

Multiprocessor scheduling with rejection

Citation for published version (APA):
Bartal, Y., Leonardi, S., Marchetti Spaccamela, A., Sgall, J., & Stougie, L. (2000). Multiprocessor scheduling with
rejection. SIAM Journal on Discrete Mathematics, 13(1), 64-78. https://doi.org/10.1137/S0895480196300522

DOI:
10.1137/S0895480196300522

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1137/S0895480196300522
https://doi.org/10.1137/S0895480196300522
https://research.tue.nl/en/publications/5e296739-a784-49ae-804b-dd4400f153ae

MULTIPROCESSOR SCHEDULING WITH REJECTION∗

YAIR BARTAL† , STEFANO LEONARDI‡ , ALBERTO MARCHETTI-SPACCAMELA† ,
JIŘÍ SGALL§ , AND LEEN STOUGIE¶

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 64–78

Abstract. We consider a version of multiprocessor scheduling with the special feature that jobs
may be rejected at a certain penalty. An instance of the problem is given by m identical parallel
machines and a set of n jobs, with each job characterized by a processing time and a penalty. In
the on-line version the jobs become available one by one and we have to schedule or reject a job
before we have any information about future jobs. The objective is to minimize the makespan of the
schedule for accepted jobs plus the sum of the penalties of rejected jobs.

The main result is a 1 + φ ≈ 2.618 competitive algorithm for the on-line version of the problem,
where φ is the golden ratio. A matching lower bound shows that this is the best possible algorithm
working for all m. For fixed m we give improved bounds; in particular, for m = 2 we give a φ ≈ 1.618
competitive algorithm, which is best possible.

For the off-line problem we present a fully polynomial approximation scheme for fixed m and a
polynomial approximation scheme for arbitrary m. Moreover, we present an approximation algorithm
which runs in time O(n logn) for arbitrary m and guarantees a 2− 1

m
approximation ratio.

Key words. multiprocessor scheduling, on-line algorithms, competitive analysis, approximation
algorithms

AMS subject classification. 68Q25

PII. S0895480196300522

1. Introduction. Scheduling jobs on parallel machines is a classical problem
that has been widely studied for more than three decades [6, 12]. In this paper we
consider a version of the problem that has the special feature that jobs can be rejected
at a certain price.

We call this problem multiprocessor scheduling with rejection and use the abbre-
viation MSR. Given are m identical machines and n jobs. Each job is characterized
by its processing time and its penalty. A job can be either rejected, in which case its
penalty is paid, or scheduled on one of the machines, in which case its processing time
contributes to the completion time of that machine. The processing time is the same

∗Received by the editors March 13, 1996; accepted for publication (in revised form) May 7, 1999;
published electronically January 13, 2000. A preliminary version of this paper appeared in the
Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, Atlanta, GA,
January 28–30, 1996, SIAM, Philadelphia, 1996, pp. 95–103.

http://www.siam.org/journals/sidma/13-1/30052.html
†Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (yairb@math.

tau.ac.il). The research of this author was supported in part by the Ben Gurion Fellowship, Israel
Ministry of Science and Arts.
‡Dipartimento di Informatica Sistemistica, Università di Roma “La Sapienza,” via Salaria 113,

00198-Roma, Italia (leonardi@dis.uniroma1.it, marchetti@dis.uniroma1.it). The research of this au-
thor was partly supported by ESPRIT BRA Alcom II under contract 7141, and by Italian Ministry
of Scientific Research Project 40% “Algoritmi, Modelli di Calcolo e Strutture Informative.”
§Mathematical Institute, AS CR, Žitná 25, 115 67 Prague 1, Czech Republic, and Department of

Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Re-
public (sgall@math.cas.cz). The research of this author was partially supported by grants A1019602
and A1019901 of GA AV ČR, postdoctoral grant 201/97/P038 of GA ČR, and cooperative research
grant INT-9600919/ME-103 from the NSF (USA) and the MŠMT (Czech Republic). Part of this
work was done at the Institute of Computer Science, Hebrew University, Jerusalem, Israel and was
supported in part by a Golda Meir Postgraduate Fellowship.
¶Department of Mathematics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind-

hoven, The Netherlands (leen@win.tue.nl). The research of this author was supported by the Human
Capital Mobility Network DONET of the European Community.

64

MULTIPROCESSOR SCHEDULING WITH REJECTION 65

for all the machines, as they are identical. Preemption is not allowed; i.e., each job
is assigned to a single machine and once started is processed without interruption.
The objective is to minimize the sum of the makespan and the penalties of all rejected
jobs. Makespan (the length of the schedule) is defined as the maximum completion
time taken over all machines.

In the on-line version of MSR jobs become available one by one, and the decision
to either reject a job or to schedule it on one of the machines has to be made before
any information about following jobs is disclosed. In particular, there may be no other
jobs. On-line algorithms are evaluated by the competitive ratio; an on-line algorithm
is c-competitive if for each input the cost of the solution produced by the algorithm
is at most c times the cost of an optimal solution (cf. [14]).

The main goal of an on-line MSR algorithm is to choose the correct balance
between the penalties of the jobs rejected and the increase in the makespan for the
accepted jobs. At the beginning, it might have to reject some jobs if the penalty
for their rejection is small compared to their processing time. However, at a certain
point it would have been better to schedule some of the previously rejected jobs since
the increase in the makespan due to scheduling those jobs in parallel is less than the
total penalty incurred. In this scenario the on-line MSR problem can be seen as a
nontrivial generalization of the well-known Rudolph’s ski rental problem [11]. (In that
problem, a skier has to choose whether to rent skis for the cost of 1 per trip or to
buy them for the cost of c, without knowing the future number of trips. The best
possible deterministic strategy is to rent for the first c trips and buy afterwards. In our
problem, rejecting jobs is analogous to renting, while scheduling one job is analogous
to buying, as it allows us to schedule m − 1 more jobs of no bigger processing time
without extra cost.)

Our main result is a best possible, 1 + φ ≈ 2.618 competitive algorithm for the
on-line MSR problem, where φ = (1 +

√
5)/2 is the golden ratio. We prove that

no deterministic algorithm that receives m as input can achieve a better competitive
ratio independent of m.

For small values of m we give better upper and lower bounds. In particular, for
m = 2 we obtain a best possible, φ ≈ 1.618 competitive algorithm. For m = 3 we
obtain 2-competitive algorithms and show a lower bound of 1.839.

Our results should be compared with the current knowledge about on-line algo-
rithms for the classical multiprocessor scheduling problem. In that problem, each job
has to be scheduled; hence it is equivalent to a special case of our problem where
each penalty is larger than the corresponding processing time. Graham’s list schedul-
ing algorithm schedules each job on the currently least loaded machine and is 2− 1

m
competitive [7]. It is known that for m > 3, list scheduling is not optimal [5], and in
fact there exist 2− ε competitive algorithms for small constant ε > 0 [2, 10, 1]. The
best possible competitive ratio is known to be between 1.85 and 1.92 (see [1]), but
its precise value is unknown. In contrast, for the more general on-line MSR problem
we do find the optimal competitive ratio. More surprisingly, our algorithms achieving
the optimal competitive ratio schedule the accepted jobs using list scheduling, which
is inferior when rejections are not allowed!

Next we consider the off-line MSR problem. We present an approximation al-
gorithm with a 2− 1

m worst-case approximation ratio running in time O(n logn) for
arbitrary m. We also present a fully polynomial approximation scheme for MSR for
any fixed m and a polynomial approximation scheme for arbitrary m, i.e., where m is
part of the input.

66 BARTAL ET AL.

More explicitly, the approximation schemes give algorithms with running time
either polynomial in n and 1/ε but exponential in m, or polynomial in n and m
but exponential in 1/ε, where ε is the maximal error allowed. This implies that for
the more general problem with possible rejection of jobs we have algorithms that are
essentially as good as those known for the classical problem without rejection. In fact,
our algorithms are based on the techniques used for the problem without rejection,
namely, on the fully polynomial approximation scheme for fixed m [9] (based on a
dynamic programming formulation of the problem) and the polynomial approximation
scheme for arbitrary m [8].

Obviously, the MSR problem on a single machine is easily solved exactly by
scheduling every job whose processing time does not exceed its penalty, and for m ≥ 2
it is NP-hard to find the optimal solution, similarly as in the classical case without
rejections.

The on-line algorithms and lower bounds are presented in sections 3 and 4. Sec-
tion 5 contains the results of the off-line problem.

2. Notation. An instance of the MSR problem consists of a number of machines
m and a set of jobs J , |J | = n. We abuse the notation and denote the jth job in the
input sequence by j. Each job j ∈ J is characterized by a pair (pj , wj), where pj is
its processing time and wj is its penalty.

For a set of jobs X ⊆ J , W (X) =
∑
j∈X wj is the total penalty of jobs in X, and

M(X) =
∑
j∈X pj/m is the sum of the loads of the jobs in X, where the load of a job

j is defined by pj/m. The set B = {j | wj ≤ pj/m} contains jobs with penalty less
than or equal to their load.

Given a solution produced by an on-line or approximation algorithm, R denotes
the set of all rejected jobs, A denotes the set of all accepted job, and T denotes
the largest processing time of all accepted jobs. For their analogues in the optimal
solution we use ROPT , AOPT , TOPT , respectively. ZOPT denotes the total cost of
the optimal solution for a given instance of the problem, and ZH is the cost achieved
by algorithm H. An on-line algorithm ON is c-competitive if ZON ≤ c · ZOPT for
every input instance.

The golden ratio is denoted by φ = (
√

5 + 1)/2 ≈ 1.618. We will often use the
property of the golden ratio that φ− 1 = 1/φ.

Using list scheduling, the makespan of a schedule is bounded from above by the
processing time of the job that finishes last plus the sum of the loads of all other
scheduled jobs [7]. We denote this bound by CLS(X) for a set X of scheduled jobs.
If ` is the job in X that finishes last, then

CLS(X) = M(X − {`}) + p` ≤M(X) +

(
1− 1

m

)
T.(2.1)

3. On-line scheduling with rejections. In the first part of this section we
present an on-line MSR algorithm which works for arbitrary m and achieves the best
possible competitive ratio in that case. The corresponding lower bound is given in
section 4.2. For fixed m ≥ 3 this algorithm gives the best competitive ratio we are
able to achieve; however, we are not able to prove a matching lower bound. In the
second part we present a different algorithm which is best possible for the case of two
machines. The corresponding lower bound is given in section 4.1.

3.1. Arbitrary number of machines. Our algorithm uses two simple rules.
First, all jobs in the set B are rejected, which seems advantageous since their penalty

MULTIPROCESSOR SCHEDULING WITH REJECTION 67

is smaller than their load. The second rule is inspired by the relation of MSR to
the ski rental problem and states that a job is rejected unless its penalty added to
the total penalty of the hitherto rejected jobs would be higher than some prescribed
fraction of its processing time. This fraction parameterizes the algorithm; we denote
it by α.

Algorithm RTP(α) (Reject-Total-Penalty(α)).
(i) If a job from B becomes available, reject it.
(ii) Let W be the total penalty of all jobs from J − B rejected so far. If a job

j = (pj , wj) /∈ B becomes available, reject it if W + wj ≤ αpj , otherwise
accept it and schedule it on a least loaded machine.

In Theorem 3.1 we will prove that for given m, the algorithm is c-competitive if
c and α > 0 satisfy

c ≥ 1 +

(
1− 1

m

)
1

α
,(3.1)

c ≥ 2 + α− 2

m
.

To obtain a best possible algorithm for arbitrary m, we use α = φ − 1 ≈ 0.618.
Then c = 1 + φ satisfies the inequalities above. For a fixed m, the best c is obtained
if equality is attained in both cases. For m = 2 this leads to α =

√
2/2 ≈ 0.707 and

c = 1 +
√

2/2 ≈ 1.707, and for m = 3 we get α = 2/3 and c = 2. For general m we
obtain

α =
−(1− 2

m) +
√

5− 8
m + 4

m2

2
,

c = 1 +
(1− 2

m) +
√

5− 8
m + 4

m2

2
.

Theorem 3.1. The algorithm RTP(α) for m machines is c-competitive if c and
α satisfy (3.1).

Proof. First we notice that since our algorithm uses list scheduling for the accepted
jobs, its makespan is bounded by CLS(A) = (1− 1

m)T +M(A) (cf. (2.1)). Hence,

ZON ≤
(

1− 1

m

)
T +M(A) +W (R).

For any set S ⊆ R, the right-hand side of this inequality can be rewritten as a sum
of two terms:

ZON ≤ (M(A) +W (R− S) +M(S)) +

((
1− 1

m

)
T +W (S)−M(S)

)
.(3.2)

Now, we fix an off-line optimal solution. We use the above inequality for the set
S = (R − B) ∩ AOPT , the set of all jobs rejected by the algorithm in step (ii) and
accepted in the optimal solution. First, we bound the first term in (3.2). Notice that

M(A) = M(A ∩AOPT) +M(A ∩ROPT) ≤M(A ∩AOPT) +W (A ∩ROPT),(3.3)

since no job of the set B is accepted by the algorithm, and thus the load of each job
accepted by the algorithm is smaller than its penalty. Next we notice that S ⊆ AOPT ,
implying that

M(S) = M(AOPT ∩ S).(3.4)

68 BARTAL ET AL.

Since ROPT and AOPT is a partition of the set of all jobs, and B ⊆ R, we obtain

R− S = [(R ∩ROPT) ∪ (R ∩AOPT)]− [(R−B) ∩AOPT]

= (R ∩ROPT) ∪ (B ∩AOPT).(3.5)

From (3.5) and the definition of B we have

W (R−S) = W (B∩AOPT)+W (R∩ROPT) ≤M(B∩AOPT)+W (R∩ROPT).(3.6)

Inequalities (3.3), (3.4), and (3.6) together imply that

M(A) +W (R− S) +M(S) ≤M(AOPT) +W (ROPT) ≤ ZOPT .
To finish the proof, it is now sufficient to show

(3.7)(
1− 1

m

)
T +W (S)−M(S) ≤

(
1 + α− 2

m

)
TOPT +

(
1− 1

m

)
1

α
W (ROPT),

and notice that under our conditions (3.1) on c this is at most

(c− 1)TOPT + (c− 1)W (ROPT) ≤ (c− 1)ZOPT .

All jobs in S are scheduled in the optimal solution and hence have processing
time at most TOPT . The algorithm never rejects such a job if this would increase the
penalty above αTOPT , and hence

W (S) ≤ αTOPT .(3.8)

For any job j that was rejected by step (ii) of the algorithm we have wj ≤ αpj .
Summing over all jobs in S we obtain W (S) ≤ αmM(S), and hence

W (S)−M(S) ≤
(

1− 1

αm

)
W (S) ≤

(
1− 1

αm

)
αTOPT =

(
α− 1

m

)
TOPT .(3.9)

Thus, if T ≤ TOPT , (3.7) follows. If T > TOPT , let W be the penalty incurred
by the jobs rejected in step (ii) of the algorithm until it schedules the first job with
processing time T , job j say, having penalty wj . By the condition in step (ii) of the
algorithm, αT ≤ W + wj . Conversely, W + wj ≤ W (S) + W (ROPT), as all jobs
rejected in step (ii) are in S ∪ ROPT , and also the job with processing time T is in
ROPT , since T > TOPT . Thus,

(3.10) (
1− 1

m

)
T ≤

(
1− 1

m

)
1

α
(W (S) +W (ROPT))

≤
(

1− 1

m

)
TOPT +

(
1− 1

m

)
1

α
W (ROPT),

using (3.8). Adding (3.9) to (3.10) we obtain (3.7), which finishes the proof.
Choosing α = φ− 1 and c = φ+ 1, both inequalities in (3.1) are satisfied for any

m, which yields our main result. For arbitrarily large m these values are the best
possible.

MULTIPROCESSOR SCHEDULING WITH REJECTION 69

Theorem 3.2. Algorithm RTP(φ− 1) is (1 + φ)-competitive.
For any choice of m and α the bounds on c given by the inequalities (3.1) give a

tight analysis of Algorithm RTP(α), as shown by the following two examples. First,
consider the sequence of two jobs (1− 1

αm , α− 1
m) and (1−ε, 1

m) with ε > 0 arbitrarily
small. RTP(α) rejects the first job and accepts the second job, while in the optimal
solution both jobs are rejected. The competitive ratio attained on this sequence is
(1− ε+ (α− 1

m))/α, which for any α > 0 and m can be made arbitrarily close to the
first inequality of (3.1). Second, consider the sequence formed by one job (1, α), m−2
jobs (1, 1

m), and one job (1, 1). RTP(α) rejects the first m − 1 jobs and accepts job
(1, 1), while the optimal solution accepts all jobs. The competitive ratio is 2 +α− 2

m ,
leading to the second inequality of (3.1).

3.2. Two machines. To obtain a best possible, φ-competitive algorithm for two
machines we use another approach. We simply reject all jobs with penalty at most
α times their processing time, where α is again a parameter of the algorithm. Again
the optimal value is α = φ− 1 ≈ 0.618.

Algorithm RP(α) (Reject-Penalty(α)). If a job j = (pj , wj) becomes avail-
able, reject it if wj ≤ αpj , otherwise accept it and schedule it on a least loaded
machine.

Theorem 3.3. The algorithm RP(φ− 1) is φ-competitive for two machines.
Proof. If the algorithm does not schedule any job, then

ZON = W (J) ≤ 2(φ− 1)M(AOPT) +W (ROPT) ≤ 2(φ− 1)ZOPT ≤ φZOPT ,

and the theorem is proved.
Otherwise denote by ` a job that is finished last by the on-line algorithm. Since the

algorithm uses list scheduling, the makespan is bounded by CLS(A) = M(A−{`})+p`,
and therefore we have

ZON ≤W (R) +M(A− {`}) + p`.(3.11)

Notice that

(3.12)

W (R) = W (R ∩ROPT) +W (R ∩AOPT) ≤W (R ∩ROPT) + 2(φ− 1)M(R ∩AOPT)

by direct application of the rejection rule of algorithm RP(φ− 1).
For any job that is accepted by the algorithm, the rejection rule of RP(φ − 1)

implies that its load is not greater than its penalty. Therefore,

M(A− {`}) = M((A− {`}) ∩AOPT) +M((A− {`}) ∩ROPT)

≤M((A− {`}) ∩AOPT) +W ((A− {`}) ∩ROPT).(3.13)

Invoking (3.12) and (3.13) in (3.11) yields

ZON ≤W (ROPT − {`}) + 2(φ− 1)M(AOPT − {`}) + p`.(3.14)

We distinguish two cases. In the first case the optimal solution rejects job `. Since
` is scheduled by the algorithm, we have p` ≤ φw`, and therefore

ZON ≤ φW (ROPT) + 2(φ− 1)M(AOPT) ≤ φZOPT .

70 BARTAL ET AL.

In the second case ` is accepted in the optimal solution. Then, we use the identity
p` = 2(φ− 1)M({`}) + (1− (φ− 1))p` in (3.14) to obtain

ZON ≤ (2− φ)p` +W (ROPT) + 2(φ− 1)M(AOPT)

≤ (2− φ)ZOPT + 2(φ− 1)ZOPT = φZOPT ,

which completes the proof.
The same approach can be used for larger m as well. However, for m > 3 this is

worse than the previous algorithm. An interesting situation arises for m = 3. Choos-
ing α = 1/2 we obtain a 2-competitive algorithm, which matches the competitive ratio
of the algorithm RTP(2/3) for m = 3 in the previous subsection. Whereas RP(1/2)
rejects all jobs with penalty up to 1/2 of their processing time, RTP(2/3) rejects all
jobs with penalty up to 1/3 of their processing time and also jobs with larger penalty
as long as the total penalty paid (by the jobs with smaller or equal processing times)
remains at most 2/3 times the processing time. We can combine these two approaches
and show that for any 1/3 ≤ α ≤ 1/2, the algorithm that rejects each job with penalty
at most α times its processing time, and also if the total penalty is up to 1− α times
its processing time, is 2-competitive, too. However, no such combined algorithm is
better.

4. Lower bounds for on-line algorithms. In the first part of this section we
give the lower bound for a small number of machines. In particular it shows that the
algorithm presented in section 3.2 is best possible for m = 2. In the second part we
exhibit the lower bound for algorithms working for all m.

4.1. Small number of machines. Assume that there exists a c-competitive
on-line algorithm for m machines. We prove that c satisfies c ≥ ρ, where ρ is the
solution of the following equation:

ρm−1 + ρm−2 + · · ·+ 1 = ρm.(4.1)

For m = 2 we get ρ = φ, and hence prove that the algorithm RP(φ − 1) is best
possible. For m = 3 we get ρ ≈ 1.839, and so on. Notice that for arbitrary m this
proves only that the competitive ratio is at least 2.

Theorem 4.1. For any c-competitive algorithm for MSR on m machines, it holds
that c ≥ ρ, where ρ satisfies (4.1).

Proof. Given m, let ρ be the solution of (4.1). Consider an adversary providing
a sequence of jobs, all with processing time 1. The first job given has penalty w1 =
1/ρ. If the on-line algorithm accepts this job, the sequence stops and the algorithm
is ρ-competitive. Otherwise, a second job is given by the adversary with penalty
w2 = 1/ρ2. Again, accepting this job by the on-line algorithm makes the sequence
stop and the competitive ratio is ρ. Rejection makes the sequence continue with a
third job. This process is repeated for at most m − 1 jobs with penalties wj = 1/ρj

for 1 ≤ j = m − 1. If the on-line algorithm accepts any job in this sequence, job k
say, the adversary stops the sequence at that job, yielding a competitive ratio of the
on-line algorithm on this sequence of k jobs of

ZON

ZOPT
=

1 +
∑k−1
j=1

1
ρj∑k

j=1
1
ρj

= ρ,

since for any such k ≤ m− 1 in the optimal solution all jobs are rejected.

MULTIPROCESSOR SCHEDULING WITH REJECTION 71

Otherwise, if none of the first m − 1 jobs are accepted by the on-line algorithm,
another job is presented with penalty wm = 1. In the optimal solution all m jobs are
accepted and scheduled in parallel, giving cost 1. The on-line cost is equal to the sum
of the penalties of the first m− 1 jobs plus 1, independent of whether the last job is
accepted or rejected. Thus,

ZON

ZOPT
= 1 +

m−1∑
j=1

1

ρj
.

By (4.1), this is exactly ρ, and the theorem follows.

Corollary 4.2. For two machines, no on-line algorithm has competitive ratio
less than φ.

4.2. Arbitrary number of machines. Now we prove the lower bound on al-
gorithms working for arbitrary m. The sequence of jobs starts as in the previous
section, but additional ideas are necessary.

Theorem 4.3. There exists no on-line algorithm that is β-competitive for some
constant β < 1 + φ and all m.

Proof. All jobs in the proof have processing time 1. All logarithms are base 2. For
contradiction, we assume that the on-line algorithm is β-competitive for a constant
β < 1 + φ, and m is a sufficiently large power of two. Let ai = (logm)i+1, and

let k be the largest integer such that logm +
∑k
i=1 ai < m. Calculation gives k =

blogm/ log logmc − 1.

Consider again an adversary that intends to provide the following sequence of at
most m jobs (all with processing time 1):

1 job with penalty 1/(1 + φ),
1 job with penalty 1/(1 + φ)2,

...
1 job with penalty 1/(1 + φ)logm,
a1 jobs with penalty 1/a1,

...
ak jobs with penalty 1/ak.

As in the proof of Theorem 4.1 we argue that if the on-line algorithm accepts one
of the first logm jobs, the adversary stops the sequence and the competitive ratio is
1 +φ. Therefore, any β-competitive algorithm has to reject the first logm jobs. Now,
let bi be the number of jobs with penalty 1/ai that are rejected by the β-competitive
algorithm. The penalty the algorithm pays on those jobs is bi/ai. Since there are less
than m jobs, the optimal cost is at most 1. Thus the total penalty incurred by the
on-line algorithm has to be at most β, and in particular there has to exist ` ≤ k such
that b`/a` ≤ β/k < 3/k. Fix such `.

Now consider the following modified sequence of at most 2m jobs (again all with

72 BARTAL ET AL.

processing time 1):

1 job with penalty 1/(1 + φ),
1 job with penalty 1/(1 + φ)2,

...
1 job with penalty 1/(1 + φ)logm,
a1 jobs with penalty 1/a1,

...
a` jobs with penalty 1/a`,
M jobs with penalty 6,

where M = m+ 1−∑`
i=1(ai − bi).

The sequence is identical up to the jobs with penalty 1/a`, and hence the on-line
algorithm behaves identically on this initial subsequence. In particular, it also rejects
all first logm jobs paying a penalty of at least

∑logm
j=1 (1+φ)−j = (1−(1+φ)− logm)/φ ≥

φ− 1− 1/m for them. Then it also rejects bi jobs with penalty 1/ai, for i ≤ `, paying

penalty
∑`
i=1 bi/ai for them.

The on-line algorithm has to accept all jobs with penalty 6, since the adversary
will present at most 2m jobs, and hence scheduling them all would lead to a cost of
at most 2. By summing the numbers, it follows that the on-line algorithm schedules
exactly m + 1 jobs. Thus, its makespan is at least 2, and its total cost is at least
1 + φ− 1/m.

To finish the proof, it is sufficient to present a solution with cost 1+o(1). Consider
the solution that rejects

1 + logm jobs with penalty 1/a1,
b1 jobs with penalty 1/a2,
b2 jobs with penalty 1/a3,

...
b`−2 jobs with penalty 1/a`−1,

b`−1 + b` jobs with penalty 1/a`

and schedules all remaining jobs optimally. First we verify that this description is
legal, i.e., there are always sufficiently many jobs with given penalty. By definition,
bi ≤ ai ≤ ai+1. For sufficiently large m, we have 1+logm < a1, and due to our choice
of `, we also have b`−1 + b` ≤ a`−1 + 3a`/k ≤ a`.

In the presented schedule one more job is rejected than in the solution produced
by the on-line algorithm, and hence there are only m jobs to be scheduled. Thus, the
makespan is 1. The penalty paid is

1 + logm

a1
+
`−1∑
i=1

bi
ai+1

+
b`
a`

=
1 + logm

(logm)2
+

1

logm

`−1∑
i=1

bi
ai

+
b`
a`
.

The sum in the second term is less than the penalty paid by the on-line algorithm,
and hence this term is bounded by O(1/ logm). The last term is bounded due to our
choice of `; namely, it is O(1/k) = O(log logm/ logm). Thus, the total penalty paid
is O(log logm/ logm) = o(1), and the total cost is 1 + o(1).

MULTIPROCESSOR SCHEDULING WITH REJECTION 73

5. Off-line scheduling with rejection.

5.1. An approximation algorithm for arbitrary number of machines. In
this section we give a (2− 1

m)-approximation algorithm for MSR on m machines. Our
lower bounds imply that such a ratio cannot be achieved by an on-line algorithm.
The algorithm rejects all jobs in the set B = {j | wj ≤ pj/m}. From all other jobs it
accepts some number of jobs with the smallest processing time and chooses the best
among such solutions.

Algorithm APPROX.
(i) Sort all jobs in J − B according to their processing times in nondecreasing

order.
(ii) Let Si, 0 ≤ i ≤ |J − B|, be the solution that schedules the first i jobs from

J −B using list scheduling and rejects all other jobs. Choose the solution Si
with the smallest cost.

Note that step (ii) of the algorithm takes time O(n logm) (or O(n) in case m ≥ n),
as we can build the schedules incrementally, and the bookkeeping of penalties for re-
jected jobs is simple. Thus, the whole algorithm runs in time O(n logn), independent
of m. A performance analysis leads to the following worst-case ratio.

Theorem 5.1. Algorithm APPROX achieves ZH ≤ (2− 1
m)ZOPT , where ZH is

the cost of the solution found by the algorithm.
Proof. We assume that the jobs from J−B are ordered 1, 2, . . . , |J−B|, according

to the ordering given by step (i) of the algorithm. If the optimal solution rejects all
jobs from J −B, by the definition of B it is optimal to reject all jobs from B as well.
Thus the solution S0 that rejects all jobs is optimal and ZH = ZOPT .

Otherwise let ` be the last job from J − B accepted in the optimal solution.
Consider the solution S`, which schedules all jobs up to `. Let A = {1, . . . , `} be the
set of all jobs scheduled in S`. Job ` has the largest running time of all scheduled
jobs, and since we use list scheduling, the makespan of S` is at most

CLS(A) = M(A) +

(
1− 1

m

)
p` ≤M(A) +

(
1− 1

m

)
ZOPT .

Since the cost of the algorithm is at most the cost of S`, we have

ZH ≤W (J −A) +M(A) +

(
1− 1

m

)
ZOPT

= W (AOPT ∩ (J −A)) +W (ROPT ∩ (J −A)) +

M(ROPT ∩A) +M(AOPT ∩A) +

(
1− 1

m

)
ZOPT .

By the choice of `, AOPT∩(J−A) ⊆ B, and thusW (AOPT∩(J−A)) ≤M(AOPT∩(J−
A)). Moreover, since A does not contain any job of B, M(ROPT ∩A) ≤W (ROPT ∩A).
These observations inserted in the above inequality yield

ZH ≤W (ROPT) +M(AOPT) +

(
1− 1

m

)
ZOPT ≤

(
2− 1

m

)
ZOPT .

That the ratio is tight is shown by the following instance with m jobs (and m
machines): p1 = · · · = pm = 1, w1 = 1 − ε, and w2 = · · · = wm = 1

m (1 − ε). The
heuristic will reject all jobs resulting in ZH = (1+m−1

m)(1−ε). In the optimal solution
all jobs are accepted; hence ZOPT = 1. Therefore, ZH/ZOPT can be made arbitrarily
close to 2− 1

m .

74 BARTAL ET AL.

This example also shows that any heuristic that rejects all jobs in the set B has
a worst-case ratio no better than 2− 1

m , since there is no scheduling at all involved in
it. Thus, the only way in which an improvement might be obtained is by also possibly
accepting jobs in the set B.

5.2. A fully polynomial approximation scheme for fixed m. For the off-
line MSR problem there exists a fully polynomial approximation scheme for fixed
m. The proof uses a rounding technique based on dynamic programming, as was
developed in [9] for the classical makespan problem.

Lemma 5.2. The MSR problem with integer processing times and penalties can
be solved in time polynomial in n and (ZOPT)m.

Proof. We use dynamic programming. Let Mi represent the current load of
machine i, i = 1, . . . ,m. We compute for each M1, . . . ,Mm ≤ ZOPT the minimal
value of total penalty to be paid that can be achieved with these loads. We denote
this value after the first j jobs are rejected or scheduled by Wj(M1, . . . ,Mm) and
define it to be ∞ whenever Mi < 0 for some i. At the same time we compute the
minimal cost of a schedule that can be achieved with given loads M1, . . . ,Mm, denoted
Z(M1, . . . ,Mm). For M1, . . . ,Mm ≥ 0 these values can be computed recursively as
follows:

W0(M1, . . . ,Mm) = 0,

Wj(M1, . . . ,Mm) = min{wj +Wj−1(M1, . . . ,Mm),

min
i
Wj−1(M1, . . . ,Mi−1,Mi − pj ,Mi+1, . . . ,Mm)},

Z(M1, . . . ,Mm) = Wn(M1, . . . ,Mm) + max
i
Mi.

We compute the values in the order of increasing maxiMi. As soon as maxiMi reaches
the cost of the current optimal solution, which is the smallest value of Z computed
so far, we stop, as we know it is a global optimum.

Theorem 5.3. For any ε ≥ 0, there exists an ε-approximation algorithm for the
MSR problem that runs in time polynomial in the size of the input instance, nm and
1/εm.

Proof. Given an instance I of the MSR problem with n jobs and m machines, we
first use the approximation algorithm from section 5.1 to obtain the cost ZH . Now we
define an instance I ′ by rounding the processing times and the penalties of the jobs
in I. Namely, the processing time p′j and the penalty w′j of job j in I ′ are p′j = bpj/kc
and w′j = bwj/kc, where k = εZH/2n. We obtain the optimal solution of I ′ by the
dynamic programming algorithm presented in the proof of Lemma 5.2 and derive an
approximate solution for I by scheduling the respective jobs on the same machines as
in the optimal solution for I ′.

The cost ZA(k) of the approximate solution deviates from the optimal solution for
I by at most nk = εZH/2. Therefore, by applying the lower bound ZOPT ≥ ZH/2
we obtain

|ZA(k) − ZOPT |
ZOPT

≤ 2nk

ZH
= ε.

By Lemma 5.2 it follows that the running time of the approximation algorithm is
polynomial in n and (ZOPT (I ′))m. The theorem follows since ZOPT (I ′) ≤ ZOPT (I)/k
≤ 2ZH/k, and hence ZOPT (I ′) ≤ 4n/ε.

MULTIPROCESSOR SCHEDULING WITH REJECTION 75

5.3. A polynomial approximation scheme for arbitrary m. For arbitrary
m we will design a polynomial approximation scheme (PAS) based on the PAS for
the makespan problem in [8].

Given an instance with n jobs, m machines, and ε > 0, we are to find an ε-
approximate solution. As an upper bound U on the solution value we use the outcome
ZH of the heuristic presented in section 5.1. Notice that all jobs with pj > U will
be rejected. Thus, all jobs that are possibly scheduled have processing times in the
interval [0, U].

From Theorem 5.1 we have a lower bound on the optimal solution that we denote
by L = ZH/2 = U/2. We define the set S = {j | pj ∈ [0, εL/3]}, a set of jobs
with relatively small processing times. Let D = {j | j /∈ S}. The remaining interval
(εL/3, U] is partitioned into s ≤ 18d1/ε2e subintervals (l1, l2], (l2, l3], . . . , (ls, ls+1]
of length ε2L/9 each, with l1 = εL/3 and ls+1 ≥ U . Let Di be the set of jobs with
processing time in the interval (li, li+1], and let the jobs in each such set be ordered so
that the penalties are nonincreasing. As before, define the set B = {j | wj ≤ pj/m}.

First we will describe how, for any subset ∆ of D, we generate an approximate
solution with value ZH(ε)(∆). For any such set ∆ we determine a schedule for all the
jobs in ∆ with an ε/3-approximate makespan using the PAS in [8]. All other jobs in
D, i.e., all jobs in D −∆, are rejected. Jobs in the set S that have wj ≥ 1

mpj , i.e.,
jobs in the set S −B, are scheduled in any order according to the list scheduling rule
starting from the ε/3-approximate schedule determined before. The remaining jobs,
j ∈ S ∩ B, are considered in any order. Each next job is rejected if its assignment
to a least loaded machine would cause an increase of the makespan; otherwise it is
assigned to a least loaded machine as indicated by list scheduling.

This procedure is applied to every set D(y1, . . . , ys) ⊆ D, where D(y1, . . . , ys)
denotes the set that is composed of the first yi elements in the ordered set Di, i =
1, . . . , s. In this way an approximate solution ZH(ε)(D(y1, . . . , ys)) is found for each
set D(y1, . . . , ys). The minimum value over all these sets,

ZH(ε) = min
(y1,...,ys)

ZH(ε)(D(y1, . . . , ys)),

is taken as the output of our procedure.
Theorem 5.4. For any ε > 0 the algorithm H(ε) described above runs in time

polynomial in n and m and yields

ZH(ε)

ZOPT
≤ 1 + ε.

Proof. The proof consists of two steps. First, consider the set AOPT ∩D of jobs
in D that are accepted in the optimal solution. Applying the heuristic procedure
described above to this set of jobs yields the approximate solution ZH(ε)(AOPT ∩D).
We will prove that

ZH(ε)(AOPT ∩D)

ZOPT
≤ 1 +

ε

3
.(5.1)

In the second step we analyze how much the set AOPT∩D may differ fromD(y1, . . . , ys).
Assume that for i = 1, . . . , s, AOPT ∩D consists of yOPTi jobs from the set Di. These
yOPTi jobs are not necessarily the first yOPTi jobs in the ordered set Di, but we will
show that

ZH(ε)(D(yOPT1 , . . . , yOPTs)) ≤ ZH(ε)(AOPT ∩D) +
2

3
εL.(5.2)

76 BARTAL ET AL.

Inequalities (5.1) and (5.2) imply that

ZH(ε)(D(yOPT1 , . . . , yOPTs))

ZOPT
≤ 1 + ε.

Since, obviously, ZH(ε) ≤ ZH(ε)(D(yOPT1 , . . . , yOPTs)), the theorem follows.
In order to prove inequality (5.1) two cases are distinguished.
(1) The completion times of the various machines (in the heuristic solution corre-

sponding to ZH(ε)(AOPT ∩D)) differ by no more than εL/3. The resulting makespan
is the same as the makespan after scheduling the jobs in AOPT ∩D and S − B, and
due to our assumption it is at most M(AOPT ∩D) +M(S −B) + εL/3. The weight
of all rejected jobs is at most W (S ∩B) +W (D −AOPT). Thus

ZH(ε)(AOPT ∩D) ≤M(AOPT ∩D) +M(S −B) +
εL

3
+W (S ∩B) +W (D−AOPT).

Using the definition of the set B, we have for the optimal solution

ZOPT ≥M(AOPT ∩D) +M(S −B) +W (S ∩B) +W (D −AOPT).

From these two inequalities (5.1) follows immediately.
(2) The completion times of the machines differ by more than εL/3. Since the

processing time of each job in S is less than εL/3, we know that no job in the set S∩B
is rejected, and scheduling all jobs in S has not increased the makespan computed for
the set AOPT ∩D. Let CH(ε)(AOPT ∩D) and COPT (AOPT ∩D) denote, respectively,
the ε/3-approximate and the optimal makespan for the jobs in AOPT ∩ D. In this
case

ZH(ε)(AOPT ∩D) = CH(ε)(AOPT ∩D) +W (D −AOPT)

and

ZOPT ≥ COPT (AOPT ∩D) +W (D −AOPT).

Moreover, since we have used an ε/3-approximate algorithm for scheduling the jobs
in AOPT ∩D, we have

CH(ε)(AOPT ∩D) ≤
(

1 +
ε

3

)
COPT (AOPT ∩D).

Inequality (5.1) results from the above three inequalities.
In order to prove (5.2) we need to bound the extra error that might occur due to

the fact that AOPT ∩D 6= D(yOPT1 , . . . , yOPTs). Notice that, for any Di, i = 1, . . . , s,
the difference in processing time between any two jobs in Di is at most ε2L/9, and
that D(yOPT1 , . . . , yOPTs) contains the jobs with larger penalties in Di. The latter
implies that the extra error can be due only to the fact that the first yOPTi jobs in Di

have longer processing times than those in AOPT ∩Di. Since the processing time of a
job in D is at least εL/3 and U ≤ 2L, no more than 6/ε jobs from D are scheduled on
any machine. Therefore the overall extra contribution to the makespan due to the fact
that AOPT ∩ D 6= D(yOPT1 , . . . , yOPTs) can be no more than (6/ε)(ε2L/9) = 2εL/3,
which implies inequality (5.2).

This completes the proof of correctness of the approximation.
The running time of the algorithm is dominated by the time required to compute

the heuristic ZH(ε)(D(y1, . . . , ys)) for each possible set of values y1, . . . , ys, such that

MULTIPROCESSOR SCHEDULING WITH REJECTION 77

0 ≤ yi ≤ |Di|, i = 1, . . . , s. Since yi, i = 1, . . . , s, satisfies 1 ≤ yi ≤ n, there are at

most ns = O(n18d1/ε2e) possible sets of values y1, . . . , ys.

For each of these sets an ε-approximate schedule is computed using the algorithm
in [8], taking O((n/ε)d9/ε

2e); attaching the jobs in the set S just adds O(n2) time
to each of these computations. Hence, the overall running time of the algorithm is
O((n3/ε)d9/ε

2e). This establishes that the algorithm is a polynomial approximation
scheme for the problem with arbitrary m.

6. Open problems and recent developments. Some open problems remain.
For the on-line problem tight algorithms for the case of fixed m other than m = 2
are still to be established. For the off-line problem perhaps better heuristics may be
found by improving the rejection strategy proposed in the algorithm in section 5.1.

Seiden [13] has proved new results related to our problem. For the variant of
deterministic preemptive scheduling with rejection he gives a (4 +

√
10)/3 ≈ 2.387

competitive algorithm for any number of machines, thus showing that allowing pre-
emption can provably be exploited. Interestingly, this yields yet another 2-competitive
algorithm for three machines. Also, Seiden notes that our Theorem 4.1 yields a lower
bound for preemptive scheduling as well and hence yields a lower bound of 2 for gen-
eral number of machines. For two machines, this shows that our algorithm RP(φ− 1)
is best possible even among all preemptive algorithms. For three machines, an inter-
esting open problem is to establish whether preemption allows a better competitive
ratio. The best upper bound of 2 and the best lower bound of 1.839 for preemptive
algorithms still coincide with those shown in this paper for nonpreemptive algorithms.

Seiden [13] also studies randomized scheduling with rejection, both preemptive
and nonpreemptive. He gives algorithms which are better than deterministic for a
small number of machines, and in particular are 1.5-competitive for two machines,
both preemptive and nonpreemptive; this is best possible for two machines. In both
cases the question of whether randomized algorithms for any number of machines can
be better than their deterministic counterparts remains open.

Epstein and Sgall [4] presented polynomial time approximation schemes for re-
lated machines for various objectives, including MSR, thus generalizing the polynomial
time approximation scheme given in this paper.

Engels et al. [3] study scheduling with rejection where, in the objective, the
makespan is replaced by the sum of the completions times.

Acknowledgments. We thank Giorgio Gallo for having drawn our attention
to this scheduling problem. We thank the anonymous referees for numerous helpful
comments.

REFERENCES

[1] S. Albers, Better bounds for online scheduling, in Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1997, pp. 130–139.

[2] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra, New algorithms for an ancient scheduling
problem, J. Comput. Systems Sci., 51 (1995), pp. 359–366.

[3] D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and J. Wein,
Techniques for scheduling with rejection, in Proceedings of the 6th Annual European Sym-
posium on Algorithms, Lecture Notes in Comput. Sci. 1461, Springer-Verlag, New York,
1998, pp. 490–501.

[4] L. Epstein and J. Sgall, Approximation Schemes for Scheduling on Uniformly Related and
Identical Parallel Machines, Technical Report KAM-DIMATIA Series 98-414, Charles Uni-
versity, Prague, Czech Republic, 1998.

78 BARTAL ET AL.

[5] G. Galambos and G. J. Woeginger, An on-line scheduling heuristic with better worst case
ratio than Graham’s list scheduling, SIAM J. Comput., 22 (1993), pp. 349–355.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP–completeness, W. H. Freeman, San Francisco, CA, 1979.

[7] R. L. Graham, Bounds for certain multiprocessor anomalies, Bell System Tech., 45 (1966),
pp. 1563–1581.

[8] D. S. Hochbaum and D. B. Shmoys, Using dual approximation algorithms for scheduling
problems: Theoretical and practical results, J. Assoc. Comput. Mach., 34 (1987), pp. 144–
162.

[9] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling non-identical
processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317–327.

[10] D. R. Karger, S. J. Phillips, and E. Torng, A better algorithm for an ancient scheduling
problem, J. Algorithms, 20 (1996), pp. 400–430.

[11] R. M. Karp, On-line algorithms versus off-line algorithms: How much is it worth to know the
future?, in Proceedings of the IFIP 12th World Computer Congress. Vol. 1: Algorithms,
Software, Architecture, J. van Leeuwen, ed., Elsevier Science Publishers, Amsterdam, 1992,
pp. 416–429.

[12] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing
and scheduling: Algorithms and complexity, in Handbooks in Operations Research and
Management Science, Vol. 4: Logistics of Production and Inventory, S. C. Graves, A. H. G.
Rinnooy Kan, and P. Zipkin, eds., North–Holland, Amsterdam, 1993, pp. 445–552.

[13] S. S. Seiden, More Multiprocessor Scheduling with Rejection, Technical Report Woe-16, De-
partment of Mathematics, TU Graz, Graz, Austria, 1997.

[14] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
Assoc. Comput. Mach., 28 (1985), pp. 202–208.

