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-Abstract: A queueing network is used to show that thé page fault

rate functlons of active programs are the critical factors in system
processing efficiency. Properties of page fault functions are set

forth in terms of a locality model of program behavior. Memory manage-
ment policies are grouped into two fixed-partition and three variable-
partition classes according to their methods of allocating memory and
controlling the multiprogramming load. It is concluded that the so-called
working set policies can be expected to yield the lowest paging rates

and highest processing efficiency of all the classes.
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INTRODUCTION

Eliciting a full, or even adequate, level of performance from a
multiprogrg@med computef system has proved a difficult goal. Much to
the regret of its designers, many a system was put together with but
exiguous concern for its ultimate behavior — perhaps because the issues
of system organization were more pressing or interesting, or because the
complexities of the interactions among demands sf different programs
for various resources were underestimated. Particularly vexing have
heen a varlety of instability problems, commonly
called “thrashing” [W2], and the inability to know which of a myriad of
possibilities is the most efficient method of managing a system's memory
resources. Two converging streams of research have been increasing our
knowledge of analysis and control of system behavior; their eventual
confluence will enable the design of new systems whose behavior can
confidently be predicted, and may enable improvements in existing sys-
tems. The one stream comprises modeling and analysis methods, parti-
cularly of networks of interacting queues, that permit studying the
effects of competing resource demands both in steady and transient
state. Though steady state analysis is more fully developed and pro-
vides great insight, full solutions to stability problems await the develop-
ment of transient state analyses. (See R. Muntz's paper in this
issue (M3].) The other stream comprises the study of program behavior
and memory management —- that 1s, the characterization of the relation-

ship between observable patterns of accessing information and demands



on memory and other system resources, and their subsequent use in
designing policies of memory management. This paper surveys the

present state of knowledge about the interaction of these two streams.

2., SYSTEM ORGANIZATICON AND PARAMETERS

A great many contemporary computer systems provide each programmer
with a paged virtual address space larger than the main memory space
likely to be available when he runs his program. They alsc provide a
file system to permit programmers to store variable numbers of variable
objects (files) for indefinite periods of time. We assume that the
reader is familiar with the terminology of demand paged virtual memory
and of file systems (see, for example, Ref. D3 or S3}, Most such systems
use multiprogramming, so that main memory will contain a supply of active
programs to which the processor can be switched should the one it is
warking on stop; since a running program typically stops because it
requlires service from ;ome device‘other than the processor, multipro-
gramming improves concurrency in the use of all sfstem resources,

Figure 1 depicts the type of multiprogramming system under consider-
atlon here: a network of Interacting service stations. The network

comprises two main portions: the active network contains the processor

and I/0 (input/output) stations, while the passive network contains a

Job queue and policies for admitting new programs to active status. A
program is active when in the active network; only when there 1s it
eligible to receive processing and I/0 service, and to have pages in
main memory. The number of active programs is called the level or

degree of multiprogramming; it is denoted hereafter by n or, in the
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Figure 1. Organization of Multiprogramming System.



In Figure‘l, each active program is wailting for service from one of

the three stations in the active network: it waits at the file I/O station

whenever it requires one or more records of a file to be transferred
between a main memory buffer and the file store {usually a disk); it

waits at the paging I/0 station whenever it requires a page to be

transferred between main memory and the paging store (usually a drum);

and otherwise it waits at the processor station. The box labelled

Job Queue contains a set of enabled programs, a declsion polilecy for
activating them, and a "load control" mechanism for controlling nit).
New programs can be submitted from a batch-processing system entry sta-
tion, a collection of time sharing terminals, or both. (See also B5.)

Inherent in the network of Figure 1 is the notion that an active
program alternates between intervals of requiring processor service and
1nter5als of recquiring an I/0 transaction. Though it 1s in principle
possible for a single program concurrently to be using both the processor
and I/0 stations, : the assu@ption of no such concurrency 1is
frequently met in practice: demand paging guarantees Qisjointness of
processing and paging 1/0, and few programmers ever achieve more than
a small percentage overlap between processing and file I/0,

At the completion of a proecessing interval, a program moves to the
file I/0 station with probability G to the paging I/0 station with
probability qp, or to the 1lnactive state with probability Ao of course
(2.1) 9 + qp tq, = 1.

The service rates of the three stations are glven by the parameters



bf, bh_, and bo; they denote the reclprocals of the mean service times

P
at their respective stations (e.qg., ‘1/b0 is the mesn length of a process-
ing interval).

The network parameters Ags qp, and q, are derivable from program
parameters. Suppose the total file I/0, paging I/0, and processing
requirements of a program are dencted by Tf, Tp, and T0 respectively.
(In our context, Tf and T0 are entirely intrinsic to a program, whereas
Tp is not; how much memory is allocated to a program, or what policy
1s used to determine which of a program!s pages reside in main memory,
significantly affect Tp' The system scheduling and memory management
policies can cause Tp to vary over an extremely wide range, from consider-
ably smaller than TO to considerably larger.) Let ag denote the rate
at which a program requests file I/0; its total number of file I/O.
requests is therefore T Acs and the total time required to serve all

0
of them is Tf = Toaf/bf. Similarly, 1f ap denotes a program's paging
rate, the total time 1t spends on paging is Tp = Toap/bp. Since on
every processor departure, a program chooses independently to leave the
active network with probability Ay the mean number of passes through
the processor before leaving is 1/q0; and since the méan time per pass

is assumed to be 1/b0,

(2.2) T = _—1_ -

0 %P0
Of the 1/q0 passes a program makes on the processor, (1/q0)-1 of them
were occaslons on which it moved to an I/0 station (after the last

pass, it exited active status); equating this to the total number of



I1/0 requests, Totaf+ap), we find

1
1+ Tb(af+up3

(2.3) %

Together with (2,2), this implies that by = af+ap+1/T0. Since the
fraction of processor passes after which 4 program moves to the file
I/0C station 1s e the number of visits it makes there muist be

qf/q0 - Thaf, which implies

To?s
(2.4) U " Tod% = 7T (a_+a } - ’
0O °f p
Similarly,
Tbap
(2.5) » . q - T a - [ ]
P 0*p%0 1+ To(af+ap)

It is clear from (2,3), (2.4), and (2.5) that q0+qf+qp=1 as required,

If we now extend TO’ af, a bf, b to be averages common to all

p’ P
active programs, we can use the parameter values implied by the above

equations to study the average properties of the network.

Now: Define Ub, Uf, and Up to be the utilizations (fraction of time
busy) of the-three stations, for given load and parameter settings. In
equilibrium, the mean flow of Erograms out of the file I/0 station
must bhe Ufbf programs per unit time: out of the paging I/0 station,

Upbp; and out of the processcr, Uob » Moreover, a fraction qf‘of

UObO must be input to the file I/0 atation and, in equilibrium, the

input flow must be the same as the ocutput flow there; hence

) = U.a

(2.6) Ufbf - Uoboqf = UDb(T.a 0%¢

0 0 0%%

where eqs. (2.4) and {2.2) have been used to 8implify. Define the



relative utilization of the file I/O station,

u a
£ f
(207) R = — - — -
£ U0 bf

.
(2.8) R = - .
P U0 bp

The relative utilization of the processor station is of course Rozl.

It 1s important to note that RP can be interpreted as the ratio of

the mean paging I1/0 service time to mean uninterrupted processing inter-—

val between page faults. (An analogous statement can be made for Rf.)

In other words, if S = ‘1/bp is the mean paging I/0 service time, and
L = 1/ap is the mean length of executlon interval between page faults
(assuming the main memory access time 1s used for the unit of virtual

time), then (2.8) can be rewritten

S
(2.9) Rp =2 'l.:" -

The foregoling discussion assumes tha£ all actlve preograms have the
same system parameters. If they do not, we can use as an approximation
sultable averages over all active programs. For example, 1f a sequence
of k successive page faults (from programs of different characteristics)
terminate interfault intervals of expected lengths LI""’Lk' we can
use L = (L1+...+Lk)/k in (2.9). In reality, the processor utilization
is a function of all the intervals Li""’Lk' not just thelr average.
However {as we have verified by simulations), the use of ‘the average L
appears to give predictions of utilization within a few per cent of the

true utilization, and thus we felt justified in using the simpler



analysis based on averages over the set of active programs. Nonetheless,
the reader should keap in mind that the use of these averages in fact
-constitutes an appreximation.

Concerning utilizations, a few points should be noted. First,
the ratilo Rf depends only on the intrinsic program parameter a. and
the (fixed) file I/0 station rate bei it cannot be affected by memory
management policies. In contrast, the ratio RP depe.nds on the paging
rate ap, which can be controlled by the system. Therefore, in our
context, the paging rate is the critical parameter. Second, the
relative utilizations Rf, RP' and RO .do not depend on the load (level
of multiprogramming). However, the absolute utilizations do. Under

general assumptions, one can show that

that is, the absolute processor utilization depends only on the load

and the relative utilizations [C4, B5, B6). Once U, is found, the

other utilizations can be obtained from Uf - UQRf and Up = UORp'

Third, if Rf and Rp are fixed, UO rmust be an increasing function of load:
for a new active program must increase the absolute utilization of any
station at which it queues, and, because the utilizations are in fixed

ratios, all other absolute utilizations must increase. Therefore,
(2.17) Flo(n+1, R, Rp) > Uotn, Rey Rp).

Fourth, as load increases, the utilization of the station having
the maximum relative utilization must approach 1 at least as fast as

the others. Let



(2.12) R = max[Rf, Rp, Rol;

since U0 = Um/Rm. the fact of Um approaching 1 fastest implies

1
(2.13) Uy(n, R, Rp) < ?‘-_n .

with near equality for large encugh n. Since RmZ;, the maximum
possible value of U0 may 1n fact be less than 1. Thils shows that

the designer of a systemwhlch apparently is unable to achieve processor
ytilizatlon 1 cannot immediately conclude that an improvement in the

memory management pollicy will increase UO' A slow file I/0 station,

or excessive rate of file I/0 requests, can cause RmaRf>1: the file

I/0 station, rather than the pagihg 1/0 statlon, in this case limits
processor utilization. Usually, however, adequate buffering keeps
RFS;, so that r?ductions in Rp are likely to improve performance.
The properties above show what happens when load is changed and
other parameters are held fixed. In studying memory policles, it 1s
fraquently po%sible to vary the paging rate while holding load and

other parameters fixed. From the above, it follows that

R

(2.14) Uy(n,R <R_.

R]'j) 2 Uy(n,R o

L]
f'l flRp)l p

In words, changing the paging rate from ap to aéls ap cannot decrease

processor utilization. For if reducing Rp ware to cause U, to decrease,

0

then Uf = UORf would derréase as .21l — 1implying 'a decrease in the

utilizations of all ststions, which is patently impossible without

reducing the load,



Since the throughput rate of the active network of the system is

the flow Ol.lt, U’iz-,

(2.15) Ao Ubgy = =

it follows that increasing processor utilization for a given level of
mul tiprogramming improves the system's ability to complete work at that
lo;d level., For multiprogramming level n, Little's formula tells that
the response time in the active set is

nT
(2.16) w =2 _ 0 ,
) U,

that 1s, increasing UO without changing n will decrease response time.

Therefore, decreasing the relative utilization of the paging I/0 station

by an improvement in memory policy without changing the load will concom-

mitantly increase throughput and decrease response time. For thls reason,

processor utilization 1s a suiltable measure of performance,

The previous observations about processor utilization do not con-
slder what happens when an increase in load implies an increase in page
fault rate, on account of programs having less space available. Systems
under memory constraint exhibit an optimm level of multiprogramming, Ny
U, being maximum at n, [(B5]. The reason 1is that overall paging rate 3,
is an implicit function of load, with ap(“+1).2 ap(n). However, for
n<n,, the increase in paging is unable to offset the increase of utiliza-
tion effected by increased load; but for quo, paging Increases more
rapidly and utilization decreases. An extreme case will 1llustrate.
Suppose total main memory 1s M pages and each active program receives

space X = M/n under load n. Take Rfui and Rp to be the step function
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100, X

| Fa
%

1] = a (x)/b -
P p 1/100, x > x

0
In other words, these programs page at a high rate when their memory
allocations are small and at a low rate otherwise, This implies that

the processor utilization has the form (cf. eq. (2.13)):

UO(n, 1, 1/100) < 1/Rm =1, n«< H/xo

R) =

Uo(n,Rf, p

UO(n, 1, 100 ) < ‘1/Rm = 1/100, n 2."’“0
Thls 1s suggested in Flgure 2. The optimal degree of multip;ogramming
is n0=M/x0. The effect suggested here, known as thrashing, is not
usually so ahrupt as this example shows. However, in many practical
situatlons changing the leoad from n, to n0+1 or n0+2 is sufficient to
cause a serious drop in utilization.

The optimal level of multiprogramming can vary from one set of
active programs to ancther, because page fault rates vary among pro-
grams: thus n.=n_(t). To avoild thrashing, it is necessary to include a

00
load control mechanism in the system scheduler (Job Queue in Fig. 1), whose

purpose 18 to adjust dynamically the level of multiprogramming so that
most of the time n(t) < knott) for some small constant k>i. Even a
simple 1imit N on n{t) may not successfully control thrashing, unless N
has been set low enough so that the event kno{t) < N is unlikely == but
then the system is probably operating at a signilficantly suboptimal load
a goodly portion of the time, Load co;trols which attempt to maintain
n(t)-nO(t) and which thereby keep the system operating at top efficiency

will be dilscussed later. (See also RZ and W2.)
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Figure 2. Thrashing Effect.
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To summarlze: We have examined a network representation of the
resources used by active programs in a typical multiprogramming environ-
ment. The purpose was to establish that the page fault rate is the cri-
tical parameter, and that memory peolicy changes that improve it without
changing load or other system parameters can be expected to improve
processor utilization, increase throughput, and decrease response time.
To show whether a proposed change in the memory policy will improve
processing efficiency, 1t is usually sufficient to show that the change
does not increase any program's paging rate, or equivalently that it

mdecreases the relative utilization of the paging I/0 station. We
showed also that there is an optimum load, that a load control mechanism
is required to prevent thrashing, and that load control must be coupled

to the memory polilcy.

3. PROGRAM BEHAVIOR AND PARAMETERS
A program in executlon will generate a sequence ©of references
(xnown as an address trace) to information in itz virtual address space.

The reference string of the program is a sequence

(3.1) ’B’ - r(l) r(2) asw l‘(k) LR X r(K),

in which r(k) is the number of the page containing the virtual address
referenced at time k, where k = 1,2,...,K measures execution time, or

virtual time. The pages the program has present in main memory constitute

lts resident set; the resident set just after the ki reference is dencted
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by Z(k), and its size (in pages) by z(k}. A page fault occurs at vir-
tual time k if r(k) is not in Z2(kx). Under the assumption of demand
paging, Z(k+1) is the same as 2(k) plus r{k} less any pages of 2(k)
replaced (i.e., removed from main memory) by the memory policy; more-
over, z(k+1) <€ z(k}+1l. The memory policy thus determines the sequence
of resident sets 2{(1)Z(2)...2(K) that arises while processing a refer-
ence string R and, hence, the paging rate experienced by the program
generating R.

Let ti’t2""’tK denote the (real) time instants at which the
references of a reference string R commence. The resident set at time

t, where tk-i's t < tk' is the same as that at tilme tk;i' less any pages

which have been replaced; thus
(3.2) Z(tk) S Z(t) = Z(tk_1)+r(k-1) .

It is important to keep clear the distinctlon: the behavior of a glven
program 1s formulated with respect to 1ts virtual time, whereas the
behavior of a system is formulated with respect to real time.

For reasons already discussed, the page fault rate function is impor-

tant in any study of memory management. Denoted by f(A,x), thils function
gives the expected number of page faults generated per unit of virtual

time when a glven reference string R 1s processed by memory policy A,
subject to main memory space constraint x. Since most of the results
depend only on properties which, being common to most fault-rate_functions,
are relatively independent of the particular'B that acises, R will not be
shown as an explicit parameter of these functions; however, the dependence

should not be forgotten altogether.
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For the case of fixed memory allocation, the space constraint x

is interpreted to mean that the resldent set sizes must satisfy =z(k) < x

for all virtual times k. For the case of variable space allocation, the

space constralnt x ls Interpreted to mean that the average resident set
size is x:

1 K
(3.3) x = = 3 zlk);
k=1

it 1s assumed that the policy A has parameters which can be adjusted so
that {3.3) can be satisfied for a range of cholces of x. Examples of
both fixed and variable space policles will be considered below.
Examples of commonly studied fixed-space policies include:
LRU (least recently used) whlch, at a page fault time, replaces the
least recently referenced page of the resldent set; FIFO (first in first
out) which, at a page fault time, replaces the longest resldent page;
RAND {(random) which, at a page fault time, replaces a randomly chosen
page from the resident set; and CPT (optimal) whilch, at a page fault time,
replaces the resident set page that will not be referenced again for the
longest time. Of these, OPT cannot be implemented (1t requires fore-
knowledge), FIFO is simplest to implement (it requires arranging the
resident set pages in an order-of-arrival queue), and LRU 1ls the most
robust, providing consistentiy the lowest (of nonOPT policles) fault
rate over the widest class of reference strings [B1}. Aithough OPT is
not implementable, it can be used a posteriori to compare varilous algor-
ithms against optimum; and its principle — choosing for replacement the

page with maximum "forward distance" — can easily be used to construct
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reference strings for which LRU is optimal or approximately so (see
Appendix 1). If the memory policy A is a member of the large class of
"stack algorithms™ [C4, M1], the fault rate function £(A,x) is non-
increasing in x for every reference string and may be computed by a
highly efficient procedure. Of the above, all but FPIFO are stack
algorithms.

Much of our attention will be directed toward the LRU policy, or
procedures rasembling it. Associated with an instance of this policy
is a dynamic llst known as the LRU stack, that arranges the referenced
pages from top to bottom by decreasing recency of reference. At a page
replacement time, the LRU policy chooses the lowest ranked page in the
stack; therefore, the contents of an x-page resldent set must always
hbe the pages occupying the first x stack positions. When a page is
referenced, the stack is updated by moving the referenced page to the
top and pushing down the intervening pages by one place, The position
at whlch the referenced pages was found in the stack before being promo-

ted to the top is called its stack distance. A page fault occurs in an

x-page resident set at a given reference, Ilf and only if the stack dis-
tance of that reference exceeds x. These ideas form the basis of an
efficient procedure for computing the fault rate function f(LRU,x) by
counting stack distances in a reference string (see Appendix 1).

Figure 3 shows a typical such function. It has the terminal values
f(LRU,0) = 1 and f(LRU,N) = N/K for an N-page program and reference string
of length K. For large K, the function is typlcally convex, which is

considered a manifestation of program locality (see below).
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Though powerful, analysls of given reference strings under fixed
space policles does not account for the mechanisms by which programs
generate reference strings; moreover, the ﬁrocedures do not readily
extend to the analysis of variable space policies. To deal with this, a mo=-
del 1s useful. Regard a program's execution time as being partitioned
into a sequence of phases, a phase being an interval of constant memory
reguirement. Similarly, the Program's address space 1s partitioned
into segments, a segment being a named block of contiguous addresses.

A given segment is considered "active" in a given phase if processing
of that phase requires the presence of that segment in main memory --
i.e., in the resident set. The set of all segments active 1n a glven

phase  1s called the locality set, or locality, of that phase; the local-

ity set at a given instant of real time is the same as that of the phase
in progress at that time (55,87]. The validity of this abstraction has
been verified over and over again, for example in the experiments of
Rodriquez-Rosell [R1], of Hatfield and Gerald [H11, or of Perrari [F1]:
it is always observed that many distinct and readlly-identified phases
exist, that during each an often-small subset of the program'é segments
is active, and that the locallty sets are often disjoint and of highly
variable sizes.

Though not of direct concern here, the distribution of segments
among pages can have a significant effect on locality [F1,H1]. In case
a large segment is allocated among several smaller pages, its activity
implies that of all its pages, so that the original locality properties

remain observable. In case a number of small segments are allocated on
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one larger page, the assignment can be critical: scattering the segments
of one locality among many pages will effectively mask the locaiity pro-
perties of the original program, making it appear as if the locality

set of every phase -- measured now in pages —= is very nearly all the
address space.

The notion of localities and program phases is somewhat more via-—
ble in the context of generating page reference striné [s5,57] than in
the context of designing memory policies, simply because prior knowledge
of localities and phase boundaries is not available in the latter con-~
text. Instead; a memory pollicy must include some method of measuring
or estimating the locallty of a program at each instanf, and the esti-
mator thus defined can be used to specify the content-(and the'size, if
that is adjustable) of the resident set of a program. The generic term
working set is usually used to denote an estimator of a locality set,
Just as there is a wide range of fixed space paging algorithms, there is
a wide range of locality estimating techniques and a range of variable
space policies based on them. A characterization of this range will
be presented in the next Section.

Perhaps the most well known locality estimation method is the

moving-window working set (WS). TIts analysis methods are even more

fully developed than those for fixed space paging algorithms [C4,D1,
n2,D4,62,P1,54]. For a parameter T known as the window size, the working
set W(k,T) of a program at virtual time k is the collection of pages
referenced by that program in the T references preceding and including
the one at time k (i.e., W(k,?) = {r(k=T+1),...,r00}); 1f x<r,

W(k,T) = W(k,k)ea The size of the working set is denoted by w(k,T).
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If {tk} are the real time instants corresponding to virtual times {k},

and tk.s t < tk+1' define W(t,T)=W(k,T). The missing page rate m(T) is

the rate at which new pages are entering the working set. Under the pure

working set memory policy (wS), which allocates the residant set as

Z2(t)=W(t,T), m(T) becomes the page fault rate. The mean working set
size 1s denoted s(T); it is an increasing, concave function whose slope
may be interpreted as m{(T) (see Appendix 1). A fault rate function
f(WS,x) giving directly the relation between (mean) space and paging

rate can be defined parametrically by setting
(3.4) £(WS, s(T) ) = m(T), T=0,1,2,¢ss

All the functions m(T), s(T), and f(WS,x) can be computed efficiently
(see Appendix 1).

Figure 4 shows the mean working set size function s(T), the missing
page rate function m(T), and the construction of the fault rate function
f{Wws,x). The curve s{T) approaches a value Spmax’ which it attains for
some T < K where K 1s the reference string length. In general Bmax-s N,
N being the program size; however, Smax need not equal N since the pro-
gram need not reference some of its pages untll later phases, whereupon
early working set sizes must be less than N. The function m{(T) is
decreasing to the value N{K. The fault rate function f{ws,x) 1s defined
only for 0 < x < Bt with terminal values f(WS,0)w1 and f(ws'amax) = N/K;

it is decreasing since s(T) is increasing and m(T) decreasing.
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Flgure 5 shows a typical comparison of £{WS,x) and f(LRU,x), Define
the point X, as the smallest space for which x > Xy implies f(ws,x) <

f£(LRU,x} -— that is, WS is at least as good as LRU. The point X, appears

not to exceed the mean locality set size of the reference string.
Thus a program with one phase and one locality set will have xo.": smax:.‘ N,
while one with many phases and a wide variance among localilty

set slzes will tend to have Xy much smaller than Snax and N, The reason is
that WS 1s able to adapt its resident set to be the current locality
set egtimate, having little or neo paging whenever the window is con-
talned wholly in a phase, whereas LRU will produce streams of page
faults in those phases whose locality exceeds the size of its resident
set. This behavior will be observed even for reference strings over
which LRU is optimal, and for reference strings processed by the optimal
fixed space policy OPT: it is a direct result of the variabiiity of local-
ity size.

<xperiments by Prieve and Fabrv [P1,P2] indicate that differences
of 30% or more hetween the LRU and WS curves in the range x » X, occur
frequently, showing that important variations in locality size are
significant in program behavior. (See Appendix 1 for examples.) Fur-
ther experiments demonstrate that an optimal varilable space algorithm
could in principle produce another 30% or more improvement over WS
(60% or more over LRU), showing that the working set is not a perfect
estimator of locality [P3]. (However, like the fixed-space optimal
algorithm, OPT, the one studiaed by Prieve requires foreknowledge of the

reference string. 1Its primary interest is in assessing how effective

a locality estimation procedure is.)

P
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19

Another measure of page faulting is the lifetime function L(x),

which gives the mean virtual time between page faults when a reference
string is processed under a given memory policy with Space constraint x.

(See C1, B2, B3.) It is defined simply as

(3.5) L(X) =

where f(x)} 1s a fault rate function. Figure 6 shows a typical lifetime
function for the LRU policy. There is usually a value Yo such that the
lifetime function is convex for x < Yy @nd concave for x > Yo+ For some
fixed space policies, the convex part can be approximated by ka with
1.5 <k < 2,5 [B2,B3,C1,56]; no one has ventured approximations yet for
the convex part of L{x) for variable space policies. The convex/concave
shape 1is characteristic of many (but not all)} lifetime functions. For
fixed space policies, Yo 1s approximately the size of the largest locality
set, whereas for the WS policy it tends to be approximately the average
(over virtual time) of the locality set sizes. (See Appendix 1.} The
properties of the lifetime function have been used to demonstrate effi-
ciency Increases in certain cases, where such Iincreases could not be
deduced directly from the properties of the fault rate function (c1,62,56].
To summarlze: A program's page reference string 1s an observable
gquantity, from which one can compute fault rate functions for various mem-
ory policies, notably LRU and WS, The abstractions of phases and local-
itles can he used to explain the relative behaviors of programs under
LRU and WS policies. The lifetime function, which is the reciprocal of

the fault rate function, characteristically exhibits a convex/concave shape.,
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The exlistence of a convex region in the lifetime function will be used
in the next section to deduce that certain variable space {nonWs) poli-
cles can produce a net reduction iIn paging rate; together with the results

of Section 2, this implles a net improvement in system performance.

4, CLASSIFICATION OF MEMORY POLICIES

Denote by Pi""’Pn the set of active programs during a time
interval in which the level of multiprogramming is fixed (n=an{t)). Associ-
ated with P, at time t is its resident set Zi(tJ, containing zi(t)'z 1

pages.- The configuration of memory is represented by a partition vector

{(4.1) Z(t) = (Z (t),.ee,Z (t)).
~ 1 n

The partition size vector 1is

(4.2) ‘z'(t) a (Z_l(t),onq'zn(t))'
in which
(4.3} z,(t)+..a4z (£} € M

1 n -

at every time Instant t, where M is the size of the main memory. The

reserve memory is that portion unused by any actlve program; its size at

time t is
n
(4.4) R(t) = M - El zi(t).
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As has been noted, a memory policy can be regarded as including a
method of estimating program locality sets. The estimates thus deter-
mined are used to specify the content (and slze, if adjustable) of each
program's resident set. Figure 7 suggests a classification of memory poli-
cies based on the method used to estimate the locality. It will be used
As the basis for the ensuing discussion of memory policles. Our objec-
tive is showing why performance improvements can be expected under a
policy improvement corresponding to a rightward change along the bottom
of the diagram in Figure 7.

When main memory allocation is controlled by the programmer, who
inserts into the program commands that move information in and out of
main memory, memory management is said to be manual. The viablility of
this type of management 1s usually limited to systems in which the resi-
dent set size is fixed and known in advance by the programmer, who 1s
then 1n a position to optimize information placement and flow with res-
pect to that resident set size. In contrast, memory management handled
by the system is said to be automatic.

Manual memory management has fallen out of favor for a varlety of
reasons. One is simply mounting experience that properly designed auto-
matic management mechanisms (e.qg., virtua} memories} can perform at
least as well for large programs as carefully planned overlays [S2].
Another is the use of multiprogramming and multiplexed resource alloca-
tion, which rob the programmer of the key assumption that a resident set
of known size will be continuously available to him., In a mul tiprogrammed
environment, each active program Pi cannot be guaranteed good performance

even if it has complete control over its resident set Zi(t}, because
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attempted local optimizations need not imply that the entire system is
optimized. The problet is that the individual who programmed P, does not
have access to Information about Pj (3 # 1) and 1s therefore not in a posi-
tion to optimize his performance in relation to the system's; moreover,
there 1s no quarantee he would use this information properly even if he

did have it. Therefore, miltiprogrammed memory management is always
automatie,

Policies of automatic memory management can be grouped in two cate-

gories: fixed partitioning and variable partitioning. The latter has

already been deflned, in terms of a time varying partition vector Eﬁt);
techniques of varying the partition will be discussed below. If the

resident set size zi(t) 1s a fixed constant z, for all t during which P

1 i

is active, then the size vectorig(t) is constant during any interval

in whlch the set of active programs is fixed; this is known as the fixed
partition approach. 1In case the entire address space Ai of Pi can fit
in the allocated space of z, pages, the resident set 1is also fixed:
zi(t) = Ai. Otherwise, if z; is smaller than the size of Ai, & replace=-

ment policy must be used to define what subset of A

1 Fonstitutes Zi(t);

note in this case that Zi(t) varles even though zy does not. 1In case

zy = M/n for each i, Ejt) is called a balanced partition, or equipartition,

Imbalanced partitions are capable of better processing efficiency,
1f dnly because they permit the flexibility of allocating-programs with
-1arger locality sets more memory. However, even if all programs have
ldentical locality properties, it frequently happens that any imbalanced
partition is more efflciemt than a balanced partition (see Appendix 2

and C1, G2, S6).
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In either the fixed or variable partition approach, demand paging
is ordinarily used to:acquire a program's pages into main memory while
that program is active. In case latency time at the paging I/0 station
is a problem, some form of swapping may be used to load a resident set
at the beginnings and ends of a program's active intervals.,

Arguments in supéort of fixed partitioning are of two types. One
is founded on a'belief'that memory avai}ability in a system, and the
memory requirements of any given program, can be predicted prior to pro-
gram processing. The other 1s the apparent low overhead of implementa-
tion, since partition changes occur as infrequently as possible -- viz.,
when the set of active programs changes. The first arqument is weak
for the same reasons that arguments for manual overlays are. The second
argument's weakness is revealed when one accounts for changing locality
in a program. Consider f;r a moment the behavior of a fixed partition
z, when the set of active programs Pl,...,Pn each has a large variance
in locallty set size across time. Because the partition is flxed, there
is no way to reallocate pages from Zi to ZJ at a time when Pi's locality
ls smaller than z, and Pj's locality is larger than zj, when clearly such
4 reallocation would not degrade Pi's performance but would improve Pj's.
Coffman and Ryan have analyzed this effect, and have concluded that the
varlance in locality size from one program phase to another 1s ordinarily
iarge enoughr to produce a gain in memory utilization so significant that
it recovers the cost of implementing a variable partition several times
over [C3]. Put another way, there is a hidden overhead in the fixed
partition —~ severe loss of storage utilization for programs with wide

variance of locality size ~- which when accounted for significantly dimi-

nishes the attraction of fixed partition strategles,
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Within the class of variable partition strategles, one may identify
at least three subclasses, according to whether there is no correlation,
weak correlation, or high correlation with locality changes of programs:

Class V1 - The partition Z(t) is varied, but with no explicit cor-

o ~

relation to the reference patterns of the active programs.
Class V2 -~ Variation in Z(t) .is explicitly correlated with the
e e "
activities with which active programs reference pages
in their resident sets, but there is no explict attempt
to identify locality sets and protect them from pre-
emption.
Class W - The resident sets Z{t) are maintained in one~to-one
o et "
correspondence with working sets (estimates of the
locality sets) of active programs.,
It should be noted that Class W policies are intended to be precisely
the "working set policies" [D2,D3].

As noted in Section 2, the efficiency of a multiprogrammed computer

system depends on a load control mechanism keeping the system away from

thrashing. The objective is to control the level of mul tiprogramming

n(t) by activating or deactivating programs so that most of the time
(4.5) n(t) < kno(t)

where no(t) is the optimum level of multiprogramming and k 2 11s a
small constant. Class W policles have an inherent load control: they
will force the deactivation of a program at a page fault time when the
memory reserve R(t)=0; and they will defer the activation of a new pro-

gram whose initial working set is estimated at size z, until
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(£.6) z < R(t)-H, HD>o.

The parameter H is adjusted so that the rate of program deactivations
caused by R(t)=0 at a page fault time is low [C3,R3]. To the extent
that a W-policy is successful in estimating localities, it will tend

to have n(t) approximately no(t) (see Appendix 3). 1In contrast, V1

and V2 policles, which have by definition no direct way of estimating
locality, must necessarily use some cruder form of load control. A
Typlcal control for these cases is a preestablished 1imit N on the
allowable level of multiprogramming, sometimes with an adjustment of

the limit N inversely with the system Paging rate. To keep the thrash-
ing probability low, it is necessary to set N so that the event

knO(t) < N is unlikely — which implies that the system spends most

of its time operating at a suboptimal level of multiprogramming. Thus,
even if a V2-policy is successful in keeping locality sets resident,

it will tend to be less efficient than a W-policy. Finally, one should
expect Vl-policies to be less efficlent even than V2-policies, since they
have no mechanism at all for tending to reallocate pages from resident
sets that are larger than their contained locality sets to resldent sets
that are smaller: because they thus make poorer coverall use of storage,
they cannot maintain as higﬁ a level of multiprogramming at a given
level of pagling as a good V2-policy and {by eq. (2.11)) their processing
efficlency will be lower. The empirical evidence supporting this rank-

ing of the classes 1s discussed next.
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Class V1 Policles

Though 1t may not be obvious that varying a partition without cor-
relation to program behavior can increase system processing efficiency,
Vi-policies are capable of improving over fixed partition policles. This
was first observed in é study of the so-called biasing discipline by
Aelady and Kuehner on the M44 system [B2,B33]. According to this dis-
cipline, a "Favored state” of execution 1s passed cyclically among the
active programs. A given program remains in the favored state until
the system has experlenced p page faults (p is a parameter). While
favored, a program is éranted new pages on demand for its resident set
and is exempted from‘replacements; thus its resldent size can increase
by as many as p pages éuring its favored interval. A system throughput
increase in the rangé 10-15 per cent over an {approximate) equipartition
using FIFO replacement is reported. Belady and Kuehner suggest (but
do not prové) that the performance improvement derives from the convex-
ity of the lifetime function. In Appendix 2 we show that, given a fixed

partition X = (xi,...,xn). there exists a Vi-policy under which the

fault rate of each active program Pi satisfies

(4.7) fi(Xi) > fi > fi(xi).

where ?i is the mean virtual time fault rate of Pi' and ii is the mean resi-
dent size in the virtual time of Pi' The lefthand inequality assumes

that the lifetime function is convex ov;r the range of memory allocations
used; the righthand inequality assumes that the fault rate function is

convex. One can show ;i > xi even 1f the righthand inequality above is

false, directly from the assumption that fi 1s a decreasing function.
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Thus the fixed partition (ii,...,in), which would be yet more effi-
clent that the Vi-policy, 1s hypothetical —- it cannot be implemented,
= 5 -
since X, xi implies Xy
§
Analyses by Spirn (S6], Ghanem [G2], and Chamberlin et al. [c1]

FenetX D M.
n

have glven further inférmation about péftition pclicies. These authors .
worked with lifetime f?nctions of the type discussed earlier (see

Fig. 6). They discovered that processing efficiency may be increased
relative to an equipartition, by amounts comparable to those observed
by Belady and Kuehner, simply by using an imbalanced partition. No
variable partition is needed. (See Appendix 2.) Spirn showed further
that the equipartition may be worst possible. Moreover, Ghanem showed
that this result may depend on the lifetime functlon's being "suffici-
ently convex" for x<y0 (cf. Fig. 6). That is, for lifetime functions
of the form L{x) = c:~c"c {x < yo), 1t was necessary that k>a, where a is
a constant depending on program and system parameters; typically

1 < a <k < 2.5 Ghanem found a stronger result: when the lifetime

is insufficiently convex, the equipartition is optimal.

It thus appears that two factors may have combined to produce the
effect observed by Belady and Kuehner. One is that their policy always
kept the system in some imbalanced partition. By changing the parti-
tion only at page fault times they not only kept the overhead of their
policy to a minimum, but they distributed the improvements uniformly
among the actlve programs. Tﬁ; other factor is the space variation act-

ing in the virtual time of the programs producing the relation (4.7).
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All these analyses and observations lead inescapably to the
conclusion that lifetime functions of programs are significantly non-
linear, a fact which has yet to be reconciled by a linear assumption
to which one may be led on superficilal inspection of a recent paper

[51]. (See also D&.)

Class V2 Policies

An appreach to memory manggement commonly used in operating systems
extends the idea of a fixed space repiacement policy to multiprogramming
simply by applying the replacenent rule to the entire contents of memory,
without identifying which program is using any given page. For example,
all resident set pages (of Zi(t) for each i) can be placed on a single
("global") LRU stack; whenever an active pregram runs, it will pre-
sumably reference its locallty set pages and move them to the top of
this LRU stack. A load control is necessary (but not sufficient) for
the successful implementatlon of such a policy: for if there are too
many active programs, pages will be taken from the resident set of the
least recently run program {(whose pages will tend to occupy the lowest
stack positions), whereupon that program when run will soon experience
a page fault. Even if the load 1s properly controlled, a running pro-
gram that fortuitously generates a page fault before referencing much
of its locality set wlll not have moved many locality pages to the top
of the LRU stack whereupon, when next it is run, it may find part of
its locality set missing from memory. And this state may persist, as
the program is now unable to reference many pages at all between page
faults. For these reasons, this type of policy has been found very

susceptible to thrashing, and it is sometimes precariaus to expect such
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policles to perform better than fixed partition policies [B4,D6,R2].
Similar remarks apply to a policy based arocund a single ("globhal") FIFO
list; it is worth noting, however, that a FIFO-based policy with load
control was used successfully on the M44 system [B2,B3].

A varilant of the "global LRU" policy above is based on a usage
bit u and a changed bit c assoclated with every resident page. The bit
u is set to 1 by the addressing hardware on any reference to the glven
page, and is cleared to 0 by the memory management routine. The bit ¢
is set to 1 by the addFéssing hardware on any write-reference to the
given page, and is cleared when the page 1s loaded or when a copy is
made in the paging I/0 store. At intervals, the memory manadement rou-—
tine scans all resident set pages and maintalns them in four lists
according to the possible values of the bits (u,c). At a page fault,

the first page of the first nonempty 1ist in the ordering
(u,¢} = [(0,0}),(0,1),(1,0),(1,1)]

is selected for replacement. This policy, which approximates LRU (53],
is subject to the same problems when used for mul tiprogramming.

A well known example of a V2-policy 1s used in Multics. It com-
bines elements of the global LRU and global FIFO policies. It is some-
times referred to as FINUFO (first in not used first out) [C5,D1]. All
the resident set pages are linked in a circular 1ist with a pointer desig-
nating the "current position”, and each has a usage bit set by the hard-
ware when the page is referenced. Whenever a page fault occurs, the
memory policy advances the current-position pointer around the list,

clearing set usage bits, and stopping at the first page whose usage bit
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is already clear: this page is selected for replacement. A program whose

locality set is resident will evidently fare well under this policy, since

it will be able to continue setting all its usage bilts between the times

when the memory policy examines them. However, an active program whose

locality set 1is not loaded, or which is accorded continuing low priority

for use of the processor, will tend to lose pages under this policy. The

success of this policy will depend on its being carefully coordinated

with the scheduler, which must control! the load and énsure that all

active programs have an equal chance to use the processor. There is

no performance data comparing this against a fixed partition or Vi-policy.
Another example of a V2-policy is the "AC/RT" procedure suggested

by Belady and Tsao [B4). Associlated with each active program Pi are

varlables, Aci and RTi, whose values are updated at each page fault

of P

The "activity count" AC, reglsters that fraction of its resi-

i
's last page fault; the "round trip frequency"

i.

dent set referenced since Pi

RTi reglsters that fraction of the last K page faults (K a parameter) of
Pi which caused the recall of the most recently replaced page. A high

value of Aci indicates that P, 1s making effective use of its resident

i
set. A high value of RTi indicates a high frequency of mistakes in
replacement decisions. The decision rule for replacement, used on a

page fault of Pi is summarized as: If RTi is low, replace a page from

the resident set of Pi; otherwlse, replace a page from that Zj(t), j#£ 1,
for which ACj is lowest. Belady and Tsao discuss how to select threshold
values to tell when AC and RT are "high” and "low", and infer (but do
not test) that this policy will perform better than policies in Class V1

and the global LRU or FIFO policles in Class V2. As with other V2-policles,
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however, load control Aust augment the AC/RT procedure: too high
a level of multiprogramming can force the persistent state in which
all the ACi are low Qnd the RTi are high -- the state of thrashing.

We have returned repeatedly to the need for V2 (and V1) policies
to be augmented by a load control. Operational experience with Multics
and CP=-67 Indicates that an effective combination of a V2-pclicy and
lead control can be designed [C5,R2]. The same was true of the V1
biasing policy on the M44 [B2,B3]. with proper load control, V2-policies
will tend to be better than V1-policles because their capability of
reallocating pages from resident sets that are too large for their
locality sets, to resident sets that are too small, permits a higher
level of multiprogramming without an Increase of paging. Since heavy-
demand conditions are not at all uncommon, one arrives at the conclusion
to include the load control and locality estimation explicitly in the

memory pollcy —- i.e., at Class W.

Class W Policies

As has been noted, W-policies have two distinguishing features.
First, the rrsident sets are precisely the estimates of the current
locality sets of active programs. Moreover, the locality estimate of

P, is formed by observing the behavior of P, only -=- it is not influenced

1

by the activity of any other program P {(Contrast this with the V2~

jl
policles, in which a resident set Zi(t) is a function not only of the

actlvity of Pi itself, but of the activities of other programs as
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well.) Second, load control 1is inherent in the definition of W-policies,
since program activation and deactivation decislons must be consistent
with the requirement that locality set estimates of all active programs
must be resident.

The definition of W-policles implies the existence of a memory
reserve of size R(t) -- l.e., a set of pages not in any resident set
(see eq. (4.4)). To improve memory utilization, some systems allocate
the reserve R(t) to an n+lst program PO' whereupon Zo(t) is a subset
of Po's locality set and page faults by any Pi (0 £ 1 < n) cause pages
to be preempted from zo(tJ. In case zo(t)=R(t)=0; P0 is considared
to be automatically deactivated, and the lowest priority program among
P1"'°’Pn assumes the role of PO. System thrashing cannot occur in
this case: although P0 1s the only program without a full locality set
present, its page faults are not permitted to preempt pages from other
resident sets and, accordingly, the feedback among paging rates neces-
sary for thrashing does not exist (see W2 and S5).

The most extensively studied example of a Class W pollcy uses the
moving window working set wi(t,TJ, defined previously, as the locality
estimator., Numerous experiments have shown the ease with which one
can find a sultable value for the window size T so that the working set
is indeed a reliable estimator of a program's locality [c2,F2,H1,R1,
$5,57]. However, the estimator is not perfect [P3].

Morris reports how the MANIAC II computer implements a close
approximation of the moving window working set, by associating hardware
timers with each page of main memory and arranging to run a given page's
timer only when the program owning that page is running on the processor;

all at modest cost [M2]. A method of approximating a working set by
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examining usage bits at the ends of time slices appeared successful in
preliminary tests of the RCA Spectra 70/46 [W1]. A simllar procedure
was used on the Grenoble CP-67, for which extensive test data show enor-
mour improvements in performance over the V2-policy used on the standard
CP-67 [R2). Another simllar procedure has been used successfully on at
least one TSS system [D7]. A method using two window sizes to define
three states of a page (in, partly in, and out of the working set) has
been reported successful in UNIVAC's VMOS [F2]. These and other prac-
tical and successful Implementations show definitively that W-policiles
are nelther difficult ;or expensive to implement; they are at worse
marginally more expens}ve than V2-policies and give significantly bet-
Eer performance —-Iif only because they are able to operate at a maxi-
mal level of multiprogramming without thrashling.

An interesting variant to the fixed-window-size working set defined
above has been studied by Chu and Opderbeck using extensive simulations
{c2,01]. Their procedure, known as PFF (page fault frequency), recom-
putes a program's working set at each page fault time t of that program,
using the time interval since the prior page fault of that program (time
t') as a window. The computation requires merely the examination of
usage bits. Unfortunately, should the current window t-t' fartui-
tously be small, few usage bits will have been set; since this will cause
the next page fault iﬁterval to be short, the state of the working set
underestimating locality will persist. Protection against this is easily
achieved. If the Interval tet!' is smaller than a given threshold TO'
the incoming page 1s added to the resident set but no replacement is

made (though the usage bits are cleared). The acronym PFF arises
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since 1/T0 hasa the Interpretation of the maximum allowable mean rate
(frequency) of page faults, The resldent set defined by PFF for pro-

's next page

gram P, at a page fault time t, to be in effect until P

i i

fault, is
wi(t,t-t'), L=t 2 T0
(4.8) Zi(t) o
Zi(t')+r(t). otherwise
where t' 1s the time of the prior page fault and r{t) 1s the (missing)
page referenced at time t. Besldes the usage bits, the full impleren-
tation evidently requires only a tilmer register in the processor to
compute t-t'. Chu and Opderbeck's studies indlcate that T0 can easily
be chosen so that PFF is indistinquishable from a fixed-window working
set [C2], and that PFF used as a W-pollcy is significantly better than
certain LRU-type policies from Classes V1 and V2 [01].

Flgure 8 suggests why a W-pollcy will be better than a fixed parti-
tion policy, as long as programs are run In a reglon of the fault rate
curve in which WS 1s superior (cf. Fig. S5). Let zy dencte the resident
set size for program Pi under a fixed partition using LRU separately

for each resident set. As long as z, » x there will exist a point

i 01’

Wy < zi corresronding to a mean working set size under which the pro-
gram would achleve the same fault rate as under the LRU policy. Setting
W = w1+...+wn,.this means that the average level of multlprogramming
could be increased approximately by the ratlo M/W without increasing
the system fault rate over the original fixed partition policy, which
in turn implies an increase in processing efficlency (cf. eq. (2.11)).

Flgure 9 suggests the appllcation of the above principle to con-
clude that a W-policy will be superiof to a Vi-policy. The three
points on the vertical line through ;i depict the relation (4,7) glven

earller for Vi-policlies. As long as Xi > X3y there will exist a point
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wy < Xi at which f(ws,wiJ = fi' Setting W = Wotneat , the average level
of multiproqramming could be increased by approximately the ratio M/W
and yield, as before, higher efficlency. (The W=policy produces less
an Improvement over the Vl-policy than over the fixed partition. Define

1
< W. Therefore the ratio M/W' ig larger than M/W.)

] 1 1 — 1 LIy | .ws ]
w; so that f(ds,wi) = f(LRU,xi), note that w! < Wy and that w Witesatuw?

The discussion above shows that working set policies increase processing
efficiency over other policies. However, they have been shown to improve
other measures as well. Chu and Opderbeck, for example, show that the

"space-time cost" (integral of resident set size over time) satisfles
(4.9) ST{WS,T) < ST(LRU,x)

for all x, and all T in a very wide range [C2]. 1In fact, the minimum
difference between the two sides of this inequality ranged 10-30%,

the greater differences being directly correlated to large coefficient
of variation (ratio of standard deviation to mean) in locality set size,
The function ST(LRU,x) had a sharp minimum, while ST(WS,T) had a very
wide and flat minimal region; therefore, for x injudiciously chosen,

the space time cost difference may far exceed the 30% figure just quoted.
Coffman and Ryan studied two measures of storage utilization, overflow
probability and mean amount by which demand exceeds resldent set size,
comparing a working set partition against a fixed equlpartition [C3].
With respect to these measures, the worklng set partition was always at
least slightly better, and significant differences would exist for larger

coefflcient of variation in lecality size,
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The W-pollcies appear superior by many measures, their superiority
is asscoclated with cnanging locality size In programs, and the degree
of superilority increases as the coefficlent of variation in locality

size increases,

5. CONCLUSIONS

The first part of this paper e#plained a network representation
of a typlcel multiprogrammed computer system, and used it to establish
properties used later in the paper: a) Increasing the load (i.e., level
of multiprogramming) without changing system or program parameters increa-
ses processing efficiency. b) Decreasing the paging rate for fixed load
increases processing efficiency. c¢) Paging rates will generally increase
with increasing load because of the fixed total memory constraint. This
implies an optimum load, above which efficiency drops rapidly {(thrash-
ing). Load control is necessary. d) Processing efficlency is a suitable
measure of system performance, since throughput is directly proportional
to it and response time inversely proportional to it.

The second part of the paper explainéd basic propertles and mea-
sures of program behavior. The principal observations are: a) The
fault rate function of LRU is frequently observed to be convex, while the
lifetime function frequently has a convex/concave shape. b) The fault
rate function of WS (working set) 1s frequently observed to be signifi-
cantly below that of LRU, a direct proof of locality size variation dur-

ing program execution.
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The third part'oflthe paper explained a classification of multi-
programmed memory management policles, then used the results of the
previous sections, together with information from the literature, to
establish a ranking among five classes of policies, from worst to best:

1. Fixed partition, balanced;

2. Pixed partitibn, imbalanced;

3. Variable paftition, no correlatlion with program behavior (V1):

4. Variable pgrtltion, some correiation with program behavior (V2); and

5. Variable partition, direct estimation of locality (w).

(This ranking should be interpreted to mean that, given a policy at rank
1, there exists a better one at rank i+l.) The principal conslusions are:
a) Imbalanced partitions are better than balanced partitions, partly
because they recognize inherently different memory requirements of programs,
and also because of the convex property of the lifetime function. 1In many
cases an equipartition is the worst possible, even among programs with
identlical memory demand characteristics. b) Even though they do not
correlate memory reallocations with program behavior, Vi-policies may
nonetneless improve over fixed partition policies. Two factors operate:
the avoldance of the equipartition, and the effect of increasing average
processor demand over the virtual time of programs; both factors are
attributable to the convexity of the lifetime function. c) VZ-policies
do better than Vl-policies because they obtain better space utilization
by reallocating from resident sets that are larger than contained local-
ities to resident sets that are smaller, and because, with proper load
control, they tend to keep each program's locality set present. d) w-

policies do better than V2-policles because they estimate locality directly,
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the estimates are independent of load and other programs' demands for
memory, and they have inherent load control. Numerous studles show
Wepolicies hest according to a varliety of measures. Their implementation
cost 1s not significantly more than for V1 or V2, and the gain in perfor-
mance amply rewards the investment in them.

Working set (W) pelicles establish a 1imit on the load n(t) at
each time t. To the extent that these policies succeed in estimating
locality sets, n{t) will approximate the optimal load no(t). Experience
shows that these policies keep the probability of thrashing (li.e., the
probability that n(t) > kno(t) for some small constant k > 1) acceptably
small. In contrast, V1 and V2 pclicies have no direct method of esti-
mating a proper load level. Typically they establish a prior limit N
on the load (sometimes with adjustments in N inversely with the system
paging rate); since N must be chosen so that the thrashing probabllity
{the probability that kno(t) < N) is low, the system runs much of the
time at suboptimal efficlency. In other words, the more precise load
control of working set policies is of itself a significant reason for
their success.

All the arguments, and all the experiments, used to demonstrate the
superiority of working set policies rely directly on, or are correlated
directly with, significant varlations in program locality size over vir-
tual time. Though there has been considerable work on modeling program
behavior (e.g., C4, G2, S5, 57}, none of it has so far produced a working
model in which locality set size variation is accounted for. Many experi-
ments show that many programs exhibit a marked propensity for two or

more particular working set sizes [G2,H1,R1], and that working set fault



39

rates are signficantly less than LRU fault rates over a wide range of
memory constralnts; these observations cannot be accounted forlunder the
assumption of fixed locélity size. The next iteration in the process of
program behavior modeling must be the development of techniques for
representing locallty set size variation.

The viability of working set policies and locality-based program

models appears assured.
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AFFENDIX 1: COMFUTATICN CF FAULT RATE FUNCTIONS
Cutlined here are computatiocnally efficient methods for finding
LRU and WS fault rate functions, for a glven reference string‘a = r{1)euus

r{k)...r{k). The techniques are treated fully in C4, D4, M1, and S4.

The LRU Algorithm. The LRU stack at virtual time k 15 a vector
PN AN NN NN NS —

ﬁ(k) = (sl,...,s } of distinct pages, in which 1 < i < j < qlk)

q(k)

impl les that page 5, was more recently referenced than s , and q(k) is

J
the numher of distinct pages referenced through time k., The initial

stack E(O) 1s empty. The stack dlstance d(k) of the reference r(k)

is 1 if r(k} is at the it position in stackigtk-l), and is @ if r(k)
is not in stack s(k-1). If r{k)=y, the new stack s(k) is related to
the former by
o - { (y,si,...,si_l,si+1,...,sq(k_1}), if d(k) = 1 < qlk=-1)
~ {Ygsi,.a-’s ) if d(k) = @

qfk=-1)""

Note in the second case g{k)aq(k-1)+1.

S5ince the LRU algorithm always replaces the least recently used page,
it follows that the pages resident in an x-page memory managed by LRU
at time k are precisely the first x entries in the stack g(k}; and more-
over that a page fault occurs at time k if and only if d(k) > x. There-
fore, the fault rate function f(LRU,x) is the fractional number of dis-
tances that exceed x. To calculate £f{LRU,x), one must process the
references r{1)r(2)..., computing the stacks g{O)g(‘l)gQ)..., and record-

ing the occurrences of stack distances d{1)d{(2)... in the counters c[1:N]

and c{m ]. (The number of program pages is N.) When this is done, c{i]
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counts the number of virtual tlmes k at which d{k)=i. Once the stack
distance counts have heen determined, thé_number of page faults for an
x-page page memory is c[x+1]+...+c[Nl+c[w ]; therefore, the LRU fault

rate is computed from the recursion formula

FILRU,N) = i-:’-]-
£(LRU,x~1) = CEK"] + f(LRU,x), x = N,N=1,...,1

To obtain the counts, the following procedure is used:
c[1:Ny@o ] := 0; stack[1:N] := g@; [initialize)

for k:=1 to K'do
- P re~ i

y == rlk); [next reference]
1 := 15 candidate := stack(1];
while candidate # y and candidate # @ do [search and update
exchange(candidate, stack[1+1]); stack for entry yl
i:= 141
end
Af candidate - Z (update proper
then clw ] := cfaw ]+1 l counter)
PP
else e¢[1] := c[1] +1;
P
stack[1} := y; [put referenced
page atop stack]
end
A
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The WS Alqgorithm. Associate with R = r(1)...r(k)...r(K) a sequence of
hackward distances B = b{1)...b(k)...b(K), in which b(k)=1 implies
rik-1)=r(k) and r(k')#r(k) for k-i < k' < k; take b(k) = @ if r(k)

1s the first reference to a page. In other words, b{k) is the interval
since the prior reference to page r(k). (For example, if R=123231,
d=@®@®? 2 5.} The next reference r(k+1) is missing from the working
set W(x,T) if and only if b(k+1) > T. Define the counters ¢[1:K] and
cf@m ] to record the occurrences of backward distances; thus cfi] counts
the numher of distingt virtual times k at which h(k)=i. Analogous to

LRU, the missing page rate for pure working set memory allocation is

Aefined bw the recursion formula

m(K) = ‘:[l‘fj
m({T=-1} = clr] + m(T), T = K,K-1,...,1

To obtain the counts, thils algorithm can be used:

cf1:K,@] := U3 timef1:N] := 0;:
£2£ k:=1'£9 K 22
Y = r(k);
if timely]=0
then clew ] := c[a J+1
o
else 1 := k = time[y]
Pt
cfi) := c(1]+1;
time(y) := k;

cnd
v vl
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The working set size at time k is denoted by w(k,T) and the mean
working set size by
1 K
s(1) = = T wik,m).
k=1

Define A(k,T) to he 1 if r(k) is missing from W(k-1,T) and 0 otherwise.

Then note w(k,T+1) = w(k~1,T)+ A(k,T); substituting into the definition

of s(T),
1 K 1 K
s{T+1) = i z wik-1,T) * ¥ 2. Alk,T)
k=1 k=1
K .
- g Zwtem -G LR g,
k=1 k=1

Recsgnizing the last term as a definition of the missing page rate m(T),
we find %'~ recursion formula for calculat%ng mean working set size:
s(0) = O
w(K,T) :

s{T+1) = s{T) + m(T) - -——if—— , T = 0,1,00.,K1.

Finally, the fault rate function is denoted by f{WS,x) and is given

parametrically by

f('_\fs' S(T) ) = m(T), T = 0'1’..-’}{

mxamrles, Consicder the three reference strings over a 10-page program,
P e W W W)

ﬁR‘l = 01-..9(9--.1001.-.9)10
R, = 01001%%3., 0(23,.,9)%°
By = 012001)7%23.,.0(5...3223,..9)1°
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All have length K=210. R, represents a program using a single 10-page

1
locality; since 31 has the property that, at any time the page with

the largest stack distance is also the one with the maximum forward

distance, LRU 1is optimal for'ﬂ1 (M1]. In contrast, R, and R, represent

2 3
programs which have two disjoint localities {0,1} and {2,3,...,9}. 1In

LRU is optimal just as in R Figure 10 shows the fault rate curves

230 1°
for LRU and WS for these strings.

It 1s observed that LRU is always better for R , WS is at least

~lt

as good for‘jz, and WS is better for R, provided x > 6.6. The superior-

3

ity of 45 over LRU for (certain ranges of x in)'g and.g3 directly

2
results from these two strings! exhibiting two distinct phases over
different size localities: For suitable choices of the window size T,
the working set measures the locality set exactly {(as long as the win-
dow is contained within a phase) so that the only paging eccurs during
locality transitions. However, the average working set size is less than
that of the larger locality; LRU operating at that same memory size pro=-
in that phase

duces page fiults centinuously/because that locality will not fit into the
available space. It is especially important to note that, because of
its ability to adapt its space requirement to varying program locality,
WS is capable of 1mproving over an optimal fixed space algorithm{such as
LRU applied to BE)' Similar observations have been made in practice
(p1,p2,P3].

Figure 11 shows the lifetime functlons for the three strings. Each
exhibits the characteristic convex/concave shape. The concave reglon

for the LRU lifetime function begins at the maximum locality size. The

concave reglon for the WS lifetime function begins at approximately the
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virtual time average locality size {for striqgs‘g and'ﬁs, the average

72
locality size is computed as(2+42 + B<168)/210 = 6.8).

APLENDLX 2: AMALYSIS OF V1 POLICIES [See also DS]

General Properties. Let {xk}-be a sequence containing at least two
distinct values such that the function h(x) 1s convex for min{xk}.g x
< max{ik}, and let {a ] be a set of positive weights that sum to 1.

A well known property of convex functions is
() zk akh(ka > h Z‘k'akxk ).

Cur objective is proving relation (4.7) of the text which states
tnat, qiven a partition‘g = (xl,...,xn)'one may construct a Vi-policy

under which for each program Pi’

(>) fi(Xi) > fi > fi(xi),

where fi is the fault rate function, ?i 1s the mean virtual time fault
rate under the Vi-policy, and ;i is the mean virtual time memory allo-
cation under the Vi-policy. The lefthand inequality requires the con-
vexity of the lifetime function, the righthand one the convexity of
the fault rate function.

Let t0=0 and titz"'tr denote a sequence of successive page fault

time on a system's processor. Let r, denote the number of faults gener-

ated by program P, in the observation interval (0,tr]. and note that

n
i=1
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Let X1 denote the memory allocation of program Pi in the processing

interval just preceding its ktb page fault (1 < k < ri). Each X4 is

assumed to lie in the convex region of L The mean virtual time

i.
interval from the k-1st to the k® page fault in Pi is taken to be the
lifetime Li(xik)' {(This is, in fact, an approximation. As will be
discussed shortly, however, it does not affect the conclusions.) Under

these assumptions, the mean lifetime in Pi over the observation interval is

(4) L -—LEL( )
T or A T
anc the mean fault rate over this interval is ?i = 1/£i° Define the
aquantity
1 i
(5) Xi = EI 3;% X 45

which is the mean memory allocation measured at page fault times.

We shall show shortly how the scheduler can choose the allocations Xix

50 that Xi is the same as the resident set size of Pi according to the

glven fixed partition X
Under the given fixed partition X, the mean lifetime interval of
program Pi is Li(Xi), 50 that the mean system lifetime interval is the

total processing time consumed divided by the total number of page faults:

{6) L = — L {X.).
i1 r 171

Under a V1 policy satisfying (5}, the mean system lifetime interval is
r,

1 =
L ’
r

1

Mo

(7)
i=1

since riﬁi is (from (4)) the total time consumed by P Applying (1) to (4),

i-
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. i > .
. (B) Li Li(xi)

Since lifetime is the reciprocal of fault rate, this establishes the
lefthand inequality of (2?). Applying (8) to (6) and {7), we have
L' > L, which implies that the relative utilization of the paging I/0

station satisfies
(9) R;‘j = 5/L* < s/L = R ,

where S is the mean service time at the paging I/O station; together
with ea. (2.14) of the text, this implies that a Vi-policy satisfying
{5) must increase processor utilization over the fixed partition X.

As noter in the text after eq. (2,9), the use of L' and T in (9)
is an approximation. The processor utilization is in reallty a function
of all the lifetime intervals, not just their mean. Ghanem (G1] and
Spirn [56] have shown that, when L, are sufficiently convex, L' > E
will imply the increase iﬁ utilization as arqued here. Spirn showed
that observed lifetime functions do usually have the required convexity;
hence, our simple argument 13 sufficient to Justify our conclusions.

To establish the righthand inequality of (2), define Ti=r1£1 as

the mean lifetime interval in Pi’ and note that
r

L, ({x, )
- }é 1" "ik
(10) Xi = T X

kK=l i

ik L
Using the definition of fault rate as reciprocal of lifetime, and

assuming the fault rate function is convex, we have the inequalities

A5 desired:
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r r
r i L (x, ) I L (x, )
- i 1 ik 171k -
(1) F = = = ¥ =" r(x,) > £ (L 2L 2y . £z
i T - Ty 1Tk 1 & T ik 1%

3ince fi is decreasing, relation (11) implies ;i > Xi. However ;i > Ki

can be shown directly, even 1f fi 1s not convex: observe that there

exists u such that Li(x) > Li(u) if and only if x > u and consider

r r
i L, (x, ) 10, (x,.)
(12) Ei-xi = E xik(-—i-Ti-—?—) > UZ(%.'S_.__L) = 0.
k=1 i Ty k=1 1 Ty

It was noted prior to eqg. (4) that the use of Li(xik) is an approxi-
mation. The reason is that the virtual time interval between the K-1st
and kth page faults may be interrupted by p > 0 file I/0 requests, so
that Pi in fact experiences durlng this interval a resident set size
sequence yoyl...yp, in which Yo 2.y1 2 wee 2 yp and X = yp. However,
this implies that Li(xik) underestimates the true lifetime in this inger—
val; therefore Ei underestimates the true mean lifetime, and relations

() and (9) remain valid. Moreover, ;i underestimates the true virtual

time residlent set size, and relation (12) remains valid. Finally (11)

remains valid: for we can interpret f, as the true value, observe that

1

the seconsd ecuality in (11) 1s an identity, then recall that x 4 is an

underestimate and fi 1s decreasing. The errors introduced by this
approximation are not likely to be large, especially in systems with

Re £ 1: “rnr the mean file 1/0 service time is usually 10 times the mean pa-

ging I/0 service time, and R_ < 1 implies that p=0 at least 90% of the

f
time.
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lmplementation. Eqs. (6) aﬁd (7) allow for the possibllity of an
artxitrary scheduling discipline over the observation interval —- the
ratios ri/r reflect the relative priorities given to the programs.
For FIFO scheduling, each of these ratios will tend to be 1/n.

f Vi-policy satisfying (S) for a given partition‘ﬁ may be approxi-
mated arbitrarily closely using an adaptive procedure. Let D, denote

i

the relative deviation of the mean resident size of Pi from the desirnd Ki:

r
i x, -X,
(13) D, = :_1—2'—-1-;-—5-.
1 k=1 i

The estimmtor Dj can be updated on each page fault of Pi by the statements

D = - e

; (Diri + (zi Ki)/ i)/(ri+1},

{14)

ri i= ri+1,
where 7z is the resident set size at the Page fault. Tha =emry 1Y0-

zatirn decision rule can be implemented as a two-phase repeating pro-

cedure. During the "converge phase" a page fault in Pi will result

in a page being removed from Pj, where j=i if D, > 0, and j is the

i
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Index of the program with largest positive deviation if Di < 0; the
effect of a memory reallocation during this phase will be to reduce

the total relative deviation of the memory partition from the desired X.
Juring the "diverge" phase a page fault in Pi will result in a page
being removed from Pj’ where j 1s the index of the program with smallest
atsciute deviation; the effect of a main memory reallocation in this
ph-se will be an increase in the total relative deviation of the memory
martition from the desired X. At the end of a pair of diverge/converge
Phases a partition sequence that conforms to (5) will have bean genera-
ted, whercupon the Vi-policy has generated higher processor utilization
than the flxed partitionlé.

Tf X is an equipartition, any symmetric memory reallocation pro-
crdure with FIFO scheduling -- such as the cyclically permuted favored
state under the "hiasing" policy [BZ,éB] -~ 1s sufficient to produce a
Vi-rolicy improving over X-

“ixed Imbalanced Partitions. Tt is possible for a fixed imbalanced par—
tltion to improve over an equipartition. Let X be a given partition

in which at least two resident sets have different size. Suppose that
FIFO scheduling is used at the processor and paging I/0O statlons. Under

these assumptions ri/r = 1/n and x for each i. The mean lifetime

=¥y
for X will be larger than that of the equipartition if

n i - M
(19) 2 L(x,)) > L, (=),
i1 11 {1 in

which 1s certainly true if there exists a convex function L passing

through the points Litxi} and Li(E); if fact, if LizL for all 1, every
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imbalanced partition is better than the equipartition. (See also
51, 56, pertaining to networks with different queueing disciplines,)
=xample, Consider two active programs with the same fault rate and

P L W W
lifetime functions:

X fix) Lix)
10 100/5 5/100
20 &4/8 5/4
30 1/8 s

where 5 is the mean paging I/C station service time. Suppose that

the file I/C station is unused (Rf=0). Consider a {(nondemand paging)
varihle partition pollcy that allocated memory according to the par-
tition sequence (10,30)(30,10) for equal numbers of page faults in each
partition; and a fixed partition (20,20). qsing the formulae given

earllor with S5=10:

partitions
measure (10,30) (30,10} (20,20)
L 5.05 2.50
F 0.20 0.40
X 29.8 20.0
X 20.0 20.0
Uy 0.43 0.24 '

The utiliz.ation U0 was computed according to Buzen's method [B7] and
verified by simulation. A linear interpolation between £(20) and £(30)
gives £(x) = 0.11 and verifies relation (2).

Jy the symmetry of the example, theé imbalanced fixed partition
(10,30} will produce U0=0.43, while the balanced partition (20,20)
will produce U0=O.24, verifying that balanced partitions may be less
efflcient than imbalanced ones.

fine Refo DS for another view of this analysis.
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FEREIIDIX Y NEAR OPTIMAL PARTITIONS

“igure 12 suggests why a working set policy is capable of generating
1 near-optimal partition. Consider a set of actlve programs having the
same lifetime functlon L under a working set policy, and suppose that L
does not increase much for x larger than the inflection point Yoo (Speci-
fically, assume that the slopes satisfy L'(xo) < L'(wo), for ¥y to be

defined below.) For a partition‘g, the mean lifetime (assuming FIFO queue-

ing in the network)} is
1 D
L{x) = 31;1 Lix,).

ur ovjective is finding a partition that maximizes ng).
Consider a working set partition with average resldant sizes
W = (wo,wi,....wn) in which W, =Y, for 1< 1 < n and Wy = M—(w1+...+wh) < Yq

~- i.e., one in which the reserve memory Yo 1s allocated to an n+ist
program. Consider any other partition Y = (vo,vi,...,vn), such as might
be generated under another variable partition policy. If any vy > Yqr

v cannot maximize L(ﬁ) since decreasing vy to Yo and reallocating the
pages v,-y, to the program with smallest vj will imrease L(v}. Assuming

>w. , else v

all v, < Yo then all v +...+vn-M is impossible. Since

1 0 0
L{w) lies on the chord connecting the points L and Yy on the L curve,
and since L(y) lies below the chord between Vo and v, on the L curve,

it 1s clear that L{w) > L(y}. In other words, w is an optimal partition
for n programs and wlll maximize processing efficiency.

An optimal partition for n-1 programs will have L(H) E_L(yo) > Liw);
whether it produces hlgher processing efficlency than w depends on

whether the increase in L offsets the decrease in load. A partition kf
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L(x)

Yo

Figure 12, Approximating an optimal partition.
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for fewer than n-1 programs will have L(Eg)::L(B); since it has smaller
load than u, it is less efficient. It is not difficult to see that a
partition v for n+1 programs (in which vy < yo) has L(x:) < Lilw);
whether the'prccessing efficiency for v' exceeds that of w depends

on whether the effect of lncreased load oftests that of decreased
lifetime,

The point is, the partition w will approximate an optimal parti-
tion and an ogptimal load. It remains only to recall that the inflec-
tion point Yq is approximately the mean locallty size of the program,
which can be approximated by a working set policy for a wide range of

window size., (8See also G1.)
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