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Multipole moments, polarizabilities and anisotropie long range 

interaction coefficients for N 2 t  

by FRED MULDER,  GERARD VAN DIJK and AD VAN DER AVOIRD 

Institute of Theoretical Chemistry, University of Nijmegen, 
Toernooiveld, Nijmegen, The  Netherlands 

(Received 15 November 1978) 

This paper contains results for the permanent multipoles, the multipole 
polarizabilities and the related anisotropic long range interaction coefficients 
C5 to C10 (complete) for the nitrogen molecule. The electrostatic, induction 
and dispersion interaction coefficients have been calculated using ab initio 

SCF wavefunctions ; better estimates for the dispersion terms have been 
obtained by an approximate procedure, which uses the accurate (semi-) 
empirical data available for Co and the dipole polarizability, in combination 
with the ab initio results. The pure quadrupole-quadrupole anisotropy 
appears to be substantially modified by the dispersion anisotropy and, to a 
smaller extent, by the higher multipole electrostatic interactions ; the induc- 
tion energy can be neglected. The dispersion anisotropy factors ys and 
)'10, are much larger than Y6, due to the occurrence of the (completely aniso- 
tropic) mixed-pole terms. The recently proposed non-empirical Uns61d 
method yields results which support applications to larger molecules. 

1. INTRODUCTION 

In the past few years there has been a rapidly increasing interest in the inter- 
molecular potential for nitrogen. Quite a variety of model potentials with 
different parameters have been proposed and applied to the calculation of the 
properties of solid nitrogen [1-16] and, in fewer cases, those of liquid [17-20] 
and gaseous [12, 21-23] nitrogen. (A review, including an extensive list of 
references, is given by Scott [24]. Also the recent article by Raich and Gillis 
[25] is a source of detailed information, in particular with respect to the form of 
the potential.) All the potentials have in common that most of the parameters 
have been fitted to experimental quantities, notably the cohesion energy, the 
crystal equilibrium structure, the lattice frequencies, thermodynamic properties, 
the liquid structure factors, the second virial coefficient and viscosity data. 
The most frequently used model is an atom-atom potential of the Lennard- 
Jones (6-n) [3, 4, 7, 12, 13, 17-19, 22] or the Buckingham (6-exp) type [8, 15]. 
Often the molecular electrostatic quadrupole-quadrupole interactions [5, 9-11, 
14, 20] have been added in order to improve the orientational dependence of the 
potential. Sometimes this quadrupole-quadrupole term is part of a molecular 
or semi-molecular approach [1, 2, 6, 16, 21, 23], in which, in a few cases, the 

t Supported in part by the Netherlands Foundation for Chemical Research (SON) 
with financial aid from the Netherlands Organization for the Advancement of Pure Research 
(zwo).  
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408 F. Mulder et al. 

anisotropies arising from R -G dispersion [1, 6, 16, 23] and R -8 induction interac- 

tions [16, 21] have also been included. 
Nevertheless the intermolecular potential of nitrogen is not satisfactorily 

established. The remaining discrepancies between the calculated and the 
experimental data should probably be ascribed mainly to defects in the aniso- 
tropy of the potential [15, 20, 23-25]. Although some recent studies have 
concentrated on this topic [25-28] by computing pair potentials for different 

relative orientations of the N 2 molecules, the problem is still not settled at all. 
For instance, Evans [23] concludes that anisotropic corrections to the dispersion 
interaction have a larger effect upon the second virial coefficient than the inclu- 
sion of the electrostatic quadrupole interaction. Cheung and Powles [20] 
speculate that the dispersion anisotropy, which partly cancels the quadrupole 

interaction, is required to remove the discrepancies in the specific heat and the 
thermal pressure coefficient of the liquid. On the other hand, Raich and Gillis 
[25] state on the basis of their results, that the anisotropic dispersion corrections 
may be significant for some particular orientations, but that they are quite small 
for nearest-neighbour pairs in the crystal (for the ethylene crystal we have arrived 

at a similar conclusion with the aid of ab initio computations [29]). At any 
rate, we can tell, on the basis of our previous results for H2-He and H2-H 2 [30] 
and C2H 4 [29, 31], that important higher multipole anisotropic interactions 
probably occur, also in N2-N2, which have not yet been calculated. 

In [30] a closed expression for the orientational dependence of the multipole 
long range interaction coefficients of N state linear molecules was obtained as a 
specialization of the formula for arbitrary molecules [32, 33]. In this paper we 
apply the formalism of [30] to the N2-N ~ dispersion and induction multipole 
interaction coefficients C n for n=6 ,  8 and 10. The anisotropy factors y~, Ys 
and Yl0, describing the orientation dependence of the (quadratic and mixed-pole) 
terms [27-35] occurring in Ca, C s and C10, are compared with the anisotropy of 
the electrostatic interaction coefficients C5, C 7 and C 9. The molecules are 
described by Hartree-Fock LCAO wavefunctions with a specially optimized 

AO basis. 

2. MULTIPOLE MOMENTS AND POLARIZABILITIES 

The N 2 molecule has been studied extensively at the SCF level [36-43]. It 

is well-known from Dunning's work [39-41], that the quadrupole moment of N 2 

can be calculated in good agreement with the experimental values only if d 

functions are included in the AO basis. We have added different sets of atomic 

polarization functions to Dunning's (9s, 5p) basis set contracted to a [4s, 3p] 

basis [39]: For the ground state wavefunction occurring in the multipole 

moments (1) these polarization functions have been optimized by minimizing 
the SCF energy, this resulted in the basis sets A through G given in table 1 ; 
for the second-order properties which also involve excited states, optimum 
scaling parameters for the polarization functions have been obtained by maximiz- 
ing the (quadratic) multipole polarizabilities (in accordance with Hylleraas' 
variation principle, see [30]). This procedure yielded the basis sets of table 3, 
which are identical with the basis sets of table 1, except for the exponents of the 
polarization functions. All calculations have been done with the IBMOL-5 
program [44] and the multipole properties program M U L T P R O P  [45]. 

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
M

o
n
ta

n
a]

 a
t 

0
9
:5

9
 0

7
 A

u
g
u
st

 2
0
1
3
 



Table 1. 

Anisotropic long range interactions N2-N 2 409 

Calculated multipole moments (a) and SCF energies, compared with available 
literature results. 

AO basis (b) (Q,,o)/e ao  2 (Q,,o)/e ao 4 (Q6.o)/e ao s EScF/EH 

(A) (9, 5) ->[4, 3], Dunning (c) - 1,792 - 6.005 - 10.529 - 108.8877 

(B) A+ld, ~a=2-70 -1 .231 -6 .774  -14 .442 -108.9665 

(C) A+(2d)->[ld], ~a=2.40 -1 .015  -7 .160  -16.013 -108.9723 

(Dunning, ga = 2.40) (d) ( - 1.036) ( - - )  ( - - )  ( -  108.9716) 

(D) A+(2d)->[2d], ~a=2.40 -1 .000  -7 .349  -17-425 -108.9732 

(Dunning, ~a = 2.20) (d) ( - 0.992) ( - - )  ( - - )  ( -  108-9732) 

(E) (9, 6, 2) ->[5, 4, 2], ~a = 2.40 (e) -0 .945  -6 .779  -15.575 -108.9752 

( F )  (9,  6,  3 ) - > [ 5 ,  4, 3] (e) -0 .850  -6 .312  -11-892 -108.9770 

(G) D+lf, gf=2.80 -1 .051 -7 .782  -17 .109 -108.9762 

Cade, Sales, and Wahl (/) -0 .947  - 6 . 8 4  - -  -108-9928 

Christiansen and - 0.940 - -  - -  - 108.9939 

McCullough (g) 

Experimental (h) - 1.04 - -  - -  

Experimental (i) - 1 . 0 0  + 0 . 1 4  - 8 .0  + 2 .7  - -  

(a) Defined according to formula (1) ; all computations have been done using the experi- 
mental equilibrium distance : 2-068 a0 [46]. 

(b) Convention:  ( ) :  uncontracted:  [ ] :  contracted. The scale factors g, which 
have been varied to minimize the SCF energies, determine the G T O  exponents a, by the 
scaling relation [47] : a , =  g2 X* (for X* we refer to our own tables of STO-n(GTO)  expan- 
sions of polarization functions [30]). For  the angular part of the GTOs  we use (real) 
spherical harmonic functions. 

(c) Reference [39]. 
(d) Reference [41]. 
(e) The (9s)->[Ss] contraction of Dunning [39] has been used;  an extra diffuse p 

function (ap=0.0515) has been added. In basis F an additional diffuse d function (aa= 
0.2931 ; ga= l .50)  has been included. 

(f) Reference [38] ; the quadrupole and hexadecapole moments have been calculated 
by Ng et al. [48]. 

(g) The lowest SCF energy for N2 to date, obtained from numerical H F  calculations 
[43]. 

(h) From the large variety of measured values this is the most widely quoted result, 
observed in different experiments [49-51]. 

(i) These results have been obtained by BiT'nbaum and Cohen from far-infra-red spectra 
[52]. The spread in the observed values is connected with the results for different inter- 
molecular N~-N2 potentials assumed in [52]. 

T h e  t a b u l a t e d  p e r m a n e n t  m u l t i p o l e  m o m e n t s  ( tab le  1) a re  de f i ne d  on  the  

bas is  of Racah  sphe r i ca l  h a r m o n i c  m u l t i p o l e  o p e r a t o r s  [53] : 

( 47r '~ 1/2 
(Qt ,  m ) =  (0[  \ 2 - ~ /  ,~ Z,r,' Y,,m(~,)[0),  (1) 

w h e r e  t he  s u m m a t i o n  over  i r uns  over  all pa r t i c les ,  e l ec t rons  a n d  nucle i ,  in  the  

m o l e c u l e  wi th  cha rges  Z i and  p o s i t i o n  r i ; ~i r e p r e s e n t s  t he  a ngu l a r  c o o r d i n a t e s  

of r i ( exp l i c i t  exp re s s ions  for  Yz, m u p  to  l =  6 inc lus ive  are  g iven  in  [54]).  T a b l e  

1 d e m o n s t r a t e s  once  m o r e  tha t  the  A O  basis  s h o u l d  con ta in  at  leas t  two  sets of 

d func t i ons  in o r d e r  to o b t a i n  good  a g r e e m e n t  wi th  the  e x p e r i m e n t a l  q u a d r u p o l e  

P2 
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Anisotropic long range interactions N2-N2 411 

moment, (Q2,0>- (The exponents of these polarization functions are deter- 
mined by applying the scaling relation [47] to our tabulated GT O expansions of 

STO's  [30], which are slightly more diffuse (for a fixed ~) than the corresponding 

functions listed by Dunning [41]. The SCF energy decreases slightly by using 

the polarization functions of [30] rather than those of [41], quite similarly to the 

H 2 case [30].) The hexadecapole moment, <Q4,o>, is also in good agreement 
with the proposed experimental range of values [52], but it should be mentioned 

that the latter are subject to rather large uncertainties. The addition of an f 

polarization function (AO basis G) was not really necessary ; such an enlarged 

AO basis is essential, however, for the calculation of higher multipole polariza- 

bilities, as will become clear in the sequel. In the AO basis sets E or F we 

had hoped to find an AO basis which describes both the permanent multipole 

moments and the multipole polarizabilities equaily well; neither of these 

attempts was really successful and since we did not want to extend the AO basis 
even more, we left this idea. In tables 1 and 2 we compare our results with 

other ab initio calculations at the SCF level. Among the several studies of N 2 

including electron correlation two papers have considered the effect of correla- 

tion on the permanent multipoles. They find opposite effects, however. An 
MCSCF calculation [55] yields a reduction of Q2,0 from -0-97  to -0 .91  e %2 ; 

the CI computation of [56] leads to an increase of Q2,o from - 1.16 to - 1.35 eao 2 
(the results of [56] for Q4,0 are: - 8 . 8 6  (SCF) and -8 .42  e ao 4 (CI)). 

Using the multipole operators Ql.,,, of formula (1), we define the multipole 
polarizabilities by : 

=tt.,,, = 2 2~' <OlQ,,,,,]k><klQ ,, _,,,[0>(Ek- E~ -1, (2) 
k 

where we distinguish between quadratic (1=/ ')  and cross or mixed-polk ( l#l ' )  
polarizabilities. The best results for N 2 were obtained with method I of [30], 

(uncoupled Hartree-Fock) in which the states [k> are represented by single 

configuration wavefunctions and the excitation energies (E k -  E ~ are replaced 

by differences of orbital energies. For other small molecules the alternative 

and theoretically better methods II and I I I  of [30] have yielded the best results, 

whereas the values of method ! were smaller by a factor of 0.7 (He, H 2 [30], 

ethylene [31], formic acid [57, 58]). For N 2 the same ratio has been found [59], 

and hence the polarizabilities calculated with the methods II and I II are too 

large. It is evidently somewhat fortuitous that method I yields the best results 

for N 2. Results obtained by methods I - I I I  are to be regarded as approxima- 

tions to the coupled Hartree-Fock SCF values. (Method II represents the 

states Ik> in (2) by the eigenvectors of a Configuration Interaction calculation 
over singly excited states and E ~" by the corresponding eigenvalues ; method I I I 

uses single configuration wavefunctions ]k> but takes expectation values over 
the exact hamiltonian including electron repulsion for the E k (for references 

see [30] and [31]).) We note that the finite field method [63], which is a 

coupled Hartree-Fock method, yields reasonable values for the dipole polariza- 

bility of N 2 (see table 2). There is the further question of how the results 

might be modified by inclusion of electron correlation. The only CI calcula- 

tion of the dipole polarizability of N 2 [56] known to us predicts that the effect 

is of the order of 5 per cent [~Ho(CI)-Oqlo(SCF)=-O.47e2ao2EH-1; 
~ I i I ( C I ) - ~ m ( S C F ) =  +0"46e2ao 2 Eu-1], although the authors point out un- 
certainties in currently-available methods of calculation of this effect. These 
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412 F. Mulder  et al. 

results are in agreement with the conclusion of Werner  and Meyer [60] that, 

in the finite field method, electron correlation changes the dipole polarizability 

of small molecules by not more than 10 per cent. Werner  and Meyer also 

predict that the CI  dipole polarizability will be larger than SCF, which is correct 

for the average dipole polarizability of [56] but not for both components.  

Our results for the dipole polarizability of N2, obtained with the largest 

optimized AO basis set in the orbital energy differences method, are not as good 

as the finite field values (listed in table 2), In  particular the anisotropy is 

overestimated to a larger extent. This could equally apply to our calculated 

Table 3. Quadratic multipole polarizabilities and completeness ratios (a) for different 
optimized AO basis sets (b). 

A B' C' D' E '  F '  G' (c) 
t~a=l.35 ga=l.25 ga=l '50 ~a=l.50 ga=l.50 ga=l.50 

ga'= 2.40 g1= 1"25 

~l l0 / e  2 a02 E H  -1 17.36 15.71 15.11 15.60 15.68 15.69 15-73 
(18-13) (16.24) (15.65) (15.78) (15.87) (15.78) (15.91) 

~m/e 2 ao 2 EH-: 4.08 8.13 8.72 8-66 8.73 8-78 8.76 
(8.95) (9.19) (9.66) (8.86) (8-94) (8.92) (8.94) 

~22o/e 2 ao ~ E~ -x 36.7 54.2 57.2 58-4 60-8 61.3 64-7 
(64.7) (60.1) (62.1) ' (61-2) (63.5) (63.6) (65.9) 

~2~l/e 2 ao 4 EH -1 33.8 56.6 60.4 64.2 65.7 65.5 66.0 
(73.3) (61.3) (63.2) (65.2) (66.9) (66.6) , (66-6) 

~222/e ~ ao 4 EH-: 6.3 15.0 16.2 16.0 18.2 18.5 28-2 
(32-8) (27.9) (30.5) (2~3.8) (32.2) (32.6) (30.9) 

~33o/e 2 ao  6 EH-: 276 449 465 527 551 555 669 
(632) (575) (587) (624) (664) (658) (695) 

~331/e 2 a06 E H  -1 175 353 374 450 494 497 574 
(694) (524) (541) (595) (648) (645) (618) 

~3s2/e 2 ao 6 E H  -1 121 217 213 257 284 287 408 
(556) (392) (385) (451) (501) (503) (437) 

~333/e 2 ao  e EH -x 0 58 78 80 82 87 128 (c) 
(0) (232) (285) (258) (275) (283) (236) 

CR: 0.71 0-92 0-93 0.98 0.98 0-99 0.98 

CR2 0.42 0.81 0.84 0.88 0.87 0.88 0-97 

CR3 0.28 0-63 0.60 0.65 0.65 0.65 0.88 (c) 

(a) The isotropic completeness ratios CRl are defined according to formula (3), in 
which both STM and CM are taken isotropically. The yahies in parentheses have been 
obtained by the theoretical Uns61d procedure [29, 31 ], which corrects for the incompleteness 
of the AO basis sets. 

(b) The AO basis sets have been optimized by varying ~ (see text). They are described 
in more detail in table 1 ; for the F'  basis ~a= 1-50 applies to a double uncontracted d set, 
whereas ~a' = 2.40 belongs to a single d function. 

(c) The basis is far from complete for the octupole component Q3,3, since atomic g 
functions should be included in order to make Q3,3 transitions possible from the occupied ~r 

orbitals. This is also the main reason why CR a is still relatively low. 
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Anisotropic long range interactions Nz-N 2 413 

higher multipole polarizabilities, listed in table 2. As a consequence we must 

be cautious in the interpretation of our results for the anisotropic long range 

interactions. The ~r contributions to the quadratic multipole polarizabilities, 

which are also presented in table 2, decrease'from 65 per cent (for &x), via 

36 per cent (for &2) to 31 per cent (for &z). The mixed-pole polarizabilities 

have rr and a parts, which have opposite signs for most of the components. 

The optimum AO basis set G', used to obtain the results of table 2, has 
been determined by searching the exponents ~ of the atomic polarization func- 

tions which maximize the quadratic multipole polarizabilities [30], giving 

priority to the lower multipoles. In addition we have aimed at a complete AO 

basis set for the different multipole operators by calculating the completeness 
ratios (CR) : 

CRwm 8TMtt'm ~'  (OIQ,,m]k)(klQ,,,-mlO) 

= C M w m  (OIQ~,.,Q,.._mlO)-(OIQ,,mlO)LOIQ,.._mIO)' (3) 

which should approach unity as close as possible [30] (STM stands for sum of 

transition moments, CM for closure moments). Some results of the examina- 

tion of a number of AO basis sets (of the same type as those of table 1) have been 

collected in table 3. It can be seen that d functions are required for a satis- 

factory description of dipole transitions, in particular for the QI,1 component ; 

the optima occur for rather diffuse d functions. The quadrupole and especially 

the octupole properties are improved significantly when (rather diffuse) f 

functions are included in the basis. For the Q2,~ and Q3,2 operators this is 
strictly necessary, since only then are zr-->~* transitions possible; similarly, 

g functions are required in order to describe the Qa, a transitions properly, 

but we did not actually include such functions. It appears from table 3 that 

the polarizabilities are much less sensitive to the quality of the AO basis when the 

non-empirical Uns61d procedure [29, 31] is applied, which confirms our earlier 

conclusions for the ethylene molecule [31]. This applies both to the quadratic 

(see table 3) and the mixed-pole polarizabilities. For instance, basis B' yields 

polarizabilities which are smaller than those of basis G' by at most 50 per cent 

(for ~2e2, ~a32 and ~24e), calculated in the sum-over-states approach. The use 
of the Uns61d procedure reduces these deviations to 10 per cent for ~ e  and 

%3~ and 20 per cent for ~242, the latter deviation being the largest observed 
between the Uns61d results for the basis sets B' and G'. 

3. ANISOTROPIC LONG RANGE INTERACTIONS 

According to [30] we can write the long-range interaction energy of two Y, 
state linear molecules as follows : 

oo rain (La, LB) 

AE(R, On, d?a , OB, 4)B)= ~, • ~, C L~LBM R-" 
n La,  L .  M=0 

• P~(cos  04)pM,(cos OB) COS M(r  a -  r (4) 

where pM(cos 0) are associated Legendre functions [53] and C L~L'M are long 

range interaction coefficients. The polar angles (0 A, Ca) and (0 B, eB) define 
the orientations of the molecular axes with respect to a global coordinate system. 

The latter is chosen such that the z axis coincides with the vector R which 
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414 F. Mulder et al. 

connects the centres of mass of both molecules (pointing from A to B). We 

can distinguish between (first-order) electrostatic interaction coefficients and 

(second-order) dispersion and induction-interaction coefficients. For mole- 

cules which have a centre of inversion the electrostatic interactions occur only 

for odd n ; the second-order interactions occur only for even n. The electro- 
static coefficients are given by [30] : 

cLALBM 1)L~+ M(2 - ( (LA + LR~ 
LA+L,+, =(- -  ~M,O) \ (LA + M)[(LI ,+ M)] ] (QLA, o)~QLB, O), (5) 

whereas the second-order interaction coefficients are summations of different 
terms : 

(lA+l'a+lB+l'n+ 2=n) 
c L a L ~ M =  2 CIM'aLA; m'.L.; M (6) 

n --n 
IA, I'A, lB, l'B 

The coefficients contributing to the summation (6) are : 

clAl'aLa ; lBl'nLB ; M flAl'alBl'B 
IA+l'A+lB+l'~+2 ----bLaLBM 2 '  ( E k ~ - E ~ 1 7 6  - '  

hA, kB 
TO.ha To~hB x (t~r.)L~, 0 (t.r.)L., O, (7) 

where ylAl'.41~l'B ~L.L~M are algebraic coefficients (tabulated completely up to 1.4 +l'A + 

/ B + / ' B + 2 = 1 0  inclusive in appendix A 1 of [30]). In the quantities T~.)L,O 

either transition multipoles (in the dispersion and induction coefficients) or 

permanent multipoles (only in the induction coefficients, where ]h)=  ]0) for 
one of the molecules) are coupled : 

O k _ _  r(u')L,O-- Z <OlQ,,mlk)<k]Q,',-m[O)( l, m ; l ,  - m [ L ,  0) (8) 
m 

with L =  [1-l'], ] l - l ' [  +2 . . . . .  l+l ' ,  and (l, m ; l', - ra iL ,  0 ) i s  a Clebsch- 
Gordan coefficient [53]. In expression (7) we distinguish two different classes 

of terms, quadratic ones (IA=l'  A and lB=l'l~ ) and mixed-pole or cross terms 
(all other cases) [27-35]. Only the former contribute to the isotropic part of 

the interactions, Cn ~176176 whereas the latter are completely anisotropic [32, 33, 35] 

and strongly enhance the anisotropies due to the quadratic terms [29-31]. 

Usually the anisotropies of the interactions are expressed as fractions of the 
isotropic coefficients (anisotropy factors) : 

7~. ~ " ~  = C~. "L~ / C ~176176 (9) 

With the now-available monomer multipole moments (in basis G, table 1), 
transition moments and excitation energies (in basis G', table 3) we have calcu- 

lated the long range interactions, contributing to (4) up to C,0 inclusive, with 

our program VDWAALS [71], which can deal with molecules of arbitrary 

symmetries in arbitrary orientations. In table 4 we have listed the isotropic 

and the lowest (LALI~) anisotropic terms of the dispersion and induction interac- 
tions. Table 4 is another illustration of the crucial role of the mixed-pole terms 

in determining the anisotropy factors Ys and Ya0- The relative contributions 

of these mixed-pole terms to the ),s are approximately the same as we have found 

for H 2 [30], i.e. 65-70 per cent (almost equal ratios have recently been found by 

Meyer for H 2 with correlated wavefunctions [75]). The convergence of the 
dispersion anisotropy factors ~,L.L.M with respect to L4 and Lt~ , although slightly 

s l o w e r  than for H2, is still very fast: the first higher (LALt~M) anisotropy 
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Anisotropic long range interactions N2-N  e 415 

Table 4. The isotropic dispersion and induction interaction coefficients and their lowest 
(LALB) anisotropy factors (a), calculated with the AO basis sets G and G' (b). 

--  CnOOO/ 

E H  (lo ~n 

(isotropie) yn 200 yn 220 ~n 221 ,)in 222 

Dispersion 

n = 6 92.66 0.165 0.087 - 0-019 0.0024 

(Lit.) (73.39)(c) (0.106)(d) (0.036)(d) ( - 0.0080)(d) (0.0010)(d) 

n = 8 2303 0.689 0.214 - 0.030 0.0013 

mixed-pole - -  0.459 0.148 - 0.016 - 0.0020 

(Lit.) (1625)(e) 

n = 10 62545 1.025 0-759 - 0.083 0.0027 

mixed-pole - -  0.722 0.669 - 0.067 - 0.0032 

Induction 

n = 8 29.69 0.655 0-300 - 0.060 0.015 

n=  10 632.6 1.923 1.602 -0-169 0.001 

mixed-pole - -  1.263 1.208 - 0-101 - 0.025 

(a) Defined according to (6) and (9); the cross or mixed-pole contributions to the 
anisotropy factors have been given separately. 

(b) The AO basis sets are described in tables 1 (basis G, for the permanent multipoles) 
and 3 (basis G', for the transition multipoles). 

(c) Accurate semi-empirical value of Zeiss and Meath [72], which is very close to the 
earlier semi-empirical result of Langhoff and Karplus [73] : 73.8 EH ao s ; other recent 
theoretical values are : 97.80 EH ao ~ [68] (Kirkwood method, see caption (e) of table 2) ; 
61.9 EH ao ~ [70] (equations-of-motion method, see caption (f) of table 2). 

(d) Semi-empirical estimates of Langhoff, Gordon and Karplus [74]; other recent 
theoretical values are : y6 '-'~176 = 0.176, " y 6 2 2 0  = 0" 106, V6 "-'~l = -- 0'024, V62~ = 0"0029 [68]. 

(e) This value has been proposed by Thakkar and Smith [21] ; another theoretical 
value is : 2620 EH a08 [68]. 

factors,  which  have been  omi t t ed  f r o m  table 4, a r e :  ) , 8 4 0 0 = - 0 . 0 4 5 ,  )'8420= 

- 0 . 0 3 2  ( ~ ) ' 8  z2~ and  ) '1o4~176 ) , ao42~  (,~),1o9-2~ T h e  more  

s t rongly  anisotropic  induc t ion  t e rms  show a signif icantly s lower convergence  

of the an iso t ropy  factors,  bu t  for tuna te ly  the induc t ion  energy  itself is very  small 

(table 4) and can safely be neglected (a similar conclus ion  was d rawn  for H 2 [30]). 

Only  for C 6 are data available, which  can be used to check  the accuracy  of 

the results of table 4. Both  the isotropic C 6 and its an i so t ropy  factors  Vn are 

too large ; in par t icular  the an i so t ropy  factors  show substant ia l  deviat ions f r o m  

the previous  semi-empir ica l  est imates of Langhof f ,  G o r d o n  and Karp lus  [74]. 

These  deviat ions can be unde r s tood  and, at the same t ime, correc ted  (approxi-  

mately)  if we apply  the mean  excitat ion energy  approx ima t ion  [31] to the iso- 

t ropic  dispers ion coefficient  C6 ~176176 as well as to the an i so t ropy  factors  )'n 2~176 and  
) ' 6 2 2 0  : 

C60OO _ 3 - -  - o  - - ~ A a - ,  ( 1 0 )  

and : 

)'620o = ~ I A  ,,~ , , " -  2A•  + 2A ,, A• ~,~l/(A ~ + A •  
(11 a)  

A~2 

)'~22o = �89 I ,A '~ ~ "" + A ' ~ •  4A"  A'-~ "~• + A ' )  ] S~ z ( l l b )  
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416 F. Mulder et al. 

( ~ 6 2 2 1 = - - ~ 7 6 2 2 0 ;  76222=1~16220 (see [30, 76])), For convenience we have 

introduced the .following notations : c~ i~ - ~xl0 ; ~• - ~ln ; & =- &l ; similar 
definitions apply to the mean excitation energies A, which are defined as A = 

2 STM/~, isotropically as well as componentwise (see formulae (2) and (3)). 
If the mean excitation energy is assumed to be isotropic (Aii = A• = ~), it can 

be eliminated from expressions (11 a) and (11 b), yielding the simple approxi- 

mate relations : 

~ 6 2 0 0  ~ ~ fl - -  ~.1_ 3~ =K, (12 a) 

76 ~ o  -- ("" - " ' )~ = 3K ~. (12  b) 
3~ 2 

The expressions (10) and (11), although in a slightly different notation are due to 

London [77, 78]. (Similarly orientation dependent formulae have been derived 

for some specific higher dispersion coefficients of linear molecules (which are 

increasingly unwieldy though):  (lAl' A ; lB l 'B)=(11  ; 22), (22; 22) and (11 ; 

33) by Van der Merwe [79, 80] ; (11 ; 13) by Koide and Kihara [27]. Koide 

has derived closed expressions for all the anisotropic long range interactions [81], 

which are very similar to ours [30], both being general and much more convenient 

than the earlier formulae.) 

The isotropic C 6 dispersion coefficient which we have calculated is 25 per cent 

larger than the accurate semi-empirical value [72], in spite of the fact that our 

calculated isotropic dipole polarizability is smaller than the experimental value 
by 6 per cent. Apparently, according to formula (10), our calculated mean 
excitation energy A is much too large. Indeed this is the reason why the 

orbital energy differences method has been reported to yield too small polariza- 

bilities for a number of molecules [30, 31, 57, 58]. The good agreement for 

our calculated ~1 for N 2 with the experimental value should therefore be ascribed 
to an approximately equal overestimate of both the excitation energies in the 

denominator and the transition multipoles in the numerator of the sum-over- 

states expression (2) for , .  

In table 5 we show some results for N 2 and H~, obtained with the different 
expressions for the anisotropic interactions (7), (11) and (12). Approximation 

(11) yields anisotropy factors which are hardly different from the full double 

sum-over-states results (expression (7)). (This result also confirms the useful- 

ness of the Uns61d method in relatively small AO basis sets for estimating the 

anisotropic second-order interactions, by analogy with the calculation of the 

polarizabilities (table 3). We have obtained results in the Uns61d approach 
with different AO basis sets, which are very close to our best results (basis G') ; 

the Uns61d anisotropy factors especially are remarkably constant. The Uns61d 

method has a great computational advantage over the sum-over-states method, 

since the double summations over all the excited states are avoided. As a 

consequence the CPU time (on an IBM 370/158) required for the computation 

of all the long range interaction coefficients C6-Clo in one particular orientation 

of the molecules is reduced from 2400 s (sum-over-states, basis G') to 1-5 s 

(Uns61d.) Approximation (12), which has been used frequently [1, 23, 25, 27, 

28, 34, 82, 83] because of the lack of information on the anisotropy of the mean 
excitation energy, deviates significantly, however (larger by 17-52 per cent than 
the results of expression (7)). Indeed the assumption of an isotropic mean 
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Anisotropic long range interactions N~-N2 417 

Table 5. The anisotropy factors for the dispersion coefficients Ca of H~ and N2, calculated 
with different approximations (a). 

H2 N2 

- C6OOO/ - C66OO/ 

EH ao 6 ye 2~ 76220 E n  ao s y62~ 76 ~2~ 

(I) Expressions (7), (9) (b) 14.18 0.120 0-044 92.66 

( I I )  Approx. (10), (11) 14.74 0-117 0.042 99.40 

( I I I )  Approx. (10), (12) 14.74 0.140 0.058 99.40 

(IV) (12) with expt. ~ (c) - -  0.128 0-049 - -  

(V) Corrected 12.14 0-107 0-036 73.39 

(VI) Literature (d) 12.14 0.105 0-035 73.39 

(0.112) (0.039) 

0.165 0.087 

0.163 0.086 

0-210 0.132 

0.124 0.046 

0.096 0-030 

<0.106 <0.036 

(a) The first three lines contain our results according to the exact formula (I), the 
approximative expressions (10) for C6 ~176176 and (11) for the anisotropy factors (I I), and the 
approximative expressions (10), and (12) for the anisotropy factors ( I I I ) .  In line IV 
the experimental ~, c~, and ~• have been used in approximation (12). The corrected 
results, listed in line V, have been obtained according to the procedure described in the 
text (part (ii)). 

(b) Results for H2 from [30]. 
(c) Experimental ~s from [76] (for Hz) and [61] (for N2). 
(d) For H2 : Meyer's theoretical results [76] (in parentheses the semi-empirical esti- 

mates of [74]). For Nz : C6 ~176176 estimated by Zeiss and Meath [72]. The y6 are those of 
[74], which also contains values in approximation (12) : y~z~176 7622~ ; the 
corresponding results of line IV are slightly smaller than the latter since the recently 
remeasured static dipole polarizability anisotropy is slightly smaller than the value used 
in [74]. As a consequence the results in line VI for N2 are probably too large ; another 
argument, underlining this statement, is that the H2 results of [74], without approximation 
(12), are larger already than the accurate values of Meyer. 

excitation energy is not valid. For  H 2 our calculated As are 0.56 En  (parallel) 

and 0-63 E a (perpendicular) ,  whereas f rom the data presented in [76] the follow- 

ing results are obta ined : 0.52 and 0.61 E n. Our  corresponding results for Nz, 

0-94 and 1.20 En,  are much  larger (partly due to the method  used), but  also the 

anisotropy is larger than for H 2. Nevertheless the approximate  relations (12) 

are useful as a first approximat ion  and show in a s imple way how a large relative 

anisotropy of the dipole polarizabili ty generates large anisotropy factors Y6. 

In  order  to improve  our ab initio results we should include the effects of 

electron correlation in the sum-over-s ta tes  (7), both  in the wavefunct ions Ik> 
and in the energies E k. Th i s  is not easily done, since the use of (7) requires 

the knowledge of a very large n u m b e r  of excited states and their  energies. 

Ins tead we have adopted another  approach for the present,  because it will be 

useful to have the best estimates for the higher dispersion coefficients and their  

anisotropy factors. These  estimates have been obtained in a way which is 

suggested by the results of table 5 and described as follows. 

(i) All the isotropic dispersion coefficients (which can be represented by 

expressions similar to (10)) are reduced by a factor 73-39/92.66, the 

ratio of the accurate semi-empir ical  C6 ~176176 and our calculated C6 ~176176  

T h e  under lying assumpt ions  are that  &l, &~ and &z are equally under -  

est imated and that  Ax, A 2 and A z are equally too large. 
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418 F.  M u l d e r  et al. 

(if) T h e  a n i s o t r o p y  f a c t o r s  fo r  C 6 a re  o b t a i n e d  b y  m u l t i p l y i n g  76 , i v  (see 

t ab l e  5)  w i t h  t h e  c o r r e s p o n d i n g  ra t ios  76,II/76,HI. H e n c e  we  a s s u m e  

t h a t  t h e  c o r r e c t i o n s  to e x p r e s s i o n  (12)  fo r  t h e  a n i s o t r o p y  in  t h e  e x c i t a -  

t i o n  e n e r g i e s  are  t h e  s a m e  fo r  t h e  7s  r e s u l t i n g  f r o m  t h e  e x p e r i m e n t a l  

p o l a r i z a b i l i t i e s  a n d  fo r  t h o s e  f r o m  o u r  c a l c u l a t e d  po l a r i zab i l i t i e s .  F o r  

H 2 as we l l  as fo r  N 2 th i s  g ives  q u i t e  g o o d  a g r e e m e n t  w i t h  t h e  a v a i l a b l e  

s e m i - e m p i r i c a l  a n d  ab initio da ta  ( t ab le  5, n o t e  c a p t i o n  (d ) ) .  

( i i i)  F o r  t h e  h i g h e r  m u l t i p o l e  d i s p e r s i o n  a n i s o t r o p y  fac to r s ,  7~, 2~176 a n d  ~,n z2jl 

we  p r o b a b l y  c a n n o t  do  m u c h  b e t t e r  t h a n  m u l t i p l y  o u r  s u m - o v e r - s t a t e s  

r e su l t s  ( t ab le  4)  w i t h  t h e  s a m e  c o r r e c t i o n  f a c t o r s  as fo r  C G : 76,v/76,~. 

F o r  H 2 t h e  r e s u l t i n g  a n i s o t r o p y  f ac to r s ,  78 a n d  710, a re  s l i g h t l y  s m a l l e r  

n o w  t h a n  t h e  r e su l t s  of  M e y e r  i n c l u d i n g  e l e c t r o n  c o r r e l a t i o n  [75] 

( c o m p a r e ,  fo r  i n s t a n c e ,  t h e  c o r r e c t e d  782~176 71o2OO=0"223, 0 .240  w i t h  

M e y e r ' s  v a l u e s  : 0 .264,  0 .294) .  I n  f o l l o w i n g  th i s  p r o c e d u r e  we  s u p p o s e  

t h e  d e v i a t i o n s  in t h e  a n i s o t r o p i e s  of all t h e  h i g h e r  m u l t i p o l e  p o l a r i z a -  

b i l i t ies ,  fo r  w h i c h  no  e x p e r i m e n t a l  i n f o r m a t i o n  is ava i l ab le ,  to  be  t h e  

s a m e  as fo r  t h e  d i p o l e  p o l a r i z a b i l i t y .  

Table  6. Anisotropic long range interaction coefficients (a). 

Cs,elst/ C6,disp/ C7,elst/ C8,disp/ Cg,elst/ Clo,disp/ 
LALBM EH ao 5 (b) Eri ao 6 (c) EH ao 7 (b) E ~  ao 8 (c) EH ao 9 (b) EH ao TM (c) 

000 - -  - 73.39 - -  - 1825 - -  - 49538 

200 - -  - 7.04 - -  - 731 - -  - 29555 

220 6.623 - 2.20 - -  - 135 - -  - 12969 

221 - 1.472 0.489 - -  18.7 - -  1413 

222 0.0920 - 0.061 - -  - 0.81 - -  - 45.4 

400 - -  - -  - -  Negl.  - -  Negl .  

420 - -  - -  122.64 Negl.  - -  Negl.  

421 - -  - -  - 16- 35 Negl.  - -  Negl.  

422 - -  - -  0.681 Negl.  - -  Negl .  

440 . . . .  4239 Negl.  

441 . . . . .  339.2 Negl.  

442 . . . .  9.42 Negl.  

443 . . . . .  0-192 Negl.  

444 . . . .  0.0030 Negl.  

600 . . . . .  Negl.  

620 . . . .  503.3 Negl.  

621 . . . . .  47-93 Negl.  

622 . . . .  1.498 Negl.  

(a) Def ined according to the formulae (5) for Cn,elst (electrostatic) and (6) and (7) for 
Cn,disp (dispersion) ; the induction terms have been omit ted from the table since they can 
be neglected with  respect to the dispersion interactions (see table 4). 

(b) Calculated with the ( Q l 0 )  results for basis set G (table f) .  
(c) Est imated from the ab initio results of table 4, which have been corrected according 

to the procedure described in the text. T h e  higher (LALBM) anisotropic interactions can 

be neglected both with respect to the lower (LALBM) terms and the corresponding (LALBM) 
electrostatic interactions. For  instance, C8 ~2~ is not  larger than 20-3 EH ao 8, and C l o  440 

and C1062~ are as small as - 3 3 1  and 69 EH a0 TM respectively (applying the same correction 

factor used for the (22M) terms).  

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
M

o
n
ta

n
a]

 a
t 

0
9
:5

9
 0

7
 A

u
g
u
st

 2
0
1
3
 



Anisotropic long range interactions N~-N2 419 

Since the higher (LaLBM) dispersion anisotropy factors as well as the complete 

induction interaction may be neglected and the electrostatic interactions do not 

require a correction (the calculated permanent multipoles are close to the 

available experimental data) we arrive finally at table 6, which contains our best 

estimates for the main contributions to the anisotropic long range interactions. 

The estimates for the anisotropic dispersion interaction coefficients are believed 

to be low. 

A F  I r  

-11, 
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-6  

-5 

-3 

-2  

-1 

0 

Anisotropic long range interaction energy AE (equation (4)) at R = 10 a0. The different 
contributions to the energy are indicated in the figure by (LALBM). The a', b' 
and c' curves refer to calculations including only the Co dispersion and the Cs 
quadrupole-quadrupole (q-q) interactions. For the a, b, c and d curves we have 
used the C6, Cs and C10 dispersion and the C5 and C7 electrostatic interactions. 

The anisotropic interaction coefficients C~n ALBM are those of table 6. 

The anisotropic interaction coefficients of table 6 have been used to study a 

number of relative molecular orientations at R =  10 a 0 (the figure). At this 
distance charge penetration effects, which strongly modify the orientation 

dependence at short range, can safely be neglected [48, 59]. Even at this 

relatively large distance (compare the distance of the isotropic minimum: 

7.8-8.0 a 0 [25]) we observe from the figure a rather strong deviation from the 

pure quadrupole-quadrupole (q-q) anisotropy. The modifications mainly arise 
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420 F. Mulder et al. 

from the (200) dispersion anisotropy, especially if the higher dispersion terms 
are included (compare the curves b' and c', and b and c respectively). Further- 

more the (22M) dispersion anisotropy reduces the (22M) (q-q) interaction, 

although to a rather small extent only (at R =  10 a o the total (220) dispersion 

contribution is - 8  per cent of the (220) (q-q) interaction). For N2, contrary 

to H 2 [30], the higher electrostatic multipole terms cannot generally be ignored 

(compare the curves c and d). All these effects support the suggestions made 

by Cheung and Powles [20], that the remaining discrepancies in their calculated 

thermodynamic data should be corrected either by using a quadrupole moment 

slightly smaller than the experimental value or by adding the dispersion aniso- 

tropy to the pure (q-q) anisotropy. 

The figure shows two competitive dimer geometries, which have a large long 

range attraction peak, a T-shaped one (geometry I I ) a n d  a shifted parallel one 
(between the geometries I II  and IV with 0~ = 0 B-~45~ Similar results were 

obtained for other quadrupole molecules [27-30, 84], including N 2 [28]. The 

latter, semi-empirical, whole range potential calculations and those of [27], 

which differ in their choice of the molecular shape occurring in the Kihara core 

model potential, yield considerable differences for the N 2 dimer ; in [27] two 

comparable minima occur for the T and X geometries (our geometries II  and I), 

while in [28] this happens for the same two geometries, which peak in the figure. 

(In both references the dispersion anisotropy is taken into account according to 

approximation (12); the resulting 76 values are substantially too large (e.g. 

762~176 Moreover, the extra anisotropy due to the (11; 13) mixed- 
pole dispersion term (which is called octopolar induction in [27, 28]) is included 

in a very inventive but rather approximate way ; in particular the assumption, 

that their model parameters l~ and l• which determine the ratios of a13,~ and 

alum, are equal, is not confirmed by our results, neither for H2 [30] nor for N 2 

(where we find Iii = 1.37 a0 ~ and /x=2.25 ao~). As a consequence, their esti- 
mates for 0~13 0 = 36"4 e ~ %4 EH-1 and ~131 = 16.6 e e a0 ~ EI~ -1 [27] differ signifi- 

cantly from our calculated results (table 2).) The recent paper by MacRury 
et al. [26] also contains curves for some geometries (I, I I  and IV), but since the 

dispersion anisotropy has not been included explicitly in any of their model 

potentials, the latter show an orientation dependence which is too small, at 

least at long range. Raich and Gillis [25] have obtained the following order of 

geometries with increasing long range attraction at R =  10 a 0 : IV, I, I I I ,  II,  

which differs from ours by the interchange of I and I II.  This seems to be 
mainly due to the quadrupole-hexadecapole interaction, which has been included 

in our calculations (see the figure, the difference between the curves c and d) ; 

furthermore the C8 ~176176 (=547  E H %8) and C10 ~176176 (=2116 En a010) adopted in 

[25] according to the old calculations by Margenau [85] are probably much too 

small and the dispersion anisotropy was taken into account in [25] by following 
the approach of Koide and Kihara [27], which is subject to some uncertainties 

as we have noted. Although, of course, our own results are not free of un- 

certainties either, the electrostatic and the C 6 dispersion interactions especially 

are probably rather accurate. From the experimental side the equilibrium 

geometry of the (N2) 2 van der Waals dimer has not yet been established satis- 

factorily [86-88]. Long et al. [86] could not provide direct evidence from their 
analysis of the I.R. spectrum of the (N2) 2 dimer, but stated that other considera- 

tions favour the T shaped geometry. The molecular beam electric deflection 
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Anisotropic long range interactions N~-N~ 421 

expe r imen t s  of Novick  et al. [87] predic t  a n o n - p o l a r  (N2) z geomet ry  (which 

would  po in t  to the shif ted parallel  geometry) ,  b u t  p robab ly  the expe r imen t s  are 

no t  sensi t ive enough  to detect  the  dipole of the (N2) 2 d imer  in  any  geomet ry  

[87, 88]. 
T h e  R d e p e n d e n c e  of the long range  in te rac t ion  in the two geometr ies  u n d e r  

cons idera t ion  is g iven  in table 7. O u r  earlier conc lus ion  that  the an iso t ropic  

Table 7. Long range interaction energies (in 10 -e EH) in the T-shaped and shifted parallel 
geometries (a), calculated with the anisotropic interaction coefficients of table 6. 

Contribution C LaLBM (b) Distance/a0 

LALBM n 8 (c) 9 (c) 10 12 15 19 25 

000 6 --280.0 --138.1 -73.39 --24-58 --6.44 --1.56 --0.301 

8 --108.8 --42.4 -18.25 --4.24 --0.71 --0.11 --0.012 

10 --46.1 -14 .2  --4.95 --0.80 --0-09 --0-01 --0.000 

6 --13.4 --6.6 --3.52 --1.18 --0.31 --0.07 --0.014 

8 --21.8 --8-5 -3-66 --0-85 --0.14 --0.02 --0.002 

10 --13.8 --4.2 -1 .48  --0.24 --0.03 -0 .00  --0-000 

200 

T-shaped geometry 

22M 6 4.2 2.1 1.10 0.37 0.10 0.02 0.005 

8 4.0 1.6 0-68 0.16 0.03 0-00 0.000 

10 6.0 1.9 0-65 0.10 0.01 0.00 0.000 

Disp (total) -469.7  -208.4  - 102.82 -31.26 -7 .58  - 1.75 -0 .324 

22M 5 -101.1 -56-1 -33-12 -13.31 -4-36 -1 -34  -0-339 

42M 7 - 7 . 3  - 3 . 2  -1 .53  -0 .43  -0 .09  -0 .02  -0.003 

44M 9 11.8 4-1 1-59 0.31 0.04 0.00 0.000 

62M 9 - 3 . 0  -1-1 -0 .41 -0-08 -0 .01 -0 .00  -0 .000 

Elst(total) -99 .6  -56-3 -33-47 -13.51 -4-42  -1 .36  -0-342 

Disp+Els t  -569.3 -264.7  -136.29 -44.77 -12 .00  -3 .11 -0-666 

Shifted parallel geometry 

22M 6 3.1 1.6 0.83 0-28 0-07 0.02 0.003 

8 1.9 0.8 0.32 0.07 0.01 0.00 0.000 

10 2.1 0-7 0.23 0.04 0.00 0.00 0.000 

Disp (total) -476.8  -210.9  -103.87 -31 .50  -7 .64  -1 .75  -0 .326  

22M 5 -82.1  -45 .6  -26.91 -10.81 -3 .54  -1 .09  -0 .276 

42M 7 -17 .4  - 7 . 6  -3 .64  -1 .02  -0 .21 - 0 .04  -0 .005 

44M 9 9.4 3.3 1.26 0.25 0.03 0.00 0-000 

62M 9 2.2 0.8 0.30 0.06 0.01 0.00 0.000 

Elst(total) -87-9 -49.1  -28.99 -11.52 -3.71 -1 .13  -0.281 

Disp+Els t  -564.7  -260.0  -132.86 -43.02 -11.35 -2 .88  -0-607 

(a) The T-shaped geometry is geometry I I of the figure ; the shifted parallel geometry 
is that with OA= 0B=45 ~ between the geometries I I I  and IV. 

(b) The (000) and (200) contributions are equal for both geometries. If M is not 
specified in the label (LaLBM), all different M terms have been added ; if La ( = L ~ ) #  
LB (= Le) the total result for (LIL2M) plus (L2L~M) is given. 

(c) At these distances the influence of charge penetration is already rather large [48] : 
for instance, there are (000) and (200) electrostatic contributions of -57 .3  and -37 .0  
10 -6 EH, at R = 8  a0, and -6 .49  and -4-22  10 -6 EH at R = 9  a0 ; these contributions have 
decreased at R =  10 a0 to -0 .70  and -0 .48  10 -6 EH [48]. 
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422 F. Mulder et al. 

higher dispersion terms start to become important already at larger distances 

than the isotropic higher dispersion terms [30], is confirmed. This is more 

noticeable for N e than for H e and it arises from the larger ratios 78/76 and 71o/76 : 

for instance, for 7 e~176 these ratios are 4.18 and 6.22 for N e (see table 6) and 2.08 
and 2-24 for H e [30]. For a geometry such as I I I  the relatively larger im- 

portance of the higher dispersion terms when considering the anisotropy is even 

more apparent, since the anisotropic contribution is then a maximum: the 

ratios C6R -6 : C8 R-8 : Clo R-10 (at R =  10 ao) change from 1 : 0.25 : 0.07 to 

1 : 0.38 : 0.14 when adding the (200) and (220) terms to the isotropic interac- 

tions. The observation from table 7 that the higher electrostatic terms are not 

important (small and largely cancelling) is somewhat misleading, since this is 

not true for all orientations; for example, for geometry I I I  at R =  10 a 0 the 

different contributions are 6-62, 2.45 and 0.52 x 10 -6 EIt, arising from C 5, C 7 

and C 9 respectively. 

4. CONCLUSIONS 

For an adequate description of the long range anisotropy of the N 2 pair 

potential down to the minimum, higher terms in the multipole series usually 

applied must be included (cf. the figure and tables 6 and 7). Close to the 
minimum the applicability of the multipole expansion becomes questionable, 

not only because of charge penetration [48], but also since the anisotropic terms 

in the dispersion energy series, CaR -n, apparently do not converge with respect 

to n (tables 6 and 7). This is contrary to the isotropic dispersion energy, for 

which the successive C~R -n contributions decrease by a factor as large as 2.4, 
even at the minimum (table 7). It is caused by the higher dispersion aniso- 

tropy factors which are much larger than those for R -6 : for instance, 71o2~176 
0.597 > 782~176 >> y62~176 0.096 (table 6). The mixed-pole terms, which 

are responsible for this effect, strongly affect the induction anisotropy too, but 

the complete induction energy appears to be negligible relative to the dispersion 

energy (table 4). The (LALBM) anisotropic dispersion terms, which can safely 

be limited to LA, L B values not larger than 2, substantially modify the pure 
(22M) quadrupole-quadrupole anisotropy ; to a smaller extent also the higher 

(LALBM) electrostatic terms change the orientational dependence of the interac- 
tion energy (cf. the figure). 

The figure and table 7 support the recent result of Sakai, Koide and Kihara 

[28], that probably two competitive geometries exist for the (N2) ~ van der Waals 

molecule, a T-shaped and a shifted parallel one (rotation angles 0A= 0B~45~ 
Since the experimental geometry of the (N2) ~ dimer seems not yet to have been 

established [86-88], it is worth focusing future studies of the (N2) 2 dimer on 

these two geometries. 

In the first instance, the anisotropic Nz-N 2 long range interactions have been 

calculated ab initio. The anisotropy of the dipole polarizability and the disper- 

sion coefficient C 6 turned out to be significantly too large however, due to our 

use of SCF wavefunctions, despite the rather large and optimized AO basis set 

(tables 2 and 3). Therefore we have applied a correction procedure for the 

(an)isotropic C6, C 8 and C10 , which relies on the use of two approximate ex- 
pressions for the R -6 anisotropy factors (formulae (11) and (12)) and the availa- 
bility of accurate (semi)-empirical values for C 6 and the dipole polarizability ; 
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the approximate formula (12), which is frequently used, appears to be rather 

crude (table 5). The  results obtained via the non-empirical Uns61d approach 

(tables 3 and 5) confirm the earlier reported [29, 31 ] usefulness of this method for 

calculations of multipole polarizabilities and dispersion interaction coefficients 

in limited AO basis sets. 

Preliminary results from intermediate range calculations [89] which use the 

exact interaction operator instead of its multipole expansion, indicate that charge 

penetration effects are surprisingly small for the second-order dispersion energy, 

even for distances inside the van der Waals minimum. In the first-order energy, 

where such effects are indeed large [48, 89] the extra attraction resulting from 

charge penetration is dominated by the exchange repulsion which in absolute 

value is 5 to 10 times larger [89]. Altogether, the orientational dependence of 

the first-order long range (multipole) interaction energy is considerably modified 

in the shorter range, whereas the second-order multipole result is only slightly 

affected by charge penetration. 
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