
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008 1701

Multiprocessor System-on-Chip
(MPSoC) Technology

Wayne Wolf, Fellow, IEEE, Ahmed Amine Jerraya, and Grant Martin, Senior Member, IEEE

Abstract—The multiprocessor system-on-chip (MPSoC) uses
multiple CPUs along with other hardware subsystems to imple-
ment a system. A wide range of MPSoC architectures have been
developed over the past decade. This paper surveys the history of
MPSoCs to argue that they represent an important and distinct
category of computer architecture. We consider some of the tech-
nological trends that have driven the design of MPSoCs. We also
survey computer-aided design problems relevant to the design of
MPSoCs.

Index Terms—Configurable processors, encoding, hardware/
software codesign, multiprocessor, multiprocessor system-on-chip
(MPSoC).

I. INTRODUCTION

MULTIPROCESSOR systems-on-chips (MPSoCs) have
emerged in the past decade as an important class of very

large scale integration (VLSI) systems. An MPSoC is a system-
on-chip—a VLSI system that incorporates most or all the
components necessary for an application—that uses multiple
programmable processors as system components. MPSoCs are
widely used in networking, communications, signal processing,
and multimedia among other applications.

We will argue in this paper that MPSoCs constitute a unique
branch of evolution in computer architecture, particularly mul-
tiprocessors, that is justified by the requirements on these sys-
tems: real-time, low-power, and multitasking applications. We
will do so by presenting a short history of the MPSoCs as well
as an analysis of the driving forces that motivate the design of
these systems. We will also use this opportunity to outline some
important computer-aided design (CAD) problems related to
MPSoCs and describe previous works on those problems.

In an earlier paper [1], we presented some initial argu-
ments as to why MPSoCs existed—why new architectures
were needed for applications like embedded multimedia and
cell phones. In this paper, we hope to show more decisively
that MPSoCs form a unique area of multiprocessor design

Manuscript received June 11, 2007; revised November 20, 2007. Current
version published September 19, 2008. The work of W. Wolf was supported in
part by the National Science Foundation under Grant 0324869. This paper was
recommended by Associate Editor V. Narayanan.

W. Wolf is with the Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: wolf@ece.gatech.edu).

A. A. Jerraya is with CEA-LETI, 38054 Grenoble Cedex 9, France (e-mail:
ahmed.jerraya@cea.fr).

G. Martin is with Tensilica, Inc., Santa Clara, CA 95054 USA (e-mail:
gmartin@tensilica.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.923415

that is distinct from multicore processors for some very sound
technical reasons.

We will start with our discussion of the history of MPSoCs
and their relationship to the broader history of multiprocessors
in Section II. In Section III, we will look at several charac-
teristics of embedded applications that drive us away from
traditional scientific multiprocessing architectures. Based on
that analysis, Section IV more broadly justifies the pursuit of
a range of multiprocessor architectures, both heterogeneous
and homogeneous, to satisfy the demands of high-performance
embedded computing applications. Section V describes some
important CAD problems related to MPSoCs. We close in
Section VI with some observations on the future of MPSoCs.

II. MULTIPROCESSORS AND THE EVOLUTION OF MPSOCS

MPSoCs embody an important and distinct branch of mul-
tiprocessors. They are not simply traditional multiprocessors
shrunk to a single chip but have been designed to fulfill the
unique requirements of embedded applications. MPSoCs have
been in production for much longer than multicore processors.
We argue in this section that MPSoCs form two important and
distinct branches in the taxonomy of multiprocessors: homo-
geneous and heterogeneous multiprocessors. The importance
and historical independence of these lines of multiprocessor
development are not always appreciated in the microprocessor
community.

To advance this theme, we will first touch upon the history
of multiprocessor design. We will then introduce a series of
MPSoCs that illustrate the development of this category of
computer architecture. We next touch upon multicore proces-
sors. We conclude this section with some historical analysis.

A. Early Multiprocessors

Multiprocessors have a very long history in computer archi-
tecture; we present only a few highlights here. One early mul-
tiprocessor was Illiac IV [2], which was widely regarded as the
first supercomputer. This machine had 64 arithmetic logic units
(ALUs) controlled by four control units. The control units could
also perform scalar operations in parallel with the vector ALUs.
It performed vector and array operations in parallel. Wulf and
Harbison [3] describe C.mmp as an early multiprocessor that
connected 16 processors to memory through a crossbar.

Culler et al. [4] describe the state-of-the-art in parallel com-
puting at the end of the 1990s. They identified Moore’s Law
as a major influence on the development of multiprocessor
architectures. They argue that the field has converged on a

0278-0070/$25.00 © 2008 IEEE

1702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 1. Lucent Daytona MPSoC.

generic model of multiprocessors in which a collection of
computers, each potentially including both CPU and memory,
communicate over an interconnection network. This model is
particularly aimed at unifying the shared memory and message
passing models for multiprocessors. Chapter 2 of their book
describes parallel programs. They discuss four applications
that they consider representative: ocean current simulation,
simulating the evolution of galaxies, ray tracing for computer
graphics, and data mining.

Almasi and Gottlieb provide a definition of highly parallel
processors that they believe covers many such designs: “A large
collection of processing elements that communicate and coop-
erate to solve large problems fast” [5, p. 5]. They see three moti-
vations for the design of parallel processors: solving very large
problems such as weather modeling, designing systems that sat-
isfy limited budgets, and improving programmer productivity.
They identify several types of problems that are suitable for
parallel processors: easy parallelism such as payroll processing
(today, we would put Web service in this category), scientific
and engineering calculations, VLSI design automation, data-
base operations, and near- and long-term artificial intelligence.

B. History of MPSoCs

In this section, we will survey the history of MPSoCs. Given
the large number of chip design groups active around the world,
we do not claim that the list of MPSoCs given here is complete.
However, we have tried to include many representative proces-
sors that illustrate the types of MPSoCs that have been designed
and the historical trends in the development of MPSoCs.

The 1990s saw the development of several VLSI uniproces-
sors created for embedded applications like multimedia and
communications. Several single-chip very long instruction
word (VLIW) processors were developed to provide higher
levels of parallelism along with programmability. Another com-
mon approach was the application-specific IC, which stitched
together a number of blocks, most of which were not general-
purpose computers. The architecture of these systems often
closely corresponded to the block diagrams of the applications
for which they were designed.

The first MPSoC that we know of is the Lucent Daytona
[6], shown in Fig. 1. Daytona was designed for wireless base
stations, in which identical signal processing is performed on a
number of data channels. Daytona is a symmetric architecture
with four CPUs attached to a high-speed bus. The CPU archi-
tecture is based on SPARC V8 with some enhancements: 16 ×
32 multiplication, division step, touch instruction, and vector
coprocessor. Each CPU has an 8-KB 16-bank cache. Each bank
can be configured as instruction cache, data cache, or scratch
pad. The Daytona bus is a split-transaction bus. The processors
share a common address space in memory; the caches snoop
to ensure cache consistency. The chip was 200 mm2 and ran at
100 MHz at 3.3 V in a 0.25-μm CMOS process.

Shortly after the Daytona appeared, several other MPSoCs
were announced. These processors were designed to support a
range of applications and exhibit a wide range of architectural
styles.

The C-5 Network Processor [7] was designed for another
important class of embedded applications, which is packet
processing in networks. The architecture of the C-5 is shown
in Fig. 2. Packets are handled by channel processors that are
grouped into four clusters of four units each. Three buses handle
different types of traffic in the processor. The C-5 uses several
additional processors, some of which are very specialized,
whereas the executive processor is a reduced instruction set
computing (RISC) CPU.

A third important class of MPSoC applications is multimedia
processing. An early example of a multimedia processor is the
Philips Viper Nexperia [8], shown in Fig. 3. The Viper includes
two CPUs: a MIPS and a Trimedia VLIW processor. The MIPS
acted as a master running the operating system, whereas the
Trimedia acted as a slave that carried out commands from
the MIPS. The system includes three buses, one for each
CPU and one for the external memory interface. Bridges
connect the buses. However, the multiprocessing picture is
more complicated because some hardware accelerators are
attached to the buses. These accelerators perform computations
such as color space conversion, scaling, etc. The Viper could
implement a number of different mappings of physical memory
to address spaces.

A fourth important class of MPSoC applications is the cell
phone processor. Early cell phone processors performed base-
band operations, including both communication and multime-
dia operations. The Texas Instruments (TI) OMAP architecture
[9] has several implementations. The OMAP 5912, as shown
in Fig. 4, has two CPUs: an ARM9 and a TMS320C55x digital
signal processor (DSP). The ARM acts as a master, and the DSP
acts as a slave that performs signal processing operations.

The STMicroelectronics Nomadik [10], shown in Fig. 5, is
another MPSoC for cell phones. It uses an ARM926EJ as its
host processor. At this level, the architecture appears to be a
fairly standard bus-based design. However, two of the units
on the bus are programmable accelerators, one for audio and
another for video, which make use of the MMDSP+, which
is a small DSP. The architectures of the video and audio
accelerators are shown in Figs. 6 and 7, respectively. The
video accelerator is a heterogeneous multiprocessor, including
an MMDSP+ and hardwired units for several important stages

WOLF et al.: MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) TECHNOLOGY 1703

Fig. 2. C-5 network processor.

Fig. 3. Viper Nexperia processor.

in video processing. The audio processor relies more heavily
on the MMDSP+, thanks to the lower throughput requirements
of audio.

As shown in Fig. 8, the ARM MPCore [11] is a homo-
geneous multiprocessor that also allows some heterogeneous
configurations. The architecture can accommodate up to four
CPUs. Some degree of irregularity is afforded by the memory
controller, which can be configured to offer varying degrees of
access to different parts of memory for different CPUs. For
example, one CPU may be able only to read one part of the
memory space, whereas another part of the memory space may
not be accessible to some CPUs.

The Intel IXP2855 [12], shown in Fig. 9, is a network proces-
sor. Sixteen microengines are organized into two clusters to
process packets. An XScale CPU serves as host processor. Two
cryptography accelerators perform cryptography functions.

The Cell processor [13] has a PowerPC host and a set of eight
processing elements known as synergistic processing elements.
The processing elements, PowerPC, and I/O interfaces are

Fig. 4. TI OMAP 5912.

Fig. 5. ST Nomadik SA.

connected by the element interconnect bus, which is built from
four 16-B-wide rings. Two rings run clockwise, and the other
two run counterclockwise. Each ring can handle up to three
nonoverlapping data transfers at a time.

The Freescale MC8126 was designed for mobile basestation
processing. It has four Starcore SC140 VLIW processors along
with shared memory.

1704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 6. ST Nomadik video accelerator.

Fig. 7. ST Nomadik audio accelerator.

Fig. 8. ARM MPCore.

Several multiprocessor architectures are being developed
for cell phones. One example is the Sandbridge Sandblaster
processor [14], [15]. It can process four threads with full inter-
locking for resource constraints. It also uses an ARM as a host
processor. The Infineon Music processor is another example of

Fig. 9. Intel IXP2855.

a cell phone processor. It has an ARM9 host and a set of single-
instruction multiple-data (SIMD) processors.

The Cisco Silicon Packet Processor [16] is an MPSoC used
in its high-end CRS-1 router. Each chip includes 192 configured
extended Tensilica Xtensa cores. Multiple chips are placed on a
board, multiple boards in a rack, and multiple racks in a router,
so that the final product may have up to 400 000 processors
in it, which are dedicated to network packet routing. This is
an interesting MPSoC example in that it incorporates some
design-for-manufacturability considerations in its architecture;
the architecture requires 188 working processors on a die, and
the extra four processors are added and dynamically used in
order to increase the yield of the SoC.

A Seiko-Epson inkjet printer “Realoid” SoC [17] incorpo-
rates seven heterogeneous processors, including a NEC V850
control processor and six Tensilica Xtensa LX processors,
each of them differently configured with different instruction
extensions to handle different parts of the printing image
processing task.

An increasing number of platforms include field program-
mable gate array (FPGA) fabrics: Xilinx, Altera, and Actel all
manufacture devices that provide programmable processors and
FPGA fabrics. In some cases, the CPUs are separately imple-
mented as custom silicon from the FPGA fabric. In other cases,
the CPU is implemented as a core within the FPGA. These two
approaches are not mutually exclusive. FPGA platforms allow
designers to use hardware/software codesign methodologies.

C. MPSoCs versus Multicore Processors

Hammond et al. [18] proposed a chip multiprocessor (CMP)
architecture before the appearance of the Lucent Daytona. Their
proposed machine included eight CPU cores, each with its own
first-level cache and a shared second-level cache. They used
architectural simulation methods to compare their CMP archi-
tecture to simultaneous multithreading and superscalar. They
found that the CMP provided higher performance on most of
their benchmarks and argued that the relative simplicity of CMP
hardware made it more attractive for VLSI implementation.

Commercial multicore processors have a much shorter his-
tory than do commercial MPSoCs. The first multicore general-
purpose processors were introduced in 2005. The Intel Core

WOLF et al.: MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) TECHNOLOGY 1705

Fig. 10. Block diagram of an MPEG-2 encoder.

Duo processor [19] combines two enhanced Pentium M cores
on a single die. The processors are relatively separate but
share an L2 cache as well as power management logic. The
AMD Opteron dual-core multiprocessor [20] provides separate
L2 caches for its processors but a common system request
interface connects the processors to the memory controller and
HyperTransport. The Niagra SPARC processor [21] has eight
symmetrical four-way multithreaded cores.

D. Analysis

Let us now try to fit MPSoCs into the broader history of mul-
tiprocessing. MPSoCs generally conform to today’s standard
multiprocessor model of CPUs and memories attached to an
interconnection network. However, that model was generally
conceived for fairly homogeneous multiprocessors.

As we have seen, many MPSoCs are very heterogeneous. We
believe that MPSoCs provide at least two branches in the taxon-
omy of multiprocessors: the homogeneous model pioneered by
the Lucent Daytona and the heterogeneous model pioneered by
the C5, Nexperia, and OMAP. We would argue that these two
branches are distinct from the multicore systems designed for
general-purpose computers. The CPUs in multicore processors
have fairly independent hardware units and provide a fairly
independent programming model.

III. HOW APPLICATIONS INFLUENCE ARCHITECTURE

In this section, we will consider how the applications for
which MPSoCs are designed influence both the design process
and the final architecture. We will study three influences: com-
plex applications, standards-based design, and platform-based
design.

A. Complex Applications

Many of the applications to which MPSoCs are applied are
not single algorithms but systems of multiple algorithms. This
means that the nature of the computations done in different
parts of the application can vary widely: types of operations,
memory bandwidth and access patterns, activity profiles, etc.
Such variations argue for heterogeneous architectures.

As an example, consider the structure of an MPEG-2 encoder
[22], as shown in Fig. 10. The two most computationally inten-
sive tasks are motion estimation and discrete cosine transform

(DCT) computation, which have very different computational
profiles. Motion estimation uses 2-D correlation with fairly
simple operations performed on a large number of data ele-
ments; efficient motion estimation algorithms are also highly
data dependent. DCT computation performs a large number
of multiplications and additions but with well-established and
regular data access patterns. Other tasks, such as variable length
coding, operate on much lower volumes of data than either
motion estimation or DCT. As a result, the memory bandwidth
requirements of the encoder vary widely across the block
diagram. Xu et al. [23] studied the operational characteristics
of the H.264 reference video decoder and described some of
those effects in more detail.

B. Standard-Based Design

MPSoCs exist largely because of standards—not standards
for the chips themselves but for the applications to which the
MPSoCs will be put. Standards provide large markets that can
justify the cost of chip design, which runs into the tens of
millions of U.S. dollars. Standards also set aggressive goals that
can be satisfied only by highly integrated implementations.

When crafting a standard, most committees try to balance
standardization and flexibilities. One common technique is to
define the bit stream generated or consumed but not how that
bit stream is generated. This allows implementers to develop
algorithms that conform to the bit stream but provide some
competitive advantage such as higher quality or lower power
consumption. Another common technique for balancing stan-
dards with competition is to exclude some aspects of the final
product from the standard. User interfaces, for example, are
generally not included in standards.

Standards that allow for multiple implementations encourage
the design of MPSoCs. Multiple products with different charac-
teristics can occupy the design space for the standard.

However, the presence of standards is not an unalloyed bless-
ing for MPSoC designers. Standards committees often provide
reference implementations, which are executable programs that
perform the operations specified by the standard. Whereas
these reference implementations may seem to be a boon to
system designers, they are generally not directly useful as im-
plementations. Reference implementations are generally very
single threaded. Breaking these programs into separate threads
for multiprocessor implementation requires considerable effort.
Improving the cache behavior of the threads requires more
effort. MPSoC design teams generally spend several person-
months refining the reference implementation for use.

Second, standards have grown in complexity. The refer-
ence implementation for H.264, for example, consists of over
120 000 lines of C code.

Complex reference implementations compel system imple-
mentations that include a significant amount of software. This
software generally must conform to the low power requirements
of the system; it makes no sense to operate at ultralow power
levels in the hardware units while the software burns excessive
energy. Depending on the system architecture (SA), some of
the software modules may need to operate under strict real-time
requirements as well.

1706 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 11. Two-stage platform-based design methodology.

C. Platform-Based Design

Platform-based design divides system design into two
phases. First, a platform is designed for a class of applications.
Later, the platform is adapted for a particular product in that
application space. Platform-based design leverages semicon-
ductor manufacturing; a platform can be manufactured in the
large volumes that are required to make chip manufacturing
economically viable; the platform can then be specialized
for use in a number of products, each of which is sold in
smaller volumes. Standard-based design encourages platform-
based design: The standard creates a large market with common
characteristics as well as the need for product designers to
differentiate their products within the scope of the standard.

MPSoCs are ideally suited to be used as platforms. CPUs can
be used to customize systems in a variety of ways. Moreover,
because MPSoCs are not limited to regular architectures, they
can be designed to more aggressive specifications than can be
met by general-purpose systems.

Fig. 11 shows the methodology used to design systems using
platforms. Here, we distinguish between the platform, which is
used in a number of different systems, and the product, which
is one of those end-use systems. The platform design must take
into account both functional and nonfunctional requirements on
the system. Those requirements may be expressed in a more
general form than would be typical in a nonplatform design.
A reference implementation may provide detailed functional
requirements for part of the system but no guidance about other
parts of the system; for example, most reference implementa-
tions do not specify the user interface.

Product design tends to be software driven. In a very few
cases, platform vendors may allow a customer to modify the
platform in ways that require new sets of masks, but this
negates many of the benefits of platform-based design. Much
of the product customization comes from software. As a
result, the quality and capabilities of the software development
environment for the platform in a large part determines the
usefulness of the platform. Today’s software development
environments (SDEs) do not provide good support for
heterogeneous multiprocessors.

IV. ARCHITECTURES FOR REAL-TIME

LOW-POWER SYSTEMS

Based upon our survey of MPSoC architectures and applica-
tions, we are now ready to confront two important questions.
First, why have so many MPSoCs been designed—why not
use general-purpose architectures to implement these systems?
Second, why have so many different styles of MPSoC ar-
chitecture appeared? In particular, why design heterogeneous
architectures that are hard to program when software plays such
a key role in system design using MPSoCs?

The answer to the first question comes from the nature of the
applications to be implemented. Applications like multimedia
and high-speed data communication not only require high levels
of performance but also require implementations to meet strict
quantitative goals. The term “high-performance computing”
is traditionally used to describe applications like scientific
computing that require large volumes of computation but do
not set out strict goals about how long those computations
should take. Embedded computing, in contrast, implies real-
time performance. In real-time systems, if the computation
is not done by a certain deadline, the system fails. If the
computation is done early, the system may not benefit (and
in some pathological schedules, finishing one task early may
cause another task to be unacceptably delayed).

High-performance embedded computing is a very differ-
ent problem from high-performance scientific computing. Fur-
thermore, these high-performance systems must often operate
within strict power and cost budgets. As a result, MPSoC de-
signers have repeatedly concluded that business-as-usual is not
sufficient to build platforms for high-performance embedded
applications.

This argument also helps to explain why so many radically
different MPSoC architectures have been designed. Because we
have strict, quantitative goals, we can design more carefully to
meet them. The differing nature of the computations done in
different applications drives designers to different parts of the
design space.

A. Performance and Power Efficiency

To consider these driving forces in more detail, we will
first start with the power/performance budget. Fig. 12 shows
a plot of power consumption trends that was taken from a paper
by Austin et al. [24]. Their article looked at the performance
and power requirements of next-generation mobile systems.
They estimated the performance and power requirements of
an advanced set of applications that might appear on mobile
systems such as cell phones in the near future. This benchmark
set included high-performance data networking, voice recogni-
tion, video compression/decompression, and other applications.
They estimated that this benchmark set would require a 10 000
SpecInt processor. They then showed that publicly available
information estimated that general-purpose processors in this
class would consume several hundred watts of power. Because
batteries will only be able to produce 75 mW in that time
frame, general-purpose processors consume several orders of
magnitude more power than that available to support this mo-
bile application set.

WOLF et al.: MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) TECHNOLOGY 1707

Fig. 12. Power consumption trends for desktop processors from Austin et al. [Aus04] 2004 IEEE Computer Society.

An MPSoC can save energy in many ways and at all levels
of abstraction. Clearly, device, circuit, and logic-level tech-
niques [25] are equally applicable to MPSoCs as to other
VLSI systems. Irregular memory systems save energy because
multiported RAMs burn more energy; eliminating ports in
parts of the memory where they are not needed saves energy.
Similarly, irregular interconnection networks save power by
reducing the loads that must be driven in the network. Using
different instruction sets for different processors can make each
CPU more efficient for the tasks it is required to execute.

B. Real-Time Performance

Another important motivation to design new MPSoC archi-
tectures is real-time performance. Heterogeneous architectures,
although they are harder to program, can provide improved
real-time behavior by reducing conflicts among processing
elements and tasks. For example, consider a shared memory
multiprocessor in which all CPUs have access to all parts
of memory. The hardware cannot directly limit accesses to
a particular memory location; therefore, noncritical accesses
from one processor may conflict with critical accesses from
another. Software methods can be used to find and eliminate
such conflicts but only at noticeable cost. Furthermore, access
to any memory location in a block may be sufficient to disrupt
real-time access to a few specialized locations in that block.
However, if that memory block is addressable only by certain
processors, then programmers can much more easily determine
what tasks are accessing the locations to ensure proper real-time
responses.

C. Application Structure

The structure of the applications for which MPSoCs are
designed is also important. Different applications have different
data flows that suggest multiple different types of architectures;
some of which are quite different than the multiprocessors de-
signed for scientific computing. The homogeneous architectural

style is generally used for data-parallel systems. Wireless base
stations, in which the same algorithm is applied to several
independent data streams, is one example; motion estimation,
in which different parts of the image can be treated separately,
is another.

Heterogeneous architectures are designed for heterogeneous
applications with complex block diagrams that incorporate
multiple algorithms, often using producer–consumer data trans-
fers. A complete video compression system is one important
example of a heterogeneous application. The scientific comput-
ing community, in contrast, was mainly concerned with single
programs that were too large to run in reasonable amounts of
time on a single CPU, as evidenced by Almasi and Gottlieb’s
statement cited previously that multiprocessors were designed
to “solve large problems fast.”

V. CAD CHALLENGES IN MPSOCS

MPSoCs pose a number of design problems that are
amenable to CAD techniques. General-purpose computer ar-
chitects [26] perform extensive experiments but then go on to
apply intuition to solve specific design problems; they have no
choice but to do so because they have eschewed application-
specific optimizations. Embedded computing, in contrast, is all
about tuning the hardware and software architecture of a system
to meet the specific requirements of a particular set of appli-
cations while providing necessary levels of programmability.
Because embedded system designers have specific goals and a
better-defined set of benchmarks, they can apply optimization
algorithms to solve many design problems.

Many embedded system design and optimization problems
can be approached from either the hardware or software per-
spective. This hardware/software duality allows the same basic
design challenge to be solved in very different ways.

In this section, we will survey previous works in several
problem areas that we consider important CAD problems for
MPSoCs: configurable processors and instruction set synthesis,
encoding, interconnect-driven design, core- and platform-based

1708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

designs, memory system optimizations, hardware/software
codesign, and SDEs.

A. Configurable Processors and Instruction Set Synthesis

Instruction sets that are designed for a particular applica-
tion are used in many embedded systems [27]. The design of
customized processors entails a substantial amount of work
but can result in substantially reduced power consumption and
smaller area. CPU configuration refers to tools that generate
a hardware description language (HDL) of a processor based
on a set of microarchitectural requirements given by a user.
Configurable processors usually fall into two categories: those
that are based on a preexisting processor architecture, usually
implementing a RISC instruction set, and those that create
a complete new instruction set architecture during processor
generation as specified by the user. Configurable processors
utilize an automated processor generation process and toolset,
which is driven by a specification that may be based on a more
formalized architectural definition language or may be based on
parameter selection and structural choices given in a processor
configuration tool.

Processor configuration is usually of two types.
1) Coarse-grained structural configuration. This includes the

presence or absence of a variety of interfaces to associ-
ated objects. These might include system bus interfaces,
local memory interfaces (instruction, data and unified
memories, both RAM and ROM, and in one or more
instantiations), direct first-in first-out queues that can be
used to interconnect processors or connect processors to
hardware accelerating blocks and peripherals, direct IO
ports for the same purpose, coprocessor interfaces, and
extra load-store units. The interface widths and specific
protocols may also be configurable or selectable. Other
parameterized structural choices may include special in-
struction inclusion (e.g., multipliers, dividers, multiply-
accumulate units, and shifters) or the inclusion of various
subsets (such as DSP instruction sets, vectorizing or
SIMD instructions, and floating point units), the locations
and nature of reset vectors, and the numbers, kinds, levels,
and priorities of interrupts, and allowing multioperation
instructions and encodings, all fall into this structural
configuration category. Additional structural parameters
may include the degree of pipelining, on-chip debug,
trace and JTAG, register file size, timers, and exception
vectors.

2) Fine-grained instruction extensions. This adds extra in-
structions directly into the datapath of the processor
that are decoded in the standard way and may even
be recognized by the compiler automatically or least as
manually invoked instrinsics. The instruction extensions
are usually offered in some kind of compiled architectural
description language (e.g., nML or LISA) or may be
defined through a combination of HDL code together
with templates for instruction formats, encoding, and
semantics.

Architectural optimization refers to the design or refinement
of microarchitectural features from higher level specifications

such as performance or power. This is often in conjunction with
configurable extensible processors or coprocessors. The opti-
mization flow is usually an automated one, which is supported
by tools of various levels of sophistication.

The MIMOLA system [28] was an early CPU design tool that
performed both architectural optimization and configuration.
ASIP Meister [29] is a processor configuration system that
generates Harvard architecture machines. LISA [30] uses the
LISA language to describe processors as a combination of
structural and behavioral features. LISA was used as the basis
for a commercial company, LISATek, which was acquired by
CoWare, and the technology continues to be offered on a
commercial basis.

The Tensilica Xtensa processor [31] is a commercial con-
figurable processor that allows users to configure a wide range
of processor characteristics, including instruction sets, caches,
and I/O. The Toshiba MeP core is a configurable processor
optimized for media processing and streaming.

Instruction set synthesis is a form of architectural optimiza-
tion that concentrates on instructions. Holmer and Despain [32]
used a 1% rule to determine what instructions to add to the
architecture—an instruction must produce at least 1% improve-
ment in performance to be included. They used microcode com-
paction techniques to generate candidate instructions. Huang
and Despain [33], in contrast, used simulated annealing.
Atasu et al. [34] developed graph-oriented instruction gen-
eration algorithms that generate large candidate instructions,
possibly including disjoint operations.

The XPRES tool from Tensilica, Inc. [35] combines the no-
tions of configurable processor, instruction set extensions, and
automated synthesis into a tool flow that starts with user appli-
cation code and ends up with a configured instruction-extended
processor tuned to the particular application(s). XPRES uses
optimization and design space exploration techniques that allow
users to select the right combination of performance improve-
ment, area increase, and energy reduction that best meets their
design objectives. The user may be presented with a Pareto-
style tradeoff curve that graphically illustrates the choices
available between area and cost increases versus performance
improvement.

Several commercial approaches that generate application-
specific instruction set processors or coprocessors from scratch
exist. These start with either application source code (e.g.,
Synfora PICO, which is based on research from HP Lab-
oratories [36]) or compiled binary code (e.g., Critical Blue
Cascade [37]) and generate a custom highly application-tuned
coprocessor.

B. Encoding

MPSoCs provide many opportunities for optimizing the en-
coding of signals that are not directly visible by the user. Signal
encoding can improve both area and power consumption. Code
compression and bus encoding are two well-known examples
of encoding optimizations.

Code compression generates optimized encodings of in-
structions that are then decoded during execution. Compressed
instructions do not have to adhere to traditional constraints on

WOLF et al.: MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) TECHNOLOGY 1709

instruction set design such as instruction length or fields. Code
compression was introduced by Wolfe and Chanin [38], who
used Huffman coding. A similar scheme was provided on one
model of PowerPC [39]. A number of groups have studied
code compression since then; we mention only a few here.
Lefurgy et al. [40] introduced the branch table, which improves
the handling of branches. Larin and Conte [41] tailored the
encoding of fields in instructions based on the program’s use
of those fields. Lekatsas and Wolf [42] used arithmetic coding
and Markov models.

Data compression is more complex because data is fre-
quently written, which means that the architecture must be able
to both compress and decompress on the fly. Tremaine et al.
[43] developed an architecture that uses Lempel-Ziv compres-
sion to compress and uncompress data moving between the
level 3 cache and main memory. Benini et al. [44] used a data
compression unit to compress and decompress data transfers.

Buses are good candidates for encoding because they are
heavily used and have large capacitances that consume large
amounts of power. Stan and Burleson introduced bus-invert
coding [45], which transmits either the true or complement
form of a word, depending on the bits of the previous transfer,
to reduce the number of bit flips on the bus. Mussoll et al. [46]
developed working-zone encoding, which divides programs
into sets of addresses for encoding. Benini et al. [47] clustered
correlated address bits. Lv et al. [48] used a dictionary-based
scheme.

C. Interconnect-Driven Design

Traditionally, in SoC design, the design of on-chip intercon-
nects has been an afterthought or a choice made obvious by
the buses available with the single processor chosen for the
SoC. Because early SoCs were driven by a design approach
that sought to integrate onto a single chip the architecture of
a complete board, most interconnect choices were based on
conventional bus concepts. Thus, the two best known SoC
buses are ARM AMBA (ARM processors) and IBM CoreCon-
nect (PowerPC and POWER processors). AMBA is actually a
bus family, following conventional memory-mapped, single, or
multiple master bus controls, with bridges between buses of
different performance and sometimes to split the bus into do-
mains. AMBA buses include APB for peripherals, the AMBA
AHB for the main processor, and now a crossbar-based split
transaction bus for multiple masters and slaves (AXI). The
classic bus-based architecture places low-speed peripherals on a
lower speed peripheral bus, which is bridged to a higher speed
system bus on which sits the main processor and high speed
hardware accelerators, as well as bridges to other processors
with their own high performance system buses.

It has long been predicted that as SoCs grow in complexity
with more and more processing blocks (and MPSoCs will of
course move us in this direction faster than a single-processor
SoC), current bus-based architectures will run out of perfor-
mance and, in addition, consume far more energy than desirable
to achieve the required on-chip communications and bandwidth
[49]. The search for alternative architectures has led to the
concept of network-on-chip (NoC) (for a good survey, see the

book edited by De Micheli and Benini [50]). After several
years of primarily being a research area, there are now several
credible commercial NoCs. The key idea behind an NoC is to
use a hierarchical network with routers to allow packets to flow
more efficiently between originators and targets and to provide
additional communications resources (rather than, for example,
a single shared bus) so that multiple communications channels
can be simultaneously operating. In this, the energy and perfor-
mance inefficiencies of shared-medium bus-based communica-
tions can be ameliorated. Many NoC architectures are possible
and the research community has explored several of them.

Sonics SiliconBackplane was the first commercial NoC [51].
Sonics offers a TDMA-style interconnection network with both
fixed reservations of bandwidth along with the grantback of
unneeded communication allocations. Today, several other ven-
dors provide NoCs, including Arteris [52] and Silistix [53].
The Silistix interconnect is an asynchronous interconnect that
has adaptors for common bus protocols and is meant to fit
into an SoC built by using the globally asynchronous locally
synchronous paradigm.

D. Core- and Platform-Based Design

Bergamaschi et al. [54] developed a core-based synthesis
strategy for the IBM CoreConnect bus. Their Coral tool au-
tomates many of the tasks required to stitch together multi-
ple cores using virtual components. Each virtual component
describes the interfaces for a class of real components. If the
glue logic supplied with each core is not sufficient, Coral can
synthesize some combinational logic. Coral also checks the
connections between cores using Boolean decision diagrams.

Cesario and Jerraya [55] use wrappers to componentize both
hardware and software. Wrappers perform low-level adapta-
tions like protocol transformation. A golden abstract architec-
ture defines the platform, which can then be specialized to
create an implementation.

CoWare N2C [56] and Cadence VCC [57] were very early
tools for SoC integration and platform-based design from the
mid to late 1990s. N2C supported relatively simple platforms
with one main processor, a standard bus architecture, and
hardware peripherals of various types including accelerators. Its
primary distinguishing feature was interface synthesis, which
is a way of describing high-level communication protocols
between software functions and hardware blocks, and via
template-driven generation, the capability of directly generat-
ing relevant software and hardware that would implement the
selected protocols. VCC was a slightly more generic tool that
implemented the function-architecture codesign concept. The
function of an intended system would be captured independent
of the architecture, and an explicit mapping between func-
tional blocks and architectural elements and communications
channels between functional blocks and associated architectural
channels would be used to carry out the performance estimation
of the resulting mapped system. A variety of links to both
hardware and software implementation were also generated
from VCC.

VCC survived for a few years as a commercial product before
being abandoned by Cadence. N2C was gradually replaced by

1710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

CoWare with the Platform Architect tool. Platform architect
follows a more conventional line in common with other existing
commercial system level tools such as ARM Realview ESL
SoC Designer (now Carbon Design Systems).

In these kinds of tools, a variety of IP blocks such as proces-
sors, buses, memories, DMA controllers, and other peripherals
are selected from libraries and are interconnected, assuming
that the right kinds of protocol matching bridges exist. From
the architecture, simulation models based on SystemC can be
generated and precompiled software is loaded into the appro-
priate processor instruction set simulator models. The systems
can be simulated, often in a choice between a cycle-accurate
mode and a fast functional mode as a “virtual prototype,”
and various system performance information can be tracked
and analyzed. Bus contention and traffic and the relationship
between processor activity and bus activity can all be assessed,
leading to a refined microarchitecture that is more optimized to
the application.

These more modern system level design tools offer less
methodology assistance in deciding on the mapping between
software tasks and processors and between communication
abstractions and implementations than N2C and VCC offered.
However, because they are not restricted in the architectural
domain to just the elements that supported the N2C and VCC
methodologies, they are arguably more general and also easier
for a design team to adopt as part of a more gradual move to
system-level MPSoC design.

Additional information about system level design tools is
available in the book by Bailey et al. [53].

E. Memory System Optimizations

A variety of algorithms and methodologies have been
developed to optimize the memory system behavior of software
[58]. Catthoor et al. developed an influential methodology
for memory system optimization in multimedia systems:
data flow analysis and model extraction, global data flow
transformations, global loop and control flow optimization,
data reuse optimization, memory organization design, and
in-place optimization. A great deal of work at the IMEC,
such as that by Franssen et al. [59], De Greef et al. [60], and
Masselos et al. [61], developed algorithms for data transfer and
storage management.

Panda et al. [62] developed algorithms that place data
in memory to reduce cache conflicts and place arrays ac-
cessed by inner loops. Their algorithm for placing scalars
used a closeness graph to analyze the relationships between
accesses. They used an interference graph to analyze arrays.
Kandemir et al. [63] combined data and loop transformations
to optimize the behavior of a program in cache.

Scratch pad memories have been proposed as alternatives to
address-mapped caches. A scratch pad memory occupies the
same level of the memory hierarchy as does a cache, but its
contents are determined by software, giving more control of
access times to the program. Panda et al. [64] developed al-
gorithms to allocate variables to the scratchpad. They statically
allocated scalars. They defined a series of metrics, including

variable and interference access counts, to analyze the behavior
of arrays that have intersecting lifetimes.

Gordon-Ross et al. [65] optimized the cache hierarchy: first,
the cache size for each level, then line size for each level, then
associativity per level. Balasubramonian et al. [66], among oth-
ers, have proposed configurable caches that can be reconfigured
at run time based on the program’s temporal behavior.

F. Hardware/Software Codesign

Hardware/software codesign was developed in the early
1990s. Hardware/software cosynthesis can be used to ex-
plore the design space of heterogeneous multiprocessors.
Cosyma [67], Vulcan [68], and the system of Kalavade and
Lee [69] were early influential cosynthesis systems, with
each taking a very different approach to solving all the
complex interactions due to the many degrees of freedom
in hardware/software codesign: Cosyma’s heuristic moved
operations from software to hardware, Vulcan started with
all operations in hardware and moved some to software, and
Kalavade and Lee used iterative performance improvement and
cost reduction steps.

Cost estimation is one very important problem in cosynthesis
because area, performance, and power must be estimated both
accurately and quickly. Cost estimation methods were devel-
oped by Herman et al. [70], Henkel and Ernst [71], Vahid and
Gajski [72], and Xie and Wolf [73] among others.

A number of other algorithms have been developed for co-
synthesis: Vahid et al. used binary search [74], Eles et al. [75]
compared simulated annealing and tabu search, Lycos [76]
used heuristic search over basic scheduling blocks, Wolf [77]
used heuristic search that alternated between scheduling and
allocation, Dick and Jha [78] applied genetic algorithms,
COSYN [79] used heuristics optimized for large sets of tasks,
some of which were replicated, and Serra [80] combined static
and dynamic task scheduling.

G. SDEs

SDEs for single processors can now be quickly retargeted
to new architectures. A variety of commercial and open-source
SDEs illustrate this technique. No comparable retargeting
technology exists for multiprocessors. As a result, MPSoC de-
velopment environments tend to be collections of tools without
substantial connections between them. As a result, program-
mers and debuggers often find it very difficult to determine the
true state of the system.

Popovici et al. [81] developed a software development plat-
form that can be retargeted to different multiprocessors. It
provides four levels of abstraction. The SA level models the
system as a set of functions grouped into tasks connected by
abstract communication links. The SA model is formulated
by using standard Simulink functions. The virtual architecture
level refines software into a C code that communicates by using
a standard API. The transaction accurate architecture level
models the machine and operating system in sufficient detail to
allow the debugging of communication and performance. The
virtual prototype level is described in terms of the processor and
low-level software used to implement the final system.

WOLF et al.: MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) TECHNOLOGY 1711

VI. CONCLUSION

We believe that MPSoCs illustrate an important chapter in
the history of multiprocessing. In conclusion, we need to ask
whether that chapter will close as general-purpose architectures
take over high-performance embedded computing or whether
MPSoCs will continue to be designed as alternatives to general-
purpose processors.

If processors can supply sufficient computational power, then
the ease with which they can be programmed pulls system
designers toward uniprocessors. Much audio processing, except
for very low-cost and low-power applications, is performed on
DSPs. Whereas DSPs have somewhat different architectures
than do desktop and laptop systems, they are von Neumann ma-
chines that support traditional software development methods.

However, even today’s applications can be handled by future
generations of general-purpose systems; thanks to Moore’s Law
advances, we believe that new applications that will require the
development of new MPSoCs will emerge. Embedded com-
puter vision is one example of an emerging field that can use
essentially unlimited amounts of computational power but must
also meet real-time, low-power, and low-cost requirements. The
design methods and tools that have been developed for MPSoCs
will continue to be useful for these next-generation systems.

ACKNOWLEDGMENT

The authors would like to thank B. Ackland and S. Dutta for
the helpful discussions of their MPSoCs.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips,” in Proc. 41st
Annu. Des. Autom. Conf., 2004, pp. 681–685.

[2] W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall,
A. H. Sameh, and D. L. Slotnick, “The Illiac IV system,” Proc. IEEE,
vol. 60, no. 4, pp. 369–388, Apr. 1972.

[3] W. A. Wulf and S. P. Harbison, “Reflections in a pool of processors—An
experience report on C.mmp/Hydra,” in Proc. AFIPS Nat. Comput. Conf.,
Jun. 1978, pp. 939–951.

[4] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach. San Francisco, CA: Morgan Kaufmann,
1999.

[5] G. S. Almasi and A. Gottlieb, Highly Parallel Computing, 2nd ed.
Redwood City, CA: Benjamin Cummings, 1994.

[6] B. Ackland, A. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade,
J. Knobloch, E. Micca, M. Moturi, C. J. Nicol, J. H. O’Neill, J. Othmer,
E. Sackinger, K. J. Singh, J. Sweet, C. J. Terman, and J. Williams, “A
single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP,” IEEE J. Solid-
State Circuits, vol. 35, no. 3, pp. 412–424, Mar. 2000.

[7] C-5 Network Processor Architecture Guide, C-Port Corp., North Andover,
MA, May 31, 2001. [Online]. Available: http://www.freescale.com/files/
netcomm/doc/ref_manual/C5NPD0-AG.pdf?fsrch=1

[8] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SOC for
advanced set-top box and digital TV systems,” IEEE Des. Test. Comput.,
vol. 18, no. 5, pp. 21–31, Sep./Oct. 2001.

[9] OMAP5912 Multimedia Processor Device Overview and Architecture
Reference Guide, Texas Instruments Inc., Dallas, TX, Mar. 2004. [Online].
Available: http://www.ti.com

[10] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins, and M. C. Rossi,
Nomadik—Open Multimedia Platform for Next Generation Mobile
Devices, 2003. technical article TA305. [Online]. Available: http://
www.st.com

[11] J. Goodacre and A. N. Sloss, “Parallelism and the ARM instruction set
architecture,” Computer, vol. 38, no. 7, pp. 42–50, Jul. 2005.

[12] Intel IXP2855 Network Processor, Intel Corp., Santa Clara, CA, 2005.
[Online]. Available: http://www.intel.com

[13] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communica-
tion network: Built for speed,” IEEE Micro, vol. 26, no. 3, pp. 10–23,
May/Jun. 2006.

[14] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill, “A software-
defined communications baseband design,” IEEE Commun. Mag., vol. 41,
no. 1, pp. 120–128, Jan. 2003.

[15] J. Glossner, M. Moudgill, D. Iancu, G. Nacer, S. Jinturkar, S. Stanley,
M. Samori, T. Raja, and M. Schulte, The Sandbridge Sand-
bridge Convergence Platform, 2005. [Online]. Available: http://www.
sandbridgetech.com

[16] W. Eatherton, “The push of network processing to the top of the pyra-
mid,” in Proc. Symp. Architectures Netw. Commun. Syst., Princeton, NJ,
Oct. 26–28, 2005.

[17] S. Otsuka, “Design of a printer controller SoC using a multiprocessor
configuration,” in Proc. Nikkei Embedded Processor Symp., Tokyo, Japan,
Oct. 31, 2006. Presentation in Japanese/English.

[18] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A single-chip multiproces-
sor,” Computer, vol. 30, no. 9, pp. 79–85, Sep. 1997.

[19] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, “Introduction to
Intel Core Duo processor architecture,” Intel Technol. J., vol. 10, no. 2,
pp. 89–97, May 15, 2006.

[20] K. Quinn, J. Yang, and V. Turner, The Next Evolution in Enterprise
Computing: The Convergence of Multicore X86 Processing and 64-bit
Operating Systems, 2005. [Online]. Available: http://www.amd.com

[21] A. S. Leon, J. L. Shin, K. W. Tam, W. Bryg, F. Schumacher, P. Kongetira,
D. Weisner, and A. Strong, “A power-efficient high-throughput 32-thread
SPARC processor,” in Proc. IEEE Int. Solid-State Circuits Conf., 2006,
pp. 98–107.

[22] B. G. Haskell, A. Prui, and A. N. Netravali, Digital Video: An Introduction
to MPEG-2. New York: Chapman & Hall, 1997.

[23] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A design methodology
for application-specific networks-on-chips,” ACM Trans. Embed. Comput.
Syst., vol. 5, no. 2, pp. 263–280, May 2006.

[24] T. Austin, D. Blaauw, S. Mahlke, T. Mudge, C. Chakrabarti, and
W. Wolf, “Mobile supercomputers,” Computer, vol. 35, no. 7, pp. 81–83,
May 2004.

[25] W. Wolf, Modern VLSI Design: System-on-Chip Design, 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall, 2004.

[26] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 4th ed. San Francisco, CA: Morgan Kaufmann, 2006.

[27] P. Ienne and R. Leupers, Eds., Customizable Embedded Processors.
San Francisco, CA: Morgan Kaufmann, 2006.

[28] P. Marwedel, “The MIMOLA design system: Tools for the design of
digital processors,” in Proc. 21st Des. Autom. Conf., 1984, pp. 587–593.

[29] S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “Rapid prototyping
of JPEG encoder using the ASIP development system: PEAS-III,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Apr. 2003, vol. 2,
pp. 485–488.

[30] A. Hoffman, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,
A. Wieferink, and H. Meyr, “A novel methodology for the design
of application-specific instruction-set processors (ASIPs) using a ma-
chine description language,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 11, pp. 1338–1354, Nov. 2001.

[31] C. Rowen, Engineering the Complex SoC: Fast, Flexible Design With
Configurable Processors. Upper Saddle River, NJ: Prentice-Hall, 2004.

[32] B. K. Holmer and A. M. Despain, “Viewing instruction set design as an
optimization problem,” in Proc. 24th Int. Symp. Microarchitecture, 1991,
pp. 153–162.

[33] I.-J. Huang and A. M. Despain, “Synthesis of application specific in-
struction sets,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 14, no. 6, pp. 663–675, Jun. 1995.

[34] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in Proc.
40th Des. Autom. Conf., 2003, pp. 256–261.

[35] D. Goodwin and D. Petkov, “Automatic generation of application specific
processors,” in Proc. CASES, 2003, pp. 137–147.

[36] V. K. S. Aditya, B. R. Rau, and V. Kathail, “Automatic architectural
synthesis of VLIW and EPIC processors,” in Proc. 12th Int. Symp. Syst.
Synthesis, 1999, pp. 107–113.

[37] R. Taylor and P. Morgan, “Using coprocessor synthesis to accelerate
embedded software,” in Proc. Embedded Syst. Conf., 2005.

[38] A. Wolfe and A. Chanin, “Executing compressed programs on an embed-
ded RISC architecture,” in Proc. 25th Annu. Int. Symp. Microarchitecture,
1992, pp. 81–91.

[39] M. T. Kemp, R. K. Montoye, J. D. Harper, J. D. Palmer, and
D. J. Auerbach, “A decompression core for PowerPC,” IBM J. Res.
Develop., vol. 42, no. 6, pp. 807–812, Nov. 1998.

1712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

[40] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density
using compression techniques,” in Proc. 30th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 1997, pp. 194–203.

[41] S. Y. Larin and T. M. Conte, “Compiler-driven cached code compression
schemes for embedded ILP processors,” in Proc. 32nd Annu. Int. Symp.
Microarchitecture, 1999, pp. 82–92.

[42] H. Lekatsas and W. Wolf, “SAMC: A code compression algorithm for em-
bedded processors,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 18, no. 12, pp. 1689–1701, Dec. 1999.

[43] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schultz,
T. B. Smith, M. E. Wazlowski, and P. M. Bland, “IBM memory expansion
technology (MXT),” IBM J. Res. Develop., vol. 45, no. 2, pp. 271–285,
Mar. 2001.

[44] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted data
compression for energy minimization in systems with embedded proces-
sors,” in Proc. Conf. Des. Autom. Test Eur., 2002, pp. 449–453.

[45] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power
I/O,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1,
pp. 49–58, Mar. 1995.

[46] E. Musoll, T. Lang, and J. Cortadella, “Working-zone encoding for
reducing the energy in microprocessor address buses,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 4, pp. 568–572,
Dec. 1998.

[47] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer, “Power
optimization of core-based systems by address bus encoding,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 4, pp. 554–562,
Dec. 1998.

[48] T. Lv, J. Henkel, H. Lekatsas, and W. Wolf, “A dictionary-
based en/decoding scheme for low-power data buses,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 5, pp. 943–951,
Oct. 2003.

[49] W. Dally and B. Towles, “Route packets, not wires: On-chip interconnec-
tion networks,” in Proc. Des. Autom. Conf., 2001, pp. 684–689.

[50] G. De Micheli and L. Benini, Eds., Networks on Chips: Technology and
Tools. San Francisco, CA: Morgan Kaufmann, 2006

[51] D. Wingard, “MicroNetwork-based integration for SOCs,” in Proc. Des.
Autom. Conf., 2001, pp. 273–677.

[52] A. Fanet, “NoC: The arch key of IP integration methodology,” in Proc.
MPSoC Symp., 2005.

[53] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A
Prescription for Electronic System Level Methodology. San Francisco,
CA: Morgan Kaufmann, 2007.

[54] R. Bergamaschi, S. Bhattacharya, R. Wagner, C. Fellenz, M. Muhlada,
F. White, W. R. Lee, and J.-M. Daveau, “Automating the design of
SOCs using cores,” IEEE Des. Test. Comput., vol. 18, no. 5, pp. 32–45,
Sep./Oct. 2001.

[55] W. O. Cesario and A. A. Jerraya, “Component-based design for
multiprocessor systems-on-chips,” in Multiprocessor Systems-on-Chips,
A. A. Jerraya and W. Wolf, Eds. San Francisco, CA: Morgan Kaufmann,
2004, ch. 13.

[56] K. Van Rompaey, I. Bolsens, H. DeMan, and D. Verkest, “CoWare—A
design environment for heterogeneous hardware/software systems,” in
Proc. Conf. Eur. Des. Autom., 1996, pp. 252–257.

[57] S. J. Krolikoski, F. Schirrmeister, B. Salefski, J. Rowson, and
G. Martin, “Methodology and technology for virtual component driven
hardware/software co-design on the system-level,” in Proc. Int. Conf.
Circuits Syst., 1999, vol. 6, pp. 456–459.

[58] W. Wolf and M. Kandemir, “Memory system optimization of embedded
software,” Proc. IEEE, vol. 91, no. 1, pp. 165–182, Jan. 2003.

[59] F. Franssen, I. Nachtergaele, H. Samsom, F. Catthoor, and H. De Man,
“Control flow optimization for fast system simulation and storage mini-
mization,” in Proc. Int. Conf. Des. Test, 1994, pp. 20–24.

[60] E. De Greef, F. Catthoor, and H. De Man, “Memory organization for video
algorithms on programmable signal processors,” in Proc. ICCD, 1995,
pp. 552–557.

[61] K. Masselos, F. Catthoor, C. E. Goutis, and H. De Man, “A perfor-
mance oriented use methodology of power optimizing code transforma-
tions for multimedia applications realized on programmable multimedia
processors,” in Proc. IEEE Workshop Signal Process. Syst., 1999,
pp. 261–270.

[62] P. R. Panda, N. D. Dutt, and A. Nicolau, “Memory data organization
for improved cache performance in embedded processor applications,”
ACM Trans. Des. Autom. Embed. Syst., vol. 2, no. 4, pp. 384–409,
Oct. 1997.

[63] M. Kandemir, J. Ramanujam, and A. Choudhary, “Improving cache lo-
cality by a combination of loop and data transformations,” IEEE Trans.
Comput., vol. 48, no. 2, pp. 159–167, Feb. 1999.

[64] P. R. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip memory:
The data partitioning problem in embedded processor-based systems,”
ACM Trans. Des. Autom. Embed. Syst., vol. 5, no. 3, pp. 682–704,
Jul. 2000.

[65] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic tuning of two-level
caches to embedded applications,” in Proc. DATE, 2004, pp. 208–213.

[66] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dworkadas, “A dynamically tunable memory hierarchy,” IEEE
Trans. Comput., vol. 52, no. 10, pp. 1243–1258, Oct. 2003.

[67] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Des. Test Comput., vol. 10, no. 4, pp. 64–75,
Dec. 1993.

[68] R. K. Gupta and G. De Micheli, “Hardware-software cosynthesis for
digital systems,” IEEE Des. Test Comput., vol. 10, no. 3, pp. 29–41,
Sep. 1993.

[69] A. Kalavade and E. A. Lee, “The extended partitioning problem:
Hardware/software mapping, scheduling, and implementation-bin selec-
tion,” Des. Autom. Embed. Syst., vol. 2, no. 2, pp. 125–163, Mar. 1997.

[70] D. Hermann, J. Henkel, and R. Ernst, “An approach to the adaptation
of estimated cost parameters in the COSYMA system,” in Proc. 3rd Int.
Workshop Hardware/Software Codes., 1994, pp. 100–107.

[71] J. Henkel and R. Ernst, “An approach to automated hardware/software
partitioning using a flexible granularity that is driven by high-level esti-
mation techniques,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 9, no. 2, pp. 273–289, Apr. 2001.

[72] F. Vahid and D. D. Gajski, “Incremental hardware estimation during
hardware/software functional partitioning,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 3, no. 3, pp. 459–464, Sep. 1995.

[73] Y. Xie and W. Wolf, “Hardware/software co-synthesis with custom
ASICs,” in Proc. ASPDAC, 2000, pp. 129–133.

[74] F. Vahid, J. Gong, and D. D. Gajski, “A binary-constraint search algorithm
for minimizing hardware during hardware/software partitioning,” in Proc.
Conf. Eur. Des. Autom., 1994, pp. 214–219.

[75] P. Eles, Z. Peng, K. Kuchinski, and A. Doboli, “System level hardware/
software partitioning based on simulated annealing and tabu search,”
Des. Autom. Embed. Syst., vol. 2, no. 1, pp. 5–32, Jan. 1997.

[76] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A. Haxthausen,
“LYCOS: The Lyngby co-synthesis system,” Des. Autom. Embed. Syst.,
vol. 2, no. 2, pp. 195–235, Mar. 1997.

[77] W. Wolf, “An architectural co-synthesis algorithm for distributed, embed-
ded computing systems,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 5, no. 2, pp. 218–229, Jun. 1997.

[78] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm
for hardware-software cosynthesis of distributed embedded systems,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 17, no. 10,
pp. 920–935, Oct. 1998.

[79] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-
software co-synthesis of heterogeneous distributed systems,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 92–104, Mar. 1999.

[80] V. J. Mooney, III and G. De Micheli, “Hardware/software co-design of
run-time schedulers for real-time systems,” Des. Autom. Embed. Syst.,
vol. 6, no. 1, pp. 89–144, Sep. 2000.

[81] K. Popovici, X. Guerin, F. Rousseau, P. S. Paolucci, and A. Jerraya,
“Efficient software development platforms for multimedia applications
at different abstraction levels,” in Proc. IEEE Rapid Syst. Prototyping
Workshop, 2007, pp. 113–122.

Wayne Wolf (F’98) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1980, 1981,
and 1984, respectively.

He is Farmer Distinguished Chair and a Research
Alliance Eminient Scholar with the Georgia Institute
of Technology, Atlanta. He was with AT&T Bell
Laboratories from 1984 to 1989. He was with the
faculty of Princeton University, Princeton, NJ, from
1989 to 2007. His research interests include em-
bedded computing, embedded video and computer

vision, and VLSI systems.
Dr. Wolf is the recipient of the American Society for Engineering Education

Terman Award and the IEEE Circuits and Systems Society Education Award.
He is a Fellow of the Association for Computing Machinery.

WOLF et al.: MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) TECHNOLOGY 1713

Ahmed Amine Jerraya received the Engineer de-
gree from the University of Tunis, Tunis, Tunisia,
in 1980 and the “Docteur Ingénieur” and “Docteur
d’Etat” degrees from the University of Grenoble,
Grenoble, France, in 1983 and 1989, respectively, all
in computer sciences.

In 1986, he held a full research position with
the Centre National de la Recherche Scientifique
(CNRS), France. From April 1990 to March 1991,
he was a Member of the Scientific Staff at Nortel in
Canada, where he worked on linking system design

tools and hardware design environments. He got the grade of Research Director
within CNRS and managed at the TIMA Laboratory the research dealing with
multiprocessor systems-on-chips. Since February 2007, he has been with CEA-
LETI, where he is the Head of Design Programs. He served as the General Chair
for the Conference Design, Automation and Test in Europe in 2001, coauthored
eight books, and published more than 200 papers in international conferences
and journals.

Dr. Jerraya is the recipient of the Best Paper Award at the 1994 European
Design and Test Conference for his work on hardware/software cosimulation.

Grant Martin (M’95–SM’04) received the B.S. and
M.S. degrees in combinatorics and optimisation from
the University of Waterloo, Waterloo, ON, Canada,
in 1977 and 1978, respectively.

He is a Chief Scientist with Tensilica, Inc., Santa
Clara, CA. Before that, he was with Burroughs,
Scotland for six years, with Nortel/BNR, Canada
for ten years, and with Cadence Design Systems for
nine years, eventually becoming a Cadence Fellow
in their laboratories. He is the coauthor or Co-editor
of nine books dealing with system-on-chip (SoC)

design, SystemC, UML, modeling, electronic design automation for integrated
circuits, and system-level design, including the first book on SoC design
published in Russian. His most recent book, “ESL Design and Verification,”
which was written with Brian Bailey and Andrew Piziali, was published by
Elsevier Morgan Kaufmann in February, 2007. He was the Cochair of the
Design Automation Conference Technical Program Committee for Methods
for 2005 and 2006. His particular areas of interest include system-level design,
IP-based design of SoC, platform-based design, and embedded software.

