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Multipole moments in general relativity are defined as coefficients of a multipole expan­

sion of appropriate potentials, as they are so in Newton's theory of gravitation. The essential 

point is the introduction of Fock's harmonic coordinate system in which the potentials are 

expanded in inverse powers of the distance from the source. First several moments are 

obtained for the Kerr, Tomimatsu-Sato and a class of the Weyl solutions of the Einstein 

equation, and then are inferred all moments for the Kerr and Weyl solutions. 

§ l. Introduction 

The problem of obtaining multipole moments of a solution of the Einstein 

equation is the problem of interpreting the solution in terms of its Newtonian 

limit. In particular the knowledge of multipole moments serves to infer a possible 

source distribution which produces the gravitational field in question. Since the 

interior solutions which may be considered to describe the interior metric of the 

source of the Weyl,n Kerr') or Tomimatsu-Sato (T-S) 3l gravitational field have not 

been discovered at this stage, it is desirable to have a systematic method of obtain­

ing multipole moments of these fields. 

One of the methods was developed by Geroch using conformal Killing vec­

tors,<)· 5) and by means of this method Hansen was able to obtain multipole moments 

of the Kerr solution.6l Although it is not so easy to find the necessary conformal 

factor, once it is found, Geroch's method allows us to calculate all moments in 

principle. There are also other methods of finding multipole moments, although 

they are in many cases not adequate to find higher moments. For example, Voor­

hees obtained the quadrupole moment of a W eyl solution ;n Hernandez obtained 

all moments of the Kerr solutions ;8l Tomimatsu and Sa to obtained the quadrupole 

moments of their solutions.3l 

The purpose of this paper is to present a new method of calculating multipole 

moments which, we hope, is complementary to Geroch's method and containing 

all the results obtained by the above authors. The idea is to introduce Fock's 

harmonic coordinate system9l in which appropriate potentials are expanded in inverse 

powers of the distance from the source. This expansion will be hoped to be of 

the form of a multipole expansion in the Newtonian limit. Of cource, there is, a 

priori, no assurance that such a expansion will be just of the form of a multipole 

expansion. Then the main purpose of this paper is to show that this is the case 
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Multipole lvfoments in General Relativity 107 

by constructing explicitly such expansions. 

In this paper stationary axially-symmetric gravitational fields which can be 

incorporated into the Ernst formalismiOJ are exclusively treated. In § 2 we define 

the appropriate potentials which satisfy Laplace's equation in Euclidian 3-space to 

the first approximation. There are two potentials: One is the mass potential 

equivalent to the usual Newtonian potential, and the other is the angular momen­

tum potential which is new and can be considered to describe the effects of the 

rotation of the source. These potentials are originally introduced by Hansen.6l In 

§ 3 Fock's harmonic coordinates are explained and the method of obtaining harmonic 

coordiantes is stated. In § 4 the results of the multipole expansion for the Kerr, 

W eyl and T-S solutions are given. In § 5 we discuss the meaning of harmonic 

coordinates. 

§ 2. Definition of potentials 

For a space-time with metric 9ae (signature: +---) which admits a Killing 

vector field t", Geroch has worked out a 3-dimensional formalism of the Einstein 

equation.!l) We define the norm and twist of t" respectively by 

(2 ·1) 

where 2aera is the totally antisymmetric tensor and f7 a 1s the covariant derivative 

with respect to gaP· A new metric hap is defined by 

(2·2) 

This metric 1s formally a 4 X 4 matrix, but the rank of it is three, and therefore 

can be considered as a metric on a 3-dimensional manifold which, for the static 

case (i.e., for U)a = 0), can be identified with a hyper-surface orthogonal to ta. 

The covariant derivative with respect to hap will be denoted by D"" (The nota­

tions hap, Da correspond to hab, Da, not just to hao' Da in Geroch's paper.) Then 

Geroch has shown that the source-free Einstein equation implies (1) the existence 

of a scalar field w such that 

and (2) the fields J., U) are subject to the following equations: 

J.D'J. = DJ. · DJ.- Dcu · Dw, 

J.D'w = 2DJ. · Dw , 

::Rae= (2J.')- 1 [(DaJ.) (DpJ.) + (Daw) (Dpw)], 

(2. 3) 

(2· 4) 

(2. 5) 

(2·6) 

where ::Rae is the Ricci tensor associated with hae and D'J., DJ. ·D). are abbreviations 

of DaD").' DaJ.DaJ.. 
If we introduce a complex function defined by 

e=J.- iw' (2·7) 
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108 Y. Tanabe 

Eqs. (2 · 4) and (2 · 5) are combined into a single equation 

(2·8) 

This equation IS very similar to the equation introduced originally by Ernst. 10l 

In fact, it can be shown that this equation is equivalent to that of Ernst for the 

stationary, axially-symmetric metric treated by Ernst. Therefore Geroch's formal­

ism may be considered as the generalization of Ernst's formalism. for Geroch has 

only assumed the existence of a Killing vector, and not any particular form of 

the metric. Following Ernst, we introduce another complex function ~ (Ernst's 

potential) defined by 

(2·9) 

Equation (2·8) becomes 

(~~*-1)D2~=2~*D~-D~. (2 ·10) 

Using (2·6) and (2·10) we can prove that the complex function 

cp= (2 ·11) 

satisfies the equation 

Ucp = 2.!R10 , (2 ·12) 

where _c_R_ IS given by 

_CR._ =2(D¢M· D¢)1 + D¢J· D¢J) 

- (1/2) [D(4¢M2 +4¢/+1) 112] • [D(4¢_,1/+4¢/-t-1) 112]. (2·13) 

From now on we assume that the Killing vector t" is time-like, and the space­

time is approximately Minkowskian. Then we see that Eq. (2 ·12) is equivalent 

to the usual Laplace equation in Euclidian 3-space to first order. The potentials 

¢Jr. rPJ are originally introduced by Hansen in the form6l 

(2 ·14) 

and are called Hansen's potential in this paper. The mass potential rPM is approxi­

mately equal to (g00 -1)/2 and, therefore, can be identified with Newton's gravita­

tional potential. The angular momentum potential rPJ is an analog of the magnetic 

scalar potential in electromagnetism. 

§ 3. Harmonic coordinate system 

A harmonic coordinate system is a coordiante system in which the metric 

satisfies 8a(V -g g"ii) =0. If the source distribution is restricted to a finite region, 

\ve further require that it is Minkowskian at spatial infinity. If a solution of the 
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i\1ultipole Nloments in General Relativity 109 

Einstein equation is given by ds2 =g~~du"du" in an arbitrary coordinate system {u"}, 

then a harmonic coordinate system {x"} can be obtained as a set of four solutions 

of the equation91 

(3 ·1) 

In. prolate spheroidal coordinates, the stationary axially-symmetric metric treat­

ed by Ernst is given by 

where functions j~ 215, 1 depend only on x and J', constants p/5 are parameters which 

appear in the exact solutions treated later and m is the total mass of the source. 

I£ >ve assume four harmonic coordinates for this metric in the form 

x 0 = t, x' =cf;(x, y) cos¢, x 2 =16(x, y) sin rp, x 3 =X (x, y), (3. 3) 

then Eq. (3 ·1) implies the following equations: 

(3 ·4) 

(3. 5) 

Taking into account the boundary conditions we take the solutions of these equa­

tions in the forrn 

x=lnpxy. (3·7) 
(J 

The solution X is valid for every metric. The solution VJ is taken in this form 

because Eq. (3 · 4) generally cannot be solved in a closed form. Substituting (3 · 6) 

into (3·4), we see that functions fn(Y) must satisfy 

where bk (y) 1s defined by 

e2r (.r2 - y2) - 1 ' "' b k (y) 
-------- --- ---- T ~ ---

(x2-1) (1-l) 1--y2 k~; xk · 
(3. 9) 

Equation (3 · 8) is solved step by step with the condition that fn is uniquely deter­

mined by .f~o ... ,fn-J· By saying "uniquely", we mean that we neglect solutions 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/55/1/106/1854501 by guest on 20 August 2022



110 Y. Tanabe 

of the homogeneous equation, 1.e., the equation of which the right-hand side van­

ishes. This corresponds physically to the assumption that harmonic coordinates 

are uniquely determined by the boundary conditions. For the Weyl, Kerr and 

T-S solutions, the function bk is zero for k=odd and a polynomial of at most 

degree k-2 for k=even. Then Eq. (3·8) can be easily solved with the result 

that fn is zero for n =odd and a polynomial of at most degree n- 2 for n =even. 

The spatial distance r and polar angle (} are respectively defined by 

r2= (x1)2+ (x2)2+ (xa)2=cfl+x2, 

cos 8=xa/r=x/(cfl+x2)112. (3 ·10) 

Then it IS shown that the coordinates x, y can be expanded m the form 

-=- 1+ I: - Bk(cos 8) , 0 m [ oo (m)k J 
px r k~1 r 

[ 
oo (m)k J y =cos 8 1 + tti --; Bk (cos 8) , (3 ·11) 

where Bk (cos 8) are polynomials of cos 8 determined by the formula 

Bn = l_[- Bn<2) +(.E.\ n "f: K1<nlcos18 + ~ (.E.)kt K1<klcos18 'I:(k + l)B~~kJ, 
2 o / 1~0 k~1 0 1~1 s~1 s 

(3 ·12) 

where constants K 1 cnl and functions Bk cs) are respectively defined by 

n-1 n 

(1- Y 2) (2/n +I: fn-dk) =I: K1(n)Y1, (3 ·13) 
k~1 1~1 

00 00 

CI: BkZk)'= I: Bk<')Zk. (3 ·14) 
k~1 k~1 

§ 4. M ultipole expansions 

From the papers of Voorhees/) Ernst/0) and Tomimatsu-Sato,3l a class of exact 

solutions of the Einstein equation is summarized as follows: 

(1) a series of the Weyl solution 

~- (x+W+ (x-1)8 

-ex+ iY-=-c.;;--=-1)8 ' 

(2) the Kerr solution 

~=Px-iqy, 
2r_ pzxz+ly2-1 

e ----- -, 
p2(xz -y2) 

(3) the Tomimatsu-Sato (T-S) solution 

- p2x4 + q2y4 -1- 2ipqxy (x2- yz) 
~ --------------

2px (x2 -1) -2iqy (1-y2) ' 

(4 ·1) 

(4·2) 
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A1ultipole Moments zn General Relativity 111 

A= p4(xz- W+ q4(1-yzy 

-2P2l (x2 -1) (1-y2) [2 (x2 -lY+ 2 (1-y'Y + 3 (x2 -1) (1-y2)]. (4 · 3) 

Here constants p, q are related by p' + q 2 = 1. The T-S solution approaches the 
Weyl solution with o=2 as q~O. The T-S solution which approach the Weyl 
solution with o=3 as q~o is also known and given in their paper. 31 

From the function e27 the harmonic coordinates are calculated by the method 
given in §2. From Ernst's potential ~' Hansen's potentials (2 ·11) are calculated 

and expanded in the form 

(4·4) 

where lv12<+ 1 (y) and J,k (y) become polynomials of y. Substituting (3 ·11) into 
( 4 · 4), we can express ¢,w and ¢J in terms of r and 8. The results are 

where c2k+b c2k are polynomials of cos 0 given in the following: 

(1) For the Weyl solution 

c5 = (.:1'/5) P4 c cos e) -.awl c cos e) + 1 , 

C,=- (.d3/7)P6 (cos 8) +.d'W3 (cos B) -.dW2 (cos B) +1, 

C9 = (.d4/9) P 8 (cos 8) + (terms of lower power in .d), 

C2 =C4=···=0, where .d=(0'-1)/o'. 

(2) For the Kerr solution 

C3 = -q2P 2 (cos 0) +1, 

C5=lP1(cos 8) -q2Kl (cos 8) + 1, 

C,= -q6P 6 (cos {)) +q4K 5 (cos 8) -q2K 2 (cos B) +1, 

C9 = l P8 (cos 8) + (terms of lower power in q2), 

Cz = P1 (cos 8), C4 =- q'Ps (cos 8) +cos 0, 

C6 =q4P 5(cos 8) -q2K 3 (cos 8) +cos f), 

C8 = -q6P 7 (cos B) +q"K6 (cos B) -q2K 4 (cos B) +cos f), 

c!O = l pg (cos B) + (terms of lower power in q2). 

(3) For the T-S solution 

C 3=- ( ~ .dP2 +q2)P2 (cos B)+ 1, 

(4·5) 

(4·6) 

(4·7) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/55/1/106/1854501 by guest on 20 August 2022



112 Y. Tanabe 

Cr = _ (l:_.aaps+ 331.d2p4q2 + 199 .dp2l+ qa)p6 (cos ()) + .d2p4W8 (cos ()) 
7 315 105 

+.dP2q2T 2(cos ()) +q4K 5 (cos ()) -.::lp2W 2(cos ()) -q2K 2(cos ()) +1, 

C4 =- ( ~ .dP2 + q2)Pa (cos 8) +cos(), 

Ca = ( 24
3 .:1 2P4 + ~.dP2l + l)P5 (cos ()) - .:1p2T 1 (cos()) -q2Ka (cos ()) +cos () . 

. 5 15 
(4·8) 

In these expression, Pn(2) denotes the n-th Legendre polynomial and Wn(2), 

Kn(2), Tn(2) are polynomials of 2 given in the following: 

W1 = (60) - 1 (524 +9022-31), 

w2 = c 420) - 1 (1428 + 10524 + 105022- 373), 

Wa = (2520) - 1 (119728 +777024 -717522 +856), 

K1 =2-1 (722-3), K2=9- 1 (4922-22), 

Ks = 2- 1 (923 - 52), K 4 = 3- 1 (19ZS -102), 

K5 = 8- 1 (107 2 4 -9822 + 15), 

K 6 =8- 1 (15125 -16223 +352), 

T 1 = (30) - 1 (925 +8023 -452), 

T 2 = (840) -I (~7526 + 24524 + 52522 + 1539). (4·9) 

The expansion for the T-S solutions are determined with the presupposition that 

c2k+l> c2k will be homogeneous polynomials of .Jp2 and q2, and then by using the 

information from the expansions of the known. solutions. Although these expres­

sions are ascertained only for o=2, 3 (i.e., for .1=3/4, 8/9), we hope that they 

are valid for arbitrary values of o, if, of course, T-S solutions with arbitrary values 

of 0 exist. 
Now we consider the Newtonian limit of the above expansions. There are 

two cases: One is the static case in which q = 0. This case corresponds to the 

W eyl solution. In this case taking the limit m~O holding b ( = m.:1112 ) finite and 

neglecting terms of higher order in m, we obtain 

(4·10) 

where Qk,J IS given by 

Qjl/"= ( -1)k+1 (2k+1) - 1mb2<, QJ/k+1 =0, 
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l\1ultipole 1\1oments zn General Relativity 113 

(4·11) 

The other is the Kinnersley-Kelley limit.l2l Follovving Kinnersley and Kelley we 

make the replacement jJ--'>ip. Then we take the limit m-->0 holding a ( = mq) 

:finite. Using the relation - p' + q' = 1 and neglecting terms of higher order in m, 
we obtain a similar expansion to Eq. (4·10) with multipole moments given in the 

following: 

For the Kerr solution, 

Q,,/k= ( _ 1)kc-Jnza'k, QM'k1-1=0, 

Q/k=O, Q}k"-~= ( _ 1 )kma'kc-J. (4·12) 

For the T-S solution, 

QM' = ma'( _l_,d + 1) 
\ 3 , 

Q 4 4 ( 1 A2 16 A 1 1) M=-JJUl -t.J---t.JT , 

'5 15 

Q/=nuz, 

Q/= ma5 -J' ---J + 1 , ( 23 22 ) 
45 15 

(4 ·13) 

The quadrupole moment of the Weyl solution agree \vith that obtained by 

Voorhees.n The results for the Kerr solution agree with that of Hernandez and 

Hansen. The Newtonian potential having these moments was previously discussed 

by Keres13l and Israel.w The moments of the T-S solution are the same as that 

given by Kinnersley and Kelley for common values of o and Z. 
Numerical factors appearing in the moments of the T-S solution are rather 

unfamiliar and give no clue as to the general formula. We only point out that 

these factors also appear in the expansion ( 4 · 4) for the W eyl solution. In fact, 

for the W eyl solution the :first several coefficients l\1k are given by 

1 M 3 = --J+1 
3 ' 

M = _l_J 3 + 331 ,d 2 _199 ,d + 1 
7 7 315 105 ' 

M =l_J4 _ 2896 Js+ 844 J'- 872 J + 1 . 
9 9 2835 315 315 

(4 ·14) 

The correspondence between these coefiicients and the mass moments Q,/ of the 

T-S solution is clear. If this correspondence is true the next moment willl be 

(4 ·15) 
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114 Y. Tanabe 

§_5. Discussion 

In the last section we have shown that if Hansen's potentials are expanded 

1n the inverse powers of the distance from the source, the resulting expansions are 

of the form of multipole expansions in the Newtonian limit. Then the question 

arises as to whether Hansen's potentials or harmonic coordinates have any particular 

meaning concerning the multipole expansion. The answer is that since we are 

only concerned with the Newtonian order, i.e., the order m, other potentials and 

other coordinates which differ from Hansen's potentials and harmonic coordinates 

only in higher order in m are also permissible and will give the same results. 

For example, in a previous paper15) the multipole expansion of the potential 

(g00 -1) /2 in harmonic coordinates are obtained with the same results as that 

given in this paper. The coordinate systems used by Voorhees7l or Tomimatsu­

Sato3l or Kinnersley-Kelley12) are approximately equivalent to harmonic ones in the 

above sense. This is the reason why their results agree with ours. However, the 

calculation is simple for Hansen's potentials and our method of using harmonic 

coordinates is somewhat general and straightforward in the sense that harmonic 

coordinates are well-defined for every solution and require no particular technique 

in choosing the coordinate systems which admit multipole expansions. 
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