	4.792
$\mathrm{~T}(0.5,1)$	-1.7209	-0.8213	-0.8090	-0.8080	-0.8079	-0.8079	-0.8079
$\mathrm{~T}(0,0)$	0.7851	0.7343	0.7267	0.7245	0.7243	0.7243	0.7243
$\mathrm{~T}(0,-2)$	1.2410	0.1452	0.1724	0.1704	0.1706	0.1706	0.1706

Table 9.2.1. Heat flows and temperatures in a few points for different J. Data according to (8.12).

The table shows that the error in heat fluxes is at most 7% for $J=0$ and 0.8% for $J=1$. The temperatures differ with up to a factor 2 for $J=0$, while the largest error is 0.03 temperature units for $J=1$. This difference decreases to 0.0024 for $J=2$. The value $J=1$ should be sufficient in this example.

9.3 Test of Maxwell's reciprocity theorem

We do not have analytical solutions to compare with in more complicated cases. We will therefore use a general theorem due to J.C. Maxwell (and others). Consider a steady-state heat conduction problem. The region is bounded by a number of boundary surfaces $S_{1}, S_{2}, S_{3} \ldots$. The temperature is zero on all surfaces except one. Two cases are considered:

$$
\begin{array}{lllllllll}
A: & T=1 & \text { on } & S_{1} & T=0 & \text { on } & S_{2} & \text { (and } & S_{3}, \ldots \text {) } \tag{9.3.1}\\
B: & T=1 & \text { on } & S_{2} & T=0 & \text { on } & S_{1} & \text { (and } & S_{3}, \ldots \text {) }
\end{array}
$$

Let q_{2}^{A} be the heat flux from surface 2 in case A, and q_{1}^{B} the heat flux from surface 1 in case B. The reciprocity theorem states that these two fluxes are equal:

$$
\begin{equation*}
q_{2}^{A}=q_{1}^{B} \tag{9.3.2}
\end{equation*}
$$

We have found that the reciprocity theorem is valid for our truncated problem (8.1-3) as well. (We have not taken the trouble to try to prove this).

In a test of the reciprocity theorem we use example (8.1). The data (8.12) are valid except for the boundary temperatures. We use:

$$
\begin{equation*}
T_{c}=0 \quad T_{f 1}=0 \quad J=5 \tag{9.3.3}
\end{equation*}
$$

and

$$
\begin{array}{llll}
\text { case } & A: & T_{f 2}=1 & T_{f 3}=0 \\
\text { case } & B: & T_{f 2}=0 & T_{f 3}=1 \tag{9.3.3B}
\end{array}
$$

The calculated heat fluxes became equal with seven digits:

$$
\begin{align*}
q_{3}^{A} & =-0.1752401 \\
q_{2}^{B} & =-0.1752401 \tag{9.3.4}
\end{align*}
$$

Another example concerns a case with a single region $\left(\lambda_{b}=\lambda\right)$. The first five pipes of the example in section 9.3 in [1] are used. The following data are valid:

$$
\begin{array}{rllll}
N=5 & \lambda=\lambda_{b}=1 & & J=5 & \\
T_{c}=0 & r_{c}=10 & \beta_{c}=0 & & \\
& & & \\
x_{1}=1 & y_{1}=0 & r_{p 1}=0.5 & \beta_{1}=0 & \\
x_{2}=2 & y_{2}=1 & r_{p 2}=0.5 & \beta_{2}=0 & T_{f 2}=0 \\
x_{3}=1 & y_{3}=2 & r_{p 3}=0.5 & \beta_{3}=0 & T_{f 3}=0 \\
x_{4}=0 & y_{4}=2 & r_{p 4}=0.5 & \beta_{4}=0 & T_{f 4}=0 \\
x_{5}=2 & y_{5}=-1 & r_{p 5}=0.5 & \beta_{5}=0.3 & \\
& & & & \tag{9.3.5}\\
\text { case A : } & T_{f 1}=1 & T_{f 5}=0 & & \\
\text { case B : } & T_{f 1}=0 & T_{f 5}=1 & &
\end{array}
$$

The computed reciprocal heat fluxes became again equal with 7 digits:

$$
\begin{align*}
& q_{5}^{A}=-1.890565 \\
& q_{1}^{B}=-1.890565 \tag{9.3.6}
\end{align*}
$$

9.4 AN EXAMPLE WITH 15 PIPES

We use the example with 15 pipes in [1], section 9.3. The data according to (9.3.1) in [1] are valid. The corresponding temperature field is shown on the cover of [1]. The outer radius r_{c} is equal to 10 . We take r_{b} equal to this value and add an outer region out to $r_{c}=20$. The thermal conductivity is taken to be ten times higher than in the inner region. The data of (9.3.1) in [1] are supplemented with:

$$
\begin{equation*}
r_{b}=10 \quad \lambda_{b}=1 \quad r_{c}=20 \quad \lambda=10 \tag{9.4.1}
\end{equation*}
$$

Table 9.4 .1 gives the computed heat fluxes $q_{n}, 1 \leq n \leq 15$, for different J. The values do not differ much from those in [1], (Table 9.3.1). We see that $J=1$ is not acceptable, while $J=5$ is quite sufficient.

	$\mathrm{J}=0$	1	5	10
q_{1}	1.1330	2.3566	2.0842	2.0843
q_{2}	-0.51959	-5.4018	-4.9154	-4.9020
q_{3}	5.1286	6.1679	6.2540	6.2540
q_{4}	-11.816	-10.516	-11.340	-11.353
q_{5}	-2.7569	-1.0451	-1.0552	-1.0552
q_{6}	11.743	12.983	12.116	12.116
q_{7}	-6.1510	-6.7283	-6.6958	-6.6958
q_{8}	-5.8188	-9.0225	-9.247	-9.247
q_{9}	10.321	17.765	20.958	20.988
q_{10}	20.065	24.527	24.925	24.926
q_{11}	10.803	12.387	12.632	12.632
q_{12}	-13.252	-14.507	-14.727	-14.727
q_{13}	1.0835	1.7532	1.7310	1.7310
q_{14}	-7.3037	-14.710	-15.793	-15.813
q_{15}	-9.8105	-12.163	-14.086	-14.098

Table 9.4.1. Computed heat fluxes q_{n} for different J for a case with 15 pipes.

10. COMPUTER MODEL. EXECUTION TIMES

The computer model calculates the line sources and the multipoles up to the given order J, and it gives the corresponding temperature field. The next chapter is a manual for the computer program. The source code is given in appendix 1.

The input data of the model are:

$$
\begin{align*}
& \lambda, \quad \lambda_{b}, \quad N, \quad J \\
& r_{b}, \quad r_{c}, \quad \beta_{c}, \quad T_{c} \\
& x_{n}, \quad y_{n}, \quad r_{p n}, \quad \beta_{n}, \quad T_{f n} \quad \text { for } \quad n=1, \ldots N \tag{10.1}
\end{align*}
$$

There are the following restrictions on the input variables:

$$
\begin{array}{llll}
\lambda>0 & \lambda_{b}>0 & N=1,2, \ldots & J=0,1, \ldots \\
0<r_{b}<r_{c} & \beta_{c} \geq 0 & \\
r_{p n}>0 & \beta_{n} \geq 0 \quad \text { for } & n=1, \ldots N \\
r_{n}=\sqrt{x_{n}^{2}+y_{n}^{2}} \leq r_{b}-r_{p n} \quad \text { for } & n=1, \ldots N & \\
r_{m n} \geq r_{p m}+r_{p n} \text { for } \quad m \neq n & & \\
r_{m n}=r_{p m}+r_{p n} \quad \text { only if } & \beta_{m}+\beta_{n}>0 \quad \text { or } \quad T_{f m}=T_{f n}
\end{array}
$$

The condition $r_{m n} \geq r_{p m}+r_{p n}$ ensures that the pipes do not cover each other. They may touch each other, if there is a thermal insulation ($\beta_{m}+\beta_{n}>0$) or if the temperatures $T_{f m}$ and $T_{f n}$ are equal, so that the heat flux between the pipes remains finite.

The first step after input and test of the restrictions (10.2) is to calculate auxiliary variables and the resistance matrix ($R_{m n}^{o}$) with the elements (8.4).The inverse matrix ($K_{m n}^{o}$) is then calculated. The initial values of line sources and multipoles for $\nu=0$ are given by (8.7). Formulas (8.8-10) are used in successive iterations, until the ϵ-criterion (8.11) is met.

The output is the values of the line sources and multipoles and, if requested, the temperature field $T(x, y)$, which is obtained from (5.3-4) with summation in j up to J.

The steady-state heat conduction problem may be solved numerically with finite difference or finite element methods. The present method is however more rapid, and it is simpler to get a high and controlled accuracy. We will give the execution time for a number of cases in order to show this.

Consider the case with 15 pipes in section 9.4. In the first examples we use the first 5 pipes ($N=5$), then the first 10 pipes $(N=10)$ and finally all 15 pipes. The accuracy ϵ is 10^{-4} and 10^{-5}, while J is 5 and 10. The execution times in CPU-seconds on a ND- 500 computer from Norsk Data are given in Table 10.1.

		$\epsilon=10^{-4}$	$\epsilon=10^{-5}$
$\mathrm{~N}=5$	$\mathrm{~J}=5$	13 s	18 s
	$\mathrm{~J}=10$	140 s	200 s
$\mathrm{~N}=10$	$\mathrm{~J}=5$	44 s	60 s
	$\mathrm{~J}=10$	460 s	620 s
$\mathrm{~N}=15$	$\mathrm{~J}=5$	110 s	150 s
	$\mathrm{~J}=10$	1200 s	1700 s

Table 10.1. Execution time in CPU-seconds on ND-500 for 5 to 15 pipes and multipole order $J=5,10$.

Table 10.1 shows that the CPU-time is below a few minutes even for 15 pipes, if the order of multipoles is kept below $J \leq 5$. The CPU-time for a more moderate case with $N \leq 3, J \leq 2$ is only a few seconds. The execution times for an IBM-PC AT-3 (10 MHz) with a 80287 math co-processor are about 60 times longer.

11. MANUAL FOR THE COMPUTER CODE

The program has been adapted to run on IBM-PC and other compatible computers. The source code is written in FORTRAN77. It has been compiled with the MS-FORTRAN77 compiler V3.3.

The executable code supplied on the disk may be used for cases with a maximum of 15 pipes. The maximum order of multipoles is 10 . The size of the program is then 133 K . These restrictions can be removed by changing the dimensions in the PARAMETER statement at the beginning of the main program. The maximum number of pipes is IW and the maximum order of multipoles is IJ.

The basic version of the source code is listed in Appendix 1. The current version of the program differs from the basic version according to the changes listed on the file README.DOC. This file may also contain important information about changes in this manual. Be sure to read this file before you run the program.

Files on the Disk.
A brief description of the files on the enclosed disk is given below.

-MPC.EXE	Executable code
MPC.FOR	Source code for the current version of the program
SAMPLE.DAT	Input data file for the example. See below
SAMPLE.OUT	Output flle for the example. See below
MPC.BAT	Batch file
SIGNAL.COM	Program that generates a signal when the job is completed
README.DOC	Contains updates of this manual and the basic version of the source code.

Using the Program.
To run the program MPC (MultiPoleComposite), insert the disk into a drive, make that drive the default drive, and type the program name:

MPC

The program is intended for interactive use. The user is prompted for the names of an input data file (optional) and the output file. The input data may be entered interactively on the screen or read directly from a disk file. If the input data is entered interactively it may be saved on a disk file.

Input Data.

The input data must satisfy the restrictions (10.2). The program indicates any violation of these restrictions. The input data list is read in free format, i.e. the values must be separated by one or more contiguous blanks or a comma. The input data records are specified below.

1.	λ_{b}	Thermal conductivity in the inner region, (W/mK)
λ	Thermal conductivity in the outer region, (W/mK)	
N	Number of pipes	
		Maximal order of multipoles
2.	r_{b}	Radius of the inner region, (m)
	r_{c}	Radius of the outer region, (m)
β_{c}	Thermal resistance coefficient at the outer circle, (-)	
T_{c}	Temperature at outer circle, $\left({ }^{\circ} \mathrm{C}\right)$	

The following record must be repeated for each pipe, i.e. N times.

3.	x_{i}	x-coordinate of the center of pipe $i,(\mathrm{~m})$
y_{i}	y-coordinate of the center of pipe $i,(\mathrm{~m})$	
$r_{p i}$	Radius of pipe $i,(\mathrm{~m})$	
β_{i}	Thermal resistance coefficient of pipe $i,(-)$	
$T_{f i}$	Fluid temperature in pipe $i,\left({ }^{\circ} \mathrm{C}\right)$	

4. $\epsilon \quad$ Iteration accuracy. See section 8. A suitable value is 10^{-4}

ITMAX Maximum number of iterations. A suitable value is 500
The temperatures are calculated in a rectangular grid within a rectangular region with the corners determined by XMIN, XMAX, YMIN, and YMAX. The number of grid points in the X-and Y-direction are NX and NY respectively. If a grid point lies within the circle of one of the pipes or outside the
outer boundary, then there will be no temperature calculation in that point. There is no calculation of temperatures if $N X \leq 0$ or $N Y \leq 0$.
5. XMIN Minimum x-coordinate of rectangular region for temperature calculation, (m)

XMAX Maximum x-coordinate of rectangular region for temperature calculation, (m)
YMIN Minimum y-coordinate of rectangular region for temperature calculation, (m)
YMAX Maximum y-coordinate of rectangular region for temperature calculation, (m)
NX Number of grid points in the x-direction
NY Number of grid points in the y-direction
The program is the same as in [1] except for the necessary modifications. The source code is given in appendix 1 .

AN EXAMPLE

The example 8.1 with 3 pipes is used. The complete set of data is given by (8.12). The accuracy ϵ is set to 10^{-4} and ITMAX to 500 . The corner points of the region of temperature calculation are XMIN $=$ $-2 ., Y M I N=-2 ., X M A X=2$., and YMAX $=2$. The number of grid points in the x-direction, NX, and the number of grid points in the y-direction, NY, are both 5 . This gives the following indata list:

1	0.6	3.6	3	10		
2	2.0	4.0	0.0	0.0		
3	1.0	0.0	0.5	0.0	1.0	
4	0.0	1.5	0.25	0.0	-3.0	
5	-1.0	-0.5	0.5	0.5	2.0	
6	$1.0 \mathrm{E}-4$	500				
7	-2.0	2.0	-2.0	2.0	5	5.

The output is given on the next two pages. The line sources and multipoles are denoted in the following way: $q_{n}=\mathrm{q}(\mathrm{n}), P_{n k}=\mathrm{P}(\mathrm{n}, \mathrm{k}), P_{c k}=\mathrm{PC}(\mathrm{k})$.

Correction on p.28, line 35-36:

Number of grid points along the x-axis 5
Number of grid points along the y-axis 5

```
MULTIPOLE METHOD - Pipes in a composite cylinder
INPUT DATA
Input file a:sample.dat
Output file a:sample.out
Thermal conductivity in inner region . }600\textrm{W}/(\textrm{m}*\textrm{K}
Thermal conductivity in outer region 3.600 W/(m*K)
Number of pipes 3
Order of multipoles 10
Radius of inner region 2.000 m
Radius of outer region }\quad4.000\textrm{m
Outer boundary
    Thermal resistance coefficient .000E+00
    Temperature .000 C
```



```
Iteration accuracy .10E-03
Maximum number of iterations 500
TEMPERATURE OUTPUT: Definition of rectangular area
    Minimum x-value -2.000
    Maximum x-value 2.000
    Minimum y-value -2.000
    Maximum y-value 2.000
    Number of grid points along x-axis 4
    Number of grid points along y-axis 4
*****************************************************************************
    Pipe Initial values for q(n) (Order of multipole = 0)
        1 .3701710E+01
        2 -. 8120926E+01
        3 .4570385E+01
Number of iterations: 6
    Pipe q(n)
        1 . 3775983E+01
        2 -. 8688749E+01
        3 .4791657E+01
    Pipe Order P(n,k)
        1 1 .85094E-01 .26170E+00
        1 2 -.30722E-01 -.72742E-01
        1 3 .18398E-01 .80464E-02
        1 4 -.27537E-02 .11994E-02
```


115	.00000	1.00000	-1.55455
116	.00000	2.00000	-.83812
117	1.00000	-2.00000	.12871
118	1.00000	-1.00000	.55357
119	1.00000	1.00000	-.06704
120	1.00000	2.00000	-.33614
121	2.00000	-2.00000	.08151
122	2.00000	-1.00000	.14928
123	2.00000	.00000	.18674
124	2.00000	1.00000	.03184
125	2.00000	2.00000	-.08219

REFERENCES

1. J. Claesson and J. Bennet, Multipole Method to Compute the Conductive Heat Flows between Pipes in a Cylinder; Notes on Heat Transfer 2-1987, Dep. of Building Technology and Mathematical Physics, University of Lund, Box 118, S-221 00 Lund, Sweden, 1987.
2. J. Claesson and G. Hellström, Thermal Resistances to and between Pipes in a Composite Cylinder, Notes on Heat Transfer 1987, Dep. of Building Technology and Mathematical Physics, University of Lund, Box 118, S-221 00 Lund, Sweden, 1987. (To be published)

APPENDIX 1. LISTING OF COMPUTER CODE

```
C
C
C
C
C circular pipes in a composite cylinder with
C two concentric regions with different
C thermal conductivities
C
C Authors: Johan Bennet, Johan Claesson, Goran Hellstrom
C Departments of Building Technology and Mathematical Physics
C Lund Institute of Technology. Box 118, S-221 00 Lund, Sweden
C Date: 1987-03-25
C Reference: Notes on Heat Transfer 3 - 1987
C------------------------------------------------------------------------------
    PARAMETER (IW=15,IJ=10,IW2=IW*IW)
        COMPLEX*8 Z(IW),P(IW,IJ),P2(IW,IJ),PC(IJ),ZRC(IW,IJ),TERM
        + ,RPZMN(IW,IW,IJ),RPMZN(IW,IW,IJ),PMK,PRB,ZPR,RPZ(IW,IJ)
        DIMENSION RP (IW), BETA (IW),TF(IW),QBEG (IW)
        + ,Q(IW),RRR(IW),QM(IW)
        DOUBLE PRECISION RKO(IW,IW),RKOVEC (IW2),MC (IW),MD (IW)
        CHARACTER*16 READFI,OUTFI
        CHARACTER ANS
        LOGICAL INFIL,OK
    DATA INFIL/.FALSE./
c*********** OPEN INPUT AND OUTPUT FILES
    WRITE(*,441)
    WRITE (*,*)
    2 WRITE (*,*)'Input data from file ? (Y/N)'
        READ (*,5) ANS
        IF ((ANS.EQ.'Y').OR. (ANS.EQ.'y')) THEN
            WRITE (*,*) 'Name of input file ?'
            READ(*,10) READFI
            INQUIRE(FILE=READFI,EXIST=0K)
            IF (OK) THEN
                OPEN (UNIT=5,FILE=READFI)
                INFIL=.TRUE.
                ELSE
                    WRITE(*,*)' *** ERROR *** ',READFI,' File not found'
                    G0 T0 2
            ENDIF
        ENDIF
        WRITE(*,*) 'Name of output file ?'
        READ(*,10) OUTFI
        INQUIRE (FILE=0UTFI, EXIST=0K)
        IF (OK) THEN
            OPEN(UNIT=6,FILE=OUTFI)
            ELSE
                OPEN(UNIT=6,FILE=OUTFI,STATUS='NEW')
        ENDIF
        5 FORMAT (A1)
    10 FORMAT (A16)
C********** READ INPUT DATA ***********
        IF (INFIL) THEN
            READ(5,*) RLAMB,RLAM,NW,J
```

```
    READ (5,*) RB,RC,BETAC,TC
    DO 15 M=1.NW
        READ (5,*) ZRE,ZIM,RP(M) , BETA(M) ,TF (M)
        Z(M)=CMPLX(ZRE,ZIM)
    CONTINUE
    READ (5,*) EPS,ITMAX
        READ (5,*) XMIN , XMAX, YMIN, YMAX, NX , NY
ELSE
    WRITE(*,*)'Thermal conductivity in the inner region ?'
    READ(*,*) RLAMB
    WRITE(*,*)'Thermal conductivity in the outer region ?'
    READ (*,*) RLAM
    WRITE (*,*)'Number of pipes ?'
    READ (*,*) NW
    WRITE(*,*)'Order of multipoles ?'
    READ(***) J
    WRITE(*,*)'Radius of inner region ?'
    READ(*,*) RB
    WRITE(*,*)'Radius of outer region ?'
    READ (*,*) RC
    WRITE (*,*)
    WRITE (*,*)'OUTER BOUNDARY'
    WRITE(*,*)' Thermal resistance coefficient ?*
    READ(*,*) BETAC
    WRITE(*,*)* Temperature ?*
    READ (*,*) TC
    DO 16 M=1,NW
        WRITE (*,443) M
        WRITE(*,*)' x-value ?'
        READ(***) ZRE
        WRITE(*,*)' y-value ?'
        READ(***) ZIM
        Z(M)=CMPLX(ZRE,ZIM)
        WRITE(*,*)' Pipe radius ?'
        READ (*,*) RP(M)
        WRITE(*,*)' Thermal resistance coefficient ?'
        READ(*,*) BETA(M)
        WRITE(*,*)' Temperature ?'
        READ (*,*) TF (M)
    CONTINUE
    WRITE(*,*)
    WRITE(*,*)'Iteration accuracy ?'
    READ(***) EPS
    WRITE(*,*)'Maximum number of iterations ?'
    READ(*,*) ITMAX
    WRITE(*,*)
    WRITE(*,*)'TEMPERATURE OUTPUT: Define rectangular area*
    WRITE(*,*)' Minimum x-value ?'
    READ(*,*) XMTN
    WRITE(*,*)' Maximum x-value ?'
    READ(*,*) XMAX
    WRITE(*,*)' Minimum y-value ?*
    READ (*,*) YMIN
    WRITE(*,*)' Maximum y-value ?'
    READ (*,*) YMAX
    WRITE(*,*)' Number of grid points along the x-axis ?"
    READ(*,*) NX
```

 WRITE (*,*)' Number of grid points along the \(y\)-axis ?'
 \(\operatorname{READ}(*, *) N Y\)
 WRITE (*,*)
 IF (. NOT.INFIL) THEN
 WRITE (*,*)'Save input data on file ? (Y/N)'
 \(\operatorname{READ}(*, 5)\) ANS
 IF ((ANS.EQ.'Y').OR. (ANS.EQ.' Y ')) THEN
 WRITE (*,*) 'Name of input file ?'
 \(\operatorname{READ}(*, 10)\) READFI
 INQUIRE (FILE=READFI, EXIST=OK)
 IF (OK) THEN
 OPEN (UNIT \(=5\), FILE \(=\) READFI)
 ELSE
 OPEN (UNIT \(=5\), FILE \(=\) READFI, STATUS \(=\) ' NEW')
 ENDIF
 WRITE \((5,701)\) RLAMB, RLAM, NW, J
 WRITE \((5,702)\) RB, RC, BETAC, TC
 DO \(17 \mathrm{M}=1\), NW
 ZRE=REAL (\(\mathrm{Z}(\mathrm{M})\))
 ZIM=AIMAG(Z \((M))\)
 WRITE (5,702) ZRE, ZIM, RP (M), BETA (M) , TF (M)
 CONTINUE
 WRITE \((5,703)\) EPS, ITMAX
 WRITE \((5,704)\) XMIN, XMAX , YMIN , YMAX , NX , NY
 CLOSE (UNIT=5)
 ENDIF
 ENDIF
 ENDIF
 C********** CONSISTENCY TESTS OF INPUT DATA $* * * * * * * * * *$
IF (RLAMB.LE.O.) STOP ' RLAMB < O.'
IF (RLAM.LE.O.) STOP ' RLAM < 0.'
IF (NW.LT.1) STOP $\cdot N W<1$.
IF (J.LT.0) STOP : J < 0^{\prime}
IF (RB.LE.O.) STOP $\cdot \mathrm{RB}<0$.
IF (RC.LE.O.) STOP * RC < O.'
IF (BETAC.LT. O.) STOP • BETAC < O.'
DO $20 \mathrm{~N}=1$, NW
$\operatorname{IF}(\operatorname{RB} . \operatorname{LT} . \operatorname{CABS}(\mathrm{Z}(\mathrm{N}))+\mathrm{RP}(\mathrm{N})-1 . \mathrm{E}-6) \mathrm{STOP} \cdot \mathrm{RB}<\mathrm{R}(\mathrm{N})+\mathrm{RP}(\mathrm{N})$ '
$\operatorname{IF}(\mathrm{BETA}(\mathrm{N}) . \operatorname{LT} .0.) \operatorname{STOP} \cdot \operatorname{BETA}(\mathrm{N})<0^{\prime}$
IF (RP(N).LE.O.) STOP $\cdot \operatorname{RP}(N)<0$. .
DO $20 \mathrm{M}=1$, NW
IF (M.NE.N) THEN
$\operatorname{IF}(\operatorname{CABS}(\mathrm{Z}(\mathrm{N})-\mathrm{Z}(\mathrm{M})) \cdot \operatorname{LT} \cdot \operatorname{RP}(\mathrm{N})+\operatorname{RP}(\mathrm{M})-1 \cdot \mathrm{E}-6)$
STOP ' $\mathrm{RMN}<\mathrm{RP}(\mathrm{N})+\mathrm{RP}(\mathrm{M})$ '
$\operatorname{IF}(\operatorname{CABS}(\mathrm{Z}(\mathrm{N})-\mathrm{Z}(\mathrm{M}))-\mathrm{RP}(\mathrm{N})-\mathrm{RP}(\mathrm{M})$. LE. 1.E-6) THEN
IF ($\operatorname{BETA}(M)+\operatorname{BETA}(N)$. EQ. O. . AND . TF (N) . NE. TF (M))
$+\operatorname{STOP} \cdot \operatorname{RMN}=\mathrm{RP}(\mathrm{M})+\mathrm{RP}(\mathrm{N})$ AND BETA$(\mathrm{M})+\mathrm{BETA}(\mathrm{N})=0$. AND $\operatorname{TF}(\mathrm{M}) \mathrm{NE} \mathrm{TF}(\mathrm{N})$ '
END IF
END IF
CONTINUE
IF (EPS.LE.O.) STOP • EPS LE O.'
C********** LISTING OF INPUT DATA $* * * * * * * * * *$
WRITE (*,*)
WRITE $(*, 441)$
WRITE (*,450) RLAMB,RLAM,NW,J
WRITE (*, 460) RB,RC,BETAC,TC
WRITE (*, 470) ($\mathrm{M}, \mathrm{Z}(\mathrm{M}), \operatorname{RP}(\mathrm{M}), \operatorname{BETA}(\mathrm{M}), \operatorname{TF}(\mathrm{M}), \mathrm{M}=1, \mathrm{NW})$

```
    WRITE(*,480) EPS,ITMAX
    WRITE(*,490) XMIN,XMAX,YMIN,YMAX,NX,NY
    WRITE (6,441)
    WRITE (6,442) READFI,0UTFI
    WRITE (6,450) RLAMB,RLAM,NW,J
    WRITE (6,460) RB,RC,BETAC,TC
    WRITE (6,470) (M,Z(M),RP(M),BETA(M),TF(M),M=1,NW)
    WRITE (6,480) EPS, ITMAX
    WRITE (6,490) XMIN, XMAX, YMIN,YMAX,NX,NY
    WRITE (6,410)
C********** SET CONSTANTS
        IIT=0
        PI=3.14159265
        PILAMB=1./(2.*PI*RLAMB)
        PILAM=1./(2.*PI*RLAM)
        SIGMA=(RLAMB-RLAM)/(RLAMB+RLAM)
        ALBETC=BETAC+ALOG (RC/RB)
C*********** CALCULATION OF MATRICE RKO
C********** AND AUXILIARY ARRAYS
    DO 60 M=1,NW
        RBM=RB**2/(RB**2-CABS (Z (M))**2)
        RKO(M,M)=PILAMB* (ALOG (RB/RP (M))+BETA(M)+SIGMA*ALOG (RBM))
    + +PILAM*ALBETC
        IF(J.GE.1) THEN
                D0 30 K=1,J
                    ZRC(M,K)=(0.,0.)
                    RPZ (M,K)=(0.,0.)
                    RPMZN(M,M,K)=(RP(M)*CONJG(Z (M))*RBM/RB**2)**K
                    IF (CABS (Z (M)).NE.O.) THEN
                    ZRC}(M,K)=(Z(M)/RC)**
                    RPZ (M,K)=(RP(M)/Z(M))**K
                    END IF
    30 CONTINUE
            END IF
        DO 50 N=1,NW
            IF (M.NE.N) THEN
                    PMK=Z(N)-Z(M)
                    RMN=CABS (PMK)
                    RBM=RB**2/CABS (RB**2-Z(N)*CONJG(Z(M)))
                    PRB=RP(M)*CONJG(Z(N))/(RB**2-CONJG(Z (N))*Z(M))
                    RKO(M,N)=PILAMB*(ALOG (RB/RMN)+SIGMA*ALOG(RBM))+
    + PILAM*ALBETC
            IF(J.GE.1) THEN
                    DO 40 K=1,J
                            RPZMN(M,N,K)=(RP(M)/PMK)**K
                        RPMZN(M,N,K)=PRB**K
                    CONTINUE
                    END IF
                END IF
        cONTINUE
    60 CONTINUE
C********** CONVERT MATRIX RKO TO VECTOR RKOVEC ***********
    K=0
    DO 64 JJ=1,NW
        DO 62 I=1,NW
            K=K+1
                RKOVEC (K)=RKO(I, JJ)
```

```
    62 CONTINUE
    64 CONTINUE
C********** INVERSION OF MATRIX RKO ***********
    CALL INV1(RKOVEC,MC,MD,NW,DET)
C********** CONVERT VECTOR RKOVEC TO MATRIX RKO
    K=0
    DO 68 JJ=1,NW
                DO 66 I=1,NW
                K=K+1
                RKO(I, JJ)=RKOVEC(K)
    66 CONTINUE
    68 CONTINUE
C********************* INITIAL VALUES OF ENERGY FLOWS
C*********************
                                    AND MULTIPOLES
                                    *******
    DO 80 M=1,NW
            QBEG (M)=0.
            DO 70 N=1,NW
                QBEG(M)=QBEG(N)+RKO(M,N)*(TF (N)-TC)
    70 CONTINUE
            Q(M)=QBEG(M)
    80 CONTINUE
        WRITE (*,430)(N,Q(N),N=1,NW)
        WRITE (6,430) (N,Q(N),N=1,NW)
        IF(J.EQ.0) GO TO 280
        DO }90\textrm{M}=1,\textrm{NW
            DO 90 K=1,J
                P(M,K)=(0.,0.)
                CONTINUE
    DO 100 K=1,J
        PC(K)=(0.,0.)
    100 CONTINUE
C****************** START OF ITERATION LOOP
    WRITE(*,495) EPS
    DO 270 IIT=1,ITMAX
        EPSMAX=0.
C******************* MULTIPOLES AT THE PIPES
        DO 160 M=1,NW
            PMMAX=0.
            DO 150 K=1,J
                PMK=(0.,0.)
            DO 130 N=1,NW
                PRB=1./(RB**2-CONJG(Z(N))*Z(M))
                KFAK=1
                DO 120 JJ=1,J
                    IF (N.NE.M) PMK=PMK+P(N,JJ)*RPZMN(N,M,JJ)
                    *RPZMN(M,N,K)*KFAK
                    JPEND=MINO(JJ,K)
                    KFAK1=KFAK
                    KFAK2=1
                    DO 110 JPRIM=0,JPEND
                        JJPRIM=JJ-JPRIM
                        KJPRIM=K-JPRIM
                        TERM=(1.,0.)
                        IF(JJPRIM.GE.1) TERM=CONJG(RPMZN(N,M,JJPRIM))
                    IF (KJPRIM.GE.1) TERM=TERM*RPMZN(M,N,KJPRIM)
                    PMK=PMK+CONJG(P(N,JJ))*SIGMA*TERM* (RP (M)*RP(N)
    + *PRB)**JPRIM*KFAK1*KFAK2
```

```
                    IF (JPRIM.NE.JPEND) THEN
                                    KFAK1=KFAK1*KJPRIM/ (K+JJ-1-JPRIM)
                                    KFAK2=KFAK2*JJPRIM/(JPRIM+1)
                                    END IF
                                    CONTINUE
                                KFAK=KFAK* (K+JJ)/JJ
                        CONTINUE
            IF(N.NE.M) PMK=PMK+Q(N)*PILAMB*RPZMN(M,N,K)/K
            PMK=PMK+Q(N)*PILAMB*SIGMA*RPMZN(M,N,K)/K
            CONTINUE
            KFAK=1
            DO 140 JJ=K,J
                        PMK=PMK+PC(JJ)*(1. -SIGMA)*RPZ (M,K)*ZRC (M,JJ) *KFAK
                    KFAK=KFAK*(JJ+1)/(JJ+1-K)
                    CONTINUE
            PMK=CONJG(PMK)*(BETA (M)*K-1.)/(BETA (M)*K+1.)
            PMMAX=AMAX1 (CABS (PMK), PMMAX)
            IF (CABS (PMK).GT.1.E-7) EPSMAX=
                        AMAXI (EPSMAX, CABS (PMK-P (M,K))/PMMAX)
            P2(M,K)=PMK
            CONTINUE
                CONTINUE
C****************** NEW MULTIPOLES ARE ASSIGNED
            DO 170 M=1,NW
            DO 170 K=1,J
                    P(M,K)=P2(M,K)
    170 CONTINUE
C****************** CALCULATION OF MULTIPOLES
C****************** AT THE OUTER CIRCLE
    PMMAX=0.
    DO 200 K=1,J
            PMK=(0.,0.)
            DO 190 M=1,NW
            KFAK=1
            DO 180 JJ=1,K
                PMK=PMK+P(M,JJ)*ZRC (M,K)*RPZ (M,JJ) *KFAK
                    KFAK=KFAK*(K-JJ)/JJ
                    CONTINUE
                    PMK=PMK+ZRC (M,K)*Q(M)*PILAMB/K
                    cONTINUE
            XX=(1.-BETAC*K)/(1.+BETAC*K)
            PMK=CONJG (PMK)*XX*(SIGMA 1.)/(SIGMA *XX*(RB/RC)**(2*K)-1.)
            PMMAX=AMAX1 (CABS (PMK),PMMAX)
            IF (CABS (PMK).GT.1.E-7) EPSMAX=
                    AMAX1 (EPSMAX, CABS (PMK-PC (K))/PMMAX)
            PC(K)=PMK
            200 CONTINUE
C******************** CALCULATION OF NEW ENERGY FLOWS ********
    DO 240 M=1,NW
                QQQ=0.
            DO 220 N=1,NW
                    DO 210 JJ=1,J
                    IF (M.NE.N) QQQ=QQQ+REAL (RPZMN (N,M,JJ)*P(N,JJ))
                    QQQ=QQQ+SIGMA*REAL(P (N,JJ)*RPMZN (N,M,JJ))
                    CONTINUE
                    CONTINUE
        DO 230 JJ=1,J
```

```
                    QQQ=QQQ+(1.-SIGMA)*REAL(PC (JJ)*ZRC (M,JJ))
                        CONTINUE
            QM(M)=QQQ
            CONTINUE
            DO 260 M=1,NW
            QQQQ=0.
            DO 250 N=1,NW
                    QQQQ=QM(N)*RKO(M,N) +QQQQ
                    CONTINUE
            Q(M)=QBEG(M)-QQQQ
            260 CONTINUE
C****************** TEST WHETHER THE ACCURACY **************
C****************** CONDITION IS FULFILLED
            WRITE(*,500) IIT,EPSMAX
            IF(EPSMAX.LT.EPS) GO TO 280
    270 CONTINUE
C****************** OUTPUT OF ENERGY FLOWS *****************
C******************* AND MULTIPOLES ******************
    280 WRITE (6,370) IIT
        WRITE(*,370) IIT
        WRITE (6,380) (N,Q(N),N=1,NW)
        WRITE (*,380) (N,Q(N),N=1,NW)
        IF(J.GE.1) THEN
            WRITE (6,390) ((N,K,P(N,K),K=1,J) ,N=1,NW)
            WRITE (6,420)(K,PC(K),K=1,J)
        END IF
    WRITE (6,440)
    WRITE (6,395)
C******************* CALCULATION AND OUTPUT
C****************** OF TEMPERATURES *****************
    DO 360 MPR=0,NX
    DO 360 NPR=0,NY
                ZPR=CMPLX((XMAX-XMIN)*MPR/NX+XMIN, (YMAX-YMIN)*NPR/NY+YMIN)
C DO 360 MPR=0,100
C ZPR=(1.,0.)+CEXP(CMPLX (0.,MPR*PI/100.))
            DO 290 N=1,NW
                    IF(CABS(ZPR-Z(N)).LT.RP(N)-1.E-5) GO TO 360
                    CONTINUE
            IF(CABS(ZPR).GT.RC) GO T0 360
            PMK=(0.,0.)
            IF (CABS(ZPR).LE.RB) THEN
C****************** CALCULATION OF TEMPERATURES
C****************** WHEN ZPR IS LESS THEN RB
            DO 310 N=1,NW
                IF(J.GE.1) THEN
                    PRB=1./(RB**2-Z(N)*CONJG(ZPR))
                    D0 300 K=1,J
                    PMK=PMK+P(N,K)*((RP(N)/(ZPR-Z(N)))**K+
                    SIGMA*(RP(N)*CONJG(ZPR)*PRB)**K)
                    CONTINUE
                    END IF
                        RON=CABS (ZPR-Z(N))
                        PMK=PMK+Q(N)*(PILAM*ALBETC+
                            PILAMB*(ALOG (RB/RON)+SIGMA*ALOG(RB**2*CABS (PRB))))
                        continue
            IF(J.GE.1) THEN
                        D0 320 K=1,J
```

```
                    PMK=PMK+(1.-SIGMA)*PC (K)*(ZPR/RC)**K
                    CONTINUE
            END IF
        ELSE
C****************** CALCULATION OF TEMPERATURES *************
C***************** WHEN IS ZPR GREATER THEN RB *************
            DO 340 N=1,NW
                IF(J.GE.1) THEN
                    DO 330 K=1,J
                    PMK=PMK+P(N,K)*(1.+SIGMA)*(RP(N)/(ZPR-Z(N)))**K
330
                                    CONTINUE
                    END IF
                    RON=CABS(ZPR-Z(N))
                PMK=PMK+Q(N)*(PILAM* (ALBETC+SIGMA*
                    ALOG(RB/CABS (ZPR)))+PILAMB*(1.+SIGMA)*ALOG(RB/RON))
                    cONTINUE
            IF(J.GE.1) THEN
                    DO 350 K=1,J
                    PMK=PMK+PC (K)*((ZPR/RC)**K-SIGMA*
                    (RB**2/(RC*CONJG(ZPR)))**K)
                    CONTINUE
                END IF
            END IF
            TPR=REAL (PMK) +TC
            X=REAL(ZPR)
            Y=AIMAG(ZPR)
            WRITE (6,400) X,Y,TPR
360 CONTINUE
                    WRITE(*,510) OUTFI
370 FORMAT(/' Number of iterations: , ,I4/)
380 FORMAT(/' Pipe q(n)'/(I5,3X,E14.7))
390 FORMAT(/' Pipe',4X,'Order',11X,'P(n,k)'/(I5, I8,3X,2E12.5))
395 FORMAT(/8X,'x',13X,'y',12X,'Temp',/)
400 FORMAT (2X,F10.5,4X,F10.5,4X,F10.5)
410 FORMAT(/.75('*'))
420 FORMAT(/' Order',13X,'PC(k)'/(I5,4X,2E12.5))
430 FORMAT(/' Pipe Initial values for q(n) (Order of multipole = 0),
            + /(I5,E17.7))
440 FORMAT(/1X,75('*')/ ' TEMPERATURES (Deg C)')
441 FORMAT(' MULTIPOLE METHOD - Pipes in a composite cylinder'/,
    + 1X,48(1H=).//.' INPUT DATA')
442 FORMAT(/,' Input file ',A16,/,' Output file ',A16,/)
443 FORMAT(/,' Pipe n=',I2)
450 FORMAT(' Thermal conductivity in inner region'.
    + 3X,F10.3,' W/(m*K)'/' Thermal conductivity in outer region',
    + 3X,F10.3,'W/(m*K)'/' Number of pipes',8X,I10/
    + ' Order of multipoles',4X,I10)
460 FORMAT(/' Radius of inner region',9X,F10.3,' m'/
    + 'Radius of outer region',9X,F10.3,' m'/
    + ' Outer boundary',/,
    + , Thermal resistance coefficient ',2X,E10.3,/,
    + ' Temperature',23X,F10.3,' C')
470 FORMAT(/1X,34(' *')/
    + P Pipe * x(n) * y(n) * rp(n) * beta(n)',
    + . * Temp C *'/1X,34(' *')/
    + (I5,' *',3(F9.3,' *'),E10.3,' *',F9.3,' *'))
480 FORMAT(/' Iteration accuracy',13X,E10.2/
```

```
    + ' Maximum number of iterations',2X,I10)
    490 FORMAT(/' TEMPERATURE OUTPUT: Definition of rectangular area'./.
    + ' Minimum x-value',10X,F10.3/
    + . Maximum x-value',10X,F10.3/
    + ' Minimum y-value'.10X,F10.3/
    + ' Maximum y-value',10X,F10.3/
    + ' Number of grid points along x-axis',I11/
    + , Number of grid points along y-axis',I11)
    495 FORMAT(/' Starting iterations Goal: Iteration accuracy ',E10.2,/)
    500 FORMAT(' Number of iterations',I4,' Iteration accuracy ',E10.2)
    510 FORMAT(//' Job ended. Output written to ',A16)
    701 FORMAT (1X,2(E12.5,2X),2I5)
    702 FORMAT(1X,5(E12.5,2X))
    703 FORMAT (1X,E12.5,I7)
    704 FORMAT (1X, 4(E12.5,2X),2I5)
        END
    SUBROUTINE INV1(B,MC,MD,N,D)
C Calculate inverse of a matrix
C Author: Anders Peterson
C Date: 1982-05-28
C------------------------------------------------------------------------------
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION B(1),MC(1),MD(1)
C
    DATA C1/1.0DO/
    DATA C2/1.OD50/
C
    D=C1
    NK=-N
    DO 80 K=1,N
    NK}=\textrm{NK}+\textrm{N
    MC (K) =K
    MD (K)=K
    KK=NK+K
    BIGA=B (KK)
    DO 20 J=K,N
    IZ=N*(J-1)
    DO 20 I=K,N
    IJ=IZ+I
    R1=B(IJ)
    IF(R1.LT.0.ODO) R1=-R1
    R2=BIGA
    IF(R2.LT.0.ODO) R2=-R2
    R2=R2-R1
10 IF(R2.GT.0.ODO) GO TO 20
    BIGA=B(IJ)
    MC (K)=I
    MD(K)=J
20 CONTINUE
    J=MC (K)
    IF(J-K.LE.0) G0 T0 35
    KI=K-N
    DO 30 I=1,N
    KI=KI+N
    HOLD=-B(KI)
```

```
\(\mathrm{JI}=\mathrm{KI}-\mathrm{K}+\mathrm{J}\)
\(B(K I)=B(J I)\)
\(30 \mathrm{~B}(\mathrm{JI})=\mathrm{HOLD}\)
\(35 \mathrm{I}=\mathrm{MD}(\mathrm{K})\)
IF (I-K.LE.0) GO TO 45
\(\mathrm{JP}=\mathrm{N} *(\mathrm{I}-1)\)
D0 \(40 \mathrm{~J}=1, \mathrm{~N}\)
\(\mathrm{JK}=\mathrm{NK}+\mathrm{J}\)
\(\mathrm{JI}=\mathrm{JP}+\mathrm{J}\)
HOLD \(=-B\) (JK)
\(B(J K)=B(J I)\)
\(40 \mathrm{~B}(\mathrm{JI})=\mathrm{HOLD}\)
45 IF (ABS (BIGA) .GT.0.ODO) GO TO 48
\(46 \mathrm{D}=0.0\)
RETURN
48 DO \(55 \mathrm{I}=1, \mathrm{~N}\)
IF (I-K.EQ.O) GO TO 55
\(\mathrm{IK}=\mathrm{NK}+\mathrm{I}\)
\(\mathrm{B}(\mathrm{IK})=\mathrm{B}(\mathrm{IK}) /(-\mathrm{BIGA})\)
55 CONTINUE
DO \(65 \mathrm{I}=1, \mathrm{~N}\)
IK \(=\mathrm{NK}+\mathrm{I}\)
HOLD \(=B\) (IK)
\(\mathrm{IJ}=\mathrm{I}-\mathrm{N}\)
D0 \(65 \mathrm{~J}=1\), N
\(I J=I J+N\)
IF (I-K.EQ.0) G0 T0 65
IF (J-K.EQ.O) GO TO 65
\(K J=I J-I+K\)
\(B(I J)=H O L D * B(K J)+B(I J)\)
65 CONTINUE
\(K J=K-N\)
D0 \(75 \mathrm{~J}=1, \mathrm{~N}\)
\(\mathrm{KJ}=\mathrm{KJ}+\mathrm{N}\)
IF (J-K.EQ.O) G0 T0 75 \(B(K J)=B(K J) / B I G A\)
75 CONTINUE
UNDEFINED VALUE OF D IF \(\operatorname{ABS}(\mathrm{D}) . \mathrm{GT} . \mathrm{C} 2\)
IF (D.LT.C2 .AND.D.GT. -C2) D=D*BIGA
\(B(K K)=C 1 / B I G A\)
80 CONTINUE
\(\mathrm{K}=\mathrm{N}\)
\(100 \mathrm{~K}=(\mathrm{K}-1)\)
IF (K.LE.O) G0 TO 150
\(\mathrm{I}=\mathrm{MC}(\mathrm{K})\)
IF (I-K.LE.0) G0 T0 120
\(108 \mathrm{JQ}=\mathrm{N} *(\mathrm{~K}-1)\)
\(\mathrm{JR}=\mathrm{N} *(\mathrm{I}-1)\)
DO \(110 \mathrm{~J}=1, \mathrm{~N}\)
\(J K=\mathrm{JQ}+\mathrm{J}\)
HOLD \(=B\) ( \(J K\) )
\(\mathrm{JI}=\mathrm{JR}+\mathrm{J}\)
\(B(J K)=-B(J I)\)
\(110 \mathrm{~B}(\mathrm{JI})=\mathrm{HOLD}\)
```

568	$120 \mathrm{~J}=\mathrm{MD}(\mathrm{K})$
569	$\mathrm{IF}(\mathrm{J}-\mathrm{K} . \mathrm{LE} .0)$ GO TO 100
570	$125 \mathrm{KI}=\mathrm{K}-\mathrm{N}$
571	$\mathrm{DO} 130 \mathrm{I}=1, \mathrm{~N}$
572	$\mathrm{KI}=\mathrm{KI}+\mathrm{N}$
573	$\mathrm{HOLD=}(\mathrm{KI})$
574	$\mathrm{JI}=\mathrm{KI}-\mathrm{K}+\mathrm{J}$
575	$\mathrm{~B}(\mathrm{KI})=-\mathrm{B}(\mathrm{JI})$
576	$130 \mathrm{~B}(\mathrm{JI})=\mathrm{HOLD}$
577	GO TO 100
578	150 CONTINUE
579	RETURN
580	ENDa

