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Multipole moments, polarizabilities and anisotropic long range
interaction coeflicients for N,}

by FRED MULDER, GERARD VAN DIJK and AD VAN DER AVOIRD

Institute of Theoretical Chemistry, University of Nijmegen,
Toernooiveld, Nijmegen, The Netherlands

(Recerved 15 November 1978)

This paper contains results for the permanent multipoles, the multipole
polarizabilities and the related anisotropic long range interaction coefficients
C;s to Cpy (complete) for the nitrogen molecule. The elecirostatic, induction
and dispersion interaction coefficients have been calculated using ab initio
SCF wavefunctions ; better estimates for the dispersion terms have been
obtained by an approximate procedure, which uses the accurate (semi-)
empirical data available for C¢ and the dipole polarizability, in combination
with the ab initio results. The pure quadrupole—quadrupole anisotropy
appears to be substantially modified by the dispersion anisotropy and, to a
smaller extent, by the higher multipole electrostatic interactions ; the induc-
tion energy can be neglected. The dispersion anisotropy factors y; and
y10, are much larger than y,, due to the occurrence of the (completely aniso-
tropic) mixed-pole terms. ‘The recently proposed non-empirical Unsold
method yields results which support applications to larger molecules.

1. INTRODUCTION

In the past few years there has been a rapidly increasing interest in the inter-
molecular potential for nitrogen. Quite a variety of model potentials with
different parameters have been proposed and applied to the calculation of the
properties of solid nitrogen [1-16] and, in fewer cases, those of liquid [17-20]
and gaseous [12, 21-23] nitrogen. (A review, including an extensive list of
references, is given by Scott [24]. Also the recent article by Raich and Gillis
[25] is a source of detailed information, in particular with respect to the form of
the potential.) All the potentials have in common that most of the parameters
have been fitted to experimental quantities, notably the cohesion energy, the
crystal equilibrium structure, the lattice frequencies, thermodynamic properties,
the liquid structure factors, the second virial coefficient and viscosity data.
The most frequently used model is an atom-atom potential of the Lennard-
Jones (6-n) [3, 4, 7, 12, 13, 17-19, 22] or the Buckingham (6-exp) type [8, 15].
Often the molecular electrostatic quadrupole~quadrupole interactions [5, 9-11,
14, 20] have been added in order to improve the orientational dependence of the
potential. Sometimes this quadrupole-quadrupole term is part of a molecular
or semi-molecular approach [1, 2, 6, 16, 21, 23], in which, in a few cases, the
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anisotropies arising from R—¢ dispersion [1, 6, 16, 23] and R~8 induction interac-
tions [16, 21] have also been included.

Nevertheless the intermolecular potential of nitrogen is not satisfactorily
established. The remaining discrepancies between the calculated and the
experimental data should probably be ascribed mainly to defects in the aniso-
tropy of the potential [15, 20, 23-25]. Although some recent studies have
concentrated on this topic [25-28] by computing pair potentials for different
relative orientations of the N, molecules, the problem is still not settled at all.
For instance, Evans [23] concludes that anisotropic corrections to the dispersion
interaction have a larger effect upon the second virial coefficient than the inclu-
sion of the electrostatic quadrupole interaction. Cheung and Powles [20]
speculate that the dispersion anisotropy, which partly cancels the quadrupole
interaction, is required to remove the discrepancies in the specific heat and the
thermal pressure coefficient of the liquid. On the other hand, Raich and Gillis
[25] state on the basis of their results, that the anisotropic dispersion corrections
may be significant for some particular orientations, but that they are quite small
for nearest-neighbour pairs in the crystal (for the ethylene crystal we have arrived
at a similar conclusion with the aid of ab initio computations [29]). At any
rate, we can tell, on the basis of our previous results for Hy~He and H,-H, [30]
and C,H, [29, 31], that important higher multipole anisotropic interactions
probably occur, also in Ny—N,, which have not yet been calculated.

In [30] a closed expression for the orientational dependence of the multipole
long range interaction coefficients of X state linear molecules was obtained as a
specialization of the formula for arbitrary molecules [32, 33]. In this paper we
apply the formalism of [30] to the N,~N, dispersion and induction multipole
interaction coefficients C, for n=6, 8 and 10. The anisotropy factors yg, vg
and v,,, describing the orientation dependence of the (quadratic and mixed-pole)
terms [27-35] occurring in Cg, Cg and Cy,, are compared with the anisotropy of
the electrostatic interaction coefficients C;, C, and C,. The molecules are
described by Hartree-Fock LCAO wavefunctions with a specially optimized
AQ basis.

2. MULTIPOLE MOMENTS AND POLARIZABILITIES

The N, molecule has been studied extensively at the SCF level [36-43]. It
is well-known from Dunning’s work [39-41], that the quadrupole moment of N,
can be calculated in good agreement with the experimental values only if d
functions are included in the AO basis. We have added different sets of atomic
polarization functions to Dunning’s (9s, 5p) basis set contracted to a [4s, 3p]
basis [39]. For the ground state wavefunction occurring in the multipole
moments (1) these polarization functions have been optimized by minimizing
the SCF energy, this resulted in the basis sets 4 through G given in table 1;
for the second-order properties which also involve excited states, optimum
scaling parameters for the polarization functions have been obtained by maximiz-
ing the (quadratic) multipole polarizabilities (in accordance with Hylleraas’
variation principle, see [30]). This procedure yielded the basis sets of table 3,
which are identical with the basis sets of table 1, except for the exponents of the
polarization functions. All calculations have been done with the IBMOL-5
program [44] and the multipole properties program MULTPROP [45].
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Table 1. Calculated multipole moments (a) and SCF energies, compared with available
literature results.

AQ basis () <Qz,o>/e a,? <Q4,o>/e ayt {Qs,0>le as® Escr/En

4) (9, 5) >[4, 3], Dunning (c¢) —-1.792 —6-005 -10-529 —108-8877
(B) A+1d, ta=2-70 -1-231 —-6-774 —14-442 —108-9665
(C) A+(2d) »[1d], {a=2-40 -1.015 —-7-160 —16-013 —108-9723

(Dunning, {a=2-40) (d) (—1-036) (—) (—) (—108-9716)
(D) A+Q2d) ~[2d], {a=2-40 —1-000 —7:349 —17-425  —-108-:9732

(Dunning, {a=2-20) (d) (—0-992) ) ) (—108-9732)
(E) (9,6,2)>[5,4,2],{a=2-40(e) —0-945 —-6-779 —15-575 —108-9752
(F) (9, 6, 3)—>[5,4, 3] (e) —0-850 —-6-312 -11-892 —108-9770
(G) D+1f, £y=2-80 —1-051 —-7-782 -17-109 —108-9762

Cade, Sales, and Wahl (f) —0-947 —6-84 — —108-9928

Christiansen and —0-940 — — —108-9939

McCullough (g)
Experimental (%) —-1-04 — —
Experimental (7) © —-1.00+0-14 -8-0+2-7 —_

(a) Defined according to formula (1) ; all computations have been done using the experi-
mental equilibrium distance : 2-068 aq, [46].

(b) Convention: ( ): uncontracted: [ ]: contracted. The scale factors I, which
have been varied to minimize the SCF energies, determine the GTO exponents «; by the
scaling relation [47] : a;={? xi (for x; we refer to our own tables of STO-n(GTO) expan-
sions of polarization functions [30]). For the angular part of the GTOs we use (real)
spherical harmonic functions.

(¢) Reference [39].

(d) Reference [41].

(e) The (9s) =[5s] contraction of Dunning [39] has been used; an extra diffuse p
function («p=0-0515) has been added. In basis F an additional diffuse d function (x¢=
0-2931 ; {a=1-50) has been included.

- (f) Reference [38]; the quadrupole and hexadecapole moments have been calculated
by Ng et al. [48].

(g2) The lowest SCF energy for N, to date, obtained from numerical HF calculations
[43].

(7)) From the large variety of measured values this is the most widely quoted result,
observed in different experiments [49-51].

(7) These results have been obtained by Birnbaum and Cohen from far-infra-red spectra
[52]. The spread in the observed values is connected with the results for different inter-
molecular N,—N, potentials assumed in [52].

The tabulated permanent multipole moments (table 1) are defined on the
basis of Racah spherical harmonic multipole operators [53] :

0 dm \ LY, W(7)]0 1

@iy =01 (77) " L 2t YinlfIO, )

where the summation over ¢ runs over all particles, electrons and nuclei, in the
molecule with charges Z; and position r; ; #; represents the angular coordinates
of r; (explicit expressions for Y, ,, up to /=6 inclusive are given in [54]). Table
1 demonstrates once more that the AO basis should contain at least two sets of
d functions in order to obtain good agreement with the experimental quadrupole

P2
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moment, {(;,>. (The exponents of these polarization functions are deter-
mined by applying the scaling relation [47] to our tabulated GTO expansions of
STO’s [30], which are slightly more diffuse (for a fixed {) than the corresponding
functions listed by Dunning [41]. The SCF energy decreases slightly by using
the polarization functions of [30] rather than those of [41], quite similarly to the
H, case [30].) 'The hexadecapole moment, (Q, >, is also in good agreement
with the proposed experimental range of values [52], but it should be mentioned
that the latter are subject to rather large uncertainties. The addition of an f
polarization function (AO basis G) was not really necessary ; such an enlarged
AO basis is essential, however, for the calculation of higher multipole polariza-
bilities, as will become clear in the sequel. In the AO basis sets E or F we
had hoped to find an AO basis which describes both the permanent multipole
moments and the multipole polarizabilities equaily well ; neither of these
attempts was really successful and since we did not want to extend the AO basis
even more, we left this idea. In tables 1 and 2 we compare our results with
other ab initio calculations at the SCF level. Among the several studies of N,
including electron correlation two papers have considered the effect of correla-
tion on the permanent multipoles. They find opposite effects, however. An
MCSCEF calculation [55] yields a reduction of Q, , from —0-97 to —0-91 e q,?;
the CI computation of [56] leads to an increase of O, , from —1:16 to —1:35 e a,?
(the results of [56] for Q, , are : —8-86 (SCF) and —8-42 ¢ a,* (CI)).

Using the multipole operators O, ,, of formula (1), we define the multipole
polarizabilities by :

all’mzz ;l <O|Ql,m‘k><k|Ql’ —m|0>(Ek'—Eo)—ly (2)

where we distinguish between quadratic (!=10') and cross or mixed-pol: (I#1])
polarizabilities. The best results for N, were obtained with method I of [30],
(uncoupled Hartree—Fock) in which the states |k> are represented by single
configuration wavefunctions and the excitation energies (E¥ — E°) are replaced
by differences of orbital energies. For other small molecules the alternative
and theoretically better methods 11 and I11 of [30] have yielded the best results,
whereas the values of method I were smaller by a factor of 0-7 (He, H, [30],
ethylene [31], formic acid [57, 58]). For N, the same ratio has been found [59],
and hence the polarizabilities calculated with the methods II and III are too
large. It is evidently somewhat fortuitous that method I yields the best results
for N,.  Results obtained by methods I-111 are to be regarded as approxima-
tions to the coupled Hartree-Fock SCF values. (Method II represents the
states |k) in (2) by the eigenvectors of a Configuration Interaction calculation
over singly excited states and E* by the corresponding eigenvalues ; method II1
uses single configuration wavefunctions |k> but takes expectation values over
the exact hamiltonian including electron repulsion for the E* (for references
see [30] and [31]).) We note that the finite field method [63], which is a
coupled Hartree-Fock method, yields reasonable values for the dipole polariza-
bility of N, (see table 2). There is the further question of how the results
might be modified by inclusion of electron correlation. The only CI calcula-
tion of the dipole polarizability of N, [56] known to us predicts that the effect
is of the order of 5 per cent [x;;o(Cl)—ay(SCF)=—047 e a2 Ey';
111(CT) = a;1,(SCF) = + 0-46 ¢* a2 E}; ], although the authors point out un-
certainties in currently-available methods of calculation of this effect. These
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results are in agreement with the conclusion of Werner and Meyer [60] that,
in the finite field method, electron correlation changes the dipole polarizability
of small molecules by not more than 10 per cent. Werner and Meyer also
predict that the CI dipole polarizability will be larger than SCF, which is correct
for the average dipole polarizability of [56] but not for both components.

Our results for the dipole polarizability of N,, obtained with the largest
optimized AO basis set in the orbital energy differences method, are not as good
as the finite field values (listed in table 2). In particular the anisotropy is
overestimated to a larger extent. This could equally apply to our calculated

Table 3. Quadratic multipole polarizabilities and completeness ratios (a) for different
optimized AQO basis sets ().

A4 B D’ E’ F’ G’ (¢)
La=135 (3=125 4=1-50 £3=1-50 {3=1-50 {g=1:50
(e’ =240 [;=125

a110/€® @p? En~t 1736 1571 1511 1560 1568 1569 1573
(18-13)  (16:24) (15-65) (15-78) (15-87) (15-78) (15-91)
apnfe? ag? Ex~t 4-08 813 8-72 866 873 378 876
(895)  (919)  (966)  (8:86)  (8:94)  (892) (894
dgsofe® apt En—! 367 54-2 57-2 58-4 60-8 613 647
(647)  (60-1)  (621) = (61-2)  (63-5)  (63-6) (65-9)
wsmfe? apt En—l  33-8 56-6 60-4 64-2 65-7 655 660
(73:3)  (61:3)  (63-2)  (652)  (66:9)  (66-6) . (66-6)

tgnafe® ag® En—1 6-3 15.0 16-2 16-0 182 185 282
(32-8)  (279)  (30-5)  (288) . (32:2). (32:6) (30-9)
agmole® ag® En—t 276 449 465 527 551 555 669
(632) (575) (587) (624) (664) (658)  (695)
aggr/e? a® En—t 175 353 374 450 494 497 574
, (694) (524) (541) (595) (648) (645)  (618)
agssfe® ag® Ent 121 217 213 257 284 287 408
(556) (392) (385) (451) (501) (503)  (437)
sgss/e® ap® En—? 0 58 78 80 82 87 128 (¢)
0) (232) (285) (258) (275) (283)  (236)
CR, \ 0-71 0-92 0-93 0-98 0-98 0-99 0-98
CR, 0-42 0-81 0-84 0-88 0-87 0-88 0-97
CR, 0-28 0-63 0-60 0-65 0-65 0-65 0-88 (¢)

(a) The isotropic completeness ratios CR; are defined according to formula (3), in
which both STM and CM are taken isotropically. 'The values in parentheses have been
obtained by the theoretical Unséld procedure [29, 31], which corrects for the incompleteness
of the AO basis sets.

(6) The AO basis sets have been optimized by varying { (see text). 'They are described
in more detail in table 1; for the F’ basis {a=1-50 applies to a double uncontracted d set,
whereas {4’ =240 belongs to a single d function.

(¢) The basis is far from complete for the octupole component Q; ;, since atomic g
functions should be included in order to make Q; ; transitions possible from the occupied =

orbitals. 'This is also the main reason why CR; is still relatively low.
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higher multipole polarizabilities, listed in table 2. As a consequence we must
be cautious in the interpretation of our results for the anisotropic long range
interactions. The = contributions to the quadratic multipole polarizabilities,
which are also presented in table 2, decrease* from 65 per cent (for &), via
36 per cent (for &,) to 31 per cent (for &;). The mixed-pole polarizabilities
have 7 and o parts, which have opposite signs for most of the components.
The optimum AOQO basis set G’, used to obtain the results of table 2, has
been determined by searching the exponents { of the atomic polarization func-
tions which maximize the quadratic multipole polarizabilities [30], giving
priority to the lower multipoles. In addition we have aimed at a complete AO
basis set for the different multipole operators by calculating the completeness

ratios (CR) :
STM,;.,, % €0 Qy [k <E|Qr, [0
CI\'Ill'm B <0|Ql’le,,_m|0> — <OIQ1,m|O><O|Qz',_m|O>’

which should approach unity as close as possible [30] (STM stands for sum of
transition moments, CM for closure moments). Some results of the examina-
tion of a number of AO basis sets (of the same type as those of table 1) have been
collected in table 3. It can be seen that d functions are required for a satis-
factory description of dipole transitions, in particular for the Q, ; component ;
the optima occur for rather diffuse d functions. The quadrupole and especially
the octupole properties are improved significantly when (rather diffuse) f
functions are included in the basis. For the Q,, and Q,, operators this is
strictly necessary, since only then are = ->¢* transitions possible ; similarly,
£ functions are required in order to describe the Q,; transitions properly,
but we did not actually include such functions. It appears from table 3 that
the polarizabilities are much less sensitive to the quality of the AO basis when the
non-empirical Unsold procedure [29, 31] is applied, which confirms our earlier
conclusions for the ethylene molecule [31]. This applies both to the quadratic
(see table 3) and the mixed-pole polarizabilities. For instance, basis B’ yields
polarizabilities which are smaller than those of basis G’ by at most 50 per cent
(for ocggy, o335 and ayy,), calculated in the sum-over-states approach. The use
of the Unsold procedure reduces these deviations to 10 per cent for oy, and
aze and 20 per cent for ay,,, the latter deviation being the largest observed
between the Unsold results for the basis sets B’ and G'.

CRll'm:

)

3. ANISOTROPIC LONG RANGE INTERACTIONS

According to [30] we can write the long-range interaction energy of two X
state linear molecules as follows :

) min (L4, L)
AE(R) 0A’ d’A’ GB) ¢B)= Z Z CﬁlALBM R
. n La Lp M=0

x PY(cos 8 ,)P¥ (cos 05) cos M(¢,—d5), (4)

where P}/(cos ) are associated Legendre functions [53] and CZ+L*M are long
range interaction coefficients. The polar angles (6, ¢,) and (85, ¢5) define
the orientations of the molecular axes with respect to a global coordinate system.
The latter is chosen such that the z axis coincides with the vector R which
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connects the centres of mass of both molecules (pointing from 4 to B). We
can distinguish between (first-order) electrostatic interaction coefficients and
(second-order) dispersion and induction-interaction coefficients. For mole-
cules which have a centre of inversion the electrostatic interactions occur only
for odd n; the second-order interactions occur only for even n. The electro-
static coefficients are given by [30] :

L, +Lg)!
Chipt = (= 12—y (e P ) €01 Qe )

whereas the second-order interaction coefficients are summations of different

terms :

(a+la+ls+l's+2=n)
C%ALBMZ CLA!'ALA ; isl'slp; M' (6)

lA, l’[], IB, l,B

The coefficients contributing to the summation (6) are :
LalaLas Ial'slos M _ _ plal'alsl’ "Rk 0 ks _ 17051
C1A+l':+lBB+lI§B+2 - —ngij;}WBkzk (E ‘-E A+E E B)
A4, RB
0.4k 05ks
X Taaora, 0 Tasors o (7)
Lal’ alsl’n

where {737 are algebraic coefficients (tabulated completely up to I, +1',+
Ig+1'p+2=10 inclusive in appendix A 1 of [30]). In the quantities 7T}, o
either transition multipoles (in the dispersion and induction coefficients) or
permanent multipoles (only in the induction coefficients, where |k)>=|0> for
one of the molecules) are coupled :

Tirr,e= L A0[Qu |k <k|Qu, 0>, m; I, —m|L, 0) )

with L=[I-U'|, [I-I'|+2, ..., I+0, and (I, m; ', —m]|L, 0) is a Clebsch-
Gordan coefficient [53]. In expression (7) we distinguish two different classes
of terms, quadratic ones (I,=10', and I;=1}) and mixed-pole or cross terms
(all other cases) [27-35]. Only the former contribute to the isotropic part of
the interactions, C,,°°°, whereas the latter are completely anisotropic [32, 33, 35]
and strongly enhance the anisotropies due to the quadratic terms [29-31].
Usually the anisotropies of the interactions are expressed as fractions of the
isotropic coefficients (anisotropy factors) :

,y’I:ALBM — C,Z;ALBM/CSOO. (9)

With the now-available monomer multipole moments (in basis G, table 1),
transition moments and excitation energies (in basis G’, table 3) we have calcu-
lated the long range interactions, contributing to (4) up to Cy, inclusive, with
our program VDWAALS [71], which can deal with molecules of arbitrary
symmetries in arbitrary orientations. In table 4 we have listed the isotropic
and the lowest (L L) anisotropic terms of the dispersion and induction interac-
tions. Table 4 is another illustration of the crucial role of the mixed-pole terms
in determining the anisotropy factors y4 and y,,. The relative contributions
of these mixed-pole terms to the ys are approximately the same as we have found
for H, [30], i.e. 65-70 per cent (almost equal ratios have recently been found by
Meyer for H, with correlated wavefunctions [75]). The convergence of the
dispersion anisotropy factors y*+=* with respect to L , and L, although slightly

“slower than for H,, is still very fast: the first higher (L L;M) anisotropy
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Table 4. The isotropic dispersion and induction interaction coefficients and their lowest
(L 4L g) anisotropy factors (a), calculated with the AQ basis sets G and G’ (b).

_ CﬂOOO/
Eu aon
(isotropic) Y200 ypt20 yp2! yn?22
Dispersion
n=6 92-66 0-165 0-087 -0-019 0-0024
(Lit.) (73:39)(c)  (0-106)(d) (0-036)(d) (—0-0080)(d) (0-0010)(d)
n=38 2303 0-689 0-214 -0-030 0-0013
mixed-pole — 0-459 0-148 —0-016 —0-0020
(Lit.) (1625)(e)
n=10 62545 1-025 0-759 —0-083 0-0027
mixed-pole — 0-722 0-669 -0-067 —0-0032
Induction
n=8 29-69 0-655 0-300 —0-060 0-015
n=10 632-6 1.923 1-602 —0-169 0-001
mixed-pole — 1-263 1-208 —0-101 —-0-025

(a) Defined according to (6) and (9); the cross or mixed-pole contributions to the
anisotropy factors have been given separately.

(b) The AO basis sets are described in tables 1 (basis G, for the permanent multipoles)
and 3 (basis G’, for the transition multipoles).

(¢c) Accurate semi-empirical value of Zeiss and Meath [72], which is very close to the
earlier semi-empirical result of Langhoff and Karplus [73]: 73-8 En a,®; other recent
theoretical values are : 97-80 Ey a,® [68] (Kirkwood method, see caption (¢) of table 2);
61-9 Ew a,° [70] (equations-of-motion method, see caption (f) of table 2).

(d) Semi-empirical estimates of Langhoff, Gordon and Karplus [74]; other recent
theoretical values are : 20 =0-176, 7,22 =0-106, 42! = —0-024, y4***=0-0029 [68].

(e) This value has been proposed by Thakkar and Smith [21]; another theoretical
value is : 2620 Ey a,® [68].

factors, which have been omitted from table 4, are: yg2%0= —0-045, 2=
—0-032 (<22 and y,1%°=0-111, ,0%20= —0-021 (<Ky,,2°). The more
strongly anisotropic induction terms show a significantly slower convergence
of the anisotropy factors, but fortunately the induction energy itself is very small
(table 4) and can safely be neglected (a similar conclusion was drawn for H, {30]).

Only for Cq are data available, which can be used to check the accuracy of
the results of table 4. Both the isotropic Cg¢ and its anisotropy factors y, are
too large ; in particular the anisotropy factors show substantial deviations from
the previous semi-empirical estimates of Langhoff, Gordon and Karplus [74].
These deviations can be understood and, at the same time, corrected (approxi-
mately) if we apply the mean excitation energy approximation [31] to the iso-

tropic dispersion coefficient C¢9° as well as to the anisotropy factors y42°? and
220 .

Ax?

Ye _
Ceo% = — 372, (10)
and :
ye200=1 A"a"'z—-ZA¢al2+2—A Ay (A +A) : (11 a)
Aa?
y220=1 [AIIaII2+ALaL2_4A A e e, /(A +A_L)] (11 b)
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(ye?= —§y6®®"; ye®2=ye?2® (see [30, 76])). For convenience we have
introduced the following notations: o, =ayg; o, =ay;;; &= ; similar
definitions apply to the mean excitation energies A, which are defined as A=
2 STM/a, isotropically as well as componentwise (see formulae (2) and (3)).
If the mean excitation energy is assumed to be isotropic (A, =A, =A), it can
be eliminated from expressions (11 a) and (11 ), yielding the simple approxi-
mate relations :

oy — o
7200 = 113& I (12 a)
— 2
o220 = (F1 = %0)" "3_:‘i) — 3 (12 b)
: &

The expressions (10) and (11), although in a slightly different notation are due to
London [77, 78]. (Similarly orientation dependent formulae have been derived
for some specific higher dispersion coefficients of linear molecules (which are
increasingly unwieldy though): (1,0',; Izl'p)=(11; 22), (22; 22) and (11;
33) by Van der Merwe [79, 80]; (11; 13) by Koide and Kihara [27]. Koide
has derived closed expressions for all the anisotropic long range interactions [31],
which are very similar to ours [30], both being general and much more convenient
than the earlier formulae.)

The isotropic Cy dispersion coefficient which we have calculated is 25 per cent
larger than the accurate semi-empirical value [72], in spite of the fact that our
calculated isotropic dipole polarizability is smaller than the experimental value
by 6 per cent. Apparently, according to formula (10), our calculated mean
excitation energy A is much too large. Indeed this is the reason why the
orbital energy differences method has been reported to yield too small polariza-
bilities for a number of molecules [30, 31, 57, 58]. 'The good agreement for
our calculated &; for N, with the experimental value should therefore be ascribed
to an approximately equal overestimate of both the excitation energies in the
denominator and the transition multipoles in the numerator of the sum-over-
states expression (2) for «.

In table 5 we show some results for N, and H,, obtained with the different
expressions for the anisotropic interactions (7), (11) and (12). Approximation
(11) yields anisotropy factors which are hardly different from the full double
sum-over-states results (expression (7)). (This result also confirms the useful-
ness of the Unsold method in relatively small AO basis sets for estimating the
anisotropic second-order interactions, by analogy with the calculation of the
polarizabilities (table 3). We have obtained results in the Unséld approach
with different AO basis sets, which are very close to our best results (basis G’) ;
the Unsold anisotropy factors especially are remarkably constant. The Unsold
method has a great computational advantage over the sum-over-states method,
since the double summations over all the excited states are avoided. As a
consequence the CPU time (on an IBM 370/158) required for the computation
of all the long range interaction coefficients C¢—C}, in one particular orientation
of the molecules is reduced from 2400 s (sum-over-states, basis G’) to 1-5s
(Unsold.) Approximation (12), which has been used frequently [1, 23, 25, 27,
28, 34, 82, 83] because of the lack of information on the anisotropy of the mean
excitation energy, deviates significantly, however (larger by 17-52 per cent than
the results of expression (7)). Indeed the assumption of an isotropic mean
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Table 5. The anisotropy factors for the dispersion coefficients Cy of H; and N, calculated
with different approximations (a).

H, N,

~ G/ —C/
6 200 220
Ewu ao® 76" -0 Exu ay Ve Ve

(I) Expressions (7), (9) (b) 1418 0120 0-044 92-66 0-165  0-087

(IT) Approx. (10), (11) 14-74  0-117  0-042 99-40 0-163  0-086
(IIT) Approx. (10), (12) 1474  0-140  0-058 99-40 0-210 0132
(IV) (12) with expt. « (¢) — 0-128  0-049 — 0-124  0-046

(V) Corrected 12-14  0-107  0-036 73-39 0-096  0-030
(VI) Literature (d) 12-14  0-105  0-035 7339  <0-106 <0-036

(0-112) (0-039)

(a) The first three lines contain our results according to the exact formula (I), the
approximative expressions (10) for C¢*° and (11) for the anisotropy factors (II), and the
approximative expressions (10), and (12) for the anisotropy factors (III). In line IV
the experimental @, «, and «, have been used in approximation (12). The corrected
results, listed in line V, have been obtained according to the procedure described in the
text (part (ii)).

(6) Results for H, from [30].

(¢) Experimental as from [76] (for H,) and [61] (for N,).

(d) For H,: Meyer’s theoretical results [76] (in parentheses the semi-empirical esti-
mates of [74]). For N, : Cg%° estimated by Zeiss and Meath [72]. The vy, are those of
[74], which also contains values in approximation (12): y42°°=0-131, 9,22°=0-051; the
corresponding results of line IV are slightly smaller than the latter since the recently
remeasured static dipole polarizability anisotropy is slightly smaller than the value used
in [74]. As a consequence the results in line VI for N, are probably too large ; another
argument, underlining this statement, is that the H, results of [74], without approximation
(12), are larger already than the accurate values of Meyer.

excitation energy is not valid. For H, our calculated As are 0-56 Ey (parallel)
and 0-63 Ey (perpendicular), whereas from the data presented in [76] the follow-
ing results are obtained : 0-52 and 0-61 E;.  Our corresponding results for N,,
0-94 and 1-20 Ey, are much larger (partly due to the method used), but also the
anisotropy is larger than for H,. Nevertheless the approximate relations (12)
are useful as a first approximation and show in a simple way how a large relative
anisotropy of the dipole polarizability generates large anisotropy factors ys.

In order to improve our ab initio results we should include the effects of
electron correlation in the sum-over-states (7), both in the wavefunctions |&)
and in the energies E¥. This is not easily done, since the use of (7) requires
the knowledge of a very large number of excited states and their energies.
Instead we have adopted another approach for the present, because it will be
useful to have the best estimates for the higher dispersion coefficients and their
anisotropy factors. These estimates have been obtained in a way which is
suggested by the results of table 5 and described as follows.

(1) All the isotropic dispersion coefficients (which can be represented by
expressions similar to (10)) are reduced by a factor 73-39/92:66, the
ratio of the accurate semi-empirical C¢% and our calculated Cg°°°.
The underlying assumptions are that &,, &, and &; are equally under-
estimated and that A,, A, and A, are equally too large.
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(i1) The anisotropy factors for Cy are obtained by multiplying yg v (see
table 5) with the corresponding ratios yg 11/ye ;- Hence we assume
that the corrections to expression (12) for the anisotropy in the excita-
tion energies are the same for the ys resulting from the experimental
polarizabilities and for those from our calculated polarizabilities. For
H, as well as for N, this gives quite good agreement with the available
semi-empirical and ab instio data (table 5, note caption (d)).

(iii) For the higher multipole dispersion anisotropy factors, y,2°0 and y,2*¥

we probably cannot do much better than multiply our sum-over-states
results (table 4) with the same correction factors as for Cg: yg v/ve,1-
For H, the resulting anisotropy factors, yg and vy, are slightly smaller
now than the results of Meyer including electron correlation [75]
(compare, for instance, the corrected 4200, 9,,200=0-223, 0-240 with
Meyer’s values : 0:264, 0-294). In following this procedure we suppose
the deviations in the anisotropies of all the higher multipole polariza-
bilities, for which no experimental information is available, to be the
same as for the dipole polarizability.

Table 6. Anisotropic long range interaction coefficients (a).

Cs,elst/ Ceydisp/ C7,elst/ Cs,disp/ Cs,elst/ Clo,disp/
LaLpM Ena,® () Enasb(c) FEua) () FEuas®(c) Ex ay® (b) Eq a,' (¢)

000 — -73-39 — — 1825 — —49538
200 — —7-04 — -731 — — 29555
220 6-623 —2-20 —_ —135 — — 12969
221 —1-472 0-489 — 18-7 — 1413
222 0-0920 —0-061 — —0-81 — —45-4
400 — — — Negl. — Negl.
420 — — 122-64 Negl. — Negl.
421 — — —16-35 Negl. — Negl.
422 — — 0-681 Negl. — Negl.
440 — — — — 4239 Negl.
441 — — — — —339-2 Negl.
442 — — — — 9-42 Negl.
443 — — — — —0-192 Negl.
444 — — — — 0-0030 Negl.
600 — — — — — Negl.
620 — — — — 503-3 Negl.
621 — — — — —47-93 Negl.
622 — — — — 1-498 Negl.

(a) Defined according to the formulae (5) for Cn eis¢ (electrostatic) and (6) and (7) for
Ch,aisp (dispersion) ; the induction terms have been omitted from the table since they can
be neglected with respect to the dispersion interactions (see table 4).

(b) Calculated with the {Q > results for basis set G (table 1).

(c¢) Estimated from the ab initio results of table 4, which have been corrected according
to the procedure described in the text. The higher (L 4LpM) anisotropic interactions can
be neglected both with respect to the lower (. 4L M) terms and the corresponding (L 4L gM)
electrostatic interactions. For instance, Cg*2 is not larger than 20-3 Eu o8, and C;o**®
and C,®% are as small as — 331 and 69 Eu a,!° respectively (applying the same correction
factor used for the (22M) terms).
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Since the higher (L ,L ;M) dispersion anisotropy factors as well as the complete
induction interaction may be neglected and the electrostatic interactions do not
require a correction (the calculated permanent multipoles are close to the
available experimental data) we arrive finally at table 6, which contains our best
estimates for the main contributions to the anisotropic long range interactions.
The estimates for the anisotropic dispersion interaction coefficients are believed
to be low.

1260)
b+ Q1020)

60°5- 30°
5

lopwegor|  |Teparepe|  |Leprtegn:
P=80° 9=90°(0°) 9=0

GO"e‘A 30°

Anisotropic long range interaction energy AE (equation (4)) at R=10a,. The different
contributions to the energy are indicated in the figure by (LaLgM). The a’, ¥’
and ¢’ curves refer to calculations including only the C; dispersion and the C;
quadrupole~quadrupole (¢g—q) interactions. For the a, b, ¢ and d curves we have
used the Cg, Cg and Cy, dispersion and the C; and C, electrostatic interactions.

The anisotropic interaction coefficients CL*L*M are those of table 6.

The anisotropic interaction coefficients of table 6 have been used to study a
number of relative molecular orientations at R=10q, (the figure). At this
distance charge penetration effects, which strongly modify the orientation
dependence at short range, can safely be neglected [48, 59]. Even at this
relatively large distance (compare the distance of the isotropic minimum :
7-8-8:0 a4 [25]) we observe from the figure a rather strong deviation from the
pure quadrupole-quadrupole (g-¢) anisotropy. The modifications mainly arise
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from the (200) dispersion anisotropy, especially if the higher dispersion terms
are included (compare the curves 4’ and ¢/, and & and ¢ respectively). Further-
more the (22M) dispersion anisotropy reduces the (22M) (g—g) interaction,
although to a rather small extent only (at R=10 q, the total (220) dispersion
contribution is —8 per cent of the (220) (¢—¢) interaction). For N,, contrary
to H, [30], the higher electrostatic multipole terms cannot generally be ignored
(compare the curves ¢ and d). All these effects support the suggestions made
by Cheung and Powles [20], that the remaining discrepancies in their calculated
thermodynamic data should be corrected either by using a quadrupole moment
slightly smaller than the experimental value or by adding the dispersion aniso-
tropy to the pure (¢-¢q) anisotropy.

The figure shows two competitive dimer geometries, which have a large long
range attraction peak, a T-shaped one (geometry II) and a shifted parallel one
(between the geometries IIT and IV with 6, =60;~45°). Similar results were
obtained for other quadrupole molecules [27-30, 84], including N, [28]. The
latter, semi-empirical, whole range potential calculations and those of [27],
which differ in their choice of the molecular shape occurring in the Kihara core
model potential, yield considerable differences for the N, dimer; in [27] two
comparable minima occur for the T and X geometries (our geometries 11 and I),
while in [28] this happens for the same two geometries, which peak in the figure.
(In both references the dispersion anisotropy is taken into account according to
approximation (12); the resulting y4 values are substantially too large (e.g.
y620°=0-176). Moreover, the extra anisotropy due to the (11; 13) mixed-
pole dispersion term (which is called octopolar induction in [27, 28]) is included
in a very inventive but rather approximate way ; in particular the assumption,
that their model parameters /, and /,, which determine the ratios of «3,, and
11 are equal, is not confirmed by our results, neither for H, [30] nor for N,
(where we find [, =1-37 a,2 and [, =225 a,?). As a consequence, their esti-
mates for a530=364¢>ayt Eg~! and o5, =166 € a,* Eyy~ [27] differ signifi-
cantly from our calculated results (table 2).) The recent paper by MacRury
et al. [26] also contains curves for some geometries (I, II and IV), but since the
dispersion anisotropy has not been included explicitly in any of their model
potentials, the latter show an orientation dependence which is too small, at
least at long range. Raich and Gillis [25] have obtained the following order of
geometries with increasing long range attraction at R=104,: IV, I, III, II,
which differs from ours by the interchange of I and III. This seems to be
mainly due to the quadrupole-hexadecapole interaction, which has been included
in our calculations (see the figure, the difference between the curves ¢ and d) ;
furthermore the Cg%0 (=547 Ey a,8) and C}°%° (=2116 Ey a,'°) adopted in
[25] according to the old calculations by Margenau [85] are probably much too
small and the dispersion anisotropy was taken into account in [25] by following
the approach of Koide and Kihara [27], which is subject to some uncertainties
as we have noted. Although, of course, our own results are not free of un-
certainties either, the electrostatic and the Cg dispersion interactions especially
are probably rather accurate. From the experimental side the equilibrium
geometry of the (N,), van der Waals dimer has not yet been established satis-
factorily [86-88]. Long et al. [86] could not provide direct evidence from their
analysis of the I.R. spectrum of the (N,), dimer, but stated that other considera-
tions favour the 7T shaped geometry. The molecular beam electric deflection
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experiments of Novick et al. [87] predict a non-polar (N,), geometry (which
would point to the shifted parallel geometry), but probably the experiments are
not sensitive enough to detect the dipole of the (N,), dimer in any geometry
[87, 88].

The R dependence of the long range interaction in the two geometries under
consideration is given in table 7. Our earlier conclusion that the anisotropic

Table 7. Long range interaction energies (in 10~ Ey) in the T-shaped and shifted parallel
geometries (a), calculated with the anisotropic interaction coefficients of table 6.

LaLsM

Contribution C, %) Distance/a,
LaLgM n 8 (¢) 9 (c) 10 12 15 19 25
000 6 —280-0 —-1381 -73-39 —2458 —644 —1.56 —0-301
8 —108-8 —424 1825 -424 -071 -011 -0-012
10 —46:1 —-14-2 —4.95 -080 -0-09 —-0-01 -0-000
200 6 —~134 —6-6 -352 -118 —-031 -0-07 —-0-014
8 —-21-8 -85 -366 -085 -014 -0-02 -0-002
10 —-13-8 —4.2 —-148 -024 -003 -~0-00 —0-000
T-shaped geometry
22M 6 42 2-1 1-10 0-37 0-10 002 0-005
8 4.0 1-6 0-68 0-16 0-03 0-00 0-000
10 6-0 1-9 0-65 0-10 0-01 0-00  0-000
Disp (total) —469-7 —208-4 —102-82 -31.26 ~7-58 —1.75 —0-324
22M 5 -1011  -561 -33.12 -1331 -436 —1.34 —0-339
42M 7 -73 -32 —-1.53 -043 -0-09 —-0-02 -0-003
44M 9 11-8 41 1-59 0-31 0-04 0-00 0-000
62M 9 -3.0 -11 -041 -0-08 -—0-01 —0-00 —0-000
Elst (total) -996 —56-3 —3347 —13.51 —-442 -—-1.36 —0-342
Disp + Elst ~569.3 —264.7 —136:29 -4477 —-12-00 —3-11 -0-666
Shifted parallel geometry

22M 6 31 1.6 - 083 0-28 0-07 002 0-003
8 1.9 0-8 0-32 0-07 0-01 0-00  0-000
10 21 0-7 0-23 0-04 0-00 0-00 0-000
Disp (total) —476-8 —210-9 -103-87 -31-50 -7-64 —-1.75 -0-326
22M 5 —821 -—456 -2691 —-10-81 -3-54 -—-1.09 —-0-276
2M 7 -17-4 —-7-6 -364 —-1.02 —-021 —-004 —0-005
H“nzM 9 9-4 3-3 1-26 0-25 0-03 0-00 0-000
62M 9 22 0-8 0-30 0-06 0-01 0-00 0-000
Elst (total) -879 -—-49.1 -2899 -11.52 -371 -1.13 -0-281
Disp + Elst —5647 —-260-0 -132.86 —43-02 —11-35 —2.88 —0-607

(a) The T-shaped geometry is geometry 11 of the figure ; the shifted parallel geometry
is that with 84 = 05=45° between the geometries III and IV.

(6) The (000) and (200) contributions are equal for both geometries. If M is not
specified in the label (L4LgM), all different M terms have been added ; if L4 (=L,)#
Lp (=L,) the total result for (L,L,M) plus (L,L,M) is given.

(c) At these distances the influence of charge penstration is already rather large [48] :
for instance, there are (000) and (200) electrostatic contributions of —57-3 and —37-0
10-% En, at R=8 a,, and —6-49 and —4-22 10~% Eg at R=9 a, ; these contributions have
decreased at R=10 g, to —0-70 and —0-48 10-¢ Ey [48).
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higher dispersion terms start to become important already at larger distances
than the isotropic higher dispersion terms [30], is confirmed. This is more
noticeable for N, than for H, and it arises from the larger ratios yg/yq and yy0/ye :
for instance, for y2°° these ratios are 4-18 and 6-22 for N, (see table 6) and 2:08
and 2-24 for H, [30]. For a geometry such as III the relatively larger im-
portance of the higher dispersion terms when considering the anisotropy is even
more apparent, since the anisotropic contribution is then a maximum: the
ratios CgR™%: CgR-%: C;,R'® (at R=10aq,) change from 1:0:25:0-07 to
1:0-38:0-14 when adding the (200) and (220) terms to the isotropic interac-
tions. The observation from table 7 that the higher electrostatic terms are not
important (small and largely cancelling) is somewhat misleading, since this is
not true for all orientations; for example, for geometry III at R=10 a, the
different contributions are 6:62, 2-45 and 0-52 x 10-% Ey;, arising from C;, C,
and C, respectively.

4. CONCLUSIONS

For an adequate description of the long range anisotropy of the N, pair
potential down to the minimum, higher terms in the multipole series usually
applied must be included (cf. the figure and tables 6 and 7). Close to the
minimum the applicability of the multipole expansion becomes questionable,
not only because of charge penetration [48], but also since the anisotropic terms
in the dispersion energy series, C, R~", apparently do not converge with respect
to 7 (tables 6 and 7). This is contrary to the isotropic dispersion energy, for
which the successive C,R~" contributions decrease by a factor as large as 2+4,
even at the minimum (table 7). It is caused by the higher dispersion aniso-
tropy factors which are much larger than those for R=%: for instance, y;,%"=
0-597 > 94200 =0-401 > y4200=0-096 (table 6). The mixed-pole terms, which
are responsible for this effect, strongly affect the induction anisotropy too, but
the complete induction energy appears to be negligible relative to the dispersion
energy (table 4). The (L ,L;M) anisotropic dispersion terms, which can safely
be limited to L,, Ly values not larger than 2, substantially modify the pure
(22M) quadrupole-quadrupole anisotropy ; to a smaller extent also the higher
(L 4LpM) electrostatic terms change the orientational dependence of the interac-
tion energy (cf. the figure).

The figure and table 7 support the recent result of Sakai, Koide and Kihara
[28], that probably two competitive geometries exist for the (N,), van der Waals
molecule, a T-shaped and a shifted parallel one (rotation angles 6 ,=0;~45°).
Since the experimental geometry of the (N,), dimer seems not yet to have been
established [86-88], it is worth focusing future studies of the (N,), dimer on
these two geometries.

In the first instance, the anisotropic N,~N, long range interactions have been
calculated @b initio. The anisotropy of the dipole polarizability and the disper-
sion coefficient Cg¢ turned out to be significantly too large however, due to our
use of SCF wavefunctions, despite the rather large and optimized AO basis set
(tables 2 and 3). Therefore we have applied a correction procedure for the
(an)isotropic Cq, Cy and C,,, which relies on the use of two approximate ex-
pressions for the R—¢ anisotropy factors (formulae (11) and (12)) and the availa-
bility of accurate (semi)-empirical values for Cq and the dipole polarizability ;
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the approximate formula (12), which is frequently used, appears to be rather
crude (table 5). The results obtained via the non-empirical Unséld approach
(tables 3 and 5) confirm the earlier reported [29, 31] usefulness of this method for
calculations of multipole polarizabilities and dispersion interaction coefficients
in limited AO basis sets.

Preliminary results from intermediate range calculations [89] which use the
exact interaction operator instead of its multipole expansion, indicate that charge
penetration effects are surprisingly small for the second-order dispersion energy,
even for distances inside the van der Waals minimum. In the first-order energy,
where such effects are indeed large [48, 89] the extra attraction resulting from
charge penetration is dominated by the exchange repulsion which in absolute
value is 5 to 10 times larger [89]. Altogether, the orientational dependence of
the first-order long range (multipole) interaction energy is considerably modified
in the shorter range, whereas the second-order multipole result is only slightly
affected by charge penetration.

REFERENCES

[1] KonIn, B. C., 1960, ¥. chem. Phys., 33, 882.
[2] WaLmsLEY, S. H., and PopLE, J. A., 1964, Molec. Phys., 8, 345.
[3] Scunepp, O., and RoN, A., 1969, Discuss. Faraday Soc., 48, 26.
[4] Kuan, T. S., WARSHEL, A., and Scunepr, O., 1970, ¥. chem. Phys., 52, 3012.
[5] DonkEersLooT, M. C. A., and WaLMsLEY, S. H., 1970, Molec. Phys., 19, 183.
[6] Goopings, D. A., and HENKELMAN, M., 1971, Can. ¥. Phys., 49, 2898,
[7] Jacosi, N., and ScHNEPP, O., 1973, ¥. chem. Phys., 58, 3647.
[8] Luty, T., and PawLEY, G. S., 1974, Chem. Phys. Lett., 28, 593.
[9] RaicH, J. C., GiLris, N. S., and ANDERSON, A. B., 1974, ¥. chem. Phys., 61, 1399.
[10] EncLisH, C. A., and VENABLEs, J. A., 1974, Proc. R. Soc. A, 340, 57.
[11] KjEms, J. K., and DoLriNg, G., 1975, Phys. Rev. B, 11, 1639.
[12] ZunGer, A., and HULER, E., 1975, ¥. chem. Phys., 62, 3010.
[13] HuLERr, E., and ZUNGER, A., 1975, Phys. Rev. B, 12, 5878.
[14] MepiNa, F. D., and DanieLs, W. B., 1976, ¥. chem. Phys., 64, 150.
[15] FiippiNi, G., Gramacciorl, C. M., SIMONETTA, M., and SurrriTTi, G. B., 1978,
Molec. Phys., 35, 1659.
[16] THitry, M. M., and CHANDRASEKHARAN, V., 1977, ¥. chem. Phys., 67, 3659.
[17] Barojas, J., LeEvesQug, D., and QUENTREC, B., 1973, Phys. Rev. A, 7, 1092.
[18] QueNTREC, B., and Bror, C., 1975, Phys. Rev. A, 11, 272.
[19] CHEUNG, P. S. Y., and PowLes, ]J. G., 1975, Molec. Phys., 30, 921.
[20] CHEUNG, P. S. Y., and PowLss, ]J. G., 1976, Molec. Phys., 32, 1383.
[21] THAKKAR, A. J., and SMiTH, JR., V. H., 1975, Molec. Phys., 29, 731.
[22] PowLEs, J. G., and Gussins, K. E., 1976, Chem. Phys. Lett., 38, 405.
[23] Evans, D. J., 1977, Molec. Phys., 33, 979.
[24] ScorT, T. A., 1976, Phys. Rep. C, 27, 89.
[25] RaicH, J. C., and GiLuis, N. S., 1977, ¥. chem. Phys., 66, 846,
[26] MacRury, T. B., STEELE, W. A., and BErnE, B. J., 1976, ¥. chem. Phys., 64, 1288.
[27] KoIDE, A., and KIHARA, T., 1974, Chem. Phys., 5, 34.
[28] Sakai, K., Koipg, A, and Kiuara, T., 1977, Chem. Phys. Lett., 47, 416.
[29] MULDER, F., and Huiszoon, C., 1977, Molec. Phys., 34, 1215.
[30] MULDER, F., VAN DER AVOIRD, A., and WORMER, P. E. S., 1979, Molec. Phys., 37, 159.
[31] MuLDER, F., VAN HEMERT, M. C., WORMER, P. E. S., and VAN DER AVOIRD, A., 1977,
Theor. chim. Acta, 46, 39.
[32] WoRMER, P. E. S., 1975, Thesis, University of Nijmegen, The Netherlands.
[33] WORMER, P. E. S., MULDER, F., and VAN DER AVOIRD, A., 1977, Int. ¥. quant. Chem.,
11, 959,
[34] BuckiNngHAM, A. D., 1965, Discuss. Faraday Soc., 40, 232 ; 1967, Adv. chem. Phys.,
12, 107.



Downloaded by [University of Montana] at 09:59 07 August 2013

424 F. Mulder et al.

[35] Riera, A., and MEeatH, W. J., 1973, Int. ¥. quant. Chem., 7, 959.

[36] Neseet, R. K., 1964, ¥. chem. Phys., 40, 3619 ; 1965, ¥. chem. Phys., 43, 4403.

[37] GrimaLpi, F., 1965, ¥. chem. Phys., 43, 559.

[38] Capg, P. E,, Sares, K. D., and WaHL, A. C., 1966, ¥. chem. Phys., 44, 1973.

[39] DunNiNg, T. H., 1970, ¥. chem. Phys., 53, 2823.

[40] Du~nnNiNg, T. H., 1971, ¥. chem. Phys., 55, 716.

{41] DunnNing, T. H., 1971, ¥. chem. Phys., 55, 3958.

[42] Ursan, M., KeLLO, V., and CArskyY, P., 1977, Theor. chim. Acta, 45, 205.

[43] CurisTiANSEN, P. A., and McCuLLoUGH, JRr., E. A., 1977, ¥. chem. Phys., 67, 1877.

[44] CremEenTI, E., and MEHL, J., 1971, IBMOL-5 program : Quantum mechanical concepts
and algorithms, IBM Report R] 883.

[45] MULDER, F., and Berns, R. M., 1978, Internal Report Institute of Theoretical Chemistry,
University of Nijmegen, The Netherlands.

[46] HerzBERG, G., 1950, Spectra of Diatomic Molecules (Van Nostrand).

[47] HuziNaca, S., 1965, ¥. chem. Phys., 42, 1293.

[48] Ng, K. C., MeaTtH, W. J., and ALLNATT, A. R., 1977, Molec. Phys., 33, 699.

[49] BuckincHaMm, A. D., Disch, R, L., and DunMuUR, D. A., 1968, ¥. Am. chem. Soc., 90,
3104.

[50] King, Jr., A. D., 1969, ¥. chem. Phys., 51, 1262.

[51] Frycare, W. H., and Benson, R. C., 1971, Molec. Phys., 20, 225.

[52] BirnBaUM, G., and ComueN, E. R., 1976, Molec. Phys., 32, 161 ; Conen, E. R., and
BirnBaUM, G., 1977, ¥. chem. Phys., 66, 2443.

[53] Epmonbps, A. R., 1957, Angular Momentum in Quantum Mechanics (Princeton Uni-
versity Press).

[54] Waranasg, H., 1966, Operator Methods in Ligand Field Theory (Prentice Hall).

[55] BiLLINGSLEY, F. P., and Krauss, M., 1974, ¥. chem. Phys., 60, 2767.

[56] Greapy, J. E., Backsavy, G. B., and HusH, N. S., 1978, Chem. Phys., 31, 467.

[57] Smrt, P. H., DErisseN, J. L., and Van DuynNeveLpr, F. B., 1979, Molec. Phys., 37,
501, 521,

[58] MULDER, F., 1977 (unpublished resulits). .

[59] Berns, R. M., 1978 (unpublished results) (Institute of Theoretical Chemistry, Uni-
versity of Nijmegen, The Netherlands).

[60] WERNER, H. ]J., and MEever, W., 1976, Molec. Phys., 31, 855.

[61] ALms, G. R., BurNHAM, A. K., and Frycare, W. H., 1975, ¥. chem. Phys., 63, 3321.

[62] ScHNEIDER, B. 1., 1977, Chem. Phys. Lett., 51, 578.

[63] Couen, H. D., and RooTtHAAN, C. C. J., 1965, ¥. chem. Phys., 43, S34.

[64] GurscHICK, V. P., and McKov, V., 1973, ¥. chem. Phys., 58, 2397.

[65] MogrrisoN, M. A., and Havy, P. J., 1977, . Phys. B, 10, L647.

[66] SaprEj, A. J., 1978, Theor. chim. Acta, 47, 205.

[67] Trsic, M., ZigGLER, T., and LambLaw, W. G., 1976, Chem. Phys., 15, 383.

[68] CouLoN, PH., LUYCkX, R., and LEKKERKERKER, H. N. W. (to be published).

[69] LEKRERKERKER, H. N. W., CouLoN, PH., and Luvckx, R., 1977, ¥. chem. Soc., Faraday
Trans. 11, 73, 1328.

[70] Lamanna, U. T., GuinorTi, C., and ArRrIGHINI, G. P., 1977, ¥. chem. Phys., 67, 604.

[71] Van Dijk, G., and MULDER, F., 1978, Internal Report Institute’of Theoretical Chemistry,
University of Nijmegen, The Netherlands.

[72] Zgiss, G. D., and Meatu, W. J., 1977, Molec. Phys., 33, 1155.

[73] LancroFF, P. W., and KarpLus, M., 1970, ¥. chem. Phys., 53, 233.

[74] LancHOFF, P. W., GorpoN, R. G., and Karprus, M., 1971, ¥. chem. Phys., 55, 2126.

[75] MEYER, W. (private communication).

[76] MEevER, W., 1976, Chem. Phys., 17, 27.

[77] LonNpoN, F., 1930, Z. Phys., 63, 245.

[78] Lonpon, F., 1942, ¥. phys. Chem., 46, 305.

[79] VaN pER MERWE, A. ]., 1966, Z. Phys., 196, 332.

[80] Van DER MERrWE, A. J., 1967, Z. Naturf. (a), 22, 593.

[81] Koipg, A., 1978, ¥. Phys. B, 11, 633.

[82] HIRSCHFELDER, J. O., Curtiss, C. F., and Birp, R. B., 1964, Molecular Theory of
Gases and Liquids (John Wiley & Sons).



Downloaded by [University of Montana] at 09:59 07 August 2013

Anisotropic long range interactions N,—N, 425

[83] MargeNavu, H., and KesTNER, N. R., 1971, Theory of Intermolecular Forces, second
edition (Pergamon Press).

[84] Bricot, N., Opior, S., WaLmsLEY, S. H., and WurTTEN, J. L., 1977, Chem. Phys.
Lett., 49, 157.

[85] MarceNau, H., 1938, ¥. chem. Phys., 6, 897.

[86] Long, C. A., HENDERSON, G., and EwING, G. E., 1973, Chem. Phys., 2, 485.

[87] Novick, S. E., Davies, P. B., Dykg, T. R., and KLEMPERER, W., 1973, ¥. Am. chem.
Soc., 95, 8547.

[88] KLEMPERER, W. (private communication).

{89] Berns, R. M. (to be published).



