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Abstract. Tissue engineering offers considerable promise in the repair or replacement of diseased

and/or damaged tissues. The cellular component of this regenerative approach will play a key role in

bringing these tissue engineered constructs from the laboratory bench to the clinical bedside. However,

the ideal source of cells still remains unclear and may differ depending upon the application. Current

research for many applications is focused on the use of adult stem cells. The properties of adult stem

cells that make them well-suited for regenerative medicine are (1) ease of harvest for autologous

transplantation, (2) high proliferation rates for ex vivo expansion and (3) multilineage differentiation

capacity. This review will highlight the use of adipose tissue as a reservoir of adult stem cells and draw

conclusions based upon comparisons with bone marrow stromal cells. (Keio J Med 54 (3): 132–141,

September 2005)
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Introduction

White adipose tissue has the ability to dynamically
expand and shrink throughout the life of an adult. This
capacity is mediated by the presence of vascular and
non-vascular cells that provide a pool of stem and pro-
genitor cells with unique regenerative capacity. This
review will describe the recent preclinical research fo-
cused on these stem cells and identify potential clinical
applications.

Over the past 25 years bone marrow mesenchymal
stem cells (also frequently referred to as marrow stro-
mal cells and herein referred to as MSCs) have been
the subject of considerable research. These cells have
many properties that suggest considerable potential
utility in cellular therapy for a variety of disorders. For
example, their ability to differentiate into osteoblasts,
both in vitro and in vivo, has led to their clinical use
in pilot studies of an inherited bone disorder, Osteo-
genesis imperfecta1 while their ability to promote
revascularization following ischemic injury has led to
preclinical studies in large and small animal models of

myocardial ischemia.2,3
Like marrow, adipose tissue is a mesodermally-

derived organ that contains a stromal population con-
taining microvascular endothelial cells, smooth muscle
cells and stem cells.4 These cells can be enzymatically
digested out of adipose tissue (commonly from lip-
oaspirate) and separated from the buoyant adipocytes
by centrifugation. A more homogeneous population
emerges in culture under conditions supportive of
MSC growth. This population (termed Adipose Tissue-
Derived Stem Cells, ADSCs) shares many of the
characteristics of its counterpart in marrow including
extensive proliferative potential and the ability to un-
dergo multilineage differentiation.5,6

Clonogenic assays have typically been used to quan-
tify MSCs in marrow.7–10 In these assays (colony form-
ing units, CFU-F), cells are plated at @1,000/cm2 and
grown for two-three weeks. Colonies of more than 50
cells are then quantified. Using these assays, the num-
ber of MSCs in bone marrow is generally found to be
approximately 1 in 25,000 to 1 in 100,000,7–10 although
many authors have found this frequency is influenced
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by factors such as age, gender, presence of osteopo-
rosis, and prior exposure to high dose chemotherapy or
radiation.7,11–13 Our unpublished data suggest that the
average frequency of ADSCs in processed lipoaspirate
(56 donors, median age 49) is @2% of nucleated cells
(manuscript in preparation). As with bone marrow stem
cells, yield is dependent upon donor age, body mass in-
dex and tissue harvest site. This finding is consistent
with previous reports showing rapid growth of ADSCs
from cultures initiated at considerably lower cell den-
sity than that typically used with marrow.6,14 Further,
our studies have indicated that the yield of ADSCs is
approximately 5,000 CFU-F per gram of adipose tissue.
This compares with estimates of approximately 100–
1,000 CFU-F per milliliter of bone marrow.

The significance of this difference for stem cell ther-
apy is clear. Donor site morbidity limits the amount of
marrow that can be obtained and thereby extends the
time in culture required to generate a therapeutic cell
dose. Thus, the volume of human marrow taken under
local anesthesia is generally limited to no more than 40
ml and yields approximately 1:2� 109 nucleated cells.15
Obtaining a larger volume necessitates the use of gen-
eral anesthesia, increases donor site morbidity,16,17 and
further dilutes the stem cell fraction with stem cell-free
blood.15 At the stem cell frequency cited above,7,8 this
40 ml of marrow will contain approximately 2:4� 104

MSCs in a skeletally mature adult. By contrast, a typical
harvest of adipose tissue, under local anesthesia, can
easily exceed 200 ml and yield@2� 108 nucleated cells
per 100 ml of lipoaspirate.18 Thus, 200 ml lipoaspirate
will typically yield in excess of 1� 106 stem cells; a dif-
ferential of approximately 40-fold more than that pres-
ent in 40 ml of marrow.

Cell Surface Characterization

The cell surface phenotype of human ADSCs is quite
similar to MSCs (see Table).5,19 It is worth noting
some of the key similarities and differences between
these cells. For instance, CD105, STRO-1 and CD166
(ALCAM) are three common markers used to identify
cells with multilineage differentiation potential and are
consistently expressed on ADSCs and MSCs.20–26 Also,
CD117 (the stem cell factor receptor) has been shown
to be expressed on an array of totipotent or pluripotent
cells including embryonic stem cells, hematopoietic
stem cells, MSCs and ADSCs.27–29 In addition to these
multipotent markers, ADSCs and MSCs display nu-
merous other molecules including CD29 (beta-1 integ-
rin, which plays a critical role in therapeutic angio-
genesis30), CD44 (hyaluronate receptor, which is
crucial in the development of neoextracellular matrix
and plays a role in numerous pathologic and physio-
logic events) and CD49e (alpha-5 integrin, important

for cell adhesion to fibronectin). ADSCs also express
high levels of CD54 (ICAM-1) when compared with
BM-MSCs.19 ICAM-1 is a member of the immunoglo-
bulin supergene family and can be up-regulated in
response to numerous inflammatory mediators and
cytokines.31

ADSCs lack the expression of known hematopoietic
and endothelial markers such as CD3, CD4, CD11c,
CD14, CD15, CD16, CD19, CD31, CD33, CD38, CD56,
CD62p, CD104, and CD144. Also, less than 1% of
ADSCs express the HLA-DR protein and the majority
express MHC Class I molecules,18 suggesting their po-
tential for allogeneic transplantation.32 One difference
in surface marker expression appears to be the recip-
rocal expression of VLA-4 (CD49d/CD29) and its
cognate receptor VCAM-1 (CD106). Thus, we have
observed expression of VLA-4 but not VCAM-1 by
ADSCs from the majority of donors. This is the reverse
of the expression pattern of these molecules by
MSCs.19 While the nature of this difference needs fur-
ther investigation, this observation is intriguing since
these molecules are involved in hematopoietic stem and
progenitor cell homing to and mobilization from the
bone marrow.33,34

Multilineage Differentiation Capacity

We and others have demonstrated the ability of adi-
pose tissue-derived stem cells to undergo differentiation

Table The Cell Surface Phenotype of ADSCs is Similar
to That of Bone Marrow MSCs

Surface marker Expression pattern

ADSCs MSCs

CD9 þ þ
CD10 þ þ
CD13 þ þ
CD29 þ þ
CD31 � �
CD34 � �
CD44 þ þ
CD45 � �
CD49d þ �
CD49e þ þ
CD54 þ þ
CD55 þ þ
CD59 þ þ
CD90 þ þ
CD105 þ þ
CD106 � þ
CD117 þ þ
CD146 þ þ
CD166 þ þ
STRO-1 þ þ
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along classical mesenchymal lineages: adipogenesis,
chondrogenesis, osteogenesis, and myogenesis.4–6,35–43
Non-mesenchymal lineages have also been investigated
and confirm the transdifferentiation ability of
ADSCs44–47 (see Figure). Our data using single cell-
derived clonal populations demonstrates that at least
part of this plasticity resides in a population of multi-
potential cells.5 In most respects, these data demon-
strate a set of functional properties that is very similar,
though not always identical, to that of MSC.

Mesenchymal lineages

Adipogenesis

Given the origin of ADSCs it is not surprising that,
when cultured in adipogenic medium, ADSCs express
several adipocytic genes including lipoprotein lipase,
aP2, PPAR(gamma)2, leptin, Glut4, and develop lipid-
laden intracellular vacuoles, the definitive marker of
adipogenesis.4,5,40,48 Despite certain donor-to-donor
qualitative differences in adipogenic potential,48 the
pattern of expression of these genes appears to be very
similar, if not identical, to that observed for adipogenic
differentiation in MSCs.23,49,50

The in vivo capacity of these cells to differentiate
into cells of the adipocytic lineage has also been
demonstrated in studies involving implantation of cell-
seeded natural (collagen and hyaluronic)51–53 or syn-

thetic bioresorbable (polylactic acid, polyglycolic
acid)54,55 scaffolds. It is important to note that these
studies generally agree that robust ectopic in vivo
adipogenesis requires in vitro pre-differentiation of
ADSCs prior to implantation. This requirement may be
eliminated by co-implantation of cells with a source of
adipogenic stimuli. Thus, Yuksel and colleagues have
demonstrated ectopic adipogenesis at the site of im-
plantation of microbeads containing insulin and insulin-
like growth factor 1.56 This suggests the recruitment of
adipocytic stem and progenitor cells to the site of im-
plantation, however it is not clear if this is a local
recruitment or derives from distal compartments of
such progenitors in fat and/or marrow.

Osteogenesis

The ability of MSCs to give rise to osteoblasts is well
known.57–60 Observations of patients with a rare dis-
order, progressive osseous heteroplasia, in which cal-
cified nodules form in subcutaneous adipose depots,
provided physiological evidence that similar cells may
exist in adipose tissue.61,62 In the past decade, sev-
eral groups have isolated cells from adipose tissue of
humans and other species capable of differentiating into
osteoblasts in vitro.5,36,39,42,63–67 Under osteogenic
conditions, similar to those used for MSCs, ADSCs are
observed to express genes and proteins associated with
an osteoblasts phenotype, including alkaline phospha-

Figure Adipose Tissue-Derived Stem Cells are multipotent, extending beyond the traditional mesenchymal lineages.
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tase, type I collagen, osteopontin, osteonectin, osteo-
calcin, bone sialo protein, RunX-1, BMP-2, BMP-4
BMP receptors I and II, PTH-receptor.5,39 ADSCs are
also able to form mineralized matrix in vitro in both
long term 2-D or 3-D osteogenic cultures.

Using a variety of supportive scaffolds, human
ADSCs can form bone in immunodeficient rodent
ectopic bone models.35,55,68 Histologic analysis of these
implants revealed cells staining positive for the human
nuclear antigen, confirming that the cells making the
new bone are donor derived. ADSC-derived were
found lining the regions of ectopic bone and also
embedded within the newly formed bone. In a murine
critical size calvarial defect model, ADSCs were able to
regenerate cranial bone, which spanned the defect site,
within 8 to 12 weeks of implantation.14 Bone formation
occurred via intramembranous ossification, confirmed
by a lack of chondrogenic matrix. Since the calvarium
normally develops through this mechanism, ADSCs
differentiated appropriately for cranial membranous
bone repair. Overall, the rate and extent of bone for-
mation was comparable to that of MSCs.

These findings supported a recent clinical report
describing successful treatment of a large, bilateral
calvarial defect in a seven year old girl. Repair was
achieved through an approach in which autologous
adipose-derived cells, iliac crest bone, and fibrin glue
were combined with a resorbable mesh.69 CT scans
taken 3 months after surgery showed marked ossifica-
tion throughout the defect. Further, the child no longer
has to wear a protective helmet. This anecdotal report
suggests that use of adipose-derived cells was safe and
that they may have contributed to healing of a large,
previously refractory defect.

Chondrogenesis

High density micromass cultures of ADSCs and
MSCs generate cellular nodules that produce large
amounts of cartilage-related extracellular matrix mole-
cules including sulfated proteoglycans, collagen II and
IV, PRELP and aggrecan.4,5,23,36,38,40,41,70 ADSCs
seeded onto alginate discs and implanted into immuno-
deficient mice exhibit prolonged (12 weeks) synthesis of
cartilage matrix molecules including collagen II, colla-
gen VI, and aggrecan.38 The identification of which
cells (ADSCs or MSCs) are better for engineering car-
tilage is still under debate. We have analyzed ADSCs
and MSCs from the same patients under identical con-
ditions and found that ADSCs had greater chondro-
genic ability than MSCs.6 However, Winter et al. dem-
onstrated that, while ADSCs and MSCs are not
significantly different in their ability to undergo chon-
drogenesis in two-dimensional cultures, MSCs exhibited
enhanced chondrogenesis in three dimensional cul-

tures.41 This is in contrast to a recent in vivo study of
mature cartilage development from ADSCs in a rabbit
osteochondral defect model.43 In this study the authors
noted that the repair induced by ADSCs was superior
to that derived from osteochondral autografts. Specifi-
cally, the Pineda score, which assesses four different
parameters of cartilage repair, was greater for ADSC-
derived grafts than for osteochondral grafts at each
time point examined. ADSC grafts also showed supe-
rior performance in creep indentation biomechanical
testing performed at 24 weeks. However, it should be
noted that performance at 24 weeks was still inferior to
intact cartilage. Nonetheless, these data indicate that
the deficit observed by Winter et al. may be a culture
artifact rather than an inherent limitation in the osteo-
chondral capacity of ADSCs.

Non-mesenchymal lineages

Skeletal myogenesis

Culture of ADSCs and MSCs in the presence of
dexamethasone, hydrocortisone, and/or 5 azacytidine
results in a time-dependent pattern of expression of
muscle-related genes that is consistent with normal
myogenesis. This is defined by early expression of key
master regulatory factors MyoD1 and myf5, myf6, and
myogenin followed by later expression of myosin heavy
chain.5,37,71 This process is associated with characteris-
tic changes in cell morphology including generation of
long, multinucleate, MyoD1-positive cells early in cul-
ture and bundles of myosin heavy chain-positive myofi-
brillar structures appearing after two weeks.

Thus far, only one study has investigated the use
of ADSCs to restore functional capacity of damaged
skeletal muscle in vivo. Bacou and colleagues demon-
strated that ADSCs transplanted into injured regions of
rabbit skeletal muscle increased muscle weight and fi-
ber cross section area, and significantly raised the max-
imal contractile force compared with damaged control
muscles.72 The transplanted cells were identified in the
region of damaged tissue and some expressed the skel-
etal muscle markers merosin, myogenin and multiple
isoforms of myosin heavy chain, suggestive of myogenic
differentiation.

Cardiac

Cardiovascular disease (CVD) has emerged as a
leading cause of morbidity and mortality, accounting
for approximately one-third of all deaths in 2002.73
Current therapies for CVD are focused on revasculari-
zation, followed by drug therapy to mitigate the dele-
terious remodeling that ensues post ischemia. While
this therapeutic regimen has had a substantial impact
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on how CVD is treated, there is still a necessity to
further advance treatment options. Cell therapy for
cardiovascular diseases was originally thought to focus
on the regeneration of injured myocardium. The use
of progenitor/stem cells has changed this paradigm
by potentially contributing to multiple mechanisms for
cardiac repair. These mechanisms include, but are not
limited to: increasing blood flow to the ischemic tissue
(either by differentiating into neovasculature or secret-
ing factors to recruit or expand endogenous vascula-
ture), reducing cardiac myocyte apoptosis through a
paracrine-mediated response, regulating the inflamma-
tory milieu (which can alter the negative remodeling
the ensues following acute ischemic injury), or by
recruiting endogenous stem cells (i.e. from the heart74
or bone marrow75) to assist in regenerating the injured
tissue.

While all of these paths could potentially augment
current therapies, regeneration of lost myocardium is
still the ideal outcome, particularly in congestive
heart failure, which involves currently irreversible
loss of contractile function. Both ADSCs45,76,77 and
MSCs78–81 have been shown to be capable of in vitro
differentiation into cardiac myocytes. The most com-
pelling data was obtained by Planat-Bernard et al. in
which fresh adipose-derived cells were plated into
semisolid culture. After three weeks, colonies of spon-
taneously beating cells were observed. These cells
exhibited several molecular, electrophysiologic, and
pharmacologic properties of cardiac myocytes.76 How-
ever, there is a lack of data addressing the ability of
ADSCs to regenerate damaged myocardium in vivo. In
work presented at the European Society of Cardiology
in Munich, Germany in 2004, Valina et al. presented
data showing that delivery of either ADSCs or MSCs
through the left coronary artery following an acute
myocardial infarction in pigs resulted in improved left
ventricular function after 4 weeks compared to saline-
treated controls. Upon histologic analysis, the group
identified donor ADSCs at the site of infarction, and
that these cells expressed cardiomyocytic markers.

Neurogenesis

In vitro differentiation along the neuronal lineages
has also been demonstrated for both ADSCs5,46,82 and
MSCs.83–86 Thus, treatment of rat and human MSCs or
ADSCs with beta-mercaptoethanol results in rapid
transition of cells to a neuronal morphology (a con-
densed cell body with multiple neuron-like out-
growths), and expression of neural markers including
nestin, neuron-specific enolase (NSE), and neuron-
specific protein (NeuN), all of which are early markers
of the neuronal lineage. Similar results are seen with
alternate inductive conditions such as isobutylmethy-

lxanthine (IBMX) and dibutyryl cAMP or forskolin and
butylated hydroxyanisole. We have also detected ex-
pression of trkA (a receptor for NGF) and the presence
of voltage gated potassium channels. However, to date,
detection of neural markers in in vitro differentiated
ADSCs and MSCs has been restricted to these early
genes; no expression of markers characteristic of ma-
ture neurons, oligodendrocytes, or astrocytes has been
described. This may suggest that the expression of these
markers is the result of disordered gene expression
resulting from the toxic inductive stimulus or that the
induction is unmasking an inherent neuronal potential
that is only partially supported by the culture conditions.

The latter interpretation is supported by in vivo
studies in which ADSCs and MSCs have been
implanted into the CNS of experimental animals. Zhao
et al.87 have demonstrated that implantation of MSCs
into the cortex of rats following ischemic injury resulted
in significantly improved performance in a limb place-
ment test and that the implanted cells had undergone
an in vivo change in marker expression consistent with
differentiation along astrocytic, oligodendrocytic, and
neural lineages. However, there was no evidence for
incorporation of these cells into the cerebral architec-
ture. Therefore, it is possible that the observed func-
tional improvement was due to an indirect mechanism,
for example, paracrine expression of angiogenic and/or
anti-apoptotic factors by the implanted cells would
promote survival of functionally compromised but
viable host tissue.88,89 Other studies have also demon-
strated engraftment of MSCs into the region in the
absence of injury albeit with modest evidence of differ-
entiation.90,91 Nonetheless, these data provide sub-
stantial support for a potential role of MSCs in direct or
indirect (gene-modified) therapy for the CNS.92,93

ADSCs have also been applied in the setting of ex-
perimental stroke. Thus, Kang et al. directly implanted
ADSCs into the brain of rats following 90 minutes of
middle cerebral artery occlusion.94 In some studies, the
ADSCs were transduced with either the lacZ gene or
the gene encoding brain-derived neurotrophic factor
(BDNF) as both a marker and a potentially therapeutic
agent. Marked cells were seen throughout the infarct
area 14 days after implantation and a fraction of these
cells co-expressed MAP2 (4% of marked cells) or
GFAP (9% of marked cells) suggesting a degree of
neural differentiation. No data were presented with re-
gard to potential fusion between donor and recipient
cells. As with the MSC studies, ADSC-treated animals
showed significant improvement in neurologic testing
with the animals receiving BDNF-transduced cells
exhibiting significantly better recovery of function than
those treated with unmodified ADSC. The same group
also examined the co-culture of human ADSCs and
murine NSCs, and observed that when NSCs were cul-
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tured on mitomycin-treated ADSC-monolayers, their
proliferation was decreased, but neural differentiation
was increased. However, when NSCs were cultured
with ADSC-conditioned medium or co-cultured with
permeable filter on which ADSCs were grown, the
proliferation of NSCs significantly decreased and glial
differentiation increased, but their neural differentia-
tion was not affected. Thus Kang et al. concluded that
direct physical contact between ADSCs and NSCs is
required for induction of neural differentiation.95

Other applications

Therapeutic angiogenesis

Restoring blood flow to ischemic tissue has proven
instrumental in the treatment of patients with acute
myocardial infarctions. However, this application is not
the only one that could greatly benefit by increased
angiogenesis. Therapeutic angiogenesis, potentially
from ADSCs and MSCs, has an extremely broad range
of clinical applications under investigation, such as
ischemic cardiomyopathy, peripheral vascular disease,
ischemic stroke, acute tubular necrosis, diabetic retin-
opathy, ischemic encephalopathy, traumatic spinal cord
injuries, and transplant related ischemia. Both ADSCs
and MSCs have been shown to increase angiogenesis to
ischemic tissue; however the underlying mechanism
remains unclear. Both cell types have been shown to
excrete substantial quantities of angiogenic growth
factors, including VEGF, PlGF, bFGF, angiogenin,
GM-CSF, MCP-1 and SDF-1alpha.96,97 Both cell types
have also been shown to be capable of endothelial
differentiation.44,98

Miranville et al. have presented data supporting the
presence of cells within adipose tissue that differ-
entiated into endothelium.99 Thus, CD34þ/CD31� cells
within adipose were shown to be capable of in vitro
differentiation into cells that expressed both CD31 and
von Willebrand factor, both markers of mature endo-
thelium. Most importantly, the authors demonstrated
the ability of these cells to improve blood flow and
capillary density in a NOD-SCID mouse model of hind
limb ischemia. These data are confirmed by another
study showing that delivery of ADSCs to immunodefi-
cient animals following induction of severe hind limb
ischemia results in accelerated restoration of perfu-
sion.96 As an interesting side note, Miranville et al.
also reported that approximately 18% of CD34þ/
CD31� cells co-expressed ABCG2, a protein asso-
ciated with the side population (SP) stem cell pheno-
type; overall approximately 4% of all non-buoyant
adipose-tissue-derived cells express ABCG2.99 It
should be noted that there, at present, are no data
addressing the question of whether or not the endothe-

lial and mesenchymal differentiation capacity within
adipose tissue reside within the same cells.

Gene delivery

A number of investigators have transduced ADSCs
in order to facilitate tracking or to engender a thera-
peutic effect. Thus, Leo et al. used Ad-CMV-luciferase
to allow non-invasive, real-time tracking of ADSCs in
rat spine.100 Similarly, Dragoo et al.35 infected both
MSCs and ADSCs with E1A-deleted-type 5 adenovirus
constructs containing the BMP-2 (bone morphogenic
protein-2) gene or the bacterial beta-galactosidase
(lacZ) gene. LacZ gene transduction efficiency was
35% for MSCs and 55% for ADSCs. Ad-BMP2 infec-
tion resulted in levels of expression of BMP-2 protein
that were three-fold higher than those derived from
MSCs. Ad-BMP-2 infected ADSCs exhibited in vitro
osteoblastic differentiation in the absence of exogenous
osteogenic factors. They also exhibited robust ectopic
in vivo production of bone when cells were implanted
into a collagen sponge within the subcutaneous space.35
Given the success of unmodified MSCs in treatment of
osteogenesis imperfecta101,102 these data support the
potential for transplant of allogeneic or gene-modified
ADSCs for genetic disorders of the skeletal system.

Kang et al.94 have also used an E1A-deleted type 5
adenovirus to infect ADSCs. As described above, these
studies employed transduction of a tracking gene (lacZ)
and a potentially therapeutic gene Brain-Derived Neu-
rotrophic Factor (BDNF) achieving 100% and 94%
transduction efficiency, respectively. Transduced cells
were implanted into areas of the brain that had under-
gone transient (90 minute) ischemia-reperfusion injury.
Donor cells capable of continued expression of the
transgene were retained to 30 days, the longest time
point examined in this study.

Finally, our group has published results of a study
comparing infection of ADSCs with oncoretroviral, and
lentiviral vectors.103 The primary lentivirus used was
the VSV-G pseudotyped HIV-1 vector SIN18-Rh-
MLV-E (VSV). Infection by the VSV-G pseudotyped
MuLV oncoretrovirus SR(alpha)L-EGFP and a second
lentivirus construct, RRL-PGK-EGFP-SIN18, was also
used. Direct comparison of infection of the lentiviruses
and the oncoretrovirus was possible due to common
envelope protein and the similarity of the transcription
level driven in transduced cells. Thus, we were able to
infect ADSCs with the same number of EGFP trans-
duction units (virus preparations standardized to drive
the same level of GFP expression in control cells) and
determine efficiency by flow cytometry three days and
one week after infection. The lentiviral contructs
resulted in 4–10-fold higher expression than the retro-
viral vector. The percentage of transduced cells was
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not high (10–15%) but remained stable in culture over
100 days. Moreover, using a lentiviral vector with the
cytomegalovirus promoter resulted in a transduction
efficiency of >90% at a MOI of 14. Studies using
lentiviral-infected cells (RRL-PGK-EGFP-SIN18; MOI
59) in which transduction efficiency was 98% at day 3
and >95% at day 100 allowed examination of gene
expression during in vitro differentiation. Retention of
marker gene (EGFP) expression was observed follow-
ing both adipogenic and osteogenic differentiation.

Hematopoietic support

The ability to support hematopoiesis is another
property of MSCs that may be important in clinical
applications. Indeed, co-infusion of MSCs with grafts
containing hematopoietic stem cells has been shown to
enhance the rate of hematopoietic engraftment in hu-
man clinical studies.104 Hematopoietic support is also
important in transduction of CD34-positive hema-
topoietic stem and progenitor cells.105–107 While no
study to date has specifically examined the ability of
ADSCs to support hematopoiesis, a recent study has
claimed to demonstrate that adipose tissue contains a
population of cells with hematopoietic stem cell activ-
ity; that is, a population of cells capable of rescuing
lethally irradiated animals.108 Thus, intraperitoneal
transplant of 107 fresh adipose or marrow cells was
associated with 40% survival following 10 Gy irradia-
tion. Recovery of platelet and white blood cells counts
was more rapid with marrow than for adipose tissue
cells (8 weeks vs 10 weeks for return to normal levels).
However, adipose-derived cell transplant resulted in a
very low level of hematopoietic chimerism (1.7% mar-
row hematopoietic progenitor cells of donor origin).
This suggests that the survival advantage conferred by
adipose-derived cell transplant is due to enhancement
of the recovery of endogenous hematopoietic stem cells
from the otherwise lethal irradiation in a manner that is
generally consistent with the human co-infusion study
cited above.104

Summary

In summary, adipose tissue, like bone marrow,
contains a population of cells that has extensive self-
renewal capacity and the ability to differentiate along
multiple lineages. The cells possessing this activity can
be obtained in large numbers at high frequency from a
tissue source that can be extracted in large quantities
with minimal morbidity, unlike marrow. These cells can
also be infected by adenoviral, oncoretroviral, and len-
tiviral vectors with moderate to high efficiency. Thus,
adipose tissue appears to represent a potential clinically

useful source of cells for cellular therapy, tissue engi-
neering and gene transfer applications.
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