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MULTIPOLE POTENTIALS FOR SU(n) and SO(n)

WOODY LICHTENSTEIN

1. It is of physical interest to understand the symmetry properties of
combinations of objects with known symmetries. A well-known elementary
example is the Maxwell-Sylvester analysis of electric potentials generated by
finite configurations of point charges [1]. In Euclidean R3 with coordinates x9

y, z and r — {x2 + y2 + z2)1/2 one can choose units so that the potential from
a single point charge at the origin is 1/r. For a dipole centered at 0 with axis of
length a aligned along the x-axis, the potential at large distances from the
origin is well-approximated by a(d/dx)(\/r). Similarly a configuration of 4
charges

+ • • -

FIG. 1
as in Fig. 1 generates a quadrupole potential which is a multiple of
d2/dydx(l/r). In general, associated to any polynomial/? there is a multipole
potential M(p) = dp(\/r) where 3̂  is the constant coefficient differential
operator corresponding to p via the Euclidean metric. Since 1/r is harmonic,
away from its singularity at 0, M(p) = 0 if p is a multiple of r2, and M(p) is
always harmonic. In addition, every polynomial may be written as/? = h + qr2

with h harmonic [6] so that M may be viewed as a mapping (hereafter referred
to as the multipole mapping) from harmonic polynomials to singular harmonic
functions.

In order to study objects with more complicated symmetry than the spheri-
cally symmetric point charge, one can replace Euclidean R3 with the Lie
algebra Q of a compact simple Lie group G. Then G acts on Q via the adjoint
representation, preserving the positive definite metric B, where —B is the
Killing form. Orbits of maximal dimension will be said to be regular; all other
orbits will be said to be singular. There is an invariant polynomial Q on g (for
§>u(n\ Q is just the discriminant of the characteristic polynomial) which
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vanishes precisely on the singular set, and such that 1/ y[Q is harmonic on the

regular set [3]. Here harmonic means annihilated by all G-invariant constant

coefficient differential operators. Thus there is a multipole mapping M:

(harmonic polynomials} -» (harmonic functions on the regular set} given, as

The main result of this paper is that, at least for g = %u(n) or §>o(n\ the

map M is injective. (It is obvious that M is injective as a map to distributions

on Q. The point is that no distribution dp(l/ ]fQ) is supported on the singular

set.)

§2 gives the proof of injectivity. In §3 this result is reinterpreted in terms of

the nonvanishing of the term of lowest homogeneity in the asymptotic expan-

sion of an oscillatory integral.

The author wants to thank R. M. Lichtenstein, H. V. Pittie and K. D.

Johnson for helpful discussions, and would also like to emphasize his in-

debtedness to the fundamental work of Harish-Chandra and Kostant.

Finally, in light of the recent work of A. Koranyi [5] it may be worth

pointing out that the multipole M(p) and the Kelvin transformation Kp agree

in case p is a homogeneous harmonic polynomial on R3 = £u(2), but in no

other cases. The Kelvin transformation is the transformation of harmonic

functions on Rn given by

2. Lemma. Let ax,''-9ak be positive integers. Let Lx,---,Lk be distinct

linear (affine) functions on RN(orCN), and let 3,, , ds be constant vector fields

on ΈLN {or CN) such that for each i there exists j with d^Lj) Φ 0. Then

Proof. By induction on N. The case N = 1 follows from the partial

fractions decomposition of (L"1 - La

k

k)~λ. For the induction, assume 31 ? , 3r

satisfy S^Lj) Φ 0, and 3 r + 1 , ,35 satisfy Θ^Lj) = 0. Then the only term in

3, 8,((L?> " La

k

k)~λ) with a pole of order r + aλ along L = 0 is

with c Φ0. Restricted to any level set of Ll9 which has dimension n — 1,

(3, 3 r + 1)((L22 La

k

k)~λ) is a nonzero rational function.
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Let g be the Lie algebra of a compact simple Lie group G. Let G c be the

corresponding complex group with Lie algebra g c = g ® R C . Choose a Cartan

subalgebra ί) C g and a positive system of roots Φ for g c with respect to ί). Let

Wht the Weyl group. Throughout G acts on g by the adjoint representation.

If p is a G-invariant polynomial on g, let d(p) be the corresponding constant

coefficient differential operator on g (duality is established by the Killing

form). Similarly for a polynomial q on £), d(q) indicates the corresponding

differential operator on ί). Let Π: t) -> C be defined by Π ( # ) = Π α e φ α ( # ) .

Theorem 1 (Harish-Chandra). Let f be a G-invariant function on g. Let

H G ί) be an element of a regular orbit, and p a G-invariant polynomial on g.

Then

( i) ^

Sketch of proof (see also [3], [4]). (1) may be established for the Laplace

operator using the following three facts:

(i) Laplacian = divergence of gradient.

(ii) For invariant functions, gradient in g and gradient in ί) coincide.

(iii) Divergence is the Lie derivative of volume, and the (n — /)-dimensional

volume of the G-orbit through H is [Π(i/)]2 up to a constant. Here n — dim g

and / = dim t).

It now follows from Vergne's argument [9] that %(f)\h = 1/11^(11/1^),

where ^x is Fourier transform in the Euclidean space X. Therefore (1) is valid

for all invariant polynomials/?.

Let Π2 = Π α e φ [ « ( / / ) ] 2 . Then Π2 is a W-invariant polynomial on ί) and

therefore extends to a G-invariant polynomial Q on g.

Corollary. The function 1/ JQ is harmonic on the regular set of§.

Proof. If all roots are multiplied by i (to make them real), Q will be positive

on the entire regular set of g. Choose y[Q to be the positive square root, so that

1/ JQ is an invariant function on the regular set of g. Now Π 1/ JQ |̂  is

locally constant on the regular set of ί), so that (1) implies that \/ yfQ is

harmonic. Of course the corollary will also hold for any locally consistent

choice of the square root.

Theorem 2. Let g be either %u(n) or £o(«), and let p be a harmonic

polynomial on g. Then d(p)(\/ JQ) ^ 0 on the regular set.

Proof. Let & be the set of polynomials q on g for which 9(<7)(1/ ]fQ) = 0

on the regular set. Then & is an ideal and & D ί where ί is the ideal generated

by the nonconstant invariant polynomials. Consider the corresponding varie-

ties in g c . The variety % corresponding to ί is the nilpotent cone (clearly, if all

invariant polynomials vanish, then all eigenvalues must vanish), so the variety
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Ύa must be contained in the nilpotent cone. Since the full polynomial ring 9
may be decomposed as <3) = 3Cθί, if S n ϊ ^ O then % must be properly
contained in %. Also since & is Gc-invariant, Ύ& must be a union of Gc-orbits,
i.e., a proper Gc-invariant subset of the nilpotents.

The nilpotent cone is made up of one open Gc-orbit of regular elements, and
the remaining orbits have positive codimension. For the classical algebras in
their standard representations it is easy to check using [7] that the singular
nilpotents are those which have rank less than the regular nilpotents. In all
cases, if the standard representation has dimension n, the singular nilpotents
have rank <n — 2. Thus if & Π % φ 0, the Nullstellensatz implies that &
contains a power of every (n — 1) X (/ι — 1) minor. Assume this is the case.

In the cases g = %u(n) or 3o(«), the rank — n algebra g contains an
essentially rank — (n — 1) subalgebra f which contains regular elements of g.
Specifically, f = 3(u(l) X u(n - 1)) ^ u(/i - 1) or §o(π - 1). Let K C G be
the corresponding subgroup. Corresponding to the choice of ϊ is a ^-invariant
(n — 1) X (n — 1) minor of g denoted by p. The A-invariant operator d(p)
when restricted to f contains only derivatives tangent to f. Choose a maximal
abelian subalgebra ί) C ϊ which is contained in the Cartan subalgebra of g.
Choose positive systems Φf C Φg. Let Π = Πα(Ξφfl a and Πf = Π α e φ f .α. Let QQ

be the invariant polynomial on g which restricts to (Πfl)
2 on the Cartan

subalgebra. Since 1/ ^Q~Q restricts to a A -̂invariant function on f, Theorem 1

may be applied to the calculation of the restriction to f of d(pm)(\/ /β^) (It
is easy to check that Theorem 1 applies to the reductive algebra u(n — 1) as
well as to the semisimple algebra §>u(n — 1).) But pm ^ is a product of linear
functions and Πf (1/ {θ~Q |ή) = Πf 1/Πfl is of the form (L?1 La

k

k)~λ for
some linear functions L, and positive integers ar Apply the lemma to conclude
that 3(^^X1/ ][θ^) SΞ 0 on the regular set of g, and hence that & Π % = 0.

3. Let p be a harmonic polynomial on g, and let 0 C g be a regular orbit.
Define the Fourier transform of the restriction/? |β by

(2)

where dμ is a G-invariant measure on Θ.
Replace X by XX where λ is a large parameter. The resulting oscillatory

integral has an asymptotic expansion in λ. It follows from Harish-Chandra's
formula for the orbital integral that the expansion has only a finite number of
terms. The term of lowest degree in λ is just M(p). A few details follow.
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Theorem 3 (Harish-Chandra). Let //, H' be regular elements of ί), and Θ the
orbit ofH'. Then there is a constant c so that

L'("''"
Sketch of proof. Since ^(1 | θ) is a G-invariant eigenfunction for all the

invariant differential operators on g, Theorem 1 implies that as a function of
H, $(1 \e) = q/U(H) - Σ j e^sgns e

iisH'H>) for some constant q.
A slightly different perspective on Theorem 3 is obtained by attempting to

evaluate the integral (2) by the method of stationary phase.
Theorem 4 (Stationary phase).

I 9TT

Σ X
dφ(y)=0

>k=0 v #

where Hφ(y) is the Hessian of φ at y, R is a 2nd order differential operator
defined in terms ofHφ, and ~ means asymptotic equality asλ -> oo.

Proof See [2].
When M is the orbit of H' and φ(g H') = (H9g-H'\ the critical points of

φ are exactly the points s Hr where s ELW. Replacing H by \H in (3) shows
that, in this special case, only the leading term for each critical point in the
expansion (4) is nonzero and that the asymptotic equality is an actual equality.
Of course, one can obtain a formula for the integral (2) by applying the
operator d(p) to (3). Specifically, with d= # positive roots we have

2 sgnse'λ<"'*"λ

Urn = deg p, then applying 9(p) to theH variable on both sides gives

*"•* "'p(g-H')dμ(g H')

With /? fixed, H can be chosen generically within its G-orbit so that every

derivative involved in the operator d(p) will give a nonzero result when

applied to the function L(H) = (H, sH'). Then it is clear that the only term

on the right of degree — d in λ is

c

mn')Mip\h
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