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2 Multiprocessor scheduling with communication delays 

From the late fifties onwards, many architectures for parallel computers have 

been proposed. Some models are useful from a theoretical point of view, but 

their realization is generally not feasible due to physical limitations; their 

main purpose is to help to design and analyze parallel algorithms. Others are 

more realistic and exist or are being built. Unfortunately, multiprocessors 

strongly differ from each other and, accordingly, there exists no general model 

that effectively describes the broad spectrum of feasible parallel architectures. 

Different classification schemes have been proposed, based on processor 

autonomy [Flynn, 1966], interprocessor communication [Schwartz, 1980], 

and mode of operation [Treleaven, Brownbridge, and Hopkins, 1982]. The 

diversity of models and existing architectures causes a series of problems 

when one wishes to take advantage of the computing power that multiproces

sors offer. These problems can be summarized as follows. Important for pro

gramming a parallel computer is to preserve an algorithm's intrinsic parallel

ism when formalized in a programming language, to properly partition a pro

gram into tasks, and to assign the tasks to processors while respecting the 

information dependencies in between the tasks. 

This thesis concerns the latter aspect: the new allocation and scheduling 

problems that have to be solved. These problems differ from the problems of 

classical sequencing and scheduling theory mainly in that interprocessor com

munication delays have to be taken into account. 

In the literature, we distinguish two basically different approaches to handle 

communication delays. The first approach formulates the problem in graph 

theoretic terms; one speaks of the mapping problem (Bokhari, 1981]. The pro

gram graph is regarded as an undirected graph, where the vertices correspond 

to tasks and an (undirected) edge indicates that the adjacent tasks interact, that 

is, communicate with each other. The multiprocessor architecture is also 

regarded as an undirected graph, with nodes corresponding to processors. Pro

cessors are assigned to tasks. A mapping aims at reducing the total interpro

cessor communication time and balancing the workload of the processors, 

thus attempting to find an allocation that minimizes the overall completion 

time. 

The second approach considers the allocation problem as a pure scheduling 

problem. It regards the program graph as an acyclic directed graph. Again, the 

vertices represent the tasks, but a (directed) arc indicates a one-way communi

cation between a predecessor task and a successor task. A schedule is an allo

cation of each task to a time interval on one or more processors such that, 

among others, precedence constraints and communication delays are taken 

into account. It aims at minimizing the maximum or the average task 
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completion time. We will take this second approach. 

Eventually, it may be desirable to combine the mapping approach and the 

scheduling approach when allocating a parallel program to a multiprocessor. 

In that case, the combined approach would first schedule the tasks on a virtual 

architecture graph and next find a mapping of the virtual architecture graph 

onto the physical architecture of the multiprocessor [Kim, 1988]. 

Following the second approach, we address the allocation problems in the 

context of deterministic machine scheduling theory. Scheduling theory in 

general is concerned with the optimal allocation of scarce resources (proces

sors) to activities (tasks) over time. The problems we consider are determinis

tic in the sense that all the information that defines an instance is known with 

certainty in advance. A complete formulation of the problem type to be con

sidered in this thesis is given in Chapter 2. 

Deterministic scheduling theory is part of the area of combinatorial optimi

zation. Combinatorial optimization involves problems in which we have to 

choose the best from a discrete and often finite set of alternatives. The finite

ness suggests the brute-force approach of complete enumeration to be effec

tive: simply generate all feasible solutions, examine their costs, and select the 

best one. However, for realistic problems the time requirements of this 

method are prohibitive and we have to search for faster algorithms. The funda

mental question is whether there exists an algorithm that solves a given prob

lem to optimality in polynomial time. Algorithms that run in polynomial time 

are considered to be 'fast', and problems for which such an algorithm exists 

are said to be 'well-solved'. For other problems it has been shown that the 

existence of a polynomial-time algorithm is highly unlikely; these are the 

NP-hard problems. Complexity theory provides a mathematical framework in 

which computational problems can be classified as being solvable in polyno

mial time or NP-hard. The reader is referred to the textbook by Garey and 

Johnson [1979] for a detailed treatment of the subject. The complexity of 

many scheduling problems that come up in the context of programming a 

parallel computer is dealt with in Chapters 3-6. We will now give an overview 

ofthese chapters. 

As indicated before, interprocessor communication delays form a major 

problem when one is programming a multiprocessor. Each task of a parallel 

program produces information which is in whole or in part required by one or 

more other tasks. The transmittal of information may induce several sorts of 

communication delays, depending on the amount of the information that is 

transferred. In Chapter 3, we study the simplest model that allows for com

munication delays: a set of unit-time tasks has to be processed subject to 
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precedence constraints and unit-time communication delays. We consider two 

cases, in which the number of processors is restricted and unrestricted, respec

tively. For either case, we investigate the question whether there exists a 

schedule of length at most equal to a given threshold value. We also show that 

dynamic programming gives a polynomial-time algorithm in case the width of 

the precedence relation is fixed, i.e., part of the problem type. Finally, we 

show NP-hardness for the case that the precedence relation can be represented 

by a directed tree. 

Communication delays may be reduced or even avoided by task duplica

tion, that is, the creation of copies of a task. In Chapter 4, we investigate the 

trade-off between the optimal makespan of schedules with and without dupli

cated tasks. In general, task duplication can decrease the schedule length by a 

factor at most equal to the number of processors, even for tree-type pre

cedence relations. However, in case of unit-time processing requirements and 

unit-time communication delays task duplication can help a factor of two, but 

no more. 

Another aspect of multiprocessor scheduling is that a task may require more 

than one processor for its execution. Such tasks are referred to as multiproces

sor tasks. In Chapter 5 we investigate the computational complexity of 

scheduling multiprocessor tasks with prespecified processor allocations. 

Moreover, we investigate the complexity when various additional task charac

teristics are involved, such as precedence constraints and release dates. 

In Chapter 6 we explore a hybrid variant, in which some tasks are to be allo

cated to either of two processors and others have a prespecified allocation to a 

single processor. The multiprocessor architecture is a two-stage pipeline, 

where the first stage consists of two independent identical processors and the 

second stage consists of a single processor. This problem can be viewed as an 

extension of the classical two-stage flow shop problem. We establish its NP

hardness in the strong sense. 

The general model described in Chapter 2 involves multiprocessor tasks, pos

sibly with prespecified processor allocations, and allows for communication 

delays and task duplication. From the analyses of Chapters 3-6, we may con

clude that it is unlikely that fast algorithms exist that solve the scheduling 

problem in its most general form to optimality. One is confined to take an 

approximative approach. Tosca, our tunable off-line scheduling algorithm, 

embodies such an approach. It has been developed as a tool to support the 

scheduling of parallel programs on distributed memory architectures. Tosca' s 

purpose is to assist in the design and analysis of schedules of a given 
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computation graph on a given processor model, allowing for communication 

delays. Tosca can be used to obtain performance predictions with respect to a 

program under development; given a decomposition of such a program, a 

schedule measures its quality. 

Tosca constructs schedules for instances that may consist of multiprocessor 

tasks, possibly with prespecified processor allocations. It allows for communi

cation delays, but does not apply task duplication. Tasks may be grouped into 

families. Tasks that belong to the same family must be executed by the same 

collection of processors. Tosca tries to find a reasonable solution in a reason

able amount of time by bounded enumeration. In principle, a schedule can be 

constructed by iteratively selecting the next task to schedule, allocating a col

lection of processors to it, and starting the task as early as possible on that col

lection. The various possible choices can be represented by an enumeration 

tree. The process of bounded enumeration considers only part of this enumera

tion tree. It consists of a number of stages. At each stage a task and a processor 

allocation for that task are selected. In order to select this task and allocation, 

Tosca generates a subtree of the enumeration tree. The subtree is determined 

by three parameters (which control the width and the depth of the subtree), 

two priority rules (for choosing good tasks and allocations), and a lower bound 

rule (in order to eliminate unpromising branches). The leaves of the subtree 

are evaluated according to an evaluation rule. A task-allocation pair that leads 

to a leaf of minimum value is selected. Tosca is tunable, since it enables the 

user to control the speed of the solution method and the quality of the 

schedules produced. First, by adjusting the three parameters the user 

influences the size of the subtree that is computed. Second, the user has to 

define two priority rules; one for selecting tasks and another for selecting pro

cessors. These rules may be part of a given set of rules or are of the user's mak

ing. Third, the user has to specify a lower bound rule and an evaluation rule. A 

detailed description of Tosca' s methodology is given in Chapter 7. 

Tosca is equipped with a simple user interface. All the information is 

presented in alphanumerical manner. The man-machine interaction is menu 

driven, so that at any moment all feasible commands are visible. Tosca's 

implementation is described in Sections 8.1 and 8.2. Together with Section 

7.3, these sections can be seen as a manual for the use of Tosca. Tosca has 

been tested on four classes of problem instances: layered precedence relations, 

series parallel precedence relations, arbitrary precedence relations, and two 

precedence relations from practice. In addition to the precedence relations, we 

generated data sets, processing times, and task sizes. The corresponding four 

problem generators are described in Section 8.3. For the instances that were 
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generated, we applied list scheduling with a number of different priority rules 

to construct initial schedules. Next we tried to build better schedules by use of 

bounded enumeration with a more restricted number of priority rules. In Sec

tion 8.4 we report on these experiments. 

As an illustration of the models and methodology described in this thesis, 

especially those concerning Tosca, we present a small example in Chapter 9. 

Amongst others, it illustrates the aspects of communication delays, multipro

cessor tasks, list scheduling and bounded enumeration. 

Chapter 2 is a substantial revision and extension of: 

B. Veltman, B.J. Lageweg, J.K. Lenstra (1990). Multiprocessor scheduling 

with communication delays. Parallel Comput.J6, 173-182. 

Chapter 3 is based on: 

J.A. Hoogeveen, J.K. Lenstra, B. Veltman (1992). Three,four, five, six, or the 

complexity of scheduling with communication delays, Report BS-R9229, 

CWI, Amsterdam; 

J.K. Lenstra, M. Veldhorst, B. Veltman (1993). The complexity of scheduling 

trees with communication delays, in preparation. 

Chapter 5 is based on: 

J.A. Hoogeveen, S.L. van de Velde, B. Veltman (1993). C?mplexity of 

scheduling multiprocessor tasks with prespecified processor allocations. 

Discrete Appl. Math., to appear. 

Chapter 6 is based on: 

J.A. Hoogeveen, J.K. Lenstra, B. Veltman (1993). Minimizing makespan in a 

multiprocessor flow shop is strongly NP-hard, in preparation. 

Chapters 7 through 8 are based on: 

B. Veltman, B.J. Lageweg, J.K. Lenstra (1993). Tosca: a tunable off-line 

scheduling algorithm, in preparation. 
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As indicated in Chapter 1, the subject of this thesis is the study of the alloca

tion of program modules or tasks to parallel processors in the context of deter

ministic machine scheduling theory. A multiprocessor architecture can be 

represented by an undirected graph. Tasks can be processed on various sub

graphs of the multiprocessor graph. Data dependencies define a precedence 

relation on the task set. The transmittal of data may induce several sorts of 

communication delays. These delays may be reduced or even avoided by task 

duplication. We search for an allocation of tasks to processors that minimizes 

the maximum or total completion time. 

In this chapter, we formulate our scheduling model, we propose a 

classification that extends the scheme of Graham, Lawler, Lenstra and Rin

nooy Kan [1979], and we review the available literature. 

2.1. The processor model 

The multiprocessor chosen consists of a collection of m processors, each pro

vided with a local memory and mutually connected by an intercommunication 

network. The multiprocessor architecture can be represented by an undirected 

graph. Several examples are given in Figure 2.1; cf. Kindervater and Lenstra 

[1988]. The nodes of such a graph correspond to the processors of the architec

ture it represents. Transmitting data from one processor to another is con

sidered as an independent event, which does not influence the availability of 

the processors on the transmittal path. In case of a shared memory, the 

assumption of having local memory only overestimates the communication 

delays. 

2.2. The program model 

A parallel program is represented by means of an acyclic directed graph. The 

nodes of this program graph correspond to the modules in which the program 

is decomposed; they are called tasks. Each task produces information, which 

is in whole or in part required by one or more other tasks. These data depen

dencies impose a precedence relation on the task set; that is, whenever a task 

requires information, it has to succeed the tasks that deliver this information. 

The arcs of the graph represent these precedence constraints. The transmittal 

of information may induce several sorts of communication delays, which will 

be discussed in the next section. Task duplication, that is, the creation of 

copies of a task, might reduce such communication delays. Task duplication is 

discussed in Section 2.4. 

The task set is partitioned into a number of families. Each task belongs to 

exactly one family. A task can be processed on various subgraphs of the 
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(i) Complete network. (ii) Mesh connected 
network 

(iii) Perfect shuffle 
network 

( iv) Cube connected ( v) Cube connected cycles 
network. network. 

(vi) Master-slave 
network 

(vii) Binary trees 
network 

Figure 2.1. Seven interconnection networks. 

9 

multiprocessor graph. Tasks that belong to the same family have to be exe

cuted by the same subgraph of the multiprocessor graph. We assume that for 

each family a collection of subgraphs on which its tasks can be processed is 

specified, and that for each task in that family and each of its subgraphs a 

corresponding processing time is given. If the processors of the architecture 

are identical, then for each ta.<;k the processing times related to isomorphic 

subgraphs are equal. For instance, one may think of a collection of 
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subhypercubes of a hypercube system of processors, or a collection of sub

meshes of a mesh connected system. Another possibility occurs when each 

task can be processed on any sub graph of a given family-dependent size. 

If preemption is allowed, then the processing of any operation may be inter

rupted and resumed at a later time. Although task splitting may induce com

munication delays, it may also decrease the cost of a schedule with respect to 

one or more criteria. We will not explore the aspect of communication delays 

that are induced by preemption in detail, but concentrate on communication 

delays between precedence-related tasks. 

2.3. Communication 

The information a task needs (or produces) has to be (or becomes) available on 

all the processors handling this task. The size of this data determines the com

munication times. 

If two tasks Jk and 11 both succeed a task Jj, then they might partly use the 

same information from task Jj. Under the condition that the memory capacity 

of a processor is adequate, only one transmission of this common information 

is needed if Jk and 11 are scheduled on the same subgraph of the multiproces

sor graph. It is therefore important to determine the data set a task needs from 

each of its predecessors. The transfer of data between Jj and h can be 

represented by associating a data set with the arc (Jj,Jk) of the transitive clo

sure of the program graph. This would generally lead to the specification of 

8(n 2
) sets, if there are n tasks. Another possibility is to associate two sets Ij 

and Oi with each task Jj, representing the data that this task requires and 

delivers, respectively. This requires 8(n) sets. The intersection 0/1/k gives 

the data dependency of tasks Jj and Jk. 

Each information set has a weight, which is specified by a function 

c : 2D ~N. where D is the set containing all information. This function gives 

the time needed to transmit data from one processor to another, regarded as 

independent of the processors involved. Let Ue 2D be a data set and let 

{ U 1, U 2 , ••• , U u } be a partition of U. We assume that U can be transmitted in 

such a way that uf=1 Ui is available when a time period of length at most 

c(u~=I Ui) has elapsed, for each t with l~t~u. We also assume that c(0)=0 

and that c (U) ~ c (W) for all U c We 2D. These conditions state that a data set 

U can be transmitted in such a way that a subset of U becomes available no 

later than when this subset would be transmitted on its own. 
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Jk I h P(k, 2) U(2, l,k) c(U(2, l,k)) 

h {a,b} {2} {a,b} 2 

J3 
I 

{a,c} {2,3} { a,b,c} 5 

Mzb @EJ 
Mt 1 

------

0 2 4 7 

Figure 2.2. Communication delays. 

Interprocessor communication occurs when a task Jk needs information 

from a predecessor Ji and makes use of at least one processor that is not used 

by Ji. Let Mi be such a processor. Let F (j) denote the set of successors of Ji 

and, given a schedule, let P (k, i) denote the set of tasks scheduled on M1 before 

and including Jk. Prior to the execution of Jb the data set 

U(i,j,k)=UleF(j)rJ'(k,i)(Ojf'llt) has to be transmitted to Mi, since not only Jk 

but also each successor of Ji that precedes Jk on Mi requires its own data set. 

The time gap in between the completion of Ji (at time Cj) and the start of Jk (at 

time Sk) has to allow for the transmission of U(i,j,k), as illustrated in Figure 

2.2. The communication time is given by c(U(i,j,k)). For feasibility it is 

required that Sk- Ci ~c (U (i,j,k)). At the risk of laboring the obvious, let it be 

mentioned that the communication time is schedule-dependent. 

Sometimes one wishes to disregard the data sets and simply to associate a 

communication delay with each pair of tasks. That is, a (predecessor, succes

sor) pair of tasks (Jj,Jk) assigned to different processors needs a communica

tion time of a given duration cik· The communication time is of length ci* if it 

depends on the broadcasting task only, it is of length c*k if it depends on the 

receiving task only. Finally, it may be of constant length c, independent of the 

tasks. 

2.4. Task duplication 

If one manages to execute all predecessors of a task on all of the processors 

handling that task, then one may reduce or even avoid communication delays. 

This can be done by task duplication, that is, the creation of copies of a task. 

Consider the example given in Figure 2.2. An optimal schedule for these 

three tasks without duplication takes six time units, whereas an optimal 
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M2
[TI. 1 2 

Mt~ 
0 2 4 6 0 2 4 6 

Figure 2.3. Task duplication. 

schedule with task duplication is of length four, as illustrated in Figure 2.3. In 

the latter, task J 1 is executed twice: once by processor M 1 and once by proces

sor M 2 • This enables tasks J 2 and J 3 to be executed without any form of com

munication delay; task J 2 receives its information from the copy of task J 1 

that is executed by M 2 and J 3 receives its information from the copy of J 1 that 

is processed by M 1 • 

Let Jj and Jk be such that lr~Jk. In a feasible schedule each copy of Jk has 

to receive the information it needs for processing in time, that is, there has to 

be a copy of Jj such that the time gap between the completion of this copy of 

Jj and the start of the copy of Jk allows for the transmission of the required 

information. 

2.5. Classification 

In general, m processors Mi ( i == 1, ... , m) have to process n tasks Jj 

( j == 1, ... , n ). A schedule is an allocation of (each copy of) a task to a time 

interval on one or more processors. A schedule is feasible if no two of these 

time intervals on the same processor overlap and if, in addition, it meets a 

number of specific requirements concerning the processor environment and 

the task characteristics (e.g., precedence constraints and communication 

delays). A schedule is optimal if it minimizes a given optimality criterion. The 

processor environment, the task characteristics and the optimality criterion 

that together define a problem type, are specified in terms of a three-field 

classification a I ~I y, which is specified below. Let o denote the empty sym

bol. 

2.5 .1. Processor environment 

The first field a== a 1 a 2 specifies the processor environment. The characteriza

tion a 1 =P indicates that the processors are identical parallel processors. The 

characterization P indicates that, in addition, the number of processors is not 

restricted; e.g., m ~ n is sufficient in case of single-processor tasks. 

If a2 is a positive integer, then m is a constant, equal to a2 ; it is specified as 
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part of the problem type. If az = o, then m is a variable, the value of which is 

specified as part of the problem instance. 

2.5.2. Task characteristics 

The second field ~ c { ~ 1 , ••. , ~ 8 } indicates a number of task characteristics, 

which are defined as follows. 

1. ~ 1 E {prec,tree,chain, o }. 

~~ =prec: A precedence relation ~is imposed on the task set due to data 

dependencies. It is denoted by an acyclic directed graph G with vertex set 

{ 1, ... , n}. If G contains a directed path from j to k, then we write Jj~h 

and require that Jj has been completed before J k can start. 

~ 1 =tree: G is a rooted tree with either outdegree at most one for each ver

tex or indegree at most one for each vertex. 

~ 1 chain: G is a collection of vertex-disjoint chains. 

~ 1 o: No data dependencies occur, so that the precedence relation is empty. 

2. ~2 E {com,cjk•cj*•c*k•c,c=l,o} 

This characteristic concerns the communication delays that occur due to 

data dependencies. To indicate this, one has to write ~ directly after ~ 1 • 

~ =com: Communication delays are derived from given data sets and a 

given weight function, as described in Section 2.3. In all the other cases, the 

communication delays are explicitly specified. 

~ 2 = cjk: Whenever Jj~h and Jj and Jk are assigned to different processors, 

a communication delay of a given duration cjk occurs. 

~ The communication delays depend on the broadcasting task only. 

~ = c*k: The communication delays depend on the receiving task only. 

~ 2 = c: The communication delays are equal. 

~ 2 Each communication delay takes unit time. 

~ 2 =o: No communication delays occur (which does not imply that no data 

dependencies occur). 

3. ~ 3 E {dup, o }. 

~ 3 = dup: Task duplication is allowed. 

~ 3 = o: Task duplication is not allowed. 

4. ~ 4 E {Jam, o}. 

~ 4 =Jam: The number of distinct families is strictly less than the number of 

tasks. 

~ 4 = o: Each family consists of a single task. 

5. ~ 5 E {any,set,size,cube,mesh,fix, o }. 

~ 5 =any: The tasks of each family can be processed on any subgraph of the 

multiprocessor graph. 
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~ 5 =set: Each family has its own collection of subgraphs of the multiproces

sor graph on which its tasks can be processed. 

~ 5 =size: The tasks of each family can be processed on any subgraph of a 

given family-dependent size. 

~ 5 =cube: The tasks of each family can be processed on a subhypercube of 

given family-dependent dimension. 

~ 5 =mesh: The tasks of each family can be processed on a submesh of given 

family-dependent size. 

~ 5 =fix: The tasks of each family can be processed on exactly one subgraph. 

~ 5 =o: Each task can be processed on any single processor. 

6. ~6 E {o,pj=l}. 

~ 6 = o: For each task and each subgraph on which it can be processed, a pro

cessing time is specified. 

~6 = p r 1: Each task has a unit processing requirement. 

7. ~7 E {pmtn, o}. 

~ 7 = pmtn: Preemption of tasks is allowed. 

~ 7 =o: Preemption is not allowed. 

8. ~g E {c,c=l,o}. 

This characteristic concerns the communication delays that occur due to 

preemption. To indicate this, one has to write ~ 8 directly after~. 

~ 8 = c: When a task is preempted and resumed on a different processor, a 

communication delay of constant length occurs. 

~ 8 = c = 1: Each communication delay caused by preemption takes unit time. 

~ = o: Preemption causes no communication delays. 

2.5.3. Optimality criterion 

The third field yrefers to the optimality criterion. In any schedule, each task Ji 

has a completion time Ci. A traditional optimality criterion involves the 

minimization of the maximum completion time or makespan 

C max =max 1-::;j s;n Cj. Another popular criterion is the total completion time 

ICriJ=lcj· 
The optimal value ofywill be denoted by y*, and the value produced by an 

(approximation) algorithm A by y(A ). If y(A) ~ py* for all instances of a prob

lem, then we say that A is a p-approximation algorithm for the problem. 

2.6. Literature review 

Practical experience makes it clear that some computational problems are 

easier to solve than others. Complexity theory provides a mathematical frame

work in which computational problems can be classified as being solvable in 
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polynomial time or NP-hard. The reader is referred to the book by Garey and 

Johnson [1979] for a detailed treatment of the subject. In reviewing the litera

ture, we will assume that the reader is familiar with the basic concepts of com

plexity theory. As a general reference on sequencing and scheduling, we men

tion the survey of deterministic machine scheduling theory by Lawler, Lens

tra, Rinnooy Kan and Shmoys [1989], which updates the previous survey by 

Graham, Lawler, Lenstra and Rinnooy Kan [1979]. An earlier review of the 

literature on scheduling multiprocessor tasks with communication delays was 

given by Veltman, Lageweg, and Lenstra [ 1990]. 

2.6.1. Single-processor tasks and communication delays 

The first NP-hardness proof for P lprec,c =1 ,pj=ll C max is due to Rayward

Smith [ 1987 A]. Hoogeveen, Lenstra and Veltman [ 1992] show by a reduction 

from Clique that even the problem of deciding if there exists a feasible 

schedule of length at most 4 is NP-complete; see also Section 3.1. This result 

implies that, for P lprec,c=l,pj=IICmax• there is no polynomial p

approximation algorithm for any p<5/4, unless P=NP. Their reduction also 

implies that P lprec,c=l,pj=11I:Cj is NP-hard. Picouleau [1991A] shows 

that the problem of deciding whether an instance has a schedule of length at 

most 3 is solvable in polynomial time; see also Section 3.1. 

Hoogeveen, Lenstra and Veltman [1992] also study the variant 

P lprec,c=1,pj=11 Cmax for which the number of processors is not restric

tively small; see also Section 3.2. By use of an integer programming formula

tion, they show that the problem of deciding if there exists a feasible schedule 

of length at most 5 is solvable in polynomial time. A reduction from 3-

Satisfiability shows that the problem of deciding if there exists a feasible 

schedule oflength at most 6 is NP-complete. As a consequence, there exists no 

e_olynomial-time algorithm with performance bound smaller than 7/6 for 

P lprec,c =l,pj=ll C max, unless P=NP. 

Rayward-Smith [1987A] analyzes the quality of greedy schedules (G) for 

problem instances of the type P lprec,c=l,pj=ll Cmax· A schedule is said to 

be greedy if no processor remains idle if there is a task available; list schedul

ing, for example, produces greedy schedules. It is proved that 

Cmax(G)/C~ax '5:3-2/m. To this end, various concepts are introduced. As 

indicated in Section 2.2, a directed graph or digraph represents the precedence 

relation. The nodes of this graph correspond to the tasks. The depth of a node 

is defined as the number of nodes on a longest path from any source to that 

node. A layer of a digraph comprises all nodes of equal depth. A digraph is 

layered if every node that is not a source has all of its parents in the same layer. 
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A layered digraph is (n, m )-layered if it has n layers, all terminal nodes are in 

the nth layer, and m layers are such that all of their nodes have more than one 

parent. A precedence relation is (n,m)-layered if the corresponding directed 

graph is (n,m)-layered. It takes at least time n+m to schedule tasks with 

(n,m )-layered precedence constraints. Given a greedy schedule, lett be a point 

in time when one or more processors are idle. The tasks processed after t have 

at least one predecessor processed at t-1 or t. Moreover, if all processors are 

idle at t, then every task processed after t must have at least two predecessors 

processed at t -1. Therefore, from a greedy schedule, a layered digraph can be 

extracted. Some computatio!:s then yield the above result. Note that for prob

lem instances of the type P lprec,c=l,pi=ll Cmax it is trivial to see that 

C max(G)/C~ax S2-lld holds, where dis defined as the number of nodes on a 

longest path from any source to any sink. 

We have seen that P lprec,c=l,pi=ll C max is NP-hard. It is an open ques

tion whether this remains true for any constant value of m ;;:1. The problem is 

well solved, however, if the width of the precedence graph is fixed; see Section 

3.3. Two elements j,ke Vof an acyclic directed graph G=(V,A) are said to be 

incomparable if neither {j,k) E A nor (k,j) EA. The width of G is the largest 

number of pairwise incomparable elements of G. 

Hu [1961] shows that critical path scheduling constructs optimal schedules 

in polynomial time for PI tree,pi=ll Cmax. Surprisingly, 

P ltree,c=l,pi=liCmax is NP-hard, as Lenstra, Veldhorst, and Veltman 

[1993] show by a reduction from Satisfiability; see also Section 3.4. By use of 

dynamic programming, V arvarigou, Roychowdhury, and Kailath [1992] show 

that Pm I tree,c==1,p1=11 C max is solvable in _polynomial time. The case of an 

unrestrictively large number of processors, PI tree,c=l,pi=ll C max• is solv

able in 0 (n) time [Chretienne, 1989]. 

Picouleau [1992] gives a polynomial-time algorithm to solve 

P lprec,c==l,prllCmax if the precedence relation is of the interval-type. 

Each task is associated with an interval of a linearly ordered universe. Task Ji 

precedes task Jk, i.e. lr71k, if and only if the interval associated with Ji is 

entirely to the ~ft of the interval associated with Jk. 

The variant P in which the number of processors is not restrictively small 

has been well studied. Chretienne [1992] shows NP-hardness for 

P lprec,c I C max with send-receive-type precedence relations; see Figure 2.4. 

!_akoby and Reischuk [1992] show by a reduction from Exact-3-Cover that 

PI tree,c,pi=ll C max is NP-hard, even for intrees where each task has inde

gree at most 2. In addition, they study two classes for which the precedence 

relation can be represented by a binary tree. In a binary tree, each task is either 
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Figure 2.4. A send-receive and a harpoon-type precedence relation. 

~ leaf or has indegree (or outdegree) equal to 2. It is shown that 

PI tree,cJbPrll C max• where the tree is of the binary-type,_!s NP-hard by a 

reduction from Exact-3-cover. Picouleau [1992] shows that PI tree,cJk I C max 

is solvable in 0 (nlog n) time for trees of depth 1. Together, Chretienne and 

Picouleau [1991] show NP-hardness for PI tree,cJk I C max with harpoon-type 

precedence relations, as illustrated in Figure 2.4. 

An important characteristic of parallel algorithms is the relative cost of com

munication and computing. If the interprocessor communication is time con

suming, then algorithms need to have a high computation/communication 

ratio to be efficient; we speak of coarse-grained parallelism. In case of fine

grained parallelism, the interprocessor communication time is usually in the 

order of an arithmetic operation. 

Independently, Gerasoulis and Yang [1992], and Picouleau [1991B] study 

P lprec,cJk I C max for coarse-grained instances. The granularity g of an 

instance is defined by g=min1p11max(i,k)cJk· An instance models a coarse

grained algorithm if g ~1. Picouleau _£roves that the problem of deciding 

whether an instance of the subclass Plprec,c,g~IICmax with c:::;I has a 

schedule of length at most 5+ 3c is NP-hard. This result can be improved upon 

using the techniques of Section 3.2: even the problem of deciding whether an 

instance has a schedule of length at most 6c is NP-hard. In both papers a 

1 + 1 I g -approximation algorithm is given for instances of the general problem 

type. Chretienne [1989] and Anger, Hwang, and Chow [1990] note that 

PI tree,cJbg ~II C max is solvable in O(n) time. 

Chretienne and Picouleau [1991] use a less restrictive definition of granular

ity. The grain g(k) of a task Jk is defined by g(k)= 

minJEP(k)P/maxJEP(k)cJb where P (k) is the set of predecessors of Jk. An 

instance models a coarse-grained algorithm if g U) ~1 for all j =I, ... , n. lfthe 

precedence relation is of the bipartite-type or the series-parallel-type, then 

P lprec,c1bg U)~ll C max is solvable in polynomial time. 
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Duplication of tasks can be used to reduce or even avoid communication 

delays. The NP-hardness proof of P jprec,c=l,pj=ll Cmax [Hoogeveen, 

Lenstra, and Veltman, 1992] implies that the problem of deciding whether an 

instance of P jprec,c=l,dup,pi=ll Cmax has a schedule of length at most 4 is 

NP-complete, too. As a consequence, neither of these problems has a polyno

mial approximation scheme, unless P=NP. 

Papadimitriou and Yannakakis [1990] prove that the unrestricted variant 

P lprec,c,dup,pi=ll C max is NP-hard. In addition they derive a 2-

~proximation algorithm for the more general problem 

P jprec,cik•dup I Cmax· The algorithm determines a set of tasks Ti and com

putes a lower bound bi on the starting time, for each task Ji. It is shown that if 

the task set Tj is assigned to the same processor as Ji, and its tasks and Ji are 

started as early as possible, then Ji starts no later than 2b i. The computation of 

the lower bounds and the task sets is as follows. Zero lower bounds and empty 

task sets are assigned to tasks without predecessors. For any task Jk other than 

a source task, consider its predecessors. For each predecessor Ji of Jh define fi 
by fi=bi+Pi+cik· Sort the predecessor set in decreasing order of J, that is 

fi 
1 
~ • • • ~hq. Given an integer y satisfying fj, ~Y~/ii+!, define task set Tk( y) by 

Tk(y)+{Ji,, ... ,Jj,} and consider the following single-processor scheduling 

problem with release dates on i tasks L 1, ••• , Li. The release date of a task is 

the point in time at which it becomes available for processing. Task L1 

(l = 1, ... , i) corresponds to task Jj,, that is, it has processing time p1=p j, and 

release date r1=bi,. Let C max ( y) denote the minimum makes pan of this 

single-processor scheduling problem. Define bk as the least integer y such that 

y~Cmax(y), and define task set Tk by Tk=Tk(bd. Now, each task Jj is 

assigned to a distinct processor and is preceded by (copies of) the tasks that 

belong to Ti. The tasks are scheduled in the order in which they become avail

able, given the precedence constraints and the communication delays. This 2-

approximation algorithm takes O(n 2 (e+nlogn)) time, where e denotes the 

number of precedence constraints. 

Colin and Chretienne [1990] observe that this method generates optimal 

schedules in 0 (n 2) time for coarse-grained problem instances. Their essential 

argument is the following: if the task grains g (k) are such that g (k) ~ 1 for all 

k = 1, ... , n, then each task set Tk consists of at most one predecessor task Ji. 

The precedence constraints lr~l b where { Ji} = Tk, form a spanning forest of 

outtrees. It is observed that the assignment of each path, from a root to a leaf, 

to a single processor determines an optimal schedule. 

For P lprec,c,dup I Cmax, dynamic programming gives an O(nc+l) time 

algorithm [Jung, Kirousis, and Spirakis, 1989]. 
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Rayw3rd-Smith [1987B] allows preemption at integer points in time and stu

dies P I pmtn, c I C max. He observes that the communication delays increase 

C~ax by at most c-1. Thus, P lpmtn;c=liCmax is solvable in polynomial 

time by McNaughton's wrap-around rule [McNaughton, 1959]. Surprisingly, 

for any fixed c~2, the problem is NP-hard, which is proved by a reduction 

from 3-Partition. For the special case that all processing times are at most 

C~ax- c, the wrap-around algorithm will also yield a valid c-delay schedule. 

Finally, we will give an overview of some related models. 

Picouleau [1992] studies a variant of PI tree,cjk I C max where the pre

cedence relation can be represented by a tree of depth 1 and a distance func

tion is specified. Given a pair of processors Mh, Mi> their distance dhi is 

defined by dhi= I h-i 1. A communication delay of duration cjkdhi occurs if Mh 

and Mi execute Jj and Jk> respectively. The problem is shown to be NP-hard 

by a reduction from Partition. 

El-Rewini and Lewis [1990] consider a variant of P lprec,cj/c>dup I Cmax· 

Again, a distance is given for each pair of processors and contention (leading 

to message-routing problems) is taken into account. Contention is the event 

that two or more data transshipments simultaneously have to pass a single 

communication channel. The level of a task is defined as the longest path in 

the precedence graph from this task to a sink, taking into account processing 

times and communication delays. They propose an algorithm that lexico

graphically orders the tasks according to their level and number of successors. 

It recursively chooses among the available tasks one with highest order. In 

essence, it is a priority based scheduling algorithm. A tool for scheduling 

parallel programs is introduced, called Task Grapher.lt implements a number 

of priority based scheduling algorithms. The deliverables of Task Grapher are 

Gantt charts, performance charts, simulation animations, and critical path 

analysis. 

Kim [1988] studies P lprec,cjk I C max. His approach starts by reducing the 

program graph, by merging nodes with high internode communication cost 

through the iterative use of a critical path algorithm. This (undirected) graph 

is then mapped to a multiprocessor graph. Numerical results are given. 

Sarkar [1989] defines a graphical representation for parallel programs and a 

cost model for multiprocessors. Together with frequency information 

obtained from execution profiles, these models give rise to a scheme for 

compile-time cost assignment of execution times and communication sizes in 

a program. Most attention is paid to the partitioning of a parallel program, 

which is outside the scope of this thesis. 
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Kruatrachue and Lewis [1988] treat the problem P lprec,cik>dup I Cmax· 

Most attention is paid to the grain size problem: how to partition a parallel 

program into concurrent modules in order to obtain the shortest possible 

schedule length. A scheduling algorithm allowing for duplication is used to 

schedule fine-grained instances. Coarse-grained instance are formed by pack

ing nodes located contiguously on the same processor. Then an operating sys

tem scheduler can be used to construct a schedule at runtime. 

Papadimitriou and Ullman [1987] attempt to minimize the communication 

overhead for problem instances of the type P lprec,c=l,dup,pi=ll C max• 

where the precedence relation is of grid-type. They show that any schedule 

that computes all tasks of an nxn grid or diamond graph has a total communi

cation overhead of C and takes time T, where ( C + n )T = Q(n 3 
). 

2.6.2. Multiprocessor tasks 

The problems and algorithms mentioned above deal with tasks that are pro

cessed on a single processor and focus on communication delays. The papers 

discussed below disregard the notion of communication and concentrate on 

tasks that may require more than one processor at the same time. 

Examples of such tasks are the pairwise tests that processors may perform in 

order to prevent a partial or total failure of the multiprocessor system. Each of 

the tests can be viewed as a biprocessor task with a prespecified processor 

allocation. In order to execute the diagnosis as fast as possible, one has to 

solve a problem of the type P lfix,pi=11 C max where each task is a biprocessor 

task. Krawczyk and Kubale [1985] show that this problem is NP-hard by a 

reduction from Chromatic Index. Hoogeveen, Van de Velde, and Veltman 

[1992] do not restrict themselves to biprocessor tasks. They show that even the 

problem of deciding whether an instance has a schedule of length at most 3 is 

NP-complete. As a consequence, there exists no polynomial-time algorithm 

with performance bound smaller than 4/3 for P I fix,p i= 1 I C max, unless P=NP. 

If the number of processors m is fixed, i.e., Pm I fix, pi= 11 C max, then the prob

lem is solvable in polynomial time through an integer programming formula

tion with a fixed number of variables [Hoogeveen, Van de Velde, and Velt

man, 1992]. 

It is easy to see that P21fix I C max is solvable in polynomial time. However, 

Blazewicz, Dell'Olmo, Drozdowski, and Speranza [1992] show that 

P 31fix I C max is strongly NP-hard. Hoogeveen; Van de Velde, and Veltman 

[1992] consider a block-constraint, which decrees that all biprocessor tasks 

that require the same processors are scheduled consecutively. They show that 

P31fix I C max subject to this block-constraint is solvable in pseudopolynomial 
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time. Under a stronger version of the block-constraint, where all tasks of the 

same type are scheduled consecutively, there exists a 4/3 -approximation 

algorithm [Blazewicz, Dell'Olmo, Drozdowski, and Speranza, 1992]. 

Hoogeveen, Van de Velde, and Veltman [1992] also show that 

P21chain,fix,pj=11Cmax is NP-hard even for single-processor tasks only. 

This leaves little hope of finding polynomial-time optimization algorithms if 

precedence constraints are imposed, although P21prec,fix,pj=11 Cmax is 

solvable in 0 (nlogn) time in case of single-processor tasks and a precedence 

relation ofthe interval-type [Kellerer and Woeginger, 1992]. 

The introduction of release dates has a similar inconvenient effect on the 

problem's complexity. The problem P2lfix,rj I Cmax is NP-hard in the strong 

sense. The complexity of the case of unit processing times, that is, 

Pm lfix,rj,pj=ll C max• is still open. However, if the number of distinct release 

dates is fixed, then the problem is solvable in polynomial time through an 

integer programming formulation with a fixed number of variables. All these 

results are due to Hoogeveen, Van de Velde, and Veltman [1992]; see also 

Section 5.1. 

Two branch and bound approaches for P lfix I Cmax have been proposed. 

Bozoki and Richard [1970] concentrate on incompatibility; two tasks are 

incompatible if they have at least one processor in common. Lower bounds for 

the optimal makespan are the maximum amount of processing time that is 

required by a single processor, and the maximum amount of processing time 

required by tasks that are mutually incompatible. Upper bounds are obtained 

by list scheduling according to priority rules such as shortest processing time 

(SPT) and maximum degree of competition (MDC). The degree of competi

tion of a task represents the number of tasks incompatible with it. MDC gives 

tasks with large degree of competition priority . over tasks with low degree, 

breaking ties by use of SPT. In branching, an acceptable subset of tasks that 

yield smallest lower bounds is selected at each decision moment t. A set of 

tasks is acceptable if the tasks are mutually compatible, each task of the set is 

compatible with each task that is in process at time t, and each task is incom

patible with at least one task terminating at t. Bianco, Dell'Olmo, and 

Speranza [1991] follow a graph-theoretical approach. In addition to proposing 

a branch and bound algorithm, they determine a class of polynomially solv

able instances that corresponds to the class of comparability graphs. A com

parability graph is an undirected graph that is transitively orientable. 

Krawczyk and Kubale [ 1985] present an approximation algorithm for 

P I .fix I C max with biprocessor tasks only, which has worst case bound 

4( d -1 )/ d, where dis the maximum degree of competition. 
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Hoogeveen, Van de Velde, and Veltman [1992] consider a second criterion: 

minimizing the sum of the task completion times; see also Section 5.2. This 

objective function is often interpreted as a measure of the average time a task 

is in the multiprocessor system. In general, this criterion leads to severe com

putational difficulties. 

Their main result is establishing NP-hardness in the ordinary sense for 

P21fix I I:.Ci. The question whether this problem is solvable in pseudopolyno

mial time or NP-hard in the strong sense still has to be resolved. The weighted 

version, however, is shown to be NP-hard in the strong sense. The problem 

P31fix I I:.Ci is also NP-hard in the strong sense. The problem with unit-time 

processing times is NP-hard in the strong sense if the number of processors is 

part of the problem instance, but the complexity is still open in case of a fixed 

number of processors. As could be expected, the introduction of precedence 

constraints does not simplify the computational complexity. It is shown that 

even the mildest non-trivial problem of this type, with two processors, unit 

processing times, and chain-type precedence constraints, is NP-hard in the 

strong sense. As for the introduction of release dates, Lenstra, Rinnooy Kan, 

and Brucker [1977] show that even the single-processor problem 11 ri I I:.Ci is 

strongly NP-hard. 

Dobson and Karmarkar [1989] develop integer programming formulations 

for P I fix I I:.wiCi. They apply Langrangian relaxation to obtain lower bounds 

and an approximation algorithm. The relaxation has a nice intuitive interpreta

tion. Every task Ji that is to execute on more than one processor is split into 

subtasks, one for each processor it is executed on, and the task weights are 

divided among the subtasks. For a fixed multiplier, the remaining minimiza

tion problem is simply m single-processor minimum weighted flow time prob

lems. These can be solved in O(mnlogn) time [Conway, Maxwell, and 

Miller, 1967]. Next, the multipliers are adjusted in order to move the subtasks 

to a common starting time. 

Li and Cheng [1990] study the scheduling of tasks on a mesh-connected net

work of processors; cf. Figure 2.1. Due to the relationship with 2-dimensional 

bin packing, P I mesh,pi=ll C max has no polynomial-time 2-approximation 

algorithm, unless P=NP. A 5 +4p/(8q -p) -approximation algorithm for 

scheduling tasks on a mesh of size pxq, with q-5.p-5.8q, is given. A 5-

approximation algorithm results if each task requires a square submesh. If the 

size aixbi of the submesh required by Ji (j=l, ... , n) is restricted to ai sp/k 

and bisq/k, where k~3. then these bounds can be reduced to 2+2/(k-2) and 

2+(2k-1)/(k-1P ,respectively. 
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Several papers are devoted to the cube connected network of processors; cf. 

Figure 2.1. Chen and Lai [1988A1 give a worst-case analysis of largest dimen

sion, longest processing time list scheduling (WLPn for P I cube I C max. 

TheyshowthatCmax(WLPT)/C~ax :::::;2-1/m.WLPTschedulingisanexten

sion of Graham's longest processing time scheduling algorithm (LPT) [Gra

ham, 19661. It considers the given tasks one at a time in lexicographical order 

of nonincreasing dimension of the subcubes and processing times, with each 

task assigned to a subcube that is earliest available. 

For the preemptive problem P lcube,pmtn I Cmax• Chen andLai [1988B1 

give an 0 (n 2) algorithm that produces a schedule in which each task meets a 

given deadline, if such a schedule exists. The algorithm considers the tasks 

one at a time in order of nonincreasing dimension. It builds up a stair/ike 

schedule. A schedule is stairlike if a nonincreasing function f: { 1, ... , m } -?N 

exists such that each processor M; is busy up to time f (i) and idle afterwards. 

The number of preemptions is at most n (n -1 )/2. By binary search over the 

deadline values, an optimal schedule is obtained in 0 (n 2 (log n +log max jP j)) 

time. 

Ahuja and Zhu [19901 also study P lcube,pmtn ICmax and present an 

0 (nlog n) algorithm to decide whether the tasks can be completed by a given 

deadline T. Instead of building up stairlike schedules, this algorithm produces 

pseudostairlike schedules. Given a schedule, lett; be such that processor Mt is 

busy for [O,td and free for [ti,T1. A schedule is pseudostairlike if t1<th<T 

implies h <i, for any two processors Mh and Mi. Again, the tasks are ordered 

according to nonincreasing dimension. Dealing with Jj, the algorithm recur

sively searches for the highest i such that pj>T -ti.lt schedules Jj on proces

sors M;-c2dLI)• ... ,M;. in the time slot [t;,T], and onMi+l• ... ,M;+2dj_1 in the 

time slot [ti+I ,pr(T -t;)]. By a combination of this algorithm and binary 

search, C~ax can be determined in O(nlognlog(n+maxJpj)) time. Further

more, since each task except the first is preempted at most once, the algorithm 

creates no more than n -1 preemptions, and this bound is tight. 

Shen and Reingold [1991] perform some preprocessing in the sense that the 

tasks are lexicographically ordered according to nonincreasing dimension of 

the subcubes and nondecreasing processing times (LDSPn. They also build 

up pseudostairlike schedules, but their algorithm to construct optimal 

schedules has 0 (m 2n 2) time complexity. 

Sometimes one wishes to disregard the multiprocessor architecture and sim

ply associate a size with each task to indicate that a task can be processed on 

any sub graph of that size. Du and Leung [ 19891 show that P 51 size I C max with 
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sizes belonging to {l, 2, 3} is strongly NP-hard. Blazewicz, Drabowski and 

Weglarz [1986] pay attention to unit-length tasks. They present an O(n) algo

rithm for solving P I size,p1=11 C max, where the tasks require either one or k 

processors. After calculating the optimal makespan, it schedules the k

processor tasks first and the single-processor tasks next. For the problem with 

sizes belonging to { 1,2, ... ,k }, an integer programming formulation leads to 

the observation that for fixed k the problem is solvable in polynomial time. 

However, if k is specified as part of the problem instance, then the problem 

remains strongly NP-hard. 

For the preemptive case, Blazewicz, Weglarz and Drabowski [1984] pro

pose an O(nlogn) algorithm for solving the special case of 

P I size,pmtn I C max in which the tasks require either one or two processors for 

processing. An initial step computes C~ without giving an optimal 

schedule. Subsequently, the biprocessor tasks are scheduled using 

McNaughton's wrap-around rule [McNaughton, 1959]. A modification of 

this rule schedules the single-processor tasks one at a time in order of nonin

creasing processing times. In Blazewicz, Drabowski and Weglarz [1986] this 

result is extended to an O(nlogn) time algorithm for the special case of 

P I size ,pmtn I C max in which the tasks require either one or k processors. A 

linear programming formulation shows that for any fixed number of proces

sors the problem Pm I size,pmtn I C max with sizes belonging to { 1,2, ... , k} is 

solvable in polynomial time. 

When precedence constraints are imposed, a reduction from 3-Partition 

shows that P2lchain,size ICmax is strongly NP-hard [Du and Leung, 1989]. 

For the case of unit-length tasks and only two processors, 

P2!prec,size,pi=11 C max• Lloyd [1981] presents a polynomial-time algo

rithm. He also proves that the three-processor variant is NP-hard and that list 

scheduling leads to an approximation algorithm for P !prec,size,pr11 Cmax 

with performance bound (2m-smax)l(m-smax+1), where smax is the max

imum task size. 

Blazewicz, Drozdowski, Schmidt, and de Werra [1992] study scheduling 

problems for a multiprocessor built up of uniform k-tuples of identical parallel 

processors; the processing time of JJ is the ratio p/qi, where qi is the speed of 

the slowest processor that executes JJ. They show that this problem is solvable 

in polynomial time if the sizes si (sj=l, ... ,n) are such that sJE {1, ... ,k}, 

and si ':2sk implies s/sk e z+. For a fixed number of processors, a linear pro

gramming formulation leads to the observation that the problem is solvable in 

polynomial time if the task sizes are restricted to 1, ... , k. These results extend 

those ofBlazewicz, Drozdowski, Schmidt, and de Werra [1990] for k=2. 
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The most general case, in which each task can be processed on any subgraph 

of the multiprocessor graph, is studied by Du and Leung [1989]. A dynamic 

programming approach leads to the observation that P 21 any I C max and 

P 31 any I C max are solvable in pseudopolynornial time. Arbitrary schedules 

for instances of these problems can be transformed into so called canonical 

schedules. A canonical schedule on two processors is one that first processes 

the tasks using both processors. It is completely determined by three numbers: 

the total execution times of the single-processor tasks on processor M 1 and 

M 2 respectively, and the total execution time of the biprocessor tasks. For the 

case of three processors, similar observations are made. These characteriza

tions are the basis for the development of the pseudopolynornial algorithms. 

The problem P 41 any I C max remains open; no pseudopolynornial algorithm is 

given. For the preemptive case, they prove that P I any,pmtn I C max is strongly 

NP-complete by a reduction from 3-Partition. With restriction to two proces

sors, P21any,pmtn ICmax is still NP-complete, as is shown by a reduction 

from Partition. Using a result of Blazewicz, Drabowski and Weglarz [1986], 

Du and Leung show that for any fixed number of processors 

Pm I any,pmtn I C max is also solvable in pseudopolynomial time. The basic 

idea of the algorithm is as follows. For each schedule S of 

Pm lany,pmtn ICmax• there is a corresponding instance of 

Pm I size ,pmtn I C max with sizes belonging to { 1, ... , k}, in which a task Jj is 

an [-processor task if it uses l processors with respect to S. An optimal 

schedule for the latter problem can be found in polynomial time. All that is 

needed is to generate optimal schedules for all instances of 

Pm lsize,pmtn ICmax that correspond to schedules of Pm lany,pmtn ICmax, 

and choose the shortest among alL It is shown by a dynamic programming 

approach that the number of schedules generated can be bounded from above 

by a pseudopolynomial function of the size of Pm I any,pmtn I C max. 

Finally, a few words on scheduling problems of the type P I set I C max res

tricted to single-processor tasks of unit length. Chang and Lee [ 1988] use 

matching techniques to construct optimal solutions in O(n 2m 2
) time. Chen 

and Chin [1989] construct optimal solutions in 0 (rnin('.!n,m )nmlog n) time 

by use of a network flow formulation. 

Kellerer and Woeginger [1992] impose precedence constraints on the task 

set. After establishing NP-hardness for P21prec,set,pj=11 Cmax with single

processor tasks, they concentrate on precedence relations of the interval-type. 

For these, they show that P21prec,set,pj=11 C max is solvable in 0 (n 2 '.!n) 

time, and that P lprec,set,pj=11 C max is solvable in 0 (nlog n) time in case for 
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each task Ji a processor Mij is given such that Ji can be executed by any pro

cessor of the set {Mi, ... ,Mml· The complexity of the general problem 
J 

P lprec,set,pi=ll C max for single-processor tasks with a precedence relation 

of the interval-type is still open. 
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In this chapter we study the simplest model that allows for communication 

delays. A set of unit-time tasks has to be processed on identical parallel pro

cessors subject to precedence constraints and unit-time communication 

delays. We are interested in the minimization of the makespan. There are two 

variants of the problem, depending on whether the number of processors is 

restricted or not. Using the three-field notation scheme we denote the first 

~ariant by P iprec,c = l,pi = 11 C max and the second variant by 

P lprec,c = l,pj = 11 C max· 

The P lprec,c = l,pj =II C max problem was first addressed by Rayward

Smith [1987], who established NP-hardness and showed that the length of an 

active schedule is at most equal to 3-2/m times the optimal makespan. A 

schedule is active if no task can start earlier without increasing the start time 

of another task. 

Picouleau [1991B] also considered P lprec,c=l,pi=liCmax and showed 

that the problem of deciding whether an instance has a schedule of length at 

most 3 is decidable in polynomial time. For the case of an unrestricted number 

of processors, he established NP-completeness for the problem of deciding 

whether an instance has a schedule oflength at most 8 [Picouleau, 1991A]. 

In the first two sections we study the same type of questions as investigated 

by Picouleau: for what deadline b can one determine in polynomial time if a 

schedule of length at most b exists? In Section 3.1, we give our own version of 

the proof that the restricted variant of the problem is polynomially solvable if 

b~3 and show NP-completeness if b ~4. In Section 3.2, we show for the 

unrestricted variant that the problem is polynomially solvable if b ~ 5 and 

NP-complete if b ~6. These results are due to Hoogeveen, Lenstra, and Velt

man [1992]. 

As a consequence, there exists no polynomial-time algorithm with perfor

mance bound smaller than 5/4 for P lprec,c=l,pi=ll Cmax and no 

~lynomial-time algorithm with performance bound smaller than 7/6 for 

P iprec,c=l,prll C max• unless P=NP. Thus, neither of these problems has a 

polynomial approximation scheme, unless P=NP. 

In Sections 3.3 and 3.4 we study special types of precedence relations. First, 

we show that dynamic programming results in a polynomial-time algorithm in 

case the width of the precedence relation is fixed, i.e., part of the problem type. 

Second, we show thatP I tree,c=l,pi=ll C max is NP-hard. 

A few open problems remain. The complexity of Pm lprec,c=l,pi=ll C max 

is unknown to us, even for m = 2, and it is a challenging open problem to 

approximate an optimal schedule for P lprec,c=l,pi=ll C max appreciably 

better that a factor of 3 in polynomial time. Variations on list scheduling that 



3. 1. The restricted variant 29 

construct active schedules may not help, as is shown by an example due to 

Hurkens [1992]; see Section 3.5. 

3.1. The restricted variant 

In this section, we start by showing that the problem of deciding whether an 

instance has a schedule of length at most 3 is decidable in polynomial time. 

This problem was already solved by Picouleau [1991B]. Next, we prove NP

completeness of the problem of deciding whether an instance has a schedule 

of length at most 4, even for the special case that the precedence relation has 

the form of a bipartite graph. 

Theorem 3.1. The problem of deciding whether an instance of 

P I prec, c = 1 ,p j = 11 C max has a schedule of length at most 3 is solvable in 

polynomial time. 

Proof. Given an instance of P I prec,c = 1 ,p j 11 C max, we first check whether 

some trivial necessary constraints for the existence of a feasible schedule of 

length at most 3 are satisfied. These are the constraints that there are no paths 

in the graph of length more than 3, that there are no more than 3m tasks, and 

that no two paths oflength 3 interfere or share a task. Subsequently, we delete 

the isolated tasks from the instance; they will be dealt with later. 

Our approach to check the existence of a feasible schedule of length at most 

3 consists of two steps. We first assign the tasks to time slots. Then the tasks 

are assigned to the processors by which they have to be executed. The first step 

proceeds in such a way that the number of processors needed in the second 

step is minimized. 

We first deal with the paths oflength 3. The tasks in a path oflength 3 are 

entirely assigned to a single processor. As no two paths of length 3 interfere, 

the second task in a chain has only one predecessor and only one successor. 

The first task in a path of length 3 may be succeeded by several tasks without 

successors; these tasks are assigned to the third time slot. The third task in a 

path oflength 3 may be preceded by several tasks without predecessors; these 

tasks are assigned to the first time slot. Furthermore, we assign the tasks with 

two or more successors to the first time slot and the tasks with two or more 

predecessors to the third time slot. 

The tasks that still have to be assigned either belong to isolated chains of 

length 2 or are the leaves of a rooted intree or outtree with depth at most equal 

to 2. In case of a chain of length 2, the tasks can be assigned either to the time 

slots 1 and 2, or to the time slots 2 and 3, or to the time slots 1 and 3; if a task is 
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assigned to the second time slot, then the other task in the chain has to be exe

cuted by the same processor. In case of a rooted intree, at most one of the tasks 

can be assigned to time slot 2 and all other tasks (except the root) must be 

assigned to time slot 1, whereas in case of a rooted outtree at most one task can 

be assigned to time slot 2 and all other tasks (except the root) must be assigned 

to time slot 3. A straightforward approach finds an assignment of the tasks 

belonging to chains and trees to time slots such that the maximum number of 

tasks assigned to a single time slot is minimized. If this number exceeds the 

number of available processors, then clearly the instance has no schedule of 

length at most 3. 

Given an assignment of tasks to· time slots, a feasible schedule is con

structed in the following way. First assign each taskthat is to be processed in 

the second time slot to a processor and assign its predecessor or successor to 

the same processor. The remaining tasks can be scheduled on arbitrary proces

sors according to the time slot assignment. Finally, the isolated tasks can be 

used to fill the empty slots. D 

Theorem 3.2. The problem of deciding whether an instance of 

P lprec,c = l,pj = 11 C max has a schedule of length at most 4 is NP-complete, 

even for bipartite precedence relations. 

Proof. Our proof is based on a reduction from the NP-complete problem 

Clique and extends the proof by Lenstra and Rinnooy Kan [1978] for the vari

ant without communication delays, P lprec,pj=11 Cmax· The Clique problem 

is defined as follows: 

Clique 

Given a graph G = (V,E) and an integer k, does G have a complete subgraph on 

kvertices? 

Given an instance of Clique, define the number of edges in a clique of size k by 

1=k(k-1)/2anddefinem=max{ IVI+l k, IE 1-1 }. Weconstructthefol

lowing instance of P lprec,c 1,pi 11 C max· There are m =2(m+l) proces

sors, which have to process 4m tasks. Each vertex v E V corresponds to a pair 

of vertex tasks lv and Kv, and each edge e E E corresponds to an edge task Le; 

we introduce precedence constraints lv-+Kv, and lv-+Le if vis incident to e. 

In addition, we define 4m-21 V 1-1 E I dummy tasks: there are m -k tasks of 

type W, m -I V I of type X, m -I V I +k -l of type Y, and m -IE I +l of type Z. 

The precedence constraints between these dummy tasks are such that all W 
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tasks should precede all Y and Z tasks, and all X tasks should precede all Z 

tasks. 

Suppose that G contains a clique of size k. Then a schedule of length at most 

4 is obtained by scheduling the tasks according to the pattern given in Figure · 

3.1. Here J, K, and L stand for the tasks of type lv, Kv. and Le, respectively, 

J clique (Kclique) denotes the set of tasks of type J (K) corresponding to the 

clique vertices, and Lclique denotes the set of tasks of type L corresponding to 

the clique edges. 

m 

w X y z 

................... ...... IV l+l-k . .................. 
! Lclique I 

lVI 
El-l 

m 

k 
J-Jclique K-Kclique 

L-Lclique 

J clique Kclique Lclique 

0 1 2 3 4 

Figure 3.1. Schedule of length 4. 

~ 

Conversely, suppose that there exists a feasible schedule a oflength at most 

4. We will show that in any such schedule the non-dummy tasks processed in 

time slot 1 correspond to the vertices of a clique of size k. The W tasks are pro

cessed in time slot 1 in a, since they must precede all of the tasks of types Y 

and Z, of which there are at least m +2. A similar argument shows that the Z 

tasks are processed in time slot 4 in a. It follows immediately from these 

observations that the tasks of types X and Y are processed in a in the time 

periods [0,2] and [2,4], respectively. 

As the number of tasks is exactly equal to 4m, a does not contain any idle 

time; hence, next to the tasks of type Wand X, exactly k+ IV I vertex tasks 

must be processed in time period [0,2]. As the vertex tasks of type J have to 

precede the corresponding vertex tasks of type K, we know that no more than 

I V I vertex tasks are processed in time slot 2 in a. This observation, combined 

with the observation that all X tasks are processed in time period [0, 2], implies 

that a processes all X tasks in time slot 2, that k vertex tasks of type J are pro

cessed in time slot 1, and that the corresponding vertex tasks of type K and the 

remaining vertex tasks of type J are processed in time slot 2. The set of tasks 

that are processed in time slot 3 consists of Y tasks, edge tasks L that have both 

predecessors processed in time slot 1, vertex tasks of type K, and L tasks with 
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one predecessor in time slot l and one predecessor in time slot 2; the total 

number of these tasks is equal to m, as cr contains no idle time. Note that both 

the K tasks and the L tasks with one predecessor in time slot 2 must be 

scheduled immediately after their preceding task of type J, implying that the 

number of these tasks is at most I V 1-k. Hence, there are at least I edge tasks 

with both predecessors processed in time slot 1, implying that the k vertices 

corresponding to the k vertex tasks that are processed in time slot 1 induce a 

complete subgraph of G. D 

Corollary 3.1. For P lprec,c=l,pj=ll Cmax there exists no polynomial-time 

algorithm with performance bound smaller than 5/4, unless P=NP. D 

3.2. The unrestricted variant 

This section concerns the variant for which the number of processors is not 

restrictively small. We first show that the problem of deciding whether an 

instance has a schedule of length at most 5 is solvable in polynomial time. 

Next we show that the problem of deciding whether an instance has a schedule 

of length at most 6 is NP-complete. 

!heorem 3.3. The problem of deciding whether an instance of 

P lprec,c = l,pi =II C max has a schedule of length at most 5 is solvable in 

polynomial time. 

Proof. Given an arbitrary instance of the problem P lprec,c = l,pi = 11 C max• 

we first check whether some obviously necessary constraints hold. These are 

that the graph contains no path of length more than 5 and that there are no two 

interfering paths oflength 5. Suppose that these constraints are satisfied. Then 

it is easy to see that each task that does not belong to a path of length 4 can be 

assigned to a processor and time slot without violating any constraint. We now 

present a polynomial-time algorithm that checks whether a given set of paths 

oflength 4 fits into a feasible schedule oflength at most 5. 

Let J 1 ~J 2 ~1 3 ~J 4 denote a path of length 4. Without loss of generality, 

J 1 and J 4 can be processed in the first and last time slot, respectively. We 

develop an algorithm to check in polynomial time whether there exists a feasi

ble assignment of the middle tasks J 2 and J 3 to time slots, while observing the 

constraint that two dependent tasks that are assigned to two consecutive time 

slots must be performed by the same processor. We distinguish a number of 

cases. 

Suppose that J 2 has at least two predecessors, implying that J 2 cannot start 
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(3.2a) 

(3.2b) 

X2=0 

(3.2c) 

(3.2d) 

Figure 3.2. The four cases. 

before time 2; then we have to assign J 2 , J 3, and J 4 to the last three time slots 

and they have to be performed by the same processor. Similarly, if h has at 

least two successors, then it has to be executed in time slot 3 and 1 1 and J 2 

have to be executed by the same processor in the first and second time slot, 

respectively. 

The other cases require a more intricate procedure. From now on, J 2 has one 

predecessor and J 3 has one successor. For each unscheduled task Ji, we define 
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the depth di as the number of tasks, in a path of length 4, that precede this task; 

thus d 2 1 and d 3 = 2. As Ji starts at time di or di+ 1 in any feasible schedule 

oflength at most 5, we have that Sr=di +xi, with xi E {0, 1 }. The problem of 

assigning feasible start times to the tasks Ji can thus be formulated as a prob

lem of assigning feasible binary values to the variables xi. 

Consider the case depicted in Figure 3.2a. Let V denote the set of immediate 

successors of J 1 that belong to a path of length 4; in this case we have 

V = { J 2 ,J 2a ,J 2b}. As at most one of the tasks in V can be executed in time 

slot 2, the x variables corresponding to the tasks in V must satisfy the con

straint LjE vxj ~I V 1-1. 
Three other cases we distinguish are illustrated in Figures 3.2b-d. Analo

gous observations lead to similar constraints for each case; these constraints 

are shown next to the graph. Note that in case 3.2b we have already assigned 

lz to time slot 2, and that in case 3.2c task h has already been assigned to 

time slot 4. If two dependent tasks J 2 and J 3 have not yet been assigned to 

time slots, then we have to add the constraint x 3 - x 2 :=:: 0 to ensure consistency. 

Note that each binary solution that satisfies all constraints derived for the cases 

3.2a through 3.2d induces a feasible schedule of length at most 5; let Ax ~b 

denote the set of constraints. 

It is easily verified that every column of A contains at most one + l and at 

most one -1 entry, implying that A is a network matrix [Schrijver, 1986]. 

Hence, if we add the inequalities 0 ~xi ~ 1, then the constraint matrix remains 

totally unimodular and the polyhedron {x IO~x ~ 1;Ax ~b} is integral. As we 

can decide in polynomial time whether the polyhedron is empty, the problem 

whether a given instance of P lprec,c = l,pi = 11 Cmax has a schedule of length 

at most 5 is decidable in polynomial time. D 

!heorem 3.4. The problem of deciding whether an instance of 

P lprec,c=l,pi=ll Cmax has a schedule of length at most6 is NP-complete. 

Proof. Our proof is based on a reduction from the NP-oomplete problem 3-

Satisfiability. 

3-Satisfiability 

Given a set U of variables and a collection C of clauses over U such that each 

clause c E C has I c I = 3, does there exist a truth assignment for C? 

Given an ii!_Stance ( U, C) of 3-Satisfiability, we construct the following 

instance of P lprec,c = l,pi =II C max· For each variable x we introduce six 
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variablex: 

clause c =(xc,Yc,Zc): '" 
/ 

'" 
'" 

Figure3.3. Variable tasks and clause tasks. 
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tasks: x 1, x 2 , x 3 , x, x, and x 6; the precedence constraints between these tasks 

are given in Figure 3.3. For each clause c=(x6 yc,Zc), where the literals Xc, Yeo 

and Zc are occurrences of negated or unnegated variables, we introduce thir

teen tasks: Xc, Yc• Zc· Xco Xc, Yc· Yc· Zc, 'Zc, XcYc· XcZc, YcZc, and c; the precedence 

constraints between these tasks are also given in Figure 3.3. We further intro

duce precedence constraints between the variable tasks and the clause tasks. If 

the occurrence of variable x in c is unnegated, then Xc precedes the variable 

task x and Xc precedes the variable taskx, as illustrated in Figure 3.3. If the 

occurrence of variable x in c is negated, then Xc precedes the variable task x 
and Xc precedes the variable task x. Thus, Xc represents the occurrence of vari

able x in clause c; it precedes the corresponding variable task. 

We start by making two essential observations. First; note that in a schedule 

of length at most 6 there are exactly two ways to schedule the tasks 

corresponding to a variable x, depending upon. whether variable task x is 

scheduled in time slot 4 and variable task x in time slot 5 or the other way 

around. In both cases, the tasks x 1, x 2, and x 3 have to be performed by the 

same processor as the variable taskthat is scheduled in time slot 4and the task 
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x 6 has to be performed by the same processor as the variable task scheduled in 

time slot 5. Second, note that in order to schedule the clause tasks correspond

ing to clause c = (xc,YcoZc) within six time units at least one of the tasks Xc, Yc· 

and Zc must be scheduled in time slot 2. 

Suppose that a truth assignment for C exists. Then a schedule of length at 

most 6 is obtained by scheduling the variable task x in time slot 4 if variable x 

is true and in time slot 5 otherwise. If the literal x occurring in clause cis true, 

then Xc is scheduled in time slot 2 on the same processor as Xc, and Xc is 

scheduled in time slot 3; if the literal x in c is false, then the task Xc is 

scheduled in time slot 3 and Xc in time slot 2. The other tasks are scheduled in 

a greedy manner. As every clause c contains at least one true literal, each 

clause task c will be completed by time 6. 

Conversely, suppose that there exists a schedule oflength at most 6. We will 

show that there exists a truth assignment for the instance of 3-Satisfiability. 

Define a variable x as true if the corresponding variable task x is processed in 

time slot 4, and false otherwise. Without loss of generality, suppose that vari

able task x is executed in time slot 4. Each unnegated occurrence of x must be 

scheduled in time slot 2 and each negated occurrence of x in slot 3, implying 

that all literals are assigned values consistently. As each clause task c has been 

completed at time 6, we know that each clause contains at least one true literal. 

0 

Corollary 3.2. For P lprec,c =I ,prll C max there exists no polynomial-time 

algorithm with performance bound smaller than 7/6, unless P=NP. D 

3.3. A dynamic programming formulation 

Given a precedence relation, let G = (V,A) be a directed graph that represents 

the transitive closure of the relation. Two elements Jj,Jk e V are said to be 

incomparable if neither (Jj,Jd E A nor (Jk>J) EA. The width w of the pre

cedence relation is the largest number of pairwise incomparable elements of 

the graph G. Mohring [1989] showed that P lprec,prliCmax with a pre

cedence relation of fixed width is solvable in polynomial time by dynamic 

programming. This result can be extended for problems of the type 

P lprec,c =1 ,pj=ll C max with a precedence relation of fixed width, in the fol

lowing manner. 

A subset I!";;;;; Vis an order ideal if Jk e I and lr-..:;Jk imply that lj e I. The 

number of order ideals of G is bounded by 0 (n w); this bound is tight if G con

sists of w parallel chains. A feasible schedule cr of length C max ( cr) can be 

viewed as a sequence of C max ( cr) columns. Every initial part of cr with in its 
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last column a task set T 1 corresponds to an order ideal I 1. Adding a next 

column to the part of the schedule associated with (It, T t) results in an (order 

ideal, column) pair (/2, T 2) with I 1 ~I 2 and T 2 =I2-I 1. This implies that the 

construction of a feasible schedule can be viewed as following a path in the 

digraph D associated with the states (/, T). The vertices of D correspond to the 

states and the arcs represent possible transitions. An arc (I 1 , T 1) -7 (I 2, T 2) 

occurs if and only if the transition it represents satisfies the following condi

tions. First, it always has to respect the constraints I 1 ~I 2 and T 2 =I 2- I 1 . 

Second, if T 1 = 0, then it also has to respect the constraints 

(1) 1 :::; I T 2 I :::; m, and 

(2) the elements ofT 2 are pairwise incomparable. 

If T 1 :t:0, then the transition either has to respect the constraint I 2 =I 1 , or the 

previously mentioned constraints (1) and (2) as well as the constraints 

(3) for each IjE T 1 there is at most one Ike T 2 such that Ij-?h, and 

(4) for each Ike T 2 there is at most one Ije T 1 such thatlj-?Ik. 

Any path from (0,0) to any state (l,T) corresponds to a schedule for the 

induced suborder on I with the tasks of Tin its last column. The digraph D can 

be used for a recursive computation of an optimal schedule. It fulfills the 

recursion property 

C~ax (/2,T2) =min { 1 + C~ax (/ 1, Tt) I (/ 1 ,T 1)-?(/2,T2) is an arc of D }, 

where C~ax (/, T) denotes the optimal value associated with the pair (/, T). 

Thus, the globally optimal solution can be computed along with the transition 

graph D. It follows that this dynamic programming procedure takes at most as 

many steps as there are arcs in D. 

Each state (I 2, T 2) corresponds to a pair of ideals (It ,I 2 ), because 

T2 =I2- I 1 . From the above observations we conclude that there are O(n2w) 

states. Each transition corresponds to a choice of a task set out of at most w 

tasks. Thus, given an initial state there are at most 2w transitions to another 

state. It follows that the dynamic programming algorithm takes 0 (2w n 2w) 

time. We have proven the following theorem. 

Theorem 3.5. Given an instance of P lprec,c=1,pj=ll C max with a fixed

width precedence relation, one can construct an optimal schedule in polyno

mial time. D 
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3.4. Trees 

Hu [1961] gave an O(n) time algorithm to solve P ltree,pi=11Cmax· It is a 

critical path scheduling algorithm: the next task chosen is one that heads the 

longest current chain of unexecuted tasks. Lenstra, Veldhorst, and Veltman 

[1993] apply list scheduling in order to construct optimal schedules for 

instances of the type P21 tree,c=1,pi=11 Cmax in O(n) time. They also show 

that P I tree,c=l,pi=ll C max is NP-hard. The last result is presented below. 

Q
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Figure 3.4. Variable tasks and clause tasks corresponding to a 

Satisfiability instance with c 1 = (x,y) and c 2 = (x,y ). 

Theorem 3.6. The PI tree,c=l,pj=11 C max problem is NP-hard. 

Proof. The proof is based on a reduction from the NP-complete problem 

Satisfiability. 

Satisfiability 

Given a set U of variables and a collection C of clauses over U, does there 

exist a truth assignment for C? 
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Given an instance (U,C) of Satisfiability, define a threshold value b as 

b = 21 C I +4 and let the number of processors be given by 

m =21 U l+~ceC lc 1+1. 

For each variable x we introduce a task .X and two variable chains consisting 

of b-2 tasks each; one of these chains corresponds to the literal x and the other 

corresponds to the literal x. Both chains precede .X, as illustrated in Figure 3.4. 

Let c 1, ••• , c 
1 
c 

1 
be an arbitrary ordering of the clauses in C. For each clause 

c; (i = 1, ... , I C I) we introduce led clause chains consisting of 2i -1 tasks 

each; there is a one-to-one correspondence between these chains and the 

literals that constitute c;. We introduce precedence constraints between the 

variable tasks and the clause tasks, as follows. If the occurrence of variable x 

in ci is unnegated, then the last task (xc) of the clause chain corresponding to 

this occurrence has to precede the last task of the variable chain corresponding 

to the literal x. If the occurrence of x inc; is negated, then Xc, has to precede the 

last task of the variable chain corresponding to x. For an illustration see the 

dashed lines in Figure 3.4. 

Finally, we introduce a total of b+l U 1+~}; 1 1 {lei l(b-2i-3)+1} dummy 

tasks, which form a number of chains. First, there is a single chain oflength b. 

Second, there are I U I unit length chains, each consisting of a single task. 

Third, for each clause ci there are I c; I chains of dummy tasks; one is oflength 

b-2i-2 and the other chains are of length b-2i For each dummy chain of 

length l, l < b, its last task has to precede the (l +2)nd task of the dummy chain 

of length b. Hence, in a feasible schedule of length b each dummy chain is 

scheduled on a single processor, the first task of such a chain is executed in 

time slot 1, and the execution of the chain is without interruption. 

Suppose that a truth assignment for the Satisfiability instance (U,C) exists. 

Given such a truth assignment, one can construct a schedule oflength bas fol

lows. If variable xis true, then the variable task xis performed in time slot b -1 

on the same processor as .X and the variable task x is performed in time slot 

b-2. If variable xis false, then the variable task xis performed in time slot 

b -1 on the same processor as .X and the variable task x is performed in time 

slot b -2. lfxc, is an unnegated occurrence of x in ci and variable xis true, then 

Xc, is performed in time slot b-3. Now, the tasks corresponding to clause c i are 

executed by the same processors that execute dummy chains of length b-2i-2 

and b-2i-3. Thus, given the assignment of the variable tasks one can easily 

construct a feasible schedule of length b; for an illustration see Figure 3.5. 

Conversely, suppose that there exists a feasible schedule oflength at most b. 

The dummy tasks impose a structure on such a schedule, as illustrated in Fig

ure 3.5 by the black dots. At most I U I non-dummy tasks can be processed in 
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Figure 3.5. A schedule of length b. 

time slot 1. Given a variable x, at least one of the two chains corresponding to 

x has to begin its execution at 0. Thus, for each variable x exactly one of its 

chains is processed in time period [O,b -2], and exactly one of its chains is pro

cessed in time period [1,b-1]. The .latter chain is executed by the same pro

cessor as .X; the literal corresponding to this chain is regarded to be true. Given 

a clause ci, the corresponding clause chains can only be executed by proces

sors that execute dummy chains of length at most b -2i -2. It follows that the 

clause chains of ci are executed by the processor that executes a dummy chain 

of length b -2i -2 and the I c; 1-1 processors that each execute a dummy chain 

of length b-2i -3. At least one of these clause chains completes in time slot 

b-3; it has to precede a true literal, since otherwise the schedule would not be 

feasible. Hence, from the schedule we can derive a truth assignment for the 

corresponding Satisfiability instance. 0 

3.5. Two open problems 

As indicated in the introduction of this chapter, Rayward-Smith [1987] 

showed that the length of an active schedule is at most 3-2/m times the 

optimal makespan. It is a challenging open problem to approximate an 

optimal solution appreciably better than a factor of 3 in polynomial time. Crit

ical path scheduling, for instance, does not improve upon this bound. Critical 

path scheduling is a special form oflist scheduling: it gives priority to the task 
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that precedes the longest chain of other tasks. The following example, due to 

Hurkens [1992], shows that critical path scheduling is, asymptotically, a 3-

approximation algorithm and thereby no better than Rayward-Smith's algo

rithm. 

A total of n=(m+2)q tasks have to be processed by m processors. The pre

cedence constraints are such that task Jik precedes task J (j+l)b for 

j=1, ... ,q-1 and k=1, ... ,m+2, and task Ji 1 precedes tasks Ju+t)k• for 

j =1, ... , q -1 and k=2, ... , m +2; cf. Figure 3.6. Critical path scheduling may 

generate a schedule oflength C max( CP) = (3q -1 )m, whereas the optimal mak

espan is C~ax =(m+2)(q-1)+2m-1. It follows that 

Cmax(CP)/C:ru.x =3m/(m+2). 

Figure 3.6. A bad example for critical path scheduling. 

Another open problem is the compixity of Pm lprec,c=l,pj=11Cmax• 

even form= 2. In case of no communication delays, P 21prec,pj=11 C max is 

solvable in polynomial time [Fujii, Kasami, and Ninomiya, 1969, 1971], but 

the complexity of P 31prec,pj=11 C max is not yet determined. 
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In this brief chapter we study scheduling problems of the type 

P lprec,cjhdup I C max in their most general form. As indicated in Section 2.4, 

the duplication of tasks may reduce or avoid communication delays that 

would occur otherwise. We are interested in the possible profit task duplica

tion offers compared to the case that it is not allowed. In general, task duplica

tion can decrease the schedule length by a factor of at most m, even for tree

type precedence relations. However, in case of unit-time processing require

ments and unit-time communication delays, task duplication can help a factor 

of two, but no more. Note that from the proof of Theorem 3.2 it follows that 

P [prec,c =l,dup,pj=ll C max is NP-hard. 

4.1. The potential profit 

From a computational point of view, P I intree,cjk I C max and 

P I outtree,cik I C max are the same; one speaks of the problem type 

P I tree,cik I C max. This is no longer the case if duplication is allowed. In case 

of precedence relations of the intree-type, duplication will not help. Thus, for 

P lintree.Cjhdup ICmax it holds that c*;c; I, where c; is the optimal 

makespan allowing for task duplication and C * is the optimal makespan 

without duplication. In case of outtrees duplication can be very profitable. 

Theorem 4.1. For P lprec,cihdup I Cmax duplication can help a factor of at 

most m. This bound is tight for P I outtree,c,dup,pi=ll C max and 

PI outtree,c=l,dup I Cmax. For P [prec,c=l,dup,prll Cmax duplication 

can help a factor of at most 2. 

Proof. Given an instance of P lprec,cjhdup [Cmax• notice that c;?:.!,pjlm 

and c* <5.:!.pi. It follows that C * ;c; <5.:m. The examples below show that this 

bound is tight, even for subclasses of the problem type. 

Given an instance of P lprec,c=l,dup,pj=ll Cmax• one can transform an 

optimal schedule with duplication into a schedule of length 2c;-1 without 

duplication by inserting c; -1 idle periods and deleting the duplicates. It fol

lowsthatc*;c;<5.:2. D 

PI outtree,c,dup,pj=ll Cmax 

A root Jr precedes m chains of k tasks each, as illustrated in Figure 4.1 form =3 

and k = 4. The communication delay c is such that c ?:. km. An optimal schedule 

allowing for duplication is of length k+l, whereas an optimal schedule 

without duplication has length mk+l. Thus, c* ;c; =(mk+l)/(k+l). 
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Figure 4.1. An instance of PI outtree,c,dup,pj=ll Crnax· 

P louttree,c=I,dup ICrnax 

A root lr precedes m mutually independent tasks, as illustrated in Figure 4.2 

for m=3. The root has processing requirement 0 and each of the remaining 

tasks has processing requirement lim. An optimal schedule without 

duplication executes all tasks on a single processor and is of length I, whereas 

an optimal schedule with duplication is of length I /m. Thus, C * 1c; = m. 

Figure 4.2. An instance of PI outtree,c=I,dup I Crnax· 

PI outtree,c=l,dup,pj=II Crnax 

Let there be m = 2d processors, where dis a positive integer. The precedence 

relation is represented by means of a full binary tree on 2m -1 nodes, as 

illustrated in Figure 4.3 for m=4. An optimal schedule with duplication is of 

length I + logm, whereas an optimal schedule without duplication has make

span I + 2logm. Thus, C *I c; = 2- l !log2m. 
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Figure 4.3. An instance of PI outtree,c=l,dup,pi=ll Cmax· 
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The problems and algorithms mentioned in the previous chapters deal with 

tasks that are processed on a single processor and focus on communication 

delays. The following chapter disregards the notion of communication and 

concentrates on tasks that may require more than one processor. We assume 

that for each task a single subgraph is specified on which it has to be processed 

and we investigate the computational complexity of allocating tasks to time 

intervals. We are interested in two objectives: the minimization of the maxi

mum and the total completion time. 

We will investigate the complexity of two classes of problems denoted by 

P lfixiCmax and P lfix II:Cj, respectively. We refer to Section 2.5.2 for a 

literature review. The outline of this chapter is as follows. 

Section 5.1 deals with the makespan criterion. The general problem with a 

fixed number m of processors is polynomially solvable if m =2, but NP-hard 

in the strong sense form ;;::: 3. There are two well-solvable cases. The first one 

concerns the case of unit processing times; the problem is then solvable in 

polynomial time through an integer programming formulation with a fixed 

number of variables. The second one concerns the three-processor problem in 

which all multiprocessor tasks of the same type are decreed to be executed 

consecutively, the so-called block-constraint; this problem is solvable in 

O(n:Epj) time. If the number of processors is part of the problem instance, 

then the problem with unit processing times is already NP-hard in the strong 

sense. In general, the introduction of precedence constraints or release dates 

leads to strong NP-hardness, with one exception: the problem with unit pro

cessing times in which both the number of processors and the number of dis

tinct release dates are fixed is solvable in polynomial time through an integer 

programming formulation with a fixed number of variables. The computa

tional complexity of the problemPm lfix,rj,p/=11 Cmax is still open. 

Section 5.2 deals with the total completion time criterion. In general, this 

criterion leads to severe computational difficulties. The problem is NP-hard in 

the ordinary sense for m=2 and in the strong sense for m=3. The weighted ver

sion and the problem with precedence constraints are already NP-hard in the 

strong sense form =2. The problem with unit time processing times is NP-hard 

in the strong sense if the number of processors is part of the problem instance, 

but still open in case of a fixed number of processors. Another open problem is 

Pm lfix,rj,prll!:Cj. 

5.1. Makespan 

In this section, we investigate the computational complexity of minimizing 

the makespan. If no precedence relation is specified, then we may discard the 
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tasks that need all the processors for execution, since they can be scheduled 

ahead of the other ones. Hence, the two-processor problem without pre

cedence constraints is simply solved by scheduling each single-processor task 

on its processor without causing idle time. 

5.1.1. Three processors and the block-constraint 

The block-constraint decrees that all biprocessortasks of the same type are 

scheduled consecutively. As this boils down to the case that there is at most 

one biprocessor task of each type, we replace all biprocessor tasks of the same 

type by one task of this type with processing time equal to the sum of the indi

vidual processing times. The biprocessor task that requires M 2 and M 3 is 

named a task of type A and its processing time is denoted by PA. Correspond

ingly, the biprocessor task that requires M 1 and M 3 and the biprocessor task 

that requires M 1 and M 2 are said to be of type B and C, respectively; their pro

cessing times are denoted by p8 andpc. 

Figure 5.1. A schedule satisfying the block-constraint. 

Theorem 5.1. The problem P 31 fix I C max subject to the block-constraint is 

NP-hard in the ordinary sense. 

Proof. We will show that P 31fix I C max subject to the block-constraint is NP

hard by a reduction from the NP-complete problem Partition. 

Partition 

Given a multiset N = {a 1 , •.• , an } of n integers, is it possible to partition N 

into two disjoint subsets that have equal sum b ="LjENa/2? 

Given an instance of Partition, define for each j EN a task Jj that requires M 1 

for execution and has processing time pj=aj. In addition, we introduce five 

separation tasks that create two time slots of length b on M 1 • The tasks J A, J 8 , 

and Jc, each with processing time b, are of the type A, B, and C, respectively. 

The two single-processor tasks ln+l and ln+2 , each with processing time 2b, 

have to be executed by M 2 and M 3 , respectively. 
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Note that each processor has a load of 4b, which implies that 4b is a lower 

bound on the makespan of any feasible schedule. We will show that Partition 

has a solution if and only if there exists a schedule for the corresponding 

instance of P31fix I Cmax with Cmax ~4b. 

Suppose that there exists a subset SeN such that Lje sai =Lje N-saj =b. A 

schedule oflength C max =4b then exists, as is illustrated in Figure 5.2. 

Conversely, notice that only four possibilities exist to schedule the tasks 

ln+1, ln+2• JA, JB, and lc in a time interval of length 4b. Each of these possi

bilities leaves two separated idle periods of length b on processor M 1 , in 

which the tasks Ji with jEN must be processed. Thus, if there exists a 

schedule of length Cmax =4b, then there is a subset SeN such that 

Lje saj =Lje N-saj. 

We conclude that P 31 fix I C max is NP-hard in the ordinary sense. D 

s B I N-S i I 
c 

ln+1 I A 

I 
B I ln+2 

0 b 2b 3b 4b 

Figure 5.2. A schedule with partition sets S and N -S. 

Theorem 5.2. The problem P31fix I Cmax subject to the block-constraint is 

solvable in pseudopolynomial time. 

Proof. We propose an algorithm for this problem that requires O(nLjeNPi) 

time and space. For i = 1, 2, 3, let Ti denote the set of indices of tasks that 

require only Mi for processing, and ni= I Ti 1. In addition, we define 

p(S)=Lje SPj· 

Using an interchange argument, we can transform any optimal schedule into 

an optimal schedule with some biprocessor task scheduled first and some 

other biprocessor task scheduled last. Suppose for the moment that these tasks 

are of type A and C, respectively; a B-type task is then scheduled somewhere 

in between. Any feasible schedule of this type, referred to as an ABC

schedule, is completely specified by the subsets Q 1 r;;;;.T 1 and Q 3 r;;;;.T 3 

scheduled before theB-type task; see Figure 5.3. 

For an ABC-schedule with given subsets Q 1 and Q 3 , the earliest start time 

of the task of type B is 
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Ql 
I 

E I Tl-Ql 
c 

T2 
A 

Q3 I E 
I TrQ3 

Figure 5.3. Structure of an ABC schedule. 

The earliest start time of the task of type Cis then 

Sc(Q 1 ,Q3)=max{SB(Q1 ,Q3)+pB +p(TI-Q 1), PA +p(T2) }. 

The minimal length of such a schedule is therefore 

0) C max(Q t.Q3) =max {Sc(Q 1 ,Q3)+ PC• SB(Q 1 ,Q3)+ PB + P (T rQ3)}. 

Hence, the minimal length of an ABC-schedule is determined by p (Q 1) and 

p (Q 3 ). In other words, the length of an optimal ABC-schedule is equal to the 

minimum of C max (Q 1, Q 3) over all possible values of p (Q 1) and p (Q 3 ). Due 

to symmetry, we can transform any ABC-schedule into an CEA-schedule of 

the same length. The only other types of schedules of interest to us are there

fore the EAC and ACE-schedules. Similar arguments show that the length of 

an optimal EAC-schedule is equal to the minimum of C max(Q 2,Q 3) over all 

possible values of p (Q 2) and p (Q 3), and that the length of an optimal ACE

schedule is equal to the minimum of C max(Q 1 ,Q 2) over all possible values of 

p(Q1)andp(Q2). 

Fori 1,2,3, we compute all possible values that p(Q;) can assume in 

0 (n;p (T;)) time and space by a standard dynamic programming algorithm of 

the type also used for the knapsack and the subset-sum problems; see e.g. Mar

tello and Toth [1990]. If these values are put in sorted lists, then all possible 

values that S B(Q t. Q 3) can assume are computed in 0 (p (Q 1 )+p (Q 3)) time 

and space. The minimum of C max (Q I, Q 3) over p (Q J) and p (Q 3) is then 

determined by evaluating expression (1) for each possible combination of 

p(Q I) andp (Q 3); this takes 0 (p(T 1)+p (T3)) time. 

The lengths of the optimal EAC and ACE-schedules are determined simi

larly. The overall minimum then follows immediately, and an optimal 

schedule is determined by backtracing. Since n; -:;nand p(Ti)-:;J:,JeN Pi for 

each i, it takes 0 (nl:,JeNPJ) time and space to find an optimal schedule. D 
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5.1.2. Strong NP-hardnessfor the genera/3-processor problem 

Theorem 5.3. The problem P 31fix I C max is NP-hard in the strong sense. 

Proof. The proof is based upon a reduction from the strongly NP-complete 

problem 3-Partition. It is similar to an earlier proof by Blazewicz, Dell'Olmo, 

Drozdowski, and Speranza [1992]. 

3-Partition 

Given an integer b and a multiset N = {a 1 , ... , a 3n} of 3n positive integers 

with b/4 < ai < b/2 and 'L}=t ai =nb, is there a partition of N into n mutually 

disjoint subsets N 1, .•. , Nn such that the elements in Ni add up to b, for 

j = 1, ... ,n? 

number allocation processing time 

n M2 &M3 (typeA) PA 

n Mt &M3 (typeB) PB 

n M 1 &M2 (type C) Pc 

1 Mt PA+b 

n-1 Mt PA+b+pz 

n Mt Py 

n-1 M2 Pz 
n M2 PB+b+py 

1 M3 Pc+Py 

n-1 I M3 Pc+py+Pz 

Table 5.1. Separation tasks for P 31fix I C max. 

Given an instance of 3-Partition, we construct the following instance of 

P 31fix I C max. There are 3n single-processor tasks Ji that correspond to the 

elements of 3-Partition; these tasks have to be executed by M 3 and their pro

cessing time is equal to ai, for j = 1, ... , 3n. In addition, there are 3n biproces

sor separation tasks and 5n -1 single-processor separation tasks; there pro

cessing times and processing requirements are defined in Table 5.1. Here we 

define 

PB=(n+1)b, 

Py = (n + 1 )(b+p8 ), 
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Pz =(n+l)(b+pn+Py), 

Pc (n+l)(b+pn+Py+Pz), 

PA (n+l)(b+ps+Py+Pz+pc). 

Note that each processor has a processing load equal to 

"(=n(pA+Pn+Pc+Py+Pz+b)-pz, which implies that yis a lower bound on the 

makespan of any schedule. We will show that 3-Partition has an affirmative 

answer if and only if there exists a schedule with makes pan at most "( for the 

corresponding instance of P 3 I fix I C max. 

If 3-Partition has an affirmative answer, then a schedule with makespan 

C max~ y exists, as is illustrated in Figure 5.4. 

PA+b+pz 

Pz 

0 

.... PA+b+pz I B I Py c c 

.... Pz Ps+b+py 

I Pc+Py+Pz 

A 

b I B I Pc+Py 

Figure 5.4. Structure for P31fix I Cmax: ABCAB · · · CABC. 

Conversely, suppose that c;:ax ~y. Note that a schedule with makespan "( 

has no idle time. To avoid idle time at the start of a biprocessor task, both pro

cessors on which it has to be executed must have equal load. Hence, at the start 

of a task of type A, there exist a set T c N and integers 

Kt , K2 , K4 , Ks , 1C() , K7 E { 0, ... , n } K3 E { 0, ... , n -1 } , and K8 E { 0, 1 } , such that 

(2) KtPA +K2Pc+K3Pz+K4(ps+b+py) = 
KsPA+lC(ips+K?(pc+Py+pz)+Kg(pc+py)+:EjeTPj· 

Due to the choice of the processing times of the separation tasks, we draw the 

following conclusions: 

- the sum TPj is a multiple of b, since PA, p8 ,pc.Py• andpz are multiples 

ofb, 
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- ~je r Pi= 14b, since all other terms are multiples of (n +I )b, 

- Kt =Ks,sincepA>n(pc+Pz+Py+PB+b), 

- K2 =K7+Kg, sincepc>n(pz+Py+PB+b), 

- K3 =K7, sincepz>n(py+PB+b), 

- 14 = K7+Kg, since Py>n (PB+b ), and 

- 14 =%,since ~jeTPj=14b. 

It follows that 

(3) Kt =Ks, K2=14 K6=K7+Kg, K3=K7, 14b=~jeTPj· 

Analogous computations lead to similar relations that should hold at the start 

of a task of type Band C, respectively. 

We will make extensive use of these relations in our analysis of the form 

that a schedule with makespan yshould have. Using an interchange argument, 

we see that there exists an optimal schedule in which a biprocessor task starts 

at time 0. We analyze the case that the first biprocessor task is of type B and 

that the next biprocessor task of another type is of type A; this case will be 

denoted as case BA. Hence, we have that no tasks of type A and C and at least 

one task of type B have been executed at the start of the first task of type A: 

K1 =K2 =K5 =0 and %~1. Expression (3), however, decrees that K2 =K5, 

which yields a contradiction. Therefore, case BA cannot occur. A continued 

application of this argument shows that any schedule with makespan 'Y should 

have the form as displayed in Figure 5.4, or its mirror image. A schedule with 

this structure determines n separate periods of length b on processor M 3 , in 

which the remaining single-processor tasks have to be scheduled. These tasks 

correspond to the 3n elements of 3-Partition. We conclude that, if a schedule 

oflength yexists, then a solution to 3-Partition is obtained by taking the parti

tion of N as defined by the schedule. We conclude that P 31fix I C max is NP

hard in the strong sense. 0 

5.1.3. Unit execution times, release dates, and precedence constraints 

In this section, we show that the Pm lfix,pj=ll C max problem is solvable in 

polynomial time by providing an integer linear programming formulation 

with a fixed number of variables; a problem that allows such a formulation is 

solvable in polynomial time [H.W. Lenstra, Jr., 1983]. A similar approach is 

given by Blazewicz, Drabowski and Weglarz [ 1986]. 

Consider an arbitrary instance of the problem. There are at most M =2m -1 

tasks of a different type; let these types be numbered 1, ... , M. We can denote 

the instance by a vector b=(b 1, ••• ,bM) in which component bi indicates the 

number of tasks of type j. A collection of tasks is called compatible if all these 
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tasks can be executed in parallel; hence, a compatible collection of tasks con

tains at most one task of each type. A compatible collection is denoted by a 

{0, 1 }-vector c of length M with cj = 1 if the collection contains a task of type j 

and zero otherwise. There are at most K =2M-I different compatible collec

tions; this number is fixed, as M is fixed. Let the collections be numbered 

1, ... , K; let the vectors indicating the collections be denoted by c 1 , ••• , c K. 

The problem of finding a schedule of minimal length is then equivalent to the 

problem of finding a decomposition of this instance into a minimum number 

of compatible collections. Formally, we wish to minimize l:f=1xj subject to 

l:f=1 CjXj =b, Xj integer and nonnegative. As the number of variables in this 

integer linear programming formulation is fixed, we have proven the follow

ing theorem. 

Theorem 5.4. The Pm lfix,pj=liCmax problem is solvable in polynomial 

time. 

If the number of processors is specified as part of the problem type, implying 

that this number is no longer fixed, then things get worse from a complexity 

point of view. This is stated in the following theorem. 

Theorem 5.5. The problem of deciding whether an instance of 

P lfix,pj = 11 Cmax has a schedule of length at most 3 is NP-hard in the strong 

sense. 

Proof. The proof is based upon a reduction from the strongly NP-complete 

problem Graph 3-Colorability. A similar approach is used by Blazewicz, 

Lenstra, and Rinnooy Kan [1983]. 

Graph 3-Colorability 

Given a graph G=(V,E), does there exist a 3-coloring, that is, a function 

f :V -+{ 1,2,3} such that/ (u}:t:.f (v) whenever {u, v }E E? 

Given an arbitrary instance G=(V,E) of Graph 3-Colorability, we construct 

the following instance of p I fix,p j= 11 c max. There are I v I tasks J 1' ... 'J I v I 

and I E I processors M 1 , ... 'M IE I . A task J u has to be processed by Me if 

u E e. We claim that there exists a 3-coloring forG if and only if there exists a 

schedule of length at most 3. Suppose that a 3-coloring of G exists. Since no 

two nodes u and v wit.lt the same color are adjacent, the corresponding tasks lu 

and lv require different processors. Hence, all tasks that correspond to 
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identically colored nodes can be executed in parallel. This generates a 

schedule with length no more than 3. Conversely, in a schedule with length at 

most 3 we have that the nodes corresponding to tasks scheduled in time period 

t (t = 1,2,3) are independent; therefore, these nodes can be given the same 

color. This leads to a 3-coloril)g of G. Thus, P I fix ,pj = 11 C max is NP-hard in 

the strong sense. 0 

Corollary S.l.For P lfix,pj = 11 Cmax• there exists no polynomial approxima

tion algorithm with peiformance ratio smaller than 4/3, unless P = NP. 0 

The introduction of precedence constraints leaves little hope of finding 

polynomial-time optimization algorithms. Even the two-processor problem 

with unit execution times and the simplest possible precedence relation struc

ture, a collection of vertex-disjoint chains, is already NP-hard in the strong 

sense. 

Theorem 5.6. The P21chain,fix,pj=liCmax problem is NP-hard in the 

strong sense. 

Proof. The proof is based upon a reduction from 3-Partition and follows an 

approach of Blazewicz, Lenstra, and Rinnooy Kan [1983]. Given an arbitrary 

instance of 3-Partition, we construct the following instance of 

P 21 chain,fix,p j = 1 I C max. Each element a i corresponds to a chain Ki of 2a i 

tasks; the first part consists of ai tasks that have to be executed by M 1 and the 

second part also consists of a i tasks that have to be executed by M 2 • In addi

tion, there is a chain L of 2nb tasks; groups of b tasks have to be alternately 

executed by M 2 and M 1 . 

Suppose that there exists a partition of N into N 1, ••• , Nn that yields an 

affirmative answer to 3-Partition. A feasible schedule with makespan no more 

than 2nb is then obtained as follows. The chain Lis scheduled according to its 

requirements; the execution of L is completed at time 2nb. Now M 1 and M 2 

are idle in the intervals [2(i-l)b, (2i-l)b] and [(2i-1)b, 2ib] (i=l, ... ,n), 

respectively. For each i E { 1, ... , n} it is now possible to schedule the three 

chains corresponding to the elements of Ni in [2(i-1)b, (2i-1)b] and 

[(2i-1)b, 2ib]. 

Conversely, suppose that there exists a feasible schedule with makespan no 

more than 2nb. It is clear that this schedule contains no idle time. Let N; be the 

index set of the chains Kj that are completed in the interval [ (2i -1 )b, 2ib]. It is 

impossible that 'f.jeN, aj > b due to the definition of N 1• The case 'f.jeN, aj<b 
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cannot occur either, since this would lead to idle time in [b, 2b ]. Therefore, we 

must have that L.jEN
1 
ai =b. Through a repetition of this argument, it can be 

easily proven that N 1, ••. , Nn constitutes a solution to 3-Partition. 0 

The introduction of release dates has a similar inconvenient effect on the com

putational complexity. 

Theorem 5.7. The P 21fix,ri I C max problem is NP-hard in the strong sense. 

Proof. The proof is again based upon a reduction from 3-Partition. Given an 

arbitrary instance of 3-Partition, we construct the following instance of 

P 21 fix, ri I C max. For each element ai, we define a task Ji with Pi= ai and 

ri = 0 that has to be executed by M 1 • Furthermore, there are n tasks Ki with 

processing time band release date ri=(i-l)(b+£), for j= 1, ... ,n and E 

sufficiently small; these tasks have to be executed by M 2. Finally, there are 

n -1 biprocessor tasks Li with processing time E and release date 

ri = jb +(i -1 )E, for 1=1, ... , n -1. It is easy to see that 3-Partition has an 

affirmative answer if and only if there exists a feasible schedule for 

P2lfix,rj I C max with C max :s;nb+(n-1)£. 0 

Consider the case Pm lfix,ri,Pi = 11 C max where the number s of distinct 

release dates is fixed. Analogously to our analysis of Pm lfix,pi = 11 C max• we 

can transform any instance of Pm I fix ,ri,Pi = 11 C max into an integer linear 

programming problem with a fixed number of variables. We have proven the 

following theorem. 

Theorem 5.8. The Pm lfix,rj,pj=ll C max problem with a fixed number of dis

tinct release dates is solvable in polynomial time. 0 

5 .2. Sum of completion times 

In this section, we investigate the computational complexity of our type of 

scheduling problems when we wish to minimize total completion time. Our 

main result is establishing NP-hardness in the ordinary sense for P21fix IL.Ci. 

The question whether this problem is solvable in pseudopolynomial time or 

NP-hard in the strong sense still has to be resolved. The weighted version, 

however, is NP-hard in the strong sense. We start with an easy observation. 

Given an instance, let the maximum processing time be denoted by 

Pmax =maXjPj· 
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Proposition 5.1. There is an optimal schedule for P I .fix I tCj in which the 

tasks that require all processors for execution during Pmax time are scheduled 

last, if they exist. D 

Proof. Consider a schedule cr for P I .fix I tCj in which the task J that needs all 

processors for execution during time Pmax is not scheduled last. The inter

change illustrated in Figure 5.5 generates a schedule cr* with 

tCj(cr*) $ tCj(cr) + p(B) fp(B)IPmaxlPmax $ tCj(cr), where 

p (B)= r,JjE BPj. D 

B A B J 

cr cr* 

Figure 5.5. The interchange. 

5.2.1. NP-hardness for the 2-processor problem. 

Theorem 5.9. The P2l.fix I tCj problem is NP-hard in the ordinary sense. 

Proof. Our proof is based upon a reduction from the NP-complete problem 

Even-Odd Partition. 

Even-Odd Partition 

Given a multi set of 2n positive integers A = {a 1 , ••• , a 2n } such that a; < a; +I 

(i = 1, ... , 2n -1), is there a partition of N into two disjoint subsets A 1 and A 2 
with equal sum b = t~ 1 aJ2 and such that A 1 contains exactly one of 

{a2i-l ,a2;}, for each i = 1, ... , n? 

Given an instance of Even-Odd Partition, define p = (n 2 + 1 )b, 

q=n 2(n 2+1)(n+l)p, and r=t}=1(n+j-1)(a 2j-t+a2j)+n 2(n+l)b. We con

struct the following instance of P 21.fix I tCj. Each element a j corresponds to 

a partition task Jj with processing time Pi =nb+aj that has to be executed by 

M 1• In addition, we define n 2+3 extra tasks. There are n 2 identical tasks Q; 

( i = 1, ... , n 2) with processing time 2p (n + 1) that have to be executed by M 2, 

a task K with processing time p that has to be executed by M 2, a biprocessor 

task L with processing time p, and a task P with processing time 2p (n + 1) that 

has to be executed by M 1• We will show that Even-Odd Partition is answered 

affirmatively if and only if there exists a schedule for the corresponding 

instance of P 21.fix I tCj with total completion time no more than the threshold 
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y =(2n 2+4n+8)p+q+r. 

Suppose that there exist subsets A 1 and A 2 that lead to an affirmative 

answer to Even-Odd Partition. Then there exists a schedule cr* with total com

pletion time no more than y, as is illustrated in Figure 5.6: the completion 

times of the extra tasks add up to (2n 2+2n+8)p+q, the sum of the completion 

times of the partition tasks is equal to 2np +r. 

A1 Az I 
p 

I L 
K Q1 

• 

······· 

0 p 2p 3p (2n+4)p 

Figure 5.6. The schedule cr* with partition sets A 1 and A 2 . 

Conversely, suppose that there exists a schedule cr with total completion 

time no more than y. We first show that the extra tasks in cr must be scheduled 

according to the pattern of Figure 5.6. 

A straightforward computation shows that task P and the Q-tasks must be 

completed after all other tasks in cr. Suppose that task L precedes task K, and 

that m partition tasks are completed before L starts. Note that m ~ n; otherwise, 

task K could be scheduled parallel to the m partition tasks, without increasing 

the completion time of any other job. If we compare this schedule with cr*, 

then task L turns out to be the only task with smaller completion time; this 

gain is more than offset by the increase of completion time of task K. Hence, 

in order to satisfy the threshold, the extra jobs must be scheduled according to 

the pattern of Figure 5.6. 

We now show that, if I:.Ci ( cr) ~ y, then the partition tasks must constitute an 

affirmative answer to Even-Odd Partition. First, suppose that the partition 

tasks before L in cr have total processing time smaller than p, implying that at 

most n partition tasks are scheduled before L. Then the total completion time 

of the partition jobs amounts to at least r+2np, the total completion time of the 

Q-tasks, task K, and task Lis equal to the total completion time of these tasks 

in cr*, and the completion time of task Pis greaterthan 3p+(2n+2)p, implying 

that the threshold is exceeded. Hence, the total processing time of the partition 

tasks before task L amounts to at least p. 

Now suppose that m partition tasks with total processing time p+x precede 

task L. Comparing cr with cr* shows that the total completion time of the extra 

jobs in cr isx(n 2+1) greater and that the difference in total completion time of 

the partition tasks is no more than 2p (n -m )+x (2n -m) in favor of cr. If m = n, 
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then the difference in total completion time between cr* and a is at least equal 

to x (n 2+ 1)-xn in favor of a*; x > 0 then clearly implies that the threshold 

will be exceeded. In case m > n, we wish to show that 

x(n 2+1) > 2p(n-m)+x(2n-m), which boils down to showing that 

x(n 2+1-2n+m) > 2p(n-m). As the left-hand-side of the inequality is positive 

and the right-hand-side negative, we have that the case m > n leads to an 

excess of the threshold. Hence, exactly n partition tasks with total processing 

time equal top must precede task Lin cr. The total completion time of the par

tition tasks is equal to 2np + n (p [l ]1 +p [1]2) + · · · + (p [n Jl +p [n 12), where p [i] 1 

and p [il2 denote the processing time of the [i ]th partition task before L and 

after L, respectively. It is easy to see that the threshold can only be met if 

{p £i]1 ,p [il2} = {P2H ,p2;}, for i = 1, ... , n. Define A I and A 2 as the set of 

partition tasks before L and after L in a, respectively. As the total processing 

time of the tasks in A 1 amounts to n 2b+:EA
1
ai =p =(n 2+1)b, we have that the 

corresponding subset of partition elements has sum equal to b. Furthermore, 

A I contains exactly one element from every pair {a 2i -I , a 2i } ; hence, the sub

sets A 1 andA 2 lead an affirmative answer to Even-Odd Partition. D 

Theorem 5.10. The P 21fix I:EwiCi problem is NP-hard in the strong sense. 

Proof. The proof is based upon a reduction from 3-Partition. Given an arbi

trary instance of 3-Partition, we construct the following instance of 

P21fix l:EwiCi. Each elementai corresponds to a taskli with processing time 

ai and unit weight that has to be executed by M I· In addition, there are n tasks 

Ki with processing time b and weight 2(j +a-1 )~ that have to be executed by 

M 2 , and nL biprocessor tasks Li with processing time band weight (2j-1)~, 

where a= 3n (2n -1 ), ~ = ab, and nL = a+n -1. 

Suppose that there exists a partition of N into N I, ... , Nn that yields an 

affirmative answer to 3-Partition. A feasible schedule with sum of weighted 

completion times no more than 

y = ~.:Ek= 1 wk(2(n -k)+1)b+.:Ef=I Wz(2n +a-l)b+:E7~+1 wz(2n -2(1-a))b 

is then obtained by scheduling the tasks as illustrated in Figure 5. 7. 

Conversely, suppose that there exists a schedule a with sum of weighted 

completion times no more than y. Straightforward computations show that the 

K-tasks and the L-tasks have to be scheduled as indicated in Figure 5.7 and 

that the tasks Ji have to be scheduled in the time slots parallel to the K-tasks. 

Let Ni denote the set of ]-tasks that are scheduled parallel to Ki; the sets 

N 1, ••• , Nn constitute a solution to 3-Partition. D 
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Nn Nn-1 

Kn 
LnL 

Kn-1 

Lnc1 

N1 
La. La.-1 

K1 •••••••[] 
0 b 2b 2nb 

Figure 5.7. A schedule for P 21fix I I.wiCi with I.wiCi ~y. 

5.2.2. Strong NP-hardnessfor the general3-processor problem 

Theorem 5.11. The P 31fix I I.Cj problem is NP-hard in the strong sense. 

Proof. The proof is based upon a reduction from the decision version of the 

P 31 fix I C max problem, which was shown to be NP-complete in Section 2.2. 
The decision version of P 3 I fix I C max is defined as the following question: 

given an instance of P 31fix I C max and a threshold b, does there exist a 

schedule cr with makespan no more than b? 

Given an arbitrary instance of P 31 fix I C max and a threshold b, we construct 

the decision instance of P 3 I fix I I.Cj by adding nb + 1 identical triprocessor 

tasks Ki with processing time p max. The corresponding threshold is equal to 

y =nb+I.;:~T 1 (b+kPmax). 
Application of Proposition 5.1 shows that there is an optimal schedule with 

the K-tasks executed last. The number of K-tasks is such that the threshold will 

be exceeded if the first K-task starts later than b. Hence, the decision variant of 

P 31fix I I.Cj has an affirmative answer if and only if the decision variant of 

P 31 fix I C max has an affirmative answer. 

Note that, the number of tasks needed in our reduction is pseudopolynomi

ally bounded. We conclude that P 31fix I I.Cj is NP-hard in the strong sense. 

D 

5.2.3. Unit execution times and precedence constraints 

In this section, we address the complexity of minimizing total completion 

time in case of unit processing times. We show that P I fix ,pi= 11 I.Cj is NP

hard in the strong sense; the complexity of this problem with a fixed number of 

processors is still open. 

Theorem 5.12. The P I fix ,pi= 11 I.Cj problem is NP-hard in the strong 

sense. 
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Proof. The proof of this theorem is based upon a reduction from 

PI fix ,pi= 11 Cmax; it proceeds along the same lines as the proof of the previ

ous theorem. Given an instance of P !fix ,pi= 11 C max• we add w tasks that 

require all processors for execution; application of Proposition 5.1 shows that 

these tasks can be assumed to be executed after all other tasks. By choosing w 

suitably large, we obtain the situation that the threshold of P I fix ·Pi= 11 r.ci 
is exceeded if and only if the threshold of P I fix ,pi II C max is exceeded. As 

the decision variant of P !fix ,pi= 11 C max is NP-complete in the strong sense 

and as w is polynomially bounded, we conclude that P !fix ,pi= 11 r.ci is NP

hard in the strong sense. 

As could be expected, the addition of precedence constraints does not have a 

positive effect on the computational complexity. We show that even the mild

est non-trivial problem of this type, with two processors and chain-type pre

cedence constraints, is NP-hard in the strong sense. 

Theorem 5.13. The P 21 chain,fix,prl! r.cj problem is NP-hard in the strong 

sense. 

Proof. The proof is based upon the same reduction as used in the proof of 

Theorem 5.6, only the threshold differs. As the number of tasks is equal to 

2nb, and as each task has unit processing time, an obvious lower bound on the 

total completion time is equal to y = 2nb (2nb + 1 ); this bound can only be 

attained by a schedule without idle time in which both processors execute nb 

tasks. Hence, there exists a schedule with total completion time no more than y 

if and only if there exists a schedule with makespan no more than b. We con

clude that P 21 chain,fix,pi=ll r.cj is NP-hard in the strong sense. D 
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In the previous chapter we dealt with prespecified processor allocations. In 

general, an instance may consist of tasks that still have to be allocated as well 

as tasks with a prespecified allocation. An example of such a situation occurs 

in a two-stage pipeline, where the first stage consists of two independent 

identical processors and the second stage is built up of a single processor. This 

model is described more precisely as follows. 

A set of 2n tasks has to be processed by three processors. Each of the first n 

tasks Jj is to be executed by one of the first two processors M 1 and M 2 . The 

remaining n tasks Kj belong to a single family, which is entirely executed by 

the third processor M 3 • The tasks are related through a precedence relation 

that consists of a collection of chains of length l; Ji precedes Kj for 

j = 1, ... , n. Preemption of tasks is allowed, which means that the processing 

of a task may be interrupted and resumed at the same time on a different pro

cessor or at a different time on the same or a different processor. However, 

each task can be active on only one processor at a time. The objective is to 

minimize makespan. 

The problem described above belongs to the class 

P31chain,Jam,set,pmtn ICmax· It is a special case of the class of two-stage 

flow shop scheduling problem, where each stage is executed by a number of 

processors. Related nonpreemptive problem types have been addressed by 

several researchers. Salvador [ 1970] investigates the problem of finding a per

mutation schedule of minimal length in an m-stage no-wait flow shop environ

ment with an arbitrary number of parallel processors in every stage. Buteo and 

Shen [1973] propose two heuristics for the two-stage problem with an arbi

trary number of parallel processors in each stage and analyze their worst-case 

behavior, whereas Arthanri [1974] designs a branch-and-bound algorithm for 

the same problem. 

We consider the problem from a complexity point of view. The problem can 

be seen as an immediate generalization of the preemptive version of the classi

cal two-stage flow shop problem, which has a single processor at each stage, 

and the problem of minimizing makespan on two parallel processors allowing 

for preemption, p 21pmtn I c max. For the classical two-stage flow shop prob

lem, Johnson [1954] derived an O(nlogn) time algorithm; it also constructs 

optimal schedules for the preemptive version, since preemption does not help. 

Mc-Naughton's [1959] wrap-around rule solves P lpmtn I Cmax in O(n) time. 

However P 211 C max is NP-hard, so that the nonpreemptive problem 

P 31 chain,fam,set I C max is NP-hard as well. In this chapter, we show that the 

preemptive problem described above is NP-hard in the strong sense. 

The organization of this brief chapter is as follows. We first show that the 
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problem P 31 chain,fam,set,pmtn I C max is NP-hard in the ordinary sense in 

Section 6.1. In Section 6.2, we use the basic idea of that proof to obtain the 

more general result that the problem is NP-hard in the strong sense. 

6.1. Ordinary NP-hardness 

In this section, we show ordinary NP-hardness of the problem 

P 31 chain,fam,set,pmtn I C max by a reduction from Partition. This reduction 

will provide the insight needed to establish NP-hardness in the strong sense. 

Partition 

Given a multiset N = {a 1 , ..• , an} of n integers, is it possible to partition N 

into two disjoint subsets that have equal sum b='LjENajl2? 

Given an instance of Partition, construct the following instance of 

P 31 chain,fam,set,pmtn I C max with a precedence relation consisting of 

chains of length 1. For each j e N we define two partition tasks Jj and Kj; Ji 

has processing time aai and Ki has processing time aj, where a> 1. In addi

tion, we define eight separation tasks, which have to create time slots of equal 

length for the execution of the partition tasks. The processing times of the 

separation tasks are given in Table 6.1. The precedence constraints are such 

that lr-?Kj, for j = 1, ... , n +4. The tasks of type J can be performed by pro

cessors M 1 and M 2 ; the tasks of type K have to be performed by M 3. Note that 

2( ab +b) is a lower bound on the makes pan and that a schedule with 

C max = 2( ab +b) contains no processor idle time. 

j n+1 n+2 n+3 n+4 

Jj 0 ab+b ab+2b b 

Ki ab ab 0 0 

Table 6.1. Processing times of the separation tasks. 

SupposeS is a subset of N with sum equal to b. We construct the following 

schedule oflength 2(ab+b). The processing ofthe set of J-tasks correspond

ing to the elements of S starts at time 0 on M 1 • These tasks are executed con

secutively and their execution takes ab time. The processing of the set of K

tasks corresponding to S starts at time ab; it is preceded by the execution of 

task Kn+l· Task ln+2 starts at time 0 and is executed without interruption by 

M 2 • Its successor Kn+2 is processed without any delay. The execution of the 

set of remaining partition tasks of type J starts at time ab + b and the execution 
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of the set of their successors starts at 2ah+b following Kn+Z· Finally, the 

remaining two separation tasks are added to complete the schedule; for an 

illustration see Figure 6.1. 

0 ah ah+b 2ab+b 2(ah+b) 

Figure 6.1. A schedule with partition sets S and N- S. 

Conversely, suppose that a schedule cr exists with makespan 2(ah+b). 

Without loss of generality, we may assume that the K-type tasks are executed 

without preemption in order of completion time of their predecessors. Since cr 
contains no processor idle time and In+ I is the only task of type J with pro

cessing time equal to 0, task Kn+l completes at time ah. For similar reasons, 

tasks 1n+3 and 1n+4 complete at time 2(ab+b). Let ln+Z complete at time 

ah +b+Ll, with Ll ~ 0. Processor M 3 should perform partition tasks of type K 

from time ah to time ah +b +Ll. Their predecessors have to be performed by 

M 1 and M 2 before ln+Z and 1n+3 start; the execution of these partition tasks 

takes at least time a(b+Ll). The amount of time available is ah+Ll. From 

a(b+Ll):S;ab+Ll and a> 1, it follows that Ll=O and the total processing time 

of the partition tasks of type J that are processed before 1n+3 is started is equal 

to ah. Hence, such a schedule cr gives a certificate of the affirmative answer to 

Partition. 

By now, we have proven the following theorem. 

Theorem 6.1. The problem P 31 chain,fam,set,pmtn I C max is NP-hard, even 

with a precedence relation consisting of a collection of chains of length 1. 

6.2. Strong NP-hardness 

In this section, the above described problem, P 31 chain,fam,set,pmtn I C max, 

is shown to be NP-hard in the strong sense. We use the 3-Partition problem for 

our reduction. 
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3-Partition 

Given an integer b and a multiset N = {a 1 , ... , a 3n } of 3n positive integers 

with b/4 < aj < b/2 and :r.J~ 1 aj =nb, is there a partition of N into n mutually 

disjoint subsets N 1, ••• , Nn such that the elements in Nj add up to b, for 

j 1, ... ,n? 

j 6n+1 6n+2 6n+3 ?n 7n+l 7n+2 

Jj 0 ah+b ah+2b ab+2b ah+2b b 

Kj ah ah ah ah 0 0 

Table 6.2. Processing times of the separation tasks. 

Given an instance of 3-partition, we construct the following instance of 

P 31 chain,fam,set,pmtn I C max with a precedence relation consisting of 

chains of length 1. As in Section 6.1, for each j e N we define two partition 

tasks Jj and Kj; Jj has processing time aa j and Kj has processing time a j, 

where a>l. In addition, we define 2(n+2) separation tasks; their processing 

times are given in Table 6.2. These tasks have to create time slots. The pre

cedence constraints are such that lr~Kj, for j = 1, ... , 7n+2. The tasks of 

type J can be performed by processors M 1 and M 2 ; the tasks of type K have to 

be performed by M 3• Note that n ( ah +b) is a lower bound on the makespan 

and that a schedule with C max = n ( ah +b) contains no processor idle time. 

Proposition 6.l.If 3-partition has an affirmative answer, then the instance 

defined above has a schedule of length n ( ah +b). 

Proof. Let N t. ... , N n constitute a yes-answer for the 3-Partition instance. 

Consider the schedule given in Figure 6.2. Straightforward computations 

show that the makespan of this schedule is equal ton ( ah +b). 0 

In order to show the converse implication, that is, that 3-Partition has an 

affirmative answer if the instance P 31 chain,fam,set,pmtn I C max has a 

schedule of length n ( ah +b), we need the following propositions. The proofs 

follow from the same arguments as used in the proof of Theorem 6.1 and are 

therefore omitted. 

Proposition 6.2. There exists an optimal schedule such that Jj and Kj are 

completed no later than Jj+l and Kj+l> respectively, for j =6n+1, ... , 7n+2. 
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·I K7n-l 

0 (ab+b) 2(ab+b) n(ab+b) 

Figure 6.2. A schedule with partition sets N 1, ••• , Nn. 

Proposition 6.3. A schedule of length n ( fJ.b +b) satisfies the following pro

perties: 

- it contains no processor idle time, 

- Jj completes at time U-6n-l)(fJ.b +b ),for j =6n+l, ... , 7n+l, 

- Kj starts immediately after Jj is completed, for j =6n+1, ... , 7n+2. D 

Proposition 6.4. Let cr be an optimal schedule of length n(fJ.b +b) that 

satisfies Proposition 6.2. Then cr certifies that the 3-Partition instance is a 

yes-instance. D 

Since the above reduction requires polynomial time, we have now proven the 

following theorem. 

Theorem 6.2. The problem P 31 chain,fam,set,pmtn I C max is NP-hard in the 

strong sense, even for a precedence relation consisting of a set of chains of 

length 1. D 

Corollary 6.1. The problem P31chain,fam,set I C max is NP-hard in the 

strong sense, even for a precedence relation consisting of a set of chains of 

length 1. 0 
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From the analyses of the previous chapters, we may conclude that it is unlikely 

that fast algorithms exist that solve the scheduling problem in its most general 

form to optimality. One is confined to take an approximative approach. In the 

remaining chapters of this thesis we describe such an approach. We introduce 

Tosca, our tunable off-line scheduling algorithm, which produces approxi

mate answers to instances of a special case of the problem type 

P lprec,com,fam,set I C max described in Section 7.1. Tosca has been 

developed as a tool to support the scheduling of parallel programs on distri

buted memory architectures. 

Tosca is an algorithm that tries to find a reasonable solution in a reasonable 

amount of time by bounded enumeration, as will be described in Section 7 .2. 

Only a part of the solution space is taken into consideration, and the user is 

given the facility to determine the size of this part. 

Tosca is tunable in the sense that it enables the user to control the speed of 

the solution method and the quality of the schedules produced. First of all, the 

size of the part of the solution space considered influences both quality and 

speed. Moreover, the user has to define priority rules for the selection of tasks 

and processors, a lower bound rule for truncating the enumeration process, as 

well as an evaluation rule for the evaluation of partial schedules. A number of 

predefined rules are incorporated in Tosca, but the user has the opportunity to· 

define new rules, as described in Section 7 .3. 

Lower bounds on the makespan of an optimal schedule also provide the user 

with a measure of the quality of the schedules produced by Tosca. The lower 

bounds are based on the total amount of work that has to be done and on the 

structure of the precedence relation. They are described in Section 7 .4. 

7 .1. The problem type 

A collection of m identical parallel processors Mi (i =1, ... , m) has to process 

a set of n tasks Ji (j=l, ... ,n). The task set is partitioned into a number of 

families. Each task belongs to a single family. Tasks that belong to the same 

family F have to be executed by the same processors. Each task in F can be 

performed by any collection of processors of a given family-dependent size 

sp, unless F has a nonempty collection of processors specified as part of the 

problem instance. In the latter case, each task in F is fixed to this prespecified 

collection of processors. The processing of task Ji takes pi time. Let Fi denote 

the family Ji belongs to. 

With each task Ji two data sets li and Oi are associated, representing the 

data that this task requires and delivers, respectively. The data dependency 

between two tasks Ji and Jk is defined as follows. The tasks are independent if 
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0/"'lh=Oknli=0. If 0/1h::t0 and Oknlj=0, then we write lr~h and 

require that Jj has been completed before Jk can start. Conversely, if 

Oknlj * 0 and 0/1/k = 0, then we write Jk~Jj and require that h has been 

completed before Jj can start. The case that 0 in/ k ::t 0 and Oknlj ::t 0 should 

not occur, since it would represent a loop in the parallel program. Thus, the 

data dependencies impose a precedence relation on the task set. It is denoted 

by an acyclic directed graph G with vertex set { 1, ... , n } and an arc U, k) 

whenever Ji~h. Let Pi= {h lh~lj} and Qj= {h llj~Jd denote the sets 

of predecessors and successors of Jj, respectively. 

Communication delays due to these data dependencies are modelled as fol

lows; see also Section 2.3. Let D be the set containing all information: 

D =u}=t oj. Each data item aE D has a given integer weight Wa, and the 

weight of a data set U c D is defined by w ( U ) = I:aE u w a. The communication 

cost function c specifies the time needed to transmit a data set of a given 

weight from one processor to another. It is assumed to be of the form 

c (x) = c 1 +c zl x/c 31 +c l x/c 512 and is therefore defined by the integral con

stants c 1 , ... , c 5 . lnterprocessor communication occurs when a task h needs 

information from a predecessor Jj and makes use of at least one processor that 

is not used by Jj. Let Mi be such a processor and let P(k,i) denote the set of 

tasks scheduled on Mi before and including Jk· Prior to the execution of h, the 

data set U(i,j,k)=u1E Q/•P(k,i)(0/1/1) has to be transmitted to Mi, since not 

only h but also each successor of Jj that precedes h on Mi requires its own 

data set. The time gap in between the completion of Jj (at time Cj) and the 

start of Jk (at time Sk) has to allow for the transmission of U (i,j,k). The com

munication time is given by c (w (U (i,j,k))). For feasibility it is required that 

Sk~Ci ~c (w (U(i,j,k))). 

A schedule is an allocation of each task Jj to a time interval of length Pi on 

sy processors such that no two of these time intervals on the same processor 
J 

overlap. A schedule is feasible if it meets the requirements concerning the pro-

cessor environment and the task characteristics as described above. A feasible 

schedule is active if no task can be moved forward in time without delaying 

some other task or violating the constraints. Tosca aims to minimize the 

length of a schedule. 

7 .2. The solution method 

An active schedule can be constructed by iteratively selecting the next task to 

schedule, allocating a collection of processors to it, and starting it as early as 

possible. We can visualize the various possible choices by an enumeration 

tree, as shown in Figure 7 .1. In Figure 7.1 a we present an instance consisting 
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of two processors, four tasks, and four families. The enumeration tree for this 

instance is given in Figure 7.lb, where the root represents the empty schedule, 

each 0-node represents the selection of a task, and each D-node represents the 

allocation of a task to a collection of processors. Hence, each D-node 

corresponds to a partial schedule of the tasks selected so far, and the leaves of 

the enumeration tree correspond to all complete schedules. 

The process of bounded enumeration consists of n stages. At each stage an 

available task and a collection of processors for that task is selected. A task is 

said to be available if all of its predecessors have been scheduled. In order to 

select a task and a processor collection, Tosca generates a subtree of the 

enumeration tree, as shown by the double boxes and circles in Figure 7.1b. In 

total, n subtrees have to be generated until a complete schedule has been con

structed. 

The subtree is determined by three parameters d, t, u, two priority rules, and 

a lower bounding procedure. The parameter d defines the depth of the subtree. 

At each of the d levels, Tosca applies the first priority rule to select t of the 

available tasks and, for each chosen task, Tosca applies the second priority 

rule to select u of the processor collections that can execute the task. For each 

partial schedule that is generated, Tosca computes a lower bound on the 

optimal makespan of schedules that are extensions of the partial schedule. If 

this lower bound exceeds a given upper bound, then the branch determined by 

the partial schedule is eliminated and will not be examined further. The 

parameters d, t, u, and the lower bounding procedure determine the size of the 

subtree that is rooted at the current partial schedule. 

The leaves of the subtree are partial schedules, which are evaluated accord

ing to an evaluation rule. Each task-collection pair chosen at the first level 

determines a branch of the subtree; each branch contains a number of leaves, 

each with its own value. A task-collection pair that leads to a leaf of minimal 

value is chosen and a new partial schedule is constructed, as shown by the bold 

boxes in Figure 7.1 b. A new stage has been reached. 

As said before, Tosca is tunable in the sense that it allows the user to control 

the speed of the solution method and the quality of the schedules produced. 

First, by adjusting the three parameters d, t, and u, the user influences the size 

of the partial tree that is computed and chooses from a range of possibilities in 

between list scheduling and complete enumeration. Second, the user has to 

define two priority rules: one for selecting a task and another for selecting a 

collection of processors. And finally, the user has to specify a lower bound 

rule for the bounding procedure and an evaluation rule for partial schedules. 
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m=2 

n=4 

s 1 =2, s 2 = 1, s 3 =2, s4 =2 

Figure 7.1a. An instance of P lprec,com,fam,set I Cmax· 

Figure 7.lb. Enumeration tree. Double boxes and circles in

dicate a subtree for d = 3, t = 2, and u = 1. The bold circle and 

the bold box adjacent to it indicate a chosen task and proces

sor allocation; the other bold box is the 'best' leaf in the par

tial tree. The current partial schedule is the empty schedule. 
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Given a problem,·Tosca starts with priority scheduling. An evaluation rule 

and two priority rules are chosen and the parameters d, t and u are set to 1. 
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Repeatedly a task of high priority among the available tasks is selected and 

allocated to a processor collection of high priority. The makespan of the 

resulting schedule is the initial upper bound on the optimal makespan. 

Lower bounds on the makespan of an optimal schedule are computed at the 

start of Tosca. These lower bounds provide the user with a measure of the 

quality of the schedules produced by Tosca. A description of these lower 

bounds is given in Section 7.4. 

attribute name value forJj 

static number of processors m m 

number of tasks n n 

processing time pj Pi 
size sF SFi 

cardinality of the indata set #in IIi I 
cardinality of the outdata set #out !Oil 

weight of the in data set win w(lj) 

weight of the outdata set wout w(Oj) 

number of predecessors #pre IPil 
number of successors #sue IQil 

list index list j 

longest preceding path head 

longest succeeding path tail 

Papadimitriou-Y annakakis PapYan 

dynamic first in first out fifo 

minimal starting time start 

Table 7.1. Task attributes. 

7.3. Priority rules, evaluation rule, and lower bound rule 

A priority rule for the selection of tasks depends on one or more task attri

butes. A task attribute is static if it can be computed on the basis of the data 

that defines a problem instance. It is dynamic if schedule information is 

required for its computation. The various task attributes are listed in Table 7 .1. 

Given a task Ji, the attribute head is the length of a longest path from a 

source node to Ji and the attribute tail is the length of a longest path from Ji to 

a terminal node. The attribute Pap Van is a lower bound on the starting time 

of Ji. It is computed similarly to head, but communication delays are taken 

into account; cf. Section 7.4. The attribute fifo assigns to a task its rank with 
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respect to the point in time at which it becomes available. Given a partial 

schedule, the earliest starting time can be computed for any available task; 

start assigns this value to each available task. 

The predefined priority rules that are incorporated in Tosca determine an 

order in which the tasks are considered with respect to a given attribute. The 

predefined priority rules are min-sF, max-sF, max-#suc, min-list, max

head, min-tail, min-PapYan, min-fifo, and min-start. If the tasks are con

sidered in order of nondecreasing attribute value, then the prefix min is used in 

the name of the priority rule. The prefix max is used if the tasks are considered 

in order of nonincreasing attribute value. The predefined priority rule min-sF, 

for example, gives high priority to the tasks of small size, whereas the priority 

rule max-sF gives high priority to the tasks oflarge size. 

priority rule for tasks: 

lexico(expression, ... , expression) 

expression 

expression: 

tenn: 

expression+ term 

expression- term 

max {expression, term} 

min (expression, term} 

term 

term I primary 

term *primary 

primary 

primary: 

number 

-primary 

attribute 

( expression ) 

Figure 7.2. Grammar for priority rules. 

The user is given the facility to build a priority rule for the selection of tasks 

based upon the task attributes. This may involve the construction of new attri

butes on the basis of old ones. The grammar for a user defined priority rule that 

is accepted by Tosca is given in Figure 7 .2. In words, a user defined priority 

rule consists of a single expression or the operator lexico applied to several 

expressions. The basic units of an expression are numbers, task attributes, and 
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the operators *,/,max, min,+, and- (both unary and binary). An expression 

assigns a value to each task, which is then a new, user defined, task attribute. 

The tasks are considered in order of nondecreasing value with respect to each 

expression. Thus, the predefined priority rule max-tail leads to the same out

come as the user defined priority rule that consists of the expression -tail. 

A priority rule for the selection of collections of processors depends on the 

static and dynamic processor attributes given in Table 7 .2. As said in Section 

7 .2, Tosca applies a task priority rule to select a number of available tasks and, 

for each chosen task Jj, Tosca applies a processor priority rule to select a 

number of the processor collections that can execute the task. The attributes 

#pre and data depend on the available task (Jj) under consideration. The 

attribute data determines the point in time that Ii can be available on Mi, for 

i=l, ... ,m. The predefined priority rules are all based on dynamic attributes; 

they are min-fut, min-load, max-#pre, and min-data. Again, the user is 

enabled to construct a new priority rule. The grammar that is accepted by 

Tosca is the same as the grammar for user defined task-priority rules given in 

Figure7.2. 

attribute name valueforMi 

static number of processors m m 

number of tasks n n 

dynamic future fut maxJjonMiCi 
load load LJionM,Pj 

number of predecessors #pre IPin{JkllkonMd I 
data available data 

Table 7.2. Processor attributes. 

Static attributes used in a priority rule are computed before the (bounded) 

generation of the enumeration tree. Dynamic attributes are computed during 

the generation of the enumeration tree. 

An evaluation rule assigns values to partial schedules. The following 

evaluation rules are available: 

- makespan: the length of the partial schedule is computed; 

- completion plus tail: for each taskJi, the length of a longest path starting at 

Ji is added to its completion time and the maximum of these values is taken; 

- partial plus Pap Van: an adaptation of an algorithm of Papadimitriou and 

Yannakakis [1990] applied to the partial schedule yields lower bounds on 
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the completion times of the tasks and the maximum of these values is used; 

see also Section 7 .4. 

A lower bound rule is used to eliminate branches of the enumeration tree 

that will surely not lead to improvements. The user is enabled to chose from 

the following two rules: 

makespan: the length of the partial schedule is used as lower bound; 

- partial plus Pap Van: an adaptation of an algorithm of Papadimitriou and 

Y annakakis [ 1990] applied to the partial schedule yields a lower bound on 

the makespan. 

7.4. Lower bounds on the makespan 

Tosca computes three lower bounds on the makes pan of an optimal schedule. 

For ease of use, we define c(j,k)=c(w(O/Ift)) and Sj as the (family depen

dent) number of processors Jj requires for execution. The lower bound work 

load is defined as "L}=I (pjsj)lm. The lower bound longest path is the length of 

a longest path with respect to the precedence relation; if J 1 ---7 · • • ---711 is a 

path, then the length of this path is "L1.,jgpj+Lt::;;j::;;l-1,sj<s
1
+

1
c(j,j+l). The 

third lower bound is based on an algorithm of Papadimitriou and Y annakakis 

[ 1990]. A modification of this algorithm leads to a lower bound that dominates 

longest path. It is described below. 

First, the procedure computes a lower bound bj on the starting time of each 

task Jj. Zero lower bounds are assigned to tasks without predecessors. For any 

task Jk other than such a source task, consider its predecessors. For each 

predecessor Jj of Jk, define .{j as .{j =bj+pj+c (j,k). In any schedule, a com

munication delay occurs in between any (predecessor, successor) pair of tasks 

Jj,Jk satisfying sj< sk. Definebl as bl=max {.{j ljePk andsj< sk }. 

Sort the predecessor subset { Jj I JjE P k and s j ;:::: sk } in decreasing order of J, 

that is, .{j,;:::: · · · ;:::_{jq. Given an integer y satisfying_{j,;:::y;:::_{j,+,, consider the fol

lowing single-processor scheduling problem with release dates on i tasks 

(L 1, ... , Li). The release date of a task is the point in time at which it becomes 

available for processing. Task L1 corresponds to task Jj
1

, that is, it has process

ing time p1 = Pj
1 

and release date r1 = b j,. Let C max ( y) denote the minimal mak

espan of this single-processor scheduling problem. Define bt as the least 

integer y such thaty;::: Cmax(y). 

The lower bound bk on the starting time of Jk is now defined as the max

imumofbl andbt. ThelowerboundPapYanisgiven bymaxj { bj+Pj }. 

Given a feasible schedule, let Jk be scheduled at time Sk and let all of its 

predecessors be scheduled at or after their lower bounds. Clearly, for 
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feasibility it is required that sk;::: b}. Each predecessor Jj that satisfies Sj;::: Sk 

and .{j>Sh has to be executed by (at least) the same processors that execute h 
to prevent communication delays that would occur otherwise. Therefore, the 

corresponding single-processor scheduling problem mentioned above has 

makespan C~ax 5.Sk. Since b~ is the least integer satisfying such constraints, 

we may conclude that bk 5, Sk. It follows that PapYan is indeed a lower bound 

on the schedule length. 

Due to the analyses of Papadimitriou and Y annakakis [ 1990] and Colin and 

Chretienne [1991], one may expect the lower bound PapYan to be tighter for 

problem instances with a relatively large number of processors, and for prob

lems where the communication delays are small with respect to the processing 

times. 
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The methodology of Tosca as described in the previous chapter has been 

implemented using the computer language GNU C++. The overall organiza

tion of Tosca and the results of experiments with Tosca are reported in this 

chapter. Together, Sections 7.3, 8.1, and 8.2 form a manual for the use of 

Tosca. 

At the start of Tosca, a problem instance is read from a file that is specified 

by the user. The user can also specify a file to save Tosca's results, such as a 

schedule and a parameter setting with a corresponding makespan. The input 

and output specification is given in Section 8.1. 

We developed a user interface that supports the presentation of problem 

instances and solutions. The man-machine interaction is menu driven, in such 

a way that at any moment all feasible commands are visible. The user interface 

and the functional properties ofTosca are described in Section 8.2. 

Tosca has been tested on four classes of problem instances. The first class 

contains instances where the precedence relation has a layered structure, the 

instances of the second class have a series parallel precedence relation, and 

the third class consists of instances with arbitrary precedence relations. With 

respect to the fourth class, two precedence relations from practice were at our 

disposal; we generated data sets, processing times, and task sizes to obtain 

new instances. The four problem generators are given in Section 8.3. 

In Section 8.4 the results of the tests are tabulated and analyzed. 

name m n W~t···•WIDI 

PI 
·I · f/,1 
lJ ' .•• 'lJ 

1 jO,j 
OJ, .•. ,OJ FI 

Pn 
·I .j/, I 
ln' •.. 'l n 

1 JO.I 
Om ... ,On Fn 

SJ MI •... ,M'i' 

sf M}, ... ,Mf 

C1 c2 C3 c4 cs 

Table 8.1. Format of an input file. 

8.1. Input and output specification 

A problem instance is read from a file that is provided by the user. The 

instance has to belong to the problem class described in Section 7.1. The for

mat of the input file is specified in more detail in Table 8.1. First of all, the 

problem name, the number of processors and the number of tasks are given. 
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Next the weights of the individual data items are specified. Tosca then 

requires the following data for each task Jj: processing time, the data set Ij that 

is required for execution, the data set Oj that is delivered after completion of 

the task, and the index Fj of the family Jj belongs to. Following the task 

characteristics Tosca requires for each family the number of processors each 

of its tasks has to be executed by, and the possible prespecified processor allo

cations for families. Finally, the integer constants that define the communica

tion cost function have to be given. The I sign is used as a separator. 

problem name 

m 

evaluation rule 

task priority 

processor priority 

Cmax 

St 

n 

d 

t 

u 

M l • ..SFn 

F ,. •· ,MF n n 

Table 8.2a. Format of an output file: schedule. 

problem name 

task priority 

processor priority 

evaluation rule 

lower bound rule 

d 

t 

u 

number of processors 

cpu running time 

make span 

Table 8.2b. Format of an output file: parameter setting. 

As for the output, a schedule is basically an allocation of each task to a time 

interval on one or more processors. The user can specify a file to save the prob

lem name, the number of processors, the number of tasks, the evaluation and 

priority rules, the parameter setting, the makespan, and the corresponding 



82 8. Tasca: implementation 

starting times and processors allocations of the tasks. The schedule informa

tion is written in a format as specified in Table 8.2a. 

During the use ofTosca, the user generally will specify a number of distinct 

parameter settings. One is enabled to specify a file to save these settings. For 

each parameter setting this file contains the information listed in Table 8.2b. 

Tosca problem name 

n m IDI upper bound 

lower bound 

parameters current best so far previous 

d 

t 

u 

task priority 

processor priority \ 

evaluation rule 

lower bound rule 

architecture 

makes pan 

menus and feedback 

command line 

Figure 8.1. Division of the screen. 

8.2. User interface and functional description 

The screen is divided into three fixed regions: problem and schedule informa

tion, menus and feedback, and a command line, as in Figure 8.1. The first 

region specifies the problem characteristics n, m, and the cardinality of the 

data set D. It also gives the initial upper bound and the lower bound on the 

optimum. The column current shows the parameter values specified last. The 

column best so far specifies the best makespan so far and the parameter values 

used to construct the corresponding schedule. The column previous specifies 

the makespan and parameter values used to construct the one but last 

schedule. The second region presents menus and information about the pro

cess of bounded enumeration. It also allows for the specification of user 
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defined priority rules, input files, and output files. Finally, the third region will 

show the line 'hit any key to continue' in certain situations. All information is 

presented in an alphanumerical manner. 

The user starts by giving the command: tosca ffile name]. The specification 

of a file that contains a problem instance is optional. If a file is given, then 

Tosca will execute the corresponding problem first. Otherwise the main menu 

appears; cf. Section 8.2.1. 

The commands are divided over menus. At each point in time during the 

execution ofTosca at most one menu is presented to the user. The commands 

within a menu are numbered. Typing a number starts the execution of the 

corresponding command. Some commands activate a new menu. If a new 

menu is activated, the old menu disappears. In general, the command continue 

will activate the previous menu. The relations between the menus are given in 

Figure 8.2. 

8.2.1. The main menu 

The primary menu main appears at the start. With the aid of the command 

load problem a problem is read from an input file. The user is asked to give a 

file name that contains a problem instance. Immediately after loading a prob

lem, Tosca performs priority scheduling to obtain an initial upper bound, as 

described in Section 7 .2. It uses max-tail and min-data as task priority rule 

and processor priority rule, respectively. The commands schedule, view, and 

save activate new menus. By exitTosca is stopped. 

8.2.2. The schedule menu 

This menu concerns the parameter setting and scheduling. The commands 

task priority, processor priority, evaluation rule, and lower bound rule 

activate new menus. At the commands depth, tasks, and collections the user is 

asked to specify the numbers d, t, and u, respectively. One can adjust the upper 

bound by choosing upper bound; the user is asked to type a new value. If the 

user is interested in scheduling an instance on a different multiprocessor archi

tecture, then the user can specify a new number of processors by the command 

architecture. Finally, the command run of schedule starts the scheduling pro

cedure. It uses the last defined parameters @Ild evaluation and priority rules. 

These parameters and rules are displayed on the screen. During the scheduling 

the number of tasks scheduled so far is returned. If the sum d +t +u exceeds 4, 

then the number of partial schedules evaluated so far is returned, too. After 

completion, the makes pan of the schedule is presented and the menu schedule 

is activated again. 
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task priority 

processor priority 

schedule 

evaluation rule 

lower bound rule 

problem 

last schedule 
main 

view best schedule 

previous schedule 

lower bounds 

save 

~---p_re_e_m_p_t __ ~~L ____ re_s_u_m_e ____ ~ 

Figure 8.2. Relations between the menus. 

8.2.3. The task priority menu 

The menu task priority lists the predefined task priority rules and the com

mand user defined priority rule. The user can either choose a task priority rule 

or, by user defined priority rule, build a new one. In order to build a new rule, 

numbers, attributes and operators have to be typed, according to the grammar 

specified in Section 7 .3. The attributes and operators are listed. 

8.2.4. The processor priority menu 

The menu processor priority lists the predefined processor priority rules and 
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the command user defined priority rule. The user can either choose a proces

sor priority rule or, by user defined priority rule, build a new one. In order to 

build a new rule, numbers, attributes and operators have to be typed, according 

to the grammar specified in Section 7 .3. The attributes and operators are listed. 

8.2.5. The evaluation rule menu 

The menu evaluation rule allows the user to select from the three evaluation 

procedures given in Section 7.3. 

8.2.6. The lower bound rule menu 

The menu lower bound rule allows the user to select from the two lower 

bound procedures for truncating the enumeration tree mentioned in Section 

7.2. 

8.2.7. The view menu 

The menu view contains commands to show alphanumerical information on 

the lower bounds, the schedules, and the parameter settings. Problem, last 

schedule, best schedule, previous schedule, and lower bounds activate new 

menus. At the command history previous parameter settings and the 

corresponding makespans and execution times are listed. 

8.2.8. The problem menu 

In problem, the command tasks presents for each task the index, the process

ing time, the size, and the family the task belongs to. The command pre

cedence relation gives for each task the index, the set of predecessors, and the 

set of successors. At problem constants the number of tasks, the number of 

processors, the cardinality of the data set D, and the constants of the communi

cation function are given. Finally, at the command problem all previously 

mentioned data is listed and, in addition, the indata sets Ij and outdata sets Oj 

are presented. 

8.2.9. The last schedule menu 

After scheduling, last schedule allows the user to investigate the schedule. 

The command tasks shows for each task the index, the starting time, the com

pletion time, and the collection of processors that executes the task. The com

mand processors displays for each processor the index, the processor comple

tion time, the work load, its idle time (i.e., the makespan minus its work load), 

and the processor completion time minus its work load. 
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8.2.10. The best schedule menu 

The first schedule with the best makespan is shown, in a manner similar to the 

menu last schedule. 

8.2.11. The previous schedule menu 

The one but last schedule (if it exists) is presented, in a manner similar to the 

menu last schedule. 

8.2.12. The lower bounds menu 

In lower bounds, the command make span shows the lower bounds work load, 

longest path, and PapYan, as defined in Section 7.4. The command starting 

times shows the lower bounds on the starting times of the individual tasks. 

8.2.13. Thesavemenu 

The user of Tosca is enabled to save the last schedule, the previous schedule, 

the best schedule, or the current and previous parameter settings with 

corresponding makespans. At each of the commands listed in the menu, the 

user is asked to specify a file. The output is saved on the file that is specified by 

the user. It is written in a format as specified in Section 8.1. 

8.2.14. Thepreemptmenu 

During the execution of the scheduling procedure within Tosca, the preempt 

command Ctr-C will interrupt the scheduling and activate the preempt menu. 

It contains two commands: at the command stop the scheduling is terminated 

and the menu schedule is reactivated, at the command new parameters the 

user is enabled to specify new parameters by use of the resume menu and the 

scheduling will be resumed with respect to this new parameter setting. 

8.2.15. The resume menu 

The resume menu contains a subset of the commands of schedule. They are: 

task priority, processor priority, evaluation rule, lower bound rule, depth, 

tasks, collections, upper bound, and run. As in schedule, these commands 

allow the user to specify (new) parameters. After the specification, the running 

will be resumed using the new setting. 

8.3. Four problem generators 

Four problem generators were developed to construct instances for testing 

Tosca. The first one generates instances with a layered precedence relation, 

that is, given an instance there exists an integer 't such that consecutively 't 
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tasks are mutually independent; see Figure 8.3. The second generator con

structs instances with series-parallel precedence graphs; see Figure 8.4. A 

directed graph is said to be series-parallel if it is a single node, or it is a chain 

of series-parallel graphs, or it consists of a number of mutually independent 

series-parallel graphs preceded by a series-parallel graph and succeeded by 

another series-parallel graph. The third generator constructs instances with 

arbitrary precedence relations. Finally, two precedence relations from prac

tice were at our disposal. We used the fourth generator to construct problem 

instances based on these two precedence relations. 

None of the test problems has prespecified processor allocations, and each 

of the families within an instance consists of a single task. 

Figure 8.3. A layered precedence graph for 't = 3. 

8.3.1. The generator Jor layered precedence relations 

The data dependencies that define the precedence graph are determined by the 

indata sets and outdata sets. The construction of these data sets is described 

below. 

Since each data item is created exactly once, we may assume that the out

data sets form a partition of the data set D. The outdata set of task Ji is defined 

by Oi = { lO(j-1)+1, ... , lOj }, for j=1, ... , n. The cardinality of the data set 

is ID l=lOn. 

Given two integers u and p, the indata sets are defined such that the prede

cessors of Ji form a subset of { Ji -1)-p, ... , Ji -u-l } . Thus, at least 'U tasks are 

unrelated with Ji and at most p tasks precede Ji. Formally, in order to deter

mine the indata sets we introduce n dummy tasks -(n -1 ), ... , 0 with outdata 

sets as defined above. For each task Ji that is not a dummy,. an integer oi is 

drawn from the uniform distribution [1, 10]. Next, Oj data items are drawn uni

formly from the outdata sets oj-u-p• ... , oj-1)-l• The dummy tasks and the 

data items of the data sets associated with these dummies are then regarded as 

nonexistent. The remaining data items with respect to Ji determine the indata 

set li. Note that the cardinality IIi I is at most oi. The data dependency 
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Oinlk-:;:. 0 defines the precedence constraint Jr~Jk. 

The weights of the data items are drawn from the uniform distribution [1, 5], 

the processing times are drawn from the uniform distribution [1, 10], and the 

task sizes are drawn from the uniform distribution [1,3]. The constants of the 

communication cost function are c 1=1, c 2=1, c 3=3, c4=0, and c 5=1. Thus, 

the communication cost function is given by c (x) = 1 + r x/~. 

r-------3i>\ 9 

Figure 8.4. A series-parallel precedence graph. 

8.3.2. The generator for series-parallel precedence relations 

In contrast to the previous generator, the precedence relation is now con

structed prior to the data sets. There are two basic operations in constructing a 

series-parallel graph out of a given number of series-parallel graphs. The first 

one is to build a chain of the series-parallel graphs; it is called the series com

position. The second one is the parallel composition: one series-parallel 

graphs precedes and another series-parallel graph succeeds all of the remain

ing series-parallel graphs. 

Let a list of series-parallel graphs been given. The generator randomly 

chooses between the two operations. If the series composition is chosen, then 

an integer cr is drawn from the uniform distribution [1,2] and the first cr 

series-parallel graphs of the list are used to construct a new one, as follows. 

The sink of the ith series parallel graph precedes the source of the i +1st graph, 

for i = 1, ... , cr-1. If the parallel composition is applied, then an integer 1t is 

drawn from the uniform distribution [4,6] and a new series-parallel graph is 

constructed out of the first 1t graphs of the list, as follows. The sink of the first 

graph precedes the sources of the next x-2 graphs; the sinks of the latter 

graphs precede the source of the last graph. The chosen graphs are removed 

from the beginning of the list and the new series-parallel graph is added at the 

end. The initial1ist consists of the individual tasks. The procedure is repeated 

until the list contains exactly one series-parallel graph. 
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Again, the outdata sets form a partition of the data set D. They are defined 

by OJ= {5(j-1)+1, ... ,5j}, for j=1, ... ,n. Thus, the cardinality of the data 

set is I D I= 5n. For each task Jk an integer ok is drawn from the uniform distri

bution [1, 10]. Next, for each predecessor JJ of Jk> ok data items are drawn uni

formly from the outdata set OJ. These data items determine the indata set /k. 

Note that the cardinality I hI is at most I Pk I ok. 

The weights of the data items are drawn from the uniform distribution [ 1, 4], 

the processing times are drawn from the uniform distribution [1,10], and the 

task sizes are drawn from the uniform distribution [1,3]. The constants ofthe 

communication cost function are c 1=1, c 3=3, c 4=0, and c 5=1. Thus, 

the communication cost function is given by c (x) = 1 +fx/31. 

8.3.3. The generator for arbitrary precedence relations 

Again the precedence relation is constructed prior to the data sets. Let a. be a 

positive integer. The generator chooses a. times a pair of tasks J1,Jk from the 

set of not yet chosen task pairs. Each time, if lr~lk or Jk--7JJ is part of the 

transitive closure of the current set of constraints, then it is added to the set of 

constraints and otherwise, if neither JJ--7Jk nor Jk--7JJ is part of the transitive 

closure of the current set of constraints, the generator randomly chooses 

between these two possibilities. The outdata sets and indata sets are con

structed in a similar way as for the instances with a series-parallel precedence 

relation. 

The weights of the data items are drawn from the uniform distribution 

[1,10], the processing times are drawn from the uniform distribution [1, 10] 

for instances with n = 30, the processing times are drawn from the uniform dis

tribution [ 1,15] for instances with n = 100, and the task sizes are drawn from 

the uniform distribution [1,3]. The constants of the communication cost func

tion are c 1=1, c 2=1, c 3=3, c 4=0, and c 5=1. Thus, the communication cost 

function is given by c (x) = 1 +f xljj. 

8.3.4. The generator for prespecified precedence relations 

In addition to the generated problems, two precedence relations from practice 

were at our disposal. These originated from the program Parasol, which is a 

parallel sparse matrix system solver that has been developed by Lin and Sips 

[1991] within the ParTool project. The two precedence relations reflect the 

structure of the program for two different matrix systems. The graphs associ

ated with the first and second relation consist of 74 and 388 nodes, respec

tively. Since only the precedence relations were made available to us, we used 

unit processing times and unit task sizes. 
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The data sets associated with the precedence relation on 74 nodes were gen

erated in the following way. As before, the outdata sets form a partition of the 

data set D. They are defined by Oi= {lO(j-1)+1, ... , lOj}, for j=l, ... ,n. 

Thus, the cardinality ofthe data set is I D I= IOn. For each task Jk an integer c)k 

is drawn from the uniform distribution [1,3]. Next, for each predecessor Ji of 

Jh c)k data items are drawn uniformly from the outdata set Oi. These data 

items determine the indata set h- Note that the cardinality I hI is at most 

I Pkl c5k. 
The data sets associated with the precedence relation on 388 nodes were 

generated in the following way. The outdata sets are defined by Oi = {j}, for 

j = 1, ... , n. Thus, the cardinality of the data set is I D I= n. For each predeces

sor Ji of Jh data item j is an element of the indata seth. Note that the cardinal

ity I h I is equal to I Pk 1. 
Three classes of communication delays were generated with respect to each 

of the two precedence relations: one without communication delays, one with 

unit time communication delays, and one with the communication cost func

tion c (x) = 1 + x. For each class, the experiments were performed with m rang

ing from 5 to 25. 

n 

30 

30 

30 

30 

100 

100 

100 

L(U,p) min-list min-start min-sF max-tail 

m \l p fut data fut data fut data . fut data 

5 3 5 - 2 5 15 - 10 12 

10 3 5 13 - 14 - I 2 4 

5 10 3 2 2 11 19 - 2 

10 10 3 6 8 6 21 - - 2 

5 10 5 - - 5 23 - - - -

10 10 5 2 6 - 19 - - - -

15 10 5 - 3 - 15 - 9 

Table 8.3. Each cell contains the number of times (out of 25) 

that the corresponding combination of task and processor 

priority rule performed at least as well as the other given com

binations. The column opt specifies the number of times (out of 

25) that at least one of the priority combinations resulted in a 

schedule of length equal to the lower bound. 

8.4. Computational results 

I 

opt 

10 

-

-

-
i 

I 

Tosca has been coded in the computer language GNU C++; the experiments 

were conducted on a Sun Spare Station 1. The class of problem instances with 

layered precedence relations, constructed as described in Section 8.3.1 with 
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parameters u and p, will be denoted by L(u,p). The class of problem instances 

with series parallel precedence relations will be denoted by SP. We denote the 

class of problem instances with arbitrary precedence relations that consist of a 

constraints by A (a). Computational experiments for these three classes were 

performed with n ranging from 30 to 100 and m ranging from 5 to 15. Finally, 

the class of problem instances that have a prespecified precedence relation 

will be denoted by Parasol. Computational experiments for this class were 

performed with m ranging from 5 to 25. 

n 

IOO 

IOO 

IOO 

100 

100 

IOO 

n 

30 

30 

30 

30 

100 

100 

100 

100 

100 

100 

n 

30 

30 

100 

100 

• 100 

L(u,p) min- min- min- max- min- min- max-

m u p list start sF tail PapYan fifo succ 

5 5 25 I 24 - - - -
10 5 25 4 13 - 7 - I -
15 5 25 2 5 1 22 3 - -
5 25 25 - 25 - - - -

10 25 25 - 25 - - - -
15 25 25 2 22 - 3 4 -

A(a) min- min- min- max- min- min- max-

m (X list start sF tail PapYan fifo succ 

5 60 - 8 - 14 2 2 -
10 60 2 3 2 24 1 1 -
5 90 - 9 - 13 7 3 2 

10 90 5 7 6 21 6 4 6 

5 300 - 7 - l7 1 - -
10 300 - I 24 - - -
15 300 - I - 24 - - -
5 1000 1 4 - 18 I 2 -

10 1000 - I 1 22 2 - -
15 1000 - I 2 22 1 - -

SP min- min- min- max- min- min- max-

m list start sF tail PapYan fifo succ 

5 - 10 4 8 8 1 -
10 - 7 11 13 6 2 -
5 - 13 - 9 5 - -

10 - I2 - 13 3 - -
15 - 5 7 12 4 - -

Table 8.4. Each cell contains the number of times (out of 25) 

that the corresponding task priority rule performed at least as 

well as the other priority rules. The column opt states the 

number of times (out of 25) that at least one of the task priori

ties resulted ht a schedule with makespan equal to the lower 

bound. 

opt 

-

-

opt 

12 

4 

16 

-
5 

7 

3 

3 

opt 

3 
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8.4.1. List scheduling 

For a start, the parameters d, t, and u, as described in Section 7 .2, were set to 1 

and list scheduling was performed for a number of different combinations of 

task and processor priority rules. A description of the priority rules can be 

found in Section 7.3. The results are given in Table 8.3 throughout Table 8.7. 

i 
n 

100 

100 

100 

100 

100 

100 

n 

30 

30 

30 

30 

100 

100 

100 

100 

100 

100 

n 

30 

30 

100 

100 

1100 

L(t>,p) min- min- min- max- min- min- max-

m "\) p list start sF tail PapYan fifo SllCC 

s s 2S 267 251 314 273 273 270 327 

10 s 2S 139 136 1S3 138 142 141 176 

IS s 2S 120 120 122 116 121 122 133 

s 25 25 267 243 303 270 267 268 312 

10 25 25 124 117 135 124 124 123 156 

IS 25 25 82 79 90 83 82 82 107 

A(a.) min- min- min- max- min- min- max-

m a list start sF tail PapYan fifo succ 

5 60 159 127 137 116 159 127 137 

10 60 130 103 127 101 131 103 126 

5 90 141 136 146 135 137 138 144 

10 90 129 127 128 126 128 129 130 

5 300 622 523 622 517 544 559 614 

10 300 473 448 456 426 453 466 474 

IS 300 455 442 442 423 444 457 462 

5 1000 784 749 775 740 749 757 786 

10 1000 735 725 724 710 725 734 736 

15 1000 735 725 724 710 725 734 736 

SP min- min- min- max- min- min- max-

m list start sF tail PapYan fifo SllCC 

5 136 U3 130 124 124 127 137 

10 115 Ill Ill 110 111 113 117 

5 451 372 434 374 379 383 441 . 

10 345 301 330 302 307 311 339 

15 314 294 304 293 297 301 313 

Table 8.5. Each cell contains the average makespan over 25 

instances. The column lb states the average lower bounds. 

Bold figures indicate the lowest average makes pans. 

lb 

224 

liS 

112 

224 

112 

75 

lb 

96 

96 

124 

124 

418 

417 

417 

701 

701 

701 

lb 

105 

105 

281 

280 

280 

In Table 8.3 we report on the results obtained with four task priority rules 

and two processor priority rules on problem instances of the class L ( u, p ). The 

task priority rules are list, min-start, min-sF, and max-tail. The processor 

priority rules are min-fut and min-data. For each combination of n, m, u, and 

p we considered 25 instances. The processor priority rule min-data clearly 
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outperforms the processor priority rule min-fut, which is probably explained 

by the fact that it gives way to processors that enable a task to start as early as 

possible. A similar difference in behavior can be reported for min-data with 

respect to the other processor priority rules described in Section 7.3. Given 

this information, the processor priority rule was fixed to min-data for all of 

the remaining experiments, although this priority rule is more time consuming 

than the other ones. 

n 

100 

100 

100 

100 

100 

100 

n 

30 

30 

30 

30 

100 

100 

100 

100 

100 

100 

n 

30 

30 

100 

100 

100 

L(u,p) min- min- min- max- min- min-

m \) p list start sF tail PapYan fifo 

5 5 25 7 13 7 8 8 8 

10 5 25 8 20 8 8 8 9 

15 5 25 9 27 9 9 9 9 

5 25 25 7 17 7 7 7 7 

10 25 25 8 29 7 8 8 8 

15 25 25 8 45 8 8 8 9 

A(a) n- min max- min- min-

m a "· start sF tail PapYan fifo 

5 60 <1 1 1 l l 1 

lO 60 <I I I I I I 

5 90 1 1 1 1 l l 

10 90 I 2 I 1 2 I 

5 300 8 ll 8 8 8 8 

10 300 9 15 9 9 10 10 

15 300 10 19 10 lO 11 11 

5 1000 1:03 1:39 1:05 1:05 1:07 1:07 

10 1000 1:14 2:01 1:14 1:15 1:18 1:18 

15 1000 1:20 2:17 1:22 1:24 1:26 1:26 

SP min- min- min- max- min- min-

m list start sF tail PapYan fifo 

5 <1 I <I <1 <1 <1 

10 <1 I <1 <1 <1 <I 

5 4 4 4 4 4 4 

10 4 6 4 4 4 4 

15 4 7 4 4 4 4 

Table 8.6. Each cell contains the average cpu-time in minutes 

and seconds over 25 instances. 

max-

succ 

8 

8 

9 

7 

8 

8 

max-

succ 

<l 

I 

1 

2 

8 

10 

11 

1:08 

1:20 

1:29 

max-

succ 

<I 

<I 

4 

4 

4 

In Table 8.4 we investigated seven task priority rules on problem instances 

of the classes L (u, p ), A (a), and SP. For each problem specification, we con

sidered 25 instances. 

The priority rule min-start gives good results when the precedence relation 
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is regular and the number of machines is severely restrictive, i.e., for problem 

instances of the class L(u,p) and m=5. For a sufficiently large number of 

machines and less regular precedence relations the priority rule max-tail gives 

the best results. 

A measure of the quality of the schedules produced by the seven task prior

ity rules can be found in Table 8.5. Again, we conclude.that the priority rules 

min-start and max-tail outperform the other predefined task priority rules. 

The time requirements of the priority rules are mutually comparable, with 

the exception of the more time consuming priority rule min-start. Table 8.6 

lists the average cpu-times in minutes and seconds on a Sun Spare Station 1. 

The results for the instances associated with the two precedence relations 

that originated from the program Parasol, as described in Section 8.3.4, are 

given in Table 8.7. Each specification of the parameters n, m, and c(x) 

corresponds to a unique instance. Each time, the best upper bound is printed in 

bold. Again, the priority rules min-start and max-tail are the best. 

n 

74 

74 

74 

74 

74 

74 

74 

74 

74 

388 

388 

388 

388 

388 

388 

388 

388 

388 

Parasol min- min- min- max- min- min-
max- I 

m c(x) list start sF tail PapYan fifo succ . 

5 0 25 23 25 21 24 23 26 

10 0 20 20 20 19 20 20 20 

25 0 19 19 19 19 19 19 19 

5 1 29 27 29 26 31 32 29 

10 1 26 26 26 25 28 31 26 

25 1 25 26 25 25 27 29 26 

5 1+x 62 54 62 71 69 70 72 

10 l+x 62 54 62 68 69 70 72 

25 1+x 62 54 62 68 69 70 72 

5 0 89 90 89 84 96 89 104 

10 0 64 59 64 53 62 59 67 

25 0 48 48 48 46 48 48 48 

5 1 101 102 101 91 106 105 123 

10 1 80 73 80 68 85 83 85 

25 1 62 65 62 65 75 75 66 

5 l+x 122 Ill 122 105 121 119 141 

10 l+x 96 83 96 84 102 105 107 

25 l+x 80 81 80 75 97 101 90 

Table 8.7. Each cell gives the length of the schedule with 

respect to the task priority rule. The column lb specifies the 

value of the lower bound. 

lb 

19 

19 

19 

24 

24 

24 

27 

27 

27 

78 

46 

46 

78 

59 

59 

78 

59 

59 
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L(u,p) n m u p lb C(l) C(2) C(3) 

1 30 15 10 3 29 30 29 29 
2 30 15 10 3 33 34 33 33 
3 30 15 10 3 29 30 29 -
4 30 15 10 3 32 33 - 32 
5 30 15 10 3 24 25 24 
6 30 15 10 3 29 30 29 29 
7 100 15 5 25 114 ll8 117 -
8 100 15 5 25 101 104 101 102 
9 100 15 5 25 120 121 120 120 

A(a) n m a lb C(l) C(2) C(3) 

10 30 5 60 103 114 109 Ill 

11 30 5 60 77 95 93 90 
12 30 5 60 92 119 - 110 
13 30 5 60 89 107 104 -
14 30 5 60 84 104 99 100 
15 30 10 60 103 107 103 -
16 30 10 60 74 78 - 77 
17 30 5 90 107 116 115 -
18 30 5 90 112 128 125 127 
19 30 5 90 117 133 131 122 
20 30 5 90 133 146 145 -
21 100 5 1000 614 692 686 670 
22 100 5 1000 584 617 - 614 
23 100 5 1000 757 799 796 
24 100 5 1000 706 731 721 
25 100 5 1000 729 776 764 754 
26 100 10 1000 784 796 792 792 
27 100 10 1000 614 638 633 633 
28 100 10 1000 757 769 - 767 
29 100 10 1000 706 722 - 717 
30 100 10 1000 729 741 - 738 
31 100 15 1000 784 796 792 792 
32 100 15 1000 614 638 633 633 
33 100 15 1000 757 769 - 767 
34 100 15 1000 706 722 - 717 
35 100 15 1000 729 741 - 738 

SP n m lb C(1) C(2) C(3) 

36 30 5 94 124 121 -
37 30 5 99 124 123 123 
38 30 5 99 115 114 
39 30 5 109 120 - 119 
40 30 10 100 103 100 -
41 30 10 99 100 99 -
42 100 5 309 391 - 388 
43 100 10 309 327 - 324 
44 100 15 309 317 316 -
45 100 15 312 329 - 326 

Parasol n m c(x) lb C(1) C(2) C(3) 
46 388 25 1 59 62 61 61 

Table 8.8. Improvements. 



96 8. Tosca: implementation 

8.4.2. Searching with d = t = u = 2 

From the instances mentioned in the previous section, we chose 225 instances 

for bounded enumeration. From the class L(u,p) we chose seven problem 

types, from the class A (a) we chose nine problem types and from the class SP 

we chose five problem types. For each problem type we selected ten instances 

for bounded enumeration. The remaining fifteen instances were those of the 

class Parasol for which no optimal solutions were found by list scheduling. 

The parameters d, t, and u were set to 2 and the same seven task priority rules 

as in the previous section were tested. The processor priority rule remained 

fixed to min-data. For each instance, the upper bound was specified as the 

length of the best schedule found during list scheduling. Tosca searched for an 

improvement. 

n 

30 

100 

100 

100 

100 

100 

1 100 

n 

30 

30 

30 

100 

100 

100 

100 

100 

100 

n 

30 

30 

100 

100 

100 

L(u,p) min- min- min- max· min· min-

m 'I) p list start sF tail PapYan fifo 

15 10 3 9 20 5 6 5 4 

5 5 25 1:52 2:16 1:43 1:52 1:53 1:52 

10 5 25 1:01 1:38 58 1:12 1:14 1:10 

15 5 25 56 1:46 36 1:31 41 43 

5 25 25 
! 

1:51 2:17 1:43 1:53 1:54 1:52 

10 25 25 1:44 2:57 1:39 1:51 1:52 1:50 

15 25 25 1:35 3:19 1:31 1:45 1:42 1:45 

A(U) min- min- min- max- min- min-

m a list start sF tail PapYan fifo 

5 60 5 7 5 5 5 5 

10 60 7 7 5 7 6 6 

5 90 8 9 8 8 8 7 

5 300 1:02 1:37 1:16 1:24 1:22 1:24 

10 300 28 41 41 54 41 32 

15 300 48 57 57 1:10 52 53 

5 1000 5:57 7:41 6:52 6:05 7:06 6:01 

10 1000 5:09 6:58 5:39 5:09 6:27 4:54 

15 1000 5:30 6:58 5:30 5:09 6:17 5:11 

SP min- min- min- max- min- min-

m list start sF tail PapYan fifo 

5 3 4 3 3 3 3 

10 3 3 2 2 2 2 

5 34 44 37 41 42 40 

10 28 45 37 35 35 33 

15 31 51 37 37 40 31 

Table 8.9. Each cell gives the average cpu-time in seconds 

over 10 instances. 

max-

succ 

4 

1:43 

60 

45 

1:41 

1:36 

1:30 

max-

succ 

5 

6 

7 

1:16 

31 

48 

6:341 

4:54 ' 

5:14 I 

max-

succ 

3 

2 

37 

32 

35 
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In total, bounded enumeration with parameters d, t, and u equal to 2 yielded 

a bettermakespan than list scheduling for29 instances outof210. In Table 8.8 

these makespans are reported in column C (2); they are the best over all prior

ity rules. The column lb gives the lower bound for the corresponding problem 

instance and the column C ( 1) specifies themakespan of the best schedule gen

erated by list scheduling. 

I 

I 

I 

The average cpu-times are listed in Table 8.9. 

L('U,p) min- max-

n m '\) p start tail 

30 15 10 3 8:18. 3;20 

100 5 5 25 1:22:44 1:12:08 

100 10 5 25 55:25 43:27 

100 15 5 25 53:52 50:15 

100 5 25 25 1:27:45 1:17:01 

100 10 25 25 1:32:04 1:11:53 

100 15 25 25 1:31:23 1:06:30 

A (ex) min- max-

n m (X start tail 

30 5 60 2:22 2:22 

30 10 60 2:15 2:43 

30 5 90 2:06 1:59 

100 5 300 44:59 41:16 

100 10 300 18:59 21:11 

100 15 300 30:8 31:12 

100 5 1000 2:10:03 2:03:55 

100 10 1000 1:26:33 1:13:22 

100 15 1000 1:27:27 1:12:43 

SP min- max-

n m start tail 

30 5 1:12 1:07 

30 10 1:05 56 

100 5 18:29 18:10 

100 10 16:31 14:23 

100 15 16:52 15:55 

Table 8.10. Each cell gives the average cpu-time in seconds 

over 10 instances. 

8.4.3. Searching with d = t = u = 3 

The 225 instances mentioned in Section 8.4.2 were also subjected to bounded 

enumeration with parameters d, t, and u set to 3. For each instance, the two 



98 B. Tosca: implementation 

task priority rules min-start and max-tail were used to improve the best 

schedule generated by list scheduling. Thus the initial upper bound was 

specified as the length of the best schedule found during list scheduling. As 

before, the processor priority rule remained fixed to min-data. In total, 

bounded enumeration with parameters d, t, and u equal to 3 yielded a better 

makespan than list scheduling for 35 instances. In Table.8.8 these mak:espans 

are reported in column C (3). 

The average cpu-times are listed in Table 8.10. 

List scheduling turns out to be rather effective. It generates good schedules 

for problem instances with a sufficiently large number of processors; cf. Table 

8.5. The process of bounded enumeration is time consuming and for only 46 

out of 225 instances a better schedule was constructed. Most of the improve

ments are minor. This may be due to the choice of test problems, although we 

tried to reduce this factor by constructing instances with the aid of four dif

ferent types of generators. 

As mentioned in Section 7 .4, the lower bound is tighter for problem 

instances with a relatively large number of processors, and for problems where 

the communication delays are small with respect to the processing times; cf. 

Table 8.5 and 8.7. The lower bound remains valid if task duplication is 

allowed. Task duplication may be of little help in practice, since the lower 

bound is often tight even if duplication is not allowed. 
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As an illustration of the models and methodology described in the previous 

chapters, we will now give an example of the application of Tosca to a prob

lem instance of the typeP lprec,com,fam,set I C max.· Its data is given in Table 

9.1 in the format of an input file required by Tosca; cf. Table 8.1. 

example I 2 I 9 I 3, 3, l, 2, 2, 4 I 

2 I I l I l I 
2 I I 2 I 2 I 
l I l, 2 I 3 I 3 I 
2 I 3 I I 3 I 
l I 3 I 4 I 4 

I 2 I 4 I 5 I 5 

I I 5 I 6 I 6 I 
3 I 5 I I 7 I 
4 I 6 I I 8 I 

l I I 
l I I 
l I 2 I 
2 I I 
I I I 
2 I I 
l I I 
2 I I 

0 l 1 0 1 

Table 9.1. The input file. 

In total, nine tasks have to be executed by two processors. The data set D 

consists of six data items with integer weights 3, 3, 1, 2, 2, and 4, respectively. 

For each task Jj, the processing time Pj and the number of processors sj it 

requires are given in Table 9.2. The tasks J 3 and J 4 belong to the same family 

F 3 . The tasks of this family have to be executed by processor M 2 • The remain

ing tasks still have to be allocated. Note that for each of the tasks J 5, J 7, and 

J 9 there is a unique feasible processor allocation; each one has to be executed 

by both processors simultaneously. 

The data dependencies impose a precedence relation on the task set. It is 

represented by means of the directed graph given in Figure 9.1; the nodes of 

the graph correspond to the tasks and the arcs represent the constraints. The 

constants of the communication cost function are c 1 =0, c 2 = 1, q 1, c4 :::::::0, 

and c 5 = 1. These constants define the communication cost function c (x) = x. 
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Jj 1 2 3 4 5 6 7 8 9 

Pj 2 2 1 2 1 2 1 3 4 

Sj 1 1 1 1 2 1 2 1 2 

Table 9.2. Task characteristics. 

The total amount of work is r.],1pjsj =24 time units. Since there are two 

processors, we have that C~ax ;;:: 12. 

The length of a longest path with respect to the precedence relation yields 

another lower bound. For the precedence relation of the example we have that 

C~ax ;;::pt+P3+c(w(3))+p5+P6+c(w(5))+p1+P9 = 14. Here, the communica

tion delay in between J 3 and J 5 is taken into account; this delay cannot be 

avoided since s 3 < s 5 • The data set that has to be transmitted is { 3}. The 

weight of this set is equal to w 3 = 1. Thus, the delay in between J 3 and J 5 takes 

c(l)= 1 unit of time. A similar computation can be made for the communica

tion delay in between J 6 and J 7 • This approach also generates lower bounds 

on the starting times of the individual tasks. These lower bounds are given in 

Table 9.3 by the name longest path. 

If the tasks J 1 and J 2 are allocated to distinct processors, then the starting 

time of task J 3 is at least equal to S 3 ;;:: 5. However, if the predecessors of J 3 

are assigned to a single processor, then S 3 ;;::4. Since these are the only possi

ble allocations of J 1 and J 2 , it follows that S 3 ;;:: 4. This value is computed by 

the lower bound Pap Y an as described in Section 7 .4. The lower bounds for the 

individual tasks are listed in Table 9.3 by the name Pap Yan. 

Figure 9.1. The precedence relation. 

The lower bounds and an initial upper bound are computed at the start of 

Tosca. Tosca is started by giving the command tosca example. The upper 

bound is the length of the initial schedule. The first screen that is presented 

will look like Figure 9 .2. This figure also specifies the priority rules and the 

parameters that were used to construct the initial schedule. The schedule itself 

is given in Figure 9.3a; it is of length 21. The dotted line represents the lower 

bound Pap Y an on the makespan. 
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tasks: 9 
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d 

t 
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task priority 
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architecture 

makes pan 

MAIN MENU 

1. Load problem 
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3. View 

4.Save 
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Jl 

0 

0 

h h ]4 ls ]6 h 

0 2 3 4 5 9 
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Table 9.3. Lower bounds. 

processors: 2 

current 

1 

1 

1 

min-list 
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makespan 

PapYan 

2 

21 

data items: 6 

best so far 

Figure 9.2. The initial screen. 

9. T osca: an example 

ls ]9 Cmax 

7 10 14 

9 12 16 

problem: example 

upper bound: 21 

lower bound: 16 

previous 

The initial schedule is suboptimal in three ways. In order to start J 3 as early 

as possible, both predecessors of J 3 have to be executed by processor M 2 , 

which executes J 3 . Secondly, in order to start J 5 as early as possible, it should 

be executed before J 4 • Finally, task J 8 has to start before J 7 • 

Given the main menu, the command schedule (select 2) activates the menu 
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that allows for new choices of priority rules and evaluation rules. Changing 

the processor priority rule into, for instance, min-data and the evaluation rule 

into, for instance, PapYan will not help to construct a better schedule. 

:~1 ~: 1 ==== 1
'

31 ' 4 1, 5 1-~-~---~n--; 8 --1- ,9 t--
o 2 4 6 8 10 12 14 16 18 20 22 

Figure 9.3a. List scheduling: initial schedule. 

Figure 9.3b. List scheduling: max-tail, min-data. 

:~1 1
13

1 

1'51 
---------

1'71 t====== 
J2 J4 

J9 
Jl h I 

Jg 

0 2 4 6 8 10 12 14 16 18 20 22 

Figure 9.3c. List scheduling: min-start, min-data. 

Figure 9.3d. List scheduling: user defined priority rule. 

Since the amount of work that has to be done after completion of J 5 is more 

than the work following J 4 , the choice of task priority rule max-tail will gen

erate a schedule of length 20, as given in Figure 9.3b. Note that J 5 is executed 

beforeJ4 • 

The choice of task priority rule min-start will execute J 8 before J 7 , because 

J 8 can start immediately following the completion of task J 6 . However, tasks 

J 4 and J 5 are placed in the wrong order again. The resulting schedule has 

make span 19 and is given in Figure 9 .3c. 
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If one searches for a better task priority rule, then one has to construct such a 

rule manually; the predefined priority rules will not help anymore. Such a user 

priority rule has to choose J 5 before J 4 and J 8 before J 7 • The user rule 

-(list-4)*(1ist-16/3)*(1ist-7) is such a priority rule. It considers the tasks in 

the order 2, 1, 3, 5, 4, 6, 8, 7, 9 and generates the schedule of length 18, given 

in Figure 9.3d. 

Figure 9.3e. Bounded enumeration: d=3, t=2, and u=l. 

Figure 9.3f. Bounded enumeration: d=3, t=2, and u 

A schedule of length 18 can also be constructed by bounded enumeration 

with parameters d =3, t =2, and u = 1, and task priority rule max-tail, processor 

priority min-data, and evaluation rule PapYan; it is given in Figure 9.3e. 

Finally, bounded enumeration with parameters d=3, t=2, and u=2 will 

yield a schedule of length 17; see Figure 9.3f. It is optimal since hand J 8 

cannot be scheduled in parallel. An optimal schedule cannot be constructed by 

use of list scheduling. It is impossible to construct a processor priority rule 

that schedules tasks J 1 and J 2 on processor M 2 • 
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Vele processoren maken Iicht werk moet het motto geweest zijn om parallelle 

computers te gaan ontwerpen en bouwen. Een processor is een rekenmachine 

die slechts een operatie tegelijkertijd kan uitvoeren. Een parallelle computer 

of multiprocessor is opgebouwd uit verscheidene processoren en kan dus een 

aantal taken tegelijkertijd verwerken. 

De taken die een parallelle computer te verwerken krijgt zijn de modules 

waarin een parallel programma gepartitioneerd is. Tussen zulke taken bestaan 

in het algemeen informatie-afhankelijkheden, zodat zij niet zonder meer in 

iedere willekeurige volgorde verwerkt kunnen worden. Een schedule bepaalt 

voor elke taak het tijdstip waarop en de processoren waardoor deze uitgevoerd 

zal worden. Het streven is een snelle verwerking van de taken te garanderen. 

In principe kan men een optimaal schedule vinden door te kiezen uit de 

aftelbare en vaak eindige verzameling van altematieven. Dit suggereert dat 

botweg compleet aftellen effectief zou zijn: genereer aile mogelijke oplos

singen, bepaal hun kosten en kies een beste. Helaas is het aantal oplossingen 

vaak zo groot dat deze methode in de praktijk te veel tijd vergt. Men is 

gedwongen te zoeken naar snellere algoritrnen. De fundamentele vraag is of er 

een algoritrne bestaat dat een gegeven schedulingprobleem optimaal oplost in 

polynomiale tijd. Als dit het geval is dan beschouwen we zo'n algoritrne als 

'snel' en is het probleem 'goed oplosbaar'. Voor andere problemen kan men 

aantonen dat het zeer onwaarschijnlijk is dat zo'n algoritrne bestaat; dit zijn de 

NP-lastige problemen. In de hoofdstukken 3-6 van dit proefschrift behandelen 

we de complexiteit van een aantal schedulingproblemen die optreden bij het 

gebruik maken van een multiprocessor. Deze problemen verschillen van hun 

klassieke varianten op een aantal punten. Wij hebben theoretisch onderzoek 

gedaan naar deze verschillen en hun consequenties. 

Ten eerste dient men bij multiprocessorscheduling rekening te houden met 

communicatievertragingen. De informatie-atbankelijkheden leiden op natuur

lijke wijze tot een precedentiestructuur op de taakverzameling; de verwerking 

van een taak kan pas beginnen als zijn voorgangers verwerkt zijn en als aile 

informatie aanwezig is op de processoren die de desbetreffende taak uit zullen 

voeren. In Hoofdstuk 3 bestuderen we het meest eenvoudige model met com

municatievertragingen: elke taak vergt slechts ten processor voor executie en 

zowel verwerkingen als communicatievertragingen nemen een tijdseenheid in 

beslag. In het algemeen geldt dat zelfs dit eenvoudige model met communica

tievertragingen al NP-lastig is. 

Door middel van taakduplicatie kan men communicatievertragingen verk

leinen of zelfs vermijden. Hoofdstuk 4 laat zien dat duplicatie een optimaal 

schedule kan verkorten met een factor gelijk aan ten hoogste het aantal 
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processoren waaruit de multiprocessor bestaat. In bet voornoemde geval van 

verwerkingstijden en communicatievertragingen van een tijdseenheid lengte 

kan duplicatie slechts een factor twee helpen. 

Een derde aspect betreft problemen waarbij bet mogelijk is dat een taak ver

scheidene processoren vergt voor executie. Zulke taken noemen we multipro

cessortaken. Hoofdstuk 5 behandelt de complexiteit van bet toewijzen van 

starttijden aan multiprocessortaken, waarbij voor elke taak een van tevoren 

vastgestelde verzameling processoren is bepaald. Communicatie wordt nu 

buiten beschouwing gelaten. In bet algemeen geldt dat zelfs bet vinden van 

alleen starttijden een NP-lastig probleem is. 

In Hoofdstuk 6 beschouwen we, evenals in de hoofdstukken 3-4, taken die 

slechts een processor voor executie vergen. De informatie-afhankelijkheden 

zijn zodanig dat de precedentiestructuur nit losse ketens van elk twee taken 

bestaat. De taken zonder voorgangers kunnen door twee processoreri verwerkt 

worden, maar de taken met voorgangers worden allen door een en dezelfde 

processor uitgevoerd. Het vinden van een schedule dat de maximale voltooi

ingstijd minimaliseert is een NP-lastig probleem, ook als menpreemptie toes

taat. Preemptie is bet onderbreken van de executie van een taak om deze op 

een eventueellater tijdstip op dezelfde of een andere processor voort te zetten. 

Dit probleem is een variant van bet klassieke flow shop schedulingprobleem. 

Uit de analyses van hoofdstukken 3-6 concluderen we dat bet onwaar

schijnlijk is dat er een snel algoritme bestaat om bet algemene schedu

lingprobleem, met communicatievertragingen en multiprocessortaken, op te 

lossen. Men is genocidzaakt een benaderend algoritme te gebruiken. Tosca, 

een 'tunable off-line scheduling algorithm', belichaamt zo'n methode. Tosca 

is ontworpen om bet verwerken van parallelle programma's op gedistri

bueerde systemen te ondersteunen. Tosca kan gebruikt worden om prestaties 

van een programma in ontwikkeling te voorspellen; de kwaliteit van een 

schedule is een maat voor de kwaliteit van een gegeven decompositie van zo' n 

programma. 

Hoofdstuk 7 geeft een beschrijving van de methodiek van Tosca. Tosca 

tracht een goed schedule te construeren binnen een aanvaardbaar tijdsbestek 

door middel van begrensde aftelling. In principe kan men een schedule con

strueren door de taken een voor een te voorzien van een starttijd en een proces

sortoewijzing. De verschillende keuzemogelijkheden kunnen gerepresenteerd 

worden door middel van een aftellingsboom. Het proces van begrensde aftel

ling beschouwt, in tegenstelling tot complete aftelling, slechts een deel van 

deze boom. Het proces bestaat nit een aantal stappen. Per stap worden een taak 

en een processortoewijzing bepaald. Om deze te kunnen bepalen wordt een 
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deelboom berekend. Drie parameters, twee prioriteitsregels en een 

ondergrensregel bepalen de vorm van deze deelboom. De bladeren van de 

deelboom worden geevalueerd met behulp van een evaluatieregel. Een taak

processortoewijzing combinatie die een tak vastlegt waarin een blad van 

minimale waarde zit, wordt gekozen. Met behulp van de drie parameters geeft 

men een bovengrens aan de diepte en de breedte van de deelboom. Ben van de 

twee prioriteitsregels betreft de keuze van taken, de ander betreft de keuze van 

processortoewijzingen. Deze regels kunnen gekozen worden uit een gegeven 

verzameling of zijn door de gebruiker gemaakt. De gebruiker moet daarnaast 

een ondergrensregel en een evaluatieregel kiezen. Tosca is regelbaar daar bet 

de gebruiker zeggenschap geeft over de snelheid van de oplossingsmethode en 

de kwaliteit van de geproduceerde schedules. 

Tosca is voorzien van een eenvoudige gebruikersinterface. Informatie 

wordt gepresenteerd op alfanumerieke wijze en de mens-machine interactie 

verloopt met behulp van menu's. We hebben Tosca getest op vier typen 

probleeminstanties: gelaagde precedentierelaties, serie-parallelle preceden

tierelaties, willekeurige precedentierelaties en twee precedentierelaties uit de 

praktijk. Bij de precedentierelaties genereerden we verwerkingstijden en 

informatie-afhankelijkheden. Hoofdstuk 8 beschrijft de gebruikersinterface, 

de probleemgeneratoren en de testresultaten. 

Uit de testresultaten blijkt dat in bet algemeen list scheduling, waarbij in 

elke stap precies e'en taak en een processor toewijzing bekeken wordt, tamelijk 

goed werkt. Geavanceerdere vormen van begrensde aftelling nemen a1 vlug 

veel tijd in beslag en vinden slechts marginate verbeteringen. Het vinden van 

een optimaal schedule is, behalve voor kleine probleeminstanties, een 

hopeloze zaak. 

Ofwel, bet is niet eenvoudig om vele processoren Iicht werk te Iaten maken. 
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I 

Beschouw het cooperatieve spel (N, v ), met spelersverzameling N = { 1, ... , n} en 

waardefunctie v : 2N -'tlR, dat voldoet aan 

(1) v({j})=O voor alle j EN, 

(2) v is superadditief, en 

(3) v(S)=!.reSht v(T)vooralleSE 2N. 

Hier is 1t een permutatie van de spelersverzameling N en Sin de verzameling van 

componenten vanS onder deze permutatie. Voor zo'n cooperatief spel kan men de 

uitbetalingsregel ~: N -'tR definieren door 

~(j) = 1h(v (Pju{j}) v(Pj)+v (Fju{j}) -v(Fj)) voor j EN. 

Hier zijn Pi en Fi respectievelijk de voorgangers en opvolgers van j onder n. Deze 

uitbetalingsregel garandeert de stabiliteit van de grote coalitie N, zodat bet spel 

(N, v) gebalanceerd is. 

I.J. Curiel, J.A.M. Potters, V. Rajendra Prasad, S.H. Tijs, B. Veltman (1993). 

Sequencing and cooperation. Oper. Res., te verschijnen. 

II 

Picouleau [1992] presenteert reducties om de NP-lastigheid aan te tonen van de 
volgende problemen: 

(1) P lprec,c=1,pj=ll Cmax: een verzameling van n taken moet worden verwerkt 

door m processoren rekening houdend met informatie-afhankelijkheden en zowel 

verwerkingstijden als communicatievertragingen van een tijdseenheid lengte; 

bepaal een rooster zodanig dat de maximale voltooiingstijd wordt geminimali

seerd; 

(2) P lprec,c=1,dup,pj=ll C max: de variant waarbij duplicatie is toegestaan; 

(3) P21prec,c=l,fix,pi=IICmax: de variant waarbij de taken verdeeld zijn over 

tw~ processoren; 

(4) PI tree,c I C max: de variant waarbij informatie-afhank:elijkheden leiden tot een 

precedentierelatie in de vorm van een boom, met een onbeperkt aantal processo

ren, constante communicatievertragingen en willekeurige verwerkingstijden. 

Zijn eerste drie reducties zijn niet polynomiaal; zijn vierde reductic is incorrect om 

een andere reden. 

C. Picouleau (1992). Etude de proble'mes d'optimisation dans les systemes 

distribues. These de doctorat, Universite Paris VI, Paris. 



m 

De in stelling II genoemde problemen zijn NP-lastig. 

J.A. Hoogeveen, J.K. Lenstra, B. Veltman (1992). Three, four, five, six, or the 

complexity of scheduling with communication delays, Report BS-R9229, CWI, 

Amsterdam. 

J.A. Hoogeveen, S.L. van de Velde, B. Veltman (1993). Complexity of scheduling 

multiprocessor tasks with prespecified processor allocations. Discrete Appl. 

Math., te verschijnen. 

A. Jakoby, R. Reischuk (1992). The complexity of scheduling problems with 

communication delays for trees. Proc. Skandinavian Workshop on Algorithmic 

Theory 3, 165-177. 

IV 

Het flow shop schedulingprobleem met twee fasen en in de tweede fase twee 

identieke parallelle machines,F2(l,P2) II Cmax• en de variant waarbij preemptie is 

toegestaan, F2(l,P 2) lpmtn I C max• zijn sterk NP-lastig. 

J.A. Hoogeveen, J.K. Lenstra, B. Veltman (1993). Minimizing makespan in a multi

processor flow shop is strongly NP-hard, in voorbereiding. 

B. Veltman (1993). Dit proefschrift, hoofdstuk 6. 

v 

Schedulingtheorie Ievert een goed raamwerk voor bet analyseren van een parallel 

programma, rnits bet model waarmee zo'n programma beschreven wordt in hoge 

mate architectuuronafuankelijk is. 

VI 

Het dupliceren van taken kan in theorie een schedule sterk verkorten maar zal in 

praktijk meestal weinig effect hebben. 



VII 

Het is onmogelijk om met bebulp van een rondbreinaald een naadloze Mobiusband 

te breien. Wei kunnen er draaiingen in bet breiwerk optreden, maar door goed op te 

passen is dit te voorkomen. 

VIII 

Cultuur is bet gebeel aan vormen waarin een object zicb tot de omgeving, de natuur, 

verboudt. Natuur is de omgeving waarbinnen cultuurvormen aanwezig zijn of 

gecultiveerd worden. Natuur en cultuur bestaan niet los van elkaar. Wat voor de een 

cultuur is, is voor de ander natuur. Cultuur is niet typiscb menselijk. 

IX 

Veel motorrijders zullen de eerste keer dat zij met een leeg zijspan een bocbt naar 

· recbts maken verrast worden door bet omhoogkomende bakje. 


