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Multipole plasmonic lattice solitons
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We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles,
and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature
complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their
mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory.
The conditions to form and stabilize these highly confined solitons are within the experimentally achievable
range.
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Concentrating and manipulating light at subwavelength
scales has become a major challenge facing the development
of nanophotonics. While the miniaturization of conventional
optical elements is impeded by the diffraction limit, surface
plasmon polaritons (SPPs), the highly localized electromag-
netic waves at metal-dielectric interfaces, are considered as
a promising solution to break that limitation [1]. The most
representative plasmonic structures include metallic nanowires
[2], V-groove channels [3], and slot waveguides [4]; they have
been used as basic building blocks to design different types of
functional components [5,6].

In the past years, there has been growing interest in
exploring nonlinear optical properties of SPPs, as they provide
a possibility of active control over optical fields at the
nanoscale. For example, to overcome diffraction-induced
spatial expansion of the SPP wave, one can make use of
nonlinear self-actions that may lead to the formation of spatial
plasmonic solitons [7–18]. Like solitons in dielectric media,
such nonlinear SPP guided waves are able to exist not only
in continuous systems [7–15], but also in discrete systems
[16–18]. Since the enhanced field enhancement at metal
surfaces significantly strengthens the nonlinear effects, the
required power to form plasmonic solitons can be significantly
reduced, which, therefore, would facilitate their experimental
observation and on-chip applications.

Recently, a promising structure supporting subwavelength
plasmonic lattice solitons (PLSs) was proposed, which is
composed of arrays of metallic nanowires embedded in
Kerr-type nonlinear media [17,18]. Such a structure enables
nonlinear spatial confinement in both transverse directions,
so it has a potential to support richer types of higher-order
plasmonic solitons with complex internal structure. In this
paper, we study the existence and stability of multipole PLSs in
the two-dimensional (2D) nanowire arrays, including dipoles,
quadrupoles, and necklaces. We find that all these solitons
feature ultrasmall mode size, which makes them candidates to
be used as information carriers in the nano all-optical systems.
Different from their counterparts in all-dielectric lattices, we
found that the multipole PLSs are inherently unstable in the
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self-focusing media, but become stable in the defocusing
media when their power exceeds certain values.

The geometry of the plasmonic lattice, as shown in Fig. 1,
consists of a 2D array of silver nanowires embedded in
a Kerr-type nonlinear background. The intensity-dependent
refractive index of the background is described by nd =√

εd = 3.5 + n2I , where n2 = 4 × 10−18 m2/W (As2S3) is
the Kerr coefficient, and the dielectric constant of silver is set
to be εm = −129 + 3.3i [19], corresponding to the wavelength
of 1.55 μm. For simplicity, in the following discussions
we neglect the Ohmic loss of silver, as the level of loss
(∼2300 cm−1) can be easily compensated with the help of
currently available gain media [20]. The radius and separation
distance of the nanowires are fixed as a = 40 nm and d = 11a,
respectively.

To analyze the soliton states in the present system, we use a
developed model based on the coupled mode theory [17]. By
expanding the total fields as a superposition of the fundamental
transverse magnetic mode of single nanowires and employing
the conjugated form of the Lorentz reciprocity theorem, the
nonlinear Schrödinger equation that describes the propagation
of light beam in the proposed structure is derived as

i
dφm,n

dz
+ κ(φm,n+1 + φm,n−1 + φm+1,n + φm−1,n)

+μ(φm+1,n+1 + φm+1,n−1 + φm−1,n+1 + φm−1,n−1)

+ γ |φm,n|2φm,n = 0. (1)

Here φm,n(z) is the normalized mode amplitude and z

is the longitudinal coordinate. κ and μ represent the cou-
pling coefficients between neighboring and next-neighboring
nanowires, respectively. Under the above-mentioned geometry
parameters and wavelength, the coupling coefficients are
determined as κ = −1.75 × 104 m−1 and μ = −1.63 ×
103 m−1. Note that the negative coupling coefficient is a
unique property of the plasmonic waveguide arrays, which
corresponds to an inverted diffraction relation. As a result,
normal and anomalous diffraction of the linear SPP wave
occurs separately at the edge (|kx | = π/d, |ky | = π/d) and
center (kx = ky = 0) of the first Brillion zone. Finally, γ is the
effective nonlinear coefficient, which can be either positive
(self-focusing) or negative (self-defocusing), according to the
type of nonlinearities of the background dielectric materials.
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FIG. 1. (Color online) Schematic of the 2D metallic nanowire
array. The nanowires of permittivity εm = −129 + 3.3i are embedded
in the nonlinear host medium with an intensity-dependent refractive
index nd = √

εd = 3.5 + n2I , where n2 = 4 × 10−18 m2/W. The
radius and separation distance of the nanowires are a = 40 nm and
d = 11a, respectively.

We search for stationary solutions of Eq. (1) in the
form φm,n(z) = um,n exp(iρz), where um,n is a real func-
tion independent of z and ρ = βκ is the propagation con-
stant (here β is defined as the normalized soliton wave
number). Higher-order solutions are numerically found by
the Newton iteration method with suitable initial condi-
tions. Note that system (1) conserves the power P =∑

m,n |φm,n|2. After solutions are found, we reconstruct
the field distribution and then evaluate the soliton ef-
fective radius R using the definition R = {∫∫ |E|2[(x −
x0)2 + (y − y0)2]dxdy/

∫∫ |E|2dxdy}1/2, where (x0,y0) =∫∫
(x,y)|E|2dxdy/

∫∫ |E|2dxdy is the mean center position.
We have found a variety of multipole PLSs, including

dipoles, quadrupoles, and necklaces, featuring several bright
spots with a π phase difference between the neighboring
ones. Such solitons can exist in both self-focusing and self-
defocusing media. However, they cannot be found very close
to the edge of the band gap, as these high-order modes
could not have a bifurcation origin from the linear Bloch
modes. Figures 2(a)–2(d) show examples of the dipole solitons
comprising two bright spots at adjacent nanowires. One
can see that, contrary to the case in pure-dielectric lattices,
staggered and unstaggered PLSs are formed separately in the
self-focusing and self-defocusing nonlinearity. This is a direct
result of the inverted linear dispersion relation. Figure 2(e)
plots the power of dipoles as a function of wave number β. For
both staggered and unstaggered cases, dP/dβ reverses its sign
at a certain point β = βc, and increases almost linearly when
|β| becomes large. We found that in most of the existence
domain, the spatial extent of dipoles is well confined within
a subwavelength scale [Fig. 2(f)]. For example, the dipole
soliton shown in Fig. 2(a) exhibits a radius of R = 0.3λ, and
that corresponds to a nonlinear index change of 
n = 0.02.
With increasing the power, the solitons become more localized
and the radius can be compressed to <0.2λ.

Similar properties are encountered for quadrupole solitons,
whose bright spots reside at four adjacent nanowires, with

FIG. 2. (Color online) Normalized electric field amplitude [(a),
(c)] and phase [(b), (d)] distribution of dipole solitons in self-focusing
(left panels) and self-defocusing (middle panels) media. (a), (b) β =
5.2, 
n = 0.02. (c), (d) β = −6.4, 
n = 0.04. Right panels: Power
P (e) and effective radius R (f) as a function of β.

a staggered or unstaggered phase pattern [Figs. 3(a)–3(d)].
Such solitons can be regarded as the coupled state of two
parallel dipoles. The power curves resemble that of dipoles,
except that for quadrupoles the power is nearly two times
higher [Fig. 3(e)]. With the same change of nonlinear index,
the quadrupoles also exhibit a similar spatial confinement to
that of the dipoles [Fig. 3(f)].

We also found a kind of necklace soliton, comprising
eight bright spots in an octagonal configuration (Fig. 4). Such
solitons can be looked at as the combination of four diagonally
arranged dipoles. Compared with dipoles and quadrupoles, the
power of the necklaces is a monotonically increasing function
of |β| in the whole existence domain [Fig. 4(e)]. Under the
same level of nonlinearity, the necklaces have a larger mode
size than dipoles and quadrupoles [Fig. 4(f)]. Figure 4(a) shows
a representative necklace associated with 
n = 0.02 and R =
0.51λ. It can be compressed to R = 0.45λ with a larger index
change of 
n = 0.05.

FIG. 3. (Color online) Normalized electric field amplitude [(a),
(c)] and phase [(b), (d)] distribution of quadrupole solitons in self-
focusing (left panels) and self-defocusing (middle panels) media. (a),
(b) β = 5.8, 
n = 0.02. (c), (d) β = −5.4, 
n = 0.04. Right panels:
Power P (e) and effective radius R (f) as a function of β.
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FIG. 4. (Color online) Normalized electric field amplitude [(a),
(c)] and phase [(b), (d)] distribution of necklace solitons in self-
focusing (left panels) and self-defocusing (middle panels) media. (a),
(b) β = 4.9, 
n = 0.02. (c), (d) β = −6.1, 
n = 0.04. Right panels:
Power P (e) and effective radius R (f) as a function of β.

In order to investigate the propagation stability of
these higher-order PLSs, we substitute a linear perturba-
tion with the form φm,n = exp(iρz)[um,n + am,n exp(−iωz) +
b∗

m,n exp(iωz)] into Eq. (1) and solve the resulting eigenvalue
problem. Here am,n and bm,n represent small perturbations
on the soliton amplitudes that grow with a complex rate ω

during the propagation. The stability analysis reveals that, in
the self-focusing media, the (staggered) multipole PLSs are
always unstable (as a nonzero imaginary part always appears
in their eigenvalues ω). However, in the self-defocusing
media, all the (unstaggered) multipole PLSs are found to be
completely stable as long as |β| exceeds a threshold, where the
imaginary part of the eigenvalues decreases to zero (Fig. 5).
This is in contrast to the case of dielectric lattices, where
the solitons cannot be stable in self-defocusing media [21].
Among the three types of multipoles, the quadrupole has
the highest stability threshold (β = −18.2) and therefore
needs a stronger nonlinearity to stabilize its propagation, even
though the corresponding nonlinear index change is found
to be 
n = 0.12 and thus is still within the experimentally
achievable range [22]. Note that the stability characteristics
of multipole PLSs do not agree with the Vakhitov-Kolokolov
criterion; the latter predicts that the solitons transform from
unstable to stable state as dP/dβ changes sign from negative to
positive.

FIG. 5. (Color online) Imaginary part of perturbation growth rates
versus β.

FIG. 6. (Color online) Dynamic evolution of (a) unstable
quadrupole (β = 5.8), (b) unstable necklace (β = 4.9), (c) stable
quadrupole (β = −18.5), and (d) stable necklace (β = −15) solitons
under a 10% noise perturbation.

To confirm the results obtained by linear stability analysis
and also to explore the propagation dynamics of the multipole
PLSs, we finally perform direct simulations of Eq. (1) with a
fourth-order Runge-Kutta method. The input conditions are the
numerically found stationary soliton solutions with a 10% am-
plitude perturbation. As typical examples, Figs. 6(a) and 6(b)
show the evolution of an unstable staggered quadrupole
(β = 5.8) and a stable unstaggered quadrupole (β = −18.5),
respectively. The dynamics of dipoles is found to be very
similar to that of the quadrupoles, and therefore it is not shown
here. One can see that when β falls in the unstable region
predicted by the linear stability analysis, the original soliton
structures eventually break up during their propagation. More
specifically, for solitons with β approaching the band edges,
their structures could totally disappear through radiating into
the linear mode of a single nanowire. However, in most cases
the instability makes quadrupoles decay into stable fundamen-
tal solitons [Fig. 6(a)]. Propagation simulation also confirms
that, in the self-defocusing media, the quadrupoles become
stable when |β| exceeds the stability threshold [Fig. 6(c)].
Even in the unstable region, their original structures can persist
for several millimeters before finally being destroyed by the
growing oscillations.

An interesting unstable evolution occurs for necklaces.
Simulation shows that a portion of the bright spots could sur-
vive after destruction of the initial structure [Fig. 6(b)]. These
resulting structures keep quasistable propagation over very
long distances, accompanied by slight breathing oscillations
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in their amplitudes. Figure 6(d) also provides an example of
propagation dynamics for the stable necklace. As consistent
with linear stability analysis, their amplitude and phase remain
unchanged after a huge propagation distance.

In conclusion, we have found a variety of multipole
plasmonic lattice solitons in 2D metallic nanowire arrays
with Kerr-type nonlinearities. These solitons include dipoles,
quadrupoles, and necklaces, existing in both self-focusing
and self-defocusing media. By means of a linear stabil-
ity analysis, we found that all these solitons are unsta-
ble in the self-focusing media, but can be stable in the
self-defocusing media, provided that their wave number

exceeds a certain threshold. In the unstable region, they
usually experience oscillation instability and finally de-
cay into a more stable configuration after some distance
of propagation. We hope that our findings may motivate
the experimental observations of such ultracompact soliton
structures.
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