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.Abstract: A queueing network is used to show that the page fault

rate functions of active programs are the critical factors in system

processing efficiency. Properties of page fault functions are set

forth in terms of a locality model of program behavior. Memory mani!lge-

ment relicles are grouped into two fixed-partition and three variable_

partition classes according to their methods of allocating memory and

controlling the multiprogramming load. It is concluded that the so-called

working set policies can be expected to yield the lowest paging rates

and highest processing efficiency of all the classes.
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INTRODUCTION

Eliciting a full, or even adequate, level of performance from a

multiprogrammed computer system has ~ o v e d a difficult goal. Much to. r-.

the regret of its designers, many a system WBS put t o g e t h e ~ with but

exiguous concern for its ultimate behavior - perhaps because the issues

of system organization were more pressing or interesting, or because the

complexities of the interactions among demands of different programs

for various resources were underestimated. Particularly vexing have

been a variety of instability problems, commonly

called "thrashing" [W2] t and the inability to know which of a myriad of

p o s s 1 b i l i t ~ e s is the most efficient method of managing a systemts memory

resources. Two converging streams of research have been increasing our

knowledge of analysts and control of system behavior; their eventual

confluence will enable the design of new systems whose behavior can

confidently be predicted, and may enable improvements in existing sys-

terns. The one stream comprises modeling and analysis methods, parti-

cularly of networks of interacting queues, that permit studying the

effects of competing resource demands both in steady and transient

state. Though steady state analysis is more .fully developed and pro-

vides great insight, full solutions to stability problems await the develop-

ment of transient state analyses. (See R. Muntz's paper in this

issue [M3].) The other stream comprises the study of program behavior

and memory management -- that is, the characterization of the relation-

ship between observable patterns of accessing information and demands
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on memory and other system resources, and their subsequent use in

designing policies of memory management. This paper surveys the

present state of knowledge about the interaction of these two streams.

2. SYSTEM ORGANIZATION AND PARAMETERS

A great many contemporary computer systems provide each programmer

with a paged virtual address space .larger than the main memory space

likely to be available when he runs his program. They also provide a

file system to permit programmers to store variable numbers of variable

objects (files) for indefinite periods of time. We assume that the

~ e a d e r 1s familiar with the terminology of demand paged virtual memory

nnd of file systems ( ~ , for example, Ref. D3 or 53). Most such systems

use multiprogramming, so that main memory will contain a supply of active

programs to which the processor can be switched should the one it is

working on stop; since a running program typically stops because it

requires service from some device other than the processor. multipro­

gramming tmproves concurrency in the use of all system resources.

Figure t depicts the type of multiprogramming system under consider­

ation here: a network of interacting service stations. The network

comprises two main portions: the active network contains the processor

and I/O (input/output) stations. While the passive network contains a

job queue and policies for admitting new programs to active status. A

program is active when in the active network; only when there 1s it

eligible to receive processing and 110 service. and to have pages in

main memory.. The number of active programs is called the level or

degree of multiprograrrm1ng; it Is denoted hereafter by n .or. in the

, ..
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In Pigure 1, each active progr8m Is waiting for service from one of

the three stations in the active network: it waits at the fIle I/O station

whenever it requires one or more records of a file to be transferred

between a main memory b.uffer and the file store (usually a disk); it

waits l!lt the paging I/O station whenever it requires a page to be

transferred between main memory i!md the paging store (usually a dnun);

and otherwise it waits at the processor station. The box labelled

Job Queue contains a set of enabled programs, a decision polIcy for

activating them, and 8 "load contraIl! mechanism for controlling n( t).

New programs can be submitted from a batch-processing system entry sta-

ticn, a collection of time sharing terminals, or both. (see also B5.)

Inherent in the network of Figure 1 Is the notIon that an active

program alternates between intervals of requiring processor service and,
intervals of reauiring an I/O transaction. Though it is in principle

possible for a single program concurrently to be using hoth the processor

and I/O stations, the assumption of no such concurrency is

frequently met in practice: demand paging guarantees dlsjointness of

processing and paging I/O, and few programmers ever achieve more than

a small percentage overlap between processing and file I/O.

At the completion of a processing interval. a program moves to the

file I/O station with probability qf' to the paging I/O station with

probability qp' or to the inactive state with probability qo; of course

1.•(2.1) qf+qp+'Io

The service rates of the three stations are given by the parameters
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bf' bp ' and bOi they denote the reciprocals

at their respective stations (e.g., 1/b
O

1s

Ing interval).

of the mean service times

the mee.n length of a process-

.. ~

The network parameters qf' qp' and <Io are derivable from program

parameters. Suppose the total file ,I/O, paging I/O, and processing

requirements of a pcogram are denoted by Tft T
p

' and TO rp.spectively.

(In our context, T
f and TO are entirely intrinsic to a program, whereas

T is not; how much memory 1s allocated to a program, or what policyp

1s used to determine which of a program! 5 pages reside in main memory,

significantly affect T • The system scheduling and memory management
p

policies can cause T to vary over an extremely wide range, from cons!der­
p

ably smdller than TO to considerably larger.) Let a
f

denote the rate

at which a program requests file I/Oj its total number of file I/O

requests is therefore TOa
f

• and the total time required to serve all

a program's pagingStmilarly. if a denoteS
p

rate, the total time it spends on paging is T .., TO. /b •
p p p

every processor departure. a program chooses independently

Since on

to leave the

active network with probability qo' the mean number of passes through

the processor before leaving is 1/QO; and since the mean time per pass

is assumed to be 1/b
o

1

(2.2) •

Of the 1/qo passes a program makes on the processor, (1/q
o

l-1 of them

were occasions on which it moved to an I/O station (after the last

pass, it exited active status); equating this to the total number of
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1
•

1- + TO<B.f+B.
p

) •

Together with (2.2), this implies th8t b
O

• af+a
p

+l/T
O

• Since the

(2.3)

fraction of processor passes after which a program moves to the file

I/O station is qf' the number of visits it makes there must be

qf/qO • TaB
t

, which implies

( 2.4) • •
1 +

Similarly,

(2.5) ,
•

It 1s clear from (2.3), (2.4), and (2.5) that q O + ~ + q p = l as required.

If we nQ,Ji extend TO' af" apt be b
p

to be averages common to all

active programs, we r..:-m use the parameter va!'.les implied by the above

equations to study the average prOperties of the network.

Now: Define UO' Uf ' and Up to be the utilizations (fraction of time

bUSy) of the three stations, for given load and parameter settings. In

equilibrium, the mean flow of programs out of the flle I/O statlon,
must be U;>f programs per unit t1me; out of the paging I/O station,

Uphp ; and out of the processor, UOb
o

'. Moreover, 8 fraction qf .of

UObo muast be input to the file I/O station and, in e:qullibrium, the

input flow must be the BarN! as the output flow there; I':tence

(2.6) • • •

where eqs. (2.4) and (2.2) have been used to simplif'y. Define the
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relative u t l 1 1 z ~ t l o n of the file I/O station,

•

Similarly, for the paging I/O IStation,

(2.8) R
P

•

C" l/b
p

1s the mean paging I/O service time, and

length of execution interval between page faults

The relative utilization of the processor station is of course ROE1.

It is important to note that R can be interpreted as the ratio of
p

the mean paging I/O service time to mean uninterrupted processing inter-

val between paqe faults. (An analOgous statement can he made for R
f

.>

In other words, if S

L '" 1/8 is the mean
p

(assuming the main memory access time 1s used for the unit of virtual

time), then (2.8) can be rewritten

(2.9) R •
p

S

L

The foregoing discussion aS6umes that all active programs have the

same system parameters. If they do not, we can use as an approximation

suitable averages over all active p r o g r a m s ~ For example, if a sequence

of k successive page faults (from programs of different characteristics)

terminate interfault intervals of expected lengths L
1

, ••• ,L
k

, we can

use L - (L1+ ••• + ~ ) / k in (2.9). In reality, the processor utilization

is a function of all the intervals L1' ••• ' ~ ' not just their average.

However (as we have verified by simulations), the use of "the nverage L

appears to give predictions of utilization within a few per cent of the

true utilization, and thus we felt justified in using the simpler
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a.nalysia baaed on average. over the set of active programs. Nonetheless,

the reader should keep in mind that the use of these overages in fact

-constitutes an apP£'lIX1matlon.

Concerning utilizations, a few points should be noted. First,

the ratio R
f

depends only on the intrinsic: program parameter a
f

and

the (fixed) flle I/O station rate bf; it cannot be affected by memory

management policies. In contrast, the ratio R depends on the paging
P

rate apt which can be controlled by the sy.te. Theretfore, in our

context, the paging rate 18 the critical parAmeter. Second, the

relative utilizations

of multip<ogrOllllling) •

Rff Rpt and R
O

.do not depend on the

However, the absolute utilizations

load (level

do. Under

general assumptions, one ean show that

(2.10)

that 1s, the absolute Jrocessor utilization depends only on the load

and. the relative utilizations rC4, SS, 86]. Once U
o

Is found, the

other utilizations can be obtained from U
f

• UORf and Up • UOR
p

•

Third, if R
f

and R
p

are fixed, U
o

must be an 1nc:reaa1ng function of load:

for a new active program must increase the absolute utilization of any

station at which it queues, and, because the utilizations are in fixed

ratios, all other ab80lute utilizations must 1ncrease. Therefore,

(2.11)

Fourth, as load increases, the utilization of the station haY1nq

the m a x ~ relative utilization must a p ~ o a c h 1 at least as fast as

the others. Let



(2.12) R
m

•

B

= U /R I the fact of U approaching 1 fastest implies
m m m

<
1

R
m

•

with near equality for large enough n. Since R >1, the maximum.....
possible value of Uo may in fact be less than 1. This shows that

the designer of a systemwhlch apparently is unable to achieve processor

utilization 1 cannot immediately conclude that an t m ~ v e m e n t in the

memory management policy will increase U
O

• A slow file I/O station,

or excessive rate of file I/O requests, can cause R m ~ R f > l : the file

I/O station, rather than the paging I/O station, in this case limits

processor utilization. Usually, however, adequate buffering keeps

R ~ l , so that reductions in R
p

are likely to improve performance.

The properties above show what happens when load 1s changed and

other parameters are held fixed. In studying memory policies, it is

r r ~ ' T l ~ n l : l " 1 !·Y>";slble to vary the paging rate while holding load and

other parameters fixed. From the above, it follows that

> R' < R •
P - P

In words, changing the paging rate from a to a' < a cannot decrease
p p - p

processor utilization. For if reducing R
p

were to cause U
o

to decrease,

then U
f

= UOR
f

would der:rease as "..'!ll - implying· a decrease in the

utilizations of ill st.,.,U.0'.1s, which is patently l : ~ l p o s ! ' : i b l e without

reducing the load.
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•
Since the throughput rate of the active network of the system is

the flow out, viz.,

(2.15) •

it follows that increasing processor utilization for a given level of

mUltiprogramming improves the system's ability to complete work at that

load level. For multiprogramming level 0, Little's foemula tells that

the r e s p o n ~ e time in the active set is

(2.16) w •
n

~

that Is, increasing Uo without changing n will decrease response t ~ .

Therefore, decreasing the relative utilization of the paging I/O station

by an improvement in memory policy without changing the load will concom-

mitantly increase throughput and decrease response time. For this reason,

processor utilization is a suitable measure of performance.

The previous observations about processor utilization do not·con-

sider what happens when an inerease in load implies an increase in page

fault rate, on account of programs having less space available. Systems

under memory constraint exhibit an optimum level of multiprogramming, nO'

Uo being maximum at nO [85]. The reason 1s that overall paging rate a
p .

is an implicit function of load, with a (n+1) > a (n). However, for
p - p

n<nO' the increase in paging is unable to offset the increase of utiliza-

tion effected by increased load; but for n>n
O

' paging increases more

rapidly and utilization decreases. An extreme case will illustrate.

Suppose total main memory is H pages and each active program receives

space x • MIn under load n. Take R
f

D"l and R
p

to be the step function
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a (x)/b •
p P {

100'

1/100,

•

. '.

•

the processor utilization

]n o t h ~ ~ worrls, t h ~ s e programs page at a high rate when their memory

allocatjons are small and at a low rate otherwise. This implies that

has the form (cf. eq. (2.13»:

{

uaen, 1, 1/100) < l/R
m

a 1, n < M/x
O

Ua(n. 1, 100) ~ l/R
m

• 1/100, n ~ H/x
O

This is suggested in Figure 2. The optimal degree of multiprogramming

1s nO=M/xo • The effect suggested here. known as thrashing, 15 not

usually so a ~ r u p t as this example shows. However, in many practical

situations changing the load from nO to °0+1 or "0+2 1s sufficient to

c ~ u s e a sprlous drop in utilization.

The optimal level of multiprogramming can vary from one set of

active programs to another, because page fault rates vary among pro-

grams: thus n O ~ n o ( t ) . To avoid thrashing, it 1s necessary to include a

load control mechanism in the system scheduler (Job Queue in Fig. 1), whose

purpose is to adjust dynamically the level of multiprogramming so that

most of the time net) ~ knO(t) for some small constant k2:,1. Even a

simple limit N on net) may not successfully control thrashing, unless N

has been set low enough so that the event knO(t) < N is Wll1kely - but

then the system is probably operating at a significantly suboptimal load

a goodly portion of the time. Load controls whIch attempt to maintain

n(t).no(t) and which thereby k e e p ~ h e system operating at top efficiency

will be discussed l a t e r ~ (See also R2 and W2.)
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To summarize: We have examined 8 network representation of the

resources used by active programs in B typical multiprogranuning environ­

ment. The purpose was to establish that the page fault rate is the cri­

tical parameter, and that memory policy changes that improve it without

changing load or other system parameters can be expected to improve

processor utilization, increase throughput, and decrease response time.

To shOW' whether a proposed change in the memory policy will improve

processing efficiency, it is usually sufficient to show that the change

does not increase any program's paging rate, or equivalently that it

decreases the relative utilization of the paging I/O station. We
•

showed also that there 1s an optimum load, that a load control mechanism

1s required to prt?vent thrrlshing, and that load control must be coupled

to the memory policy.

•

3. paOGRAM BEHAVIOR AND PARAMETERS

A program in execution will generate a sequence of references

(known as an address trace) to informiJ;tion in its virtual address space.

The reference string of the program i5 a sequence

O.1l ~ - r(1) r(2) ••• r(k) ••• r(K),

in which rCk) is the number of the page containing the virtual address

referenced at time k, where k 1:1 1,2, ••• ,K measures execution time, or

virtual time. The pages the program has lX'esent in main memory constitute

its resident set; the resident set just after the k ~ reference is denoted
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by Z(k), and its size (in pages) by z(k). A page fault occurs at vir-

tual time k if dk) is not in Z(k). Under the BlSswnption of demand

paging, Z(k+l) is the same as Z(k) plus r(k) less any pages of Z(k)

replaced (i.e., removed from main memory) by the memory policy; more-

over, z(k+l) ~ z(k)+l. The memory policy thus determines the sequence

of resident sets Z(1)Z(2) •••Z(K) that arises while processing a refer-

ence string E and, hence, the paging rate experienced by the program

generating B.

Let t
1
,t

2
, ••• ,t

K
denote the (real) time instants at which the

references of a reference string R commence. The resident set at time
~

t, where ~ - 1 ~ t < ~, is the same as that at time ~ - 1 ' less any pages

which have been replacedi thus

It is important to keep clear the distinction: the behavior of a given

program is formulated with respect to its virtual time, .....hereas the

beh;Jv1.or of a system is formulated. with respect to real time ..

for reasons already discussed., the page fault rate function is impor-

tant in any study of memory management .. Denoted by f(A,x), this function

gives the expected number of page faults generated per unit of virtual

time when a given reference string R is processed by memory policy A,-
subject to main memory space constraint x.. Since most of the results

depend only on properties which, being common to most fault-rate functions,

are relatively independent of the particular !! that arises, .B will not be

shown as an explicit parameter of these functions; however, the dependence

should not be forgotten altogether.
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For the case of fixed memory allocation, the space constraint x

is interpreted to mean that the resident set sizes must satisfy z(kl < x

for all virtual times k. For the case of variable space allocation, the

space constraint x 1s interpreted to mean that the average resident set

size 15 x:

D.3 ) x
1 K

'" - '("'I z(k);
K k~1

•

it is assumed that the policy A has parameters which can be adjusted so

that (3.3) can be satisfied for a range of choices of x. Examples of

both fixed and variable space policies will be considered below.

Examples of commonly studied fixed-space policies include:

Li?U (least recently used) which, at a page fault time, replaces the

least recently referenced page of the resident set; FIFO (first in first

out) which, at a page fault time, replaces the longest resident pagei

~ A N D (random) which, at a page fault time, replaces a randomly chosen

p?ge from the resident seti and OPT (optimal) which, at a page fault time,

replaces the resident set page that will not be referenced again for the

longest time. Of these, OPT cannot ~ implemented (it requires fore-

knowledge), FIFO is simplest to implement (it requires arranging the

resident set pages in an order-of-arrival queue), and LRU is the most

robust, providing consistently the lowest (of nonOPT policies) fault

rate over the widest class of reference strings [Bl]. Although OPT is

not implementable, it can be used a posteriori to compare various algor-

ithms against o p t ~ i and its principle -- choosing for replacement the

page with maximum "forward distance" - can easily be used to construct
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reference strings for which LRU is optimal or approximately so ( ~

Appendix 1). If the memory policy A 1s a member of the large class of

"stack algorithms" (C4, M1], the fault rate function f(A,x) is non­

increasing in x for every reference string and may be computed by a

-highly efficient procedure. Of the above, all but FIFO are stack

alqorithrns.

Much of our attention wIll be directed toward the LRU policy, or

p r o c e d \ l r ~ s r"sembling it. Associated with an instance of this policy

is a dynamic list known as the LRU stack, that arranges the referenced

pages from top to bottom by decreasing recency of reference. At a page

replacement time, the LRU policy chooses the lowest ranked page in the

stack; therefore, the contents of an x-page resident set must always

he the pages occupying the first x stack positions. When a page is

referenced, the stack is updated by moving the referenced page to the

top C\nd pushing down the intervening pages by one place. The position

at which the referenced ~ g e s was found in the stack before being promo­

ted to the top is called its stack distance. A page fault occurs in an

x-page resident set at a given reference, if and only if the stack dis­

tance of that reference exceeds x. These ideas form the basis of an

efficient procedure for computing the fault rate function f(LRU,x) by

counting stacie distances in a reference string ( ~ Appendix 1).

F i g u ~ e 3 shows a typical such function. It has the terminal values

f(LRU,O) = 1 and f(LRU,N) ~ N/K for an N-page program and reference string

of length K. For large K, the function is typically convex, which is

considered a manifestation of program locality (see below).
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'l'houqh powprflJl. analysL. of given referp.ne" strinqs unetf!(' fixed

space policies does not account for the mechanisms by which programs

generate reference strings; moreover, the procedures do not readily

extend to the analysis of variable space policies. To deal with this, a mo­

del 1s useful. Regard a program's execution time as being partitioned

into a sequence of phases, a phase being an interval of constant memory

requirement. Similarly, the program's address space 1s partitioned

into segments, a segment being a named block of contiguous addresses.

A given segment 1s considered "active" in a given phase 1f processing

of that phase requires the presence of that segment in main memory __

i.e., in the resident set. The set of all segments active in a given

phase is called the locality set, or locality, of that phase; the local-

ity set at a given inst0nt of real time is the same as that of the phase

in progress at that time [S5,S7J. The validity of this abstraction has

been verified over and over again, for example in t h ~ experiments of

Rodriquez-Rosell [R1J, of Hatfield and Gerald [HiJ, or of Perrari [P1]:

it is always observed that many distinct and readily-identified phases

exist, that during each an often-small subset of the program's segments

is active, and that the locality sets are often disjoint and of highly

variable sizes.

Though not of direct concern here, the distribution of segments

among f/d(Jes can have a significant effect on locality [Ft,Hi]. In case

a large segment is allocated among several smaller pages, its activity

implies that of all its pages, 50 that the original locality properties

remain observable. In case a number of small segments are allocated on
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one larger page, the assignment can be critical: scattering the segments

of one locality among m6ny pages w111 effectively mask the locality pro­

perties of the original program, making it appear as if the locality

set of every phase - measured now in pages __ is very nearly all the

address space.

The notion of localities and pt"ogram phases 1s somewhat more via­

hIe in the context of generating page reference string [55,57] than in

the context of designing memory policies, simply because prior knowledge

of localities and phase boundaries is not available in the latter con­

text. Instead, a memory policy must include some method of measuring

or estimating the locality of a program at each instant, and the esti­

mator thus defined can be used to specify the content (and the size, if

thnt is adjustable) of the resident set of a program. The generic term

working set is usually used to denote an estimator of a locality set.

Just as there is a wide range of fixed space ~ g 1 n g algorithms, there is

a wide range of locality estimating techniques and a range of variable

space policies based on them. A characterization of this range will

be presented in the next Section.

Perhaps the most well known locality estimation method is the

moving-window working set ( ~ i S ) . Its analysis methods are even more

fully developed than those for fixed space paging algorithms [C4,Dl,

O?,D4,G2,Pl,S4]. For a parameter T known as the window size, the working

set W(k, T) of a program at virtual time k is the collection of pages

referenced by that program in the T references preceding and including

the one at time k (i.e., W(k,T) .. {r(k-T+l), ••• ,rCk)} );'if 1<:<T,

W(k,T) = W(k,k). The size of the working set is denoted by w(k,T).



17

If { ~ } are the real time instants corresponding to virtual times {k},

and iK ~ t < ~+1' define W(t,T)*W(k,T). The missing page rate meT) is

the rate Ilt which nev pages are entering the working set. Under the .E!:!:!:.

working set memory policy (WS), which allocate. f:!he resident set as

Z(t)=W(t,T), meT) becomes the page fault rate. The mean working set

size is denoted sCT); .it is an increasing, concave function whose slope

may be interpreted as meT) (see Appendix 1). A fault rate function

f(WS,x) giving directly the relation between (mean) space and paging

ra,te can be defined parametrically by setting

f(WS, sCT» • meT), T"'O,l,2, •••

All the functions meT), sCT}, and fCWS,x) can be computed efficiently

( ~ Appendix 1).

Figure 4 shows the mean working set size function sCT), the missing

page rate function m(T), and the construction of the fault rate function

f(WS,x) a The curve seT) approaches a value smax' which it attains for

some T < K where K is the reference string length. In general s < N,
max-

N being the program size; however, Smax need not equal N since the pro­

gram need not reference some of its pages until later phases t whereupon

early working set sizes must be less than N. The function meT) is

decreasing to the value N/K. The fault rate function f(WS,x) is defined
•

only for 0 < x <. , with terminal values feWS,O).1 and fewS,s ). N/K;
- - max ITIlIX

it is decreasing since sCT) 1s increasing and meT) decreasing.
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Pigure 5 shows a typical comparison of f(WS,x) and f(LRU,x). Define

the point Xo as the smallest space for which x > x implies f(WS,x) ~
- 0

fUdiJ,x) -- th:3.t is, '..IS is at least as good as LRU. The point X
o

appears

not to exceed the mean locality set size of the reference string.

Thus a program with one phase and one locality set will have xOe:: 5 ::!: N,
max

while one with many phases and a wide variance among locality

set sizes will tend to have xo much smaller than 5 and N. The reason is
max

that WS is able to adapt its resident set to be the current locality

set estimate, h ~ v i n g little or no paging whenever the window is con-

tained wholly in a phase, whereas LHU will produce streams of page

faults in those phases whose locality exceeds the size of its resident

set. This behavior will be observed even for reference strings over

which LRU is optimal, and for reference strings processed by the optimal

fixed space policy OPT: it is a direct result of the variability of local-

ity size.

Sxperiments by Prieve and Fabry [P1,P2] indicate that differences

of 30% or more between the LRU and WS curves in the range x > x
o

occur

frequently, showing that important variations in locality size are

significant in program behavior. ( ~ A p p e n d i x 1 for examples.) Fur-

ther experiments demonstrate that an o p t 1 m ~ l variable space algorithm

could in principle produce another 30% or more improvement over WS

(60~(' or more over LRU) t Bhowiilg that the working set is not a perfect

estimator of locality [ P 3 ] ~ (However, like the fixed-space optimal

algorithm, OPT, the one studied by Prieve requires foreknowledge of the

reference string. Its prLmary interest 1s in assessing how effective

a locality estimation procedure i s ~ )
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Another measure of page faulting is the 11£etime function L(x} r

which gives the mean virtual time between page faults when a reference

string is processed under a given memory policy with space constraint x.

(See ct, B2, B3.) It 1s defined simply as

<3.5) L(x) •
1

f(x) ,

where f(x} is a fault rate function. Figure 6 shows a typical lifetime

function for the LRU policy. There is usually a value YO such that the

lifetime function 1s convex for x ~ YO and concave for x > YO. Por some

fixed space policies, the convex part can be approximated by cxk with

1.5 < k < 2.5 [B2,B3,Cl,S6]; no one has ventured approximations yet for

the convex part of L(x) for variable space policies. The convex/concave

shape 1s characteristic of many (but not all) lifetime functions. For

fixed space policies, YO 1s approximately the size of the largest locality

set, whereas for the WS policy it tends to be approximately the average

(over virtual time) of the locality set sizes. ( ~ A p p e n d i x 1.) The

properties of the lifetime function have been used to demonstrate effi-

ciency increases in certain cases, where such increases could not be

deduced directly from the properties of the fault rate function [C1,G2,S6].

To surranarize: A program's page reference string is an observable

quantity, from which one can compute fault rate functions for various mem-

ory policies, notably LRU and WS. The abstractions of phases and local-

ities can be used to explain the relative behaviors of programs under

LRU and WS policies. The lifetime function, which is the reciprocal of

the fault rate function, characteristically exhibits a convex/concave shape.
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~ h e p.xlstence of a convex region in the lIfetime function will be used

In the next section to deduce that certain variable space (nonWS) poli-

cles can ~ o d u c e a net reduction in paging rate; together with the results

of Section 2, this implies a net improvement in system performance.

4. CLASSIPICATION OF MEMORY POLIC!E;S

Denote by P1, ••• ,Pn the set of active programs during a time

interval in which the level of multiprogramming is fixed ( n ~ n ( t » . Associ-

ated with Pi at time t is its resident set 2
1

Ct), containing ziCt) > 1

pages. The configuration of memory Is represented by a partition vector

(4.1) ZIt>
~

The partition size vector Is

In whleh

zIt)
~

•

at every time instant t, where M Is the size of the main mell'Ory. The

reserve memory 15 that portion unused by any active program, its size at

time t Is

n
Rlt) • M - E z1ltl.

1.1
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As has been noted-, a memory policy can be regarded as including a

method of estimating program locality sets. The estimates thus deter­

mined are used to specify the content (and size, if adjustable) of each

program's resident set. Figure 7 suggests a classification of memory poli­

cies based on the method used to estimate the locality. It will be used

nS the basis for the ensuing discussion of memory policies. Our objec­

tive Is showing why performance improvements can be expected under a

policy improvement corresponding to a rightward change along the bottom

of the diagram in Figure 7.

:ihen maIn memory allocation 15 controlled by the programmer, who

inserts into the program commands that move information in and out of

main memory, memory management Is said to be manual. The viability of

this type of management is usually limited to s y s t ~ m s in which the resl­

d ~ n t set size is fixed and known in advance by the programmer, who is

then in a position to optimize information placement and flow with res­

pect to that resident set size. In contrast, memory management handled

by the system is said to be automatic.

Manual memory management has fallen out of favor for a variety of

reasons. One is simply mounting experience that properly designed auto­

matic management mechanisms (e.g., virtual memories) can perform at

least as well for large programs as carefully planned overlays [52J.

Another is the use of multiprogramming and multiplexed resource alloca­

tion, which rob the programmer of the key assumption that a resident set

of known size will be continuously available to him. In a mul tiprogrammed

environment, each active program Pi cannot be guaranteed good performance

even if it has complete control over its resident set Zl(t), because
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attempted local optimizations need not imply that the entire system is

optimized. The probleEh is that the individual who programmed P1 does not

have access to information about P
J

(J ;. 1) and 1s therefore not ina posi-

tion to optimize his performance in relation to the system'sj moreover.

there 1s no guarantee he would use this information properly even if he

did have it. Therefore, multiprogrammed memory management js always

automatic.

Policies of automatic memory management can be grouped in two cate-

gories: fixed partitioning and variable partitioning. The latter has

already heen defined, in terms of a time varying partition vector ~ ( t ) ;

techniqup.s of varying the partition will be discussed below. If the

resident spt si?e ziCt) is a fixed constant zl for all t during which Pi

is active, then the size vector zet) is c o n ~ t a n t during any interval

"
in which the set of active programs is fixedj this is known as the fixed

partition approach. In case the entire address space Ai of Pi can fit

In the allocated space of zi pages, the resident set is also fixed:

2 i (t) = Ai· Otherwise, if zi is smaller than the size of Ai' a replace­

ment policy must be used to define what subset of Ai constitutes 2
i
et);

note in this case that 2
1
't) varies even though z1 does not. In case

zi c Min for each i, ~ e t ) is called a balanced partition, or eguipartition.

Imbalanced partitions are capable of better processing efficiency,

if only because they permit the flexibility of allocating programs with

larger locality sets more memory. However, even if all programs have

identical locality properties, it frequently happens that any imbalanced

partition is more efficient than a, balanced partition (see Appendix 2

and C1, G2, 56).
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In either the fixed or variable partition approach, demand paging

is o ~ d i n a r l 1 y used to!Bcquire a program's pages into main memory while

that program 1s actiVe. In case latency time at the paging I/O station

is a problem, some fotm of swapping may be used to load a resident set

at the beginnings and ends of a program's active intervals.

Arguments in support of fixed partitioning are of two types. One

is founded on a belief that memory availability in a system, and the

memory r~qu1rements of any given program, can be pcedicted prior to pro-

gram processing. The other 1s the apparent low overhead of implementa-

ticn, since p ~ r t i t i o n changes occur as infrequently as possible __ viz.,

when the set of active programs changes. The first argument is weak

for the same reasons that arguments for manual overlays are. The second

argument's weakness is revealed when one accounts for changing locality

in a program. Consider for a moment the behavior of a fixed partition

z when the set of active programs P
1

, ••• ,P each has a large variance
~ n

in locality set size across time. Recause the partition is fixed, there

is no way to ~ e a l l o c a t e "pages from Zi to Zj at a time when Pi'S locality

Is s m ~ l l e r t h ~ n zi and Pj's locality is larger than Zj' when clearly such

a reallocation would not degrade Pi'S performance but would improve Pj'S.

Coffman and Ryan have analyzed this effect, and have concluded that the

variance in locality size from one program phase to another Is ordinarily

large e n o u g ~ to produce a gain in memory utilization so significant that

it recovers the cost of implementing a variable partition several times

over [C3]. Put another way, there is a hidden overhead in the fixed

partition -- severe loss of storage utilization for programs with wide

variance of locality size -- which when accounted for significantly dimi-

nishes the attraction of fixed partition strategies.
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Within the class of variable partition strategies, one may identify

at least three 6ubclasses, according to whether there is no correlation,

weak correlation, or high correlation with locality changes of programs:

Class V1 - The partition ~ ( t ) is varied, but with no explicit cor-,,--............
relation to the reference patterns of the active programs.

Class V2 -.... Variation in Z(tl ·1s explicitly correlated with the-
activities with which active programs reference pages

in their resident sets, but there 1s no explict attempt

to identify locality sets and protect them from pre-

emption.

The resident sets ~ ( t ) are m ~ i n t a i n e d in one-to-one

correspondence with working sets (estimates of the

locality sets) of active programs.

It should be noted that Class W policies are intended to be precisely

the "working set policies" [02,03].

As noted in Section 2, the efficiency of a multiprogrammed computer

system depends on a load control mechanism keeping the system away from

thrashing. The objective is to control the level of multiprogramming

net) by nctivating or deactivating programs so that most of the time

14.5)

where nO(t) 15 the optimum level of multiprogramming and k ~ 1 is a

smo!lll constant. Class ',v policies have an inherent load control: they

will force the deactivation of a program at a page fault time when the

memory reserve R(t)=O; and they will defer the activation of a new pro-

gram whose initial working set is estimated at size z, until
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H > O.

Th~ parameter H is adjusted so that the rate of program dRactivations

caused by ~(t)=O at a page fault time 1s low [C3,R3]. To the extent

that a ~-policy is successful in estimating localities, it will tend

to have n(t) approximately "OCt) ( ~ A p p e n d i x 3). In contrast, V1

and V2 policies, which have by d e ~ i n i t i o n no direct way of estimating

locallty, must necessarily use some cruder form of load control. A

Typical control for these cases is a preestablished limit fJ on the

allowable level of mUltiprogramming, sometimes with an adjustment of

the limit N inversely with the ·system paging rate. To keep the thrash­

ing prohability low, it is necessary to set N so that the event

knO(t) < N 1s unlikely -- which implies that the system ~ p e n d s most

of its time operating at 8 suboptimal level of multiprogramming. Thus,

even if a V2-policy is successful in keeping locality sets resident,

it will tend to be less efficient than a W-policy. Finally, one should

expect V1-policies to be less efficient even than V2-policies, since they

h2ve no mechanism at all for tending to reallocate pages from resident

s ~ t s that are larger than their cOntained locality sets to resident sets

that are smaller: because they thus make poorer overall use of storage,

they cannot maintain as high a level of multiprogramming at a given

level of paging as a good V2-policy and {by eq. (2.11» their processing

efficip.ncy will be lower. The empirical evidence supporting this rank­

ing of the classes is discussed next.
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Class Vi Policies

Though it may not be obvious that varying a partition without cor-

relation to program behavior can increase system processing efficiency,

V1-policies are capable of improving over fixed partition policies. This

was first observed in a study of the so-called biasing discipline by

! ~ p . l a d y il.nd t':uehnr.r on the M44 system [82,93]. According to this dls-

cipline, <l. "favored stilte" of execution 1s passed cyclically among the

active programs. A given program remains in the favored state until

the system has expertenced p page faults (p is a parameter). While

,
favored, a program 1s granted new pages on demand for its resident set

,
and is exempted from replacements; thus its resident size can increase

by as many as p pages during its favored interval. A system throughput

increase in the range 10-15 per cent over an (approximate) equipartition

using FIFO replacement is reported. Belady and Kuehner suggest (but

.do not prove) that the performance improvement derives from the convex-

ity of the lifetime function. In Appendix 2 we show that, given a fixed

partition l = (X
1
,··.,X

n
), there exists a V1-policy under which the

fault rate of each active program Pi satisFies

(4.7)

i\ is the mean virtual time fault rate of Pi' - is resi-where and Xi the mean.
dent size in the virtual time of Pi. The lefthand inequality assumes

•that the lifetime function is convex over the range of memory allocations

usedi the righthand inequality assumes that the fault rate function is

convex. One can show Xi > Xi even if the righthand inequality above is

false, directly from the assumption that f
1

1s a decreasing function.
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Thus the fixed partition (x
1

, ••• ,x
n

), which would be yet more effi­

cient that the Vi-policy, 1s hypothetical -- it cannot be implemented,

since xi > Xi implies X
1

+••• +X
n

> M.

,
Analyses by Spirn [56] I Ghanem [G2]. and Chamberlin ~ ~ . [el]

have given further information about partition policies. These authors

worked with lifetime functions of the type discussed earlier (see,

Fig. 6). They discovered that processing efficiency may be increased

relative to an equipartition, by amounts comparable to those observed

by Belady and Kuehner, simply by using an imbalanced partition. No

variable partition is needed. ( ~ A p p e n d 1 J c 2.) Spirn showed further

that the equipartltion may be worst possible. Moreover, Ghanem showed

that this result may depend on the lifetime function' 5 being "sufflci-

ently convex" for X<Yo (cf. Fig. 6). That is, for lifetime functions

of the form L(x) = cx
k

(x::;. Yo)' it was necessary that k>a, where a is

a constant depending on program and system parameters; typically

1 < a < k < 2.5. Ghanem found a stronger result: when the lifetime

is insufficiently convex, the equipartition 1s optimal.

It thus appears that two factors may have combined to produce the

effect observed by Belady and Kuehner. One is that their policy always

kept the system 1n some Lmbalanced partition. ny changing the parti-

tion only at page fault times they not only kept the overhead of their

policy to a minimum, but they distributed the improvements uniformly

•
among the active programs. The other factor is the space variation act-

Ing 1n the virtual time of the programs producing the relation (4.7).
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All these analyses and observations lead inescapably to the

conclusion that lifetime functions of programs are significantly non­

linear, a fact which has yet to be reconciled by a linear assumption

to which one may be led on superficial inspection of a recent paper

[51]. (See also 06.)

Class V2 Policies

An approilch to memory management commonly used in operating systems

extends the idea of a fixed space replacement policy to multiprogramming

simply by apply!n'] the r ~ p l a c e l \ l e n t rule to the entire contents of memory,

without identifying which program is using any given page. For example,

all resident set pages (of Zi(t) for each i) can be placed on a single

("global") LRU stack; whenever an active program runs, it will pre­

sumably reference its locality set pages and move them to the top of

this LRU stack. A load control is necessary (but not SUfficient) for

the successful implementation of. such a policy: for if there are too

many active programs, pages will be taken from the resident set of the

least recently run program (whose pages will tend to occupy the lowest

stack positions), whereupon that program when run will soon experience

a page fault. Even if.the load is properly controlled, a running pro­

gram that fortUitously generates a page fault before referencing much

of its locality set will not have moved many locality pages to the top

of the LRU stack whereupon, when next it is run, it may find part of

its locality set missing from memory. And this state may persist, as

the program is now unable to reference many pages at all between page

faults. Par t h e ~ e reasons, this type of policy has been found very

susceptihle to thrashing, and it is sometimes ~ e c a r l o u s to expect such
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policies to perform better t h ~ n fixed partition policies [B4.D6,R2].

Similar remarks apply to 8 policy based around a single ("global") FIFO

list; it is worth noting, however, that a FIFO-based policy with load

control was used successfully on the M44 system [82,83].

A variant of the "global LRU" policy above is based on a usage

bit u and a changed bit c associated with every resident page. The bit

u Is set to 1 by the addressing hardware on any reference to the given

page, and is cleared to 0 by the memory management routine. The bit c

is set to 1 by the addressing h a r d w a ~ e on any write-reference to the

given page, and 15 cleared when the page is loaded or when ~ cnpy is

made in the paging I/O store. At intervals, the memory management rou­

tine scans all resident set pages and maintains them in four lists

according to the possible values of the bits (u,c). At 8 page fault,

the first page of the first nonempty list in the ordering

(u,c) : [(0,0),(0,1),(1,0),(1,1)]

is selected for replacement. This policy, which approximates LRU [53],

1s subject to the same problems when used for multiprogramming.

A well known example of a V2-policy is used in Multics. It com­

bines elements of the global LRU and global FIFO policies. It is some­

times referred to as FINUFO (first in not used first out) [C5,Dl]. All

the resident set pages are linked in a circular list with a pointer desig­

nating the "current position" r and each has a usage bit set by the hard­

ware when the page is referenced. Whenever a page fault occurs, the

memory policy advances the current-position pointer around the list,

clearing set usage bits, and stopping at the first page whose usage bit
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15 already clear: this page is selected for replacement. A program whose

locality set is resident will evidently fare well under this policy, since

it will be able to continue setting all its usage bits between the times

when the memory policy examines them. However, an active program whose

locality set is not loaded, or which 1s accorded continuing low priority

for use of the processor, will tend to lose pages under this policy. The

success of this policy will depend on its being carefully coordinated

with the scheduler, which must control the load and ensure that all

active programs have an equal chance to use the processor. There is

no performance data comparing this against a fixed partition or V1-pollcy.

Another example of a V2-policy is the "AC/R'l'" procedure suggested

by nelady and Tsao [84]. Associated with each active p r o g ~ a m Pi are

variables, AC
i

and RT
i

, whose values are updated at each page fault

of Pi. The "activity count" AC
i

registers that fraction of its resi-

dent set referenced since Pi'S last page fault; the "round trip frequency"

RT
i

registers that fraction of the last K page faults (K a parameter) of

Pi which caused the recall of the most recently replaced page. A high

value of AC
i

indicates that Pi is making effective use of its resident

set. A high value of RT
i

indicates a high frequency of mistakes in

replacement decisions. The decision rule for replacement, used on a

page fault of Pi is summarized as: If RTf is low, replace a page from

the resident set of Pi' otherwise, replace a page from that Zj(t), j '# i,

for which AC. is lowest. Belady and Tsao discuss how to select threshold
J

values to tell when AC and RT are "high" and "low", and infer (but do

not test) that this policy will perform better than policies in Class V1

and the global LRU or FIFO policies in Class V2. As with other V2-policies,
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,
however, load control must augment the AC!RT procedure: too high

a level of multiprogramming can force the persistent state in which

all the ACt are low ~ n d the RT
i

are high -- the state of thrashing.

We have returned repeatedly to the need for V2 (and Vl) policies

to be augmented by a load control. Operational experience with Multlcs

and CP-67 indicates that an effective combination of a V2-pclicy and

load control can be designed [CS,R2]. The same was true of the Vl

biasing policy on the M44 [82,63]. With proper load control, V2-pollcies

will tend to be better than V1-policles because their capability of

reallocating pages from resident sets that are too large for their

loenlity sets, to resident sets that are too small, permits a higher

level of mUltiprogramming without an increase of paging. Since heavy­

; ' ~ ' ; : .
·,·"·:i:!emand conditions are not at all uncommon, one arrives at the conclusion

to include the load control and locality estimation explicitly in the

memory policy -- i.e., at Class W.

Class W Policies

As has been noted, W-policies have two distinguishing features.

rirst, the r ' ~ s i d e n t sets are precisely the estimates of the current

locality sets of active programs. Moreover, the locality estimate of

Pi is formed by observing the behavior of Pi only -- it is not influenced

by the activity of any other program Pj. (Contrast this with the V2­

policies, in which a resident set Zl(t) 1s a function not only of the

activity of Pi itself, but of the activities of other programs as
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well.> Second, load control 1s inherent in the definition of W-policies,

since program activation and deactivation decisions must be consistent

with the requirement that locality set estimates of all active ~ o g r a m s

must be resident.

The definition of W-policies implies the existence of a memory

reserve of size R(t) -- i.e .. , a set of pages not in any resident set

( ~ e q . (4.4». To improve memory utilization, some systems allocate

the reserve R(t> to an n + 1 ~ program PO' whereupon Zo(t) is a subset

of POlS locality set and page faults by any Pi (0 ~ i ~ 0) cause pages

to he preempted from ZO{tl. In case ZO(t)=R(t):O, Po is considered

to be automatically deactivated, and the lowest priority program among

pl' .... , Pn asswnes the role of PO. System thrashing cannot occur in

this case: although Po is the only program without a full locality set

present, its page faults are not permitted to preempt pages from other

resident sets and, accordingly, the feedback among paging rates neces­

sary for thrashing does not exist (see W2 and 55).

The most extensively studied e x ~ m p l e of a Class W policy uses the

moving window working set Wi(t,T), defined previously, as the locality

estimator. Numerous experiments have shown the ease with which one

can find a suitable value for the window size T so that the working set

is indeed a reliable estimator of a program's locality [C2,F2,H1,R1,

55,57]. However, the estimator is not perfect [P3].

Morris reports hOw the MANIAC II computer implements a close

approximation of the moving window working set, by associating hardware

timers with each page of main memory and arranging to run a given page's

timer only when the program owning that pl!lge :I,s running on the processoE"'j

all at modest cost [M2]. A method of approximating a working set by
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examinlnq u s ~ g e bits at the ends of time s 1 1 c ~ s appeared successful 1n

preliminary tests of the RCA Spectra 70/46 [W1). A similar procedure

was used on the Grenoble CP-67, for which extensive test data show enor-

mour improvements in performance over the V2-pol1cy used on the standard

CP-67 [R2]. Another similar procedure has been used successfully on at

least one TSS system [07]. A method using two window sizes to define

three states of a page (in, partly in, and out of the working set) has

been reported successfUl in UNIVAC's VMOS [F2]. These and other prac-

tical and successful implementations show definitively that W-pollcies

are neither difficult nor expensive to implement; they are at worse

marginally more expensive than V2-policles and give ~ i g n i f l G a n t l y bet-.
ter performance -- i ~ only because they are able to operate at a maxi-

mal level of multiprogramming without thrashlng.

An interesting variant to the fixed-window-size working set defined

above has been studied by Chu and Opderbeck using extensive simulations

[C2,01]. Their procedure, known as PFF (page fault frequency), recom-

putes a program's working set at each page fault time t of that program,

using the timp interval since the prior page fault of that program (time

t") as a window. The computation requires merely the examination of

usage bits. Unfortunately, should the current window t-t' fortui-

tously be small, few usage bits will have been set; since this will cause

the next page fault interval to be short, the state of the working set

underestimating locality will persist. Protection against this is easily

achieved. If the interval t-t' 15 smaller than a given threshold TO'

the incoming page is added to the resident set but no replacement is

made (though the usage bits are cleared). The acronym PPP arises



34

since liTO has the interpretation of the maximum allowable mean rate

(frequency) of page faults. The resident set defined by PFP for pro-

gram Pi at a page fault time t, to be in effect until Pi's next p ~ g e

fault, is

(4.8) Zi(t)
{Wi(t,t-t.), t-t' ~ TO

•
2

1
(t' )+r<tl t otherwise

·....here t· Is the time of the prior page fault and r<t) is the (missing)

page referenced at time t. Besides the usage bits, the full irnplenen-

tatioo evidently requires only a timer register in the processor to

compute t-t'. Chu and Opderbeck's studies indicate that TO can easily

be chosen so that PPP is indistinguishable from a fixed-window working

set [C2], and that ppr used as a W-policy is significantly better than

certain LRU-type policies from C l a s ~ e s V1 and V2 [01].

Figure 8 suggests why a W-policy will be better than a fixed parti-

tion policy, as long as programs are run ~ a region of the fault rate

curve in which WS 1s superior (£f. Fig. 5). Let zi denote the r e ~ i d e n t

set size for program Pi under a fixed partition using LRU separately

for each resident set. As long as zi> xOi' there will exist a point

Wi < zi corresponding to a mean working set size under which the pro­

gram would achieve the same fault rate as under the LRU policy. Setting

w ~ w
1

+••• +w
n

, this means that the average level of multiprogramming

could be increased approximately by the ratio M/W without increasing

the system fault rate over the original fixed partition policy, which

in turn implies an increase in processing efficiency (cf. eq. (2.11)).

Figure 9 suggests the application of the above principle to eon-

elude that a W-policy will be superior to a V1-policy. The three

points on the vertical line through Xi depict the relation (4.7) given

earlier for V1-policies. As long as Xi > xOi' thp.re will exist a point
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Wi < Xi at which f(WS,wt ) = f 1 - Setting W ~ wt+ ••• +w
n

' the average level

of mul tlproqramming could be increased by approximately the ratio M/W I,

and yield, as before, higher efficiency. (The W-policy produces less

an improvement over the V1-pollcy than over the fixed partition. Define

wi so that f(WS,wl) = f{LRU,X1 ), note that wi < Wi' and that W'=wi+ ••• + w ~

< W. Therefore the ratio M/W' is larger than M/W.)

The discussion above shows that working set policies increase processing

efficiency over other policies. However, they have been shown to improve

other measures ~ s well. Chu and Opderbeck, for example, show that the

"space-time cost" (integral of resident set size over time) satisfies

ST(WS,T) < ST(LRU,x)

for all x, and all T in a very wide range [C2]. In fact, the minimum

difference between the two sides of this inequality ranged 10-30%,

the g ~ e a t e r differences being directly correlated to large coefficient

of v a ~ i a t i o n (ratio of standard deviation to mean) in locality set size.

The function ST(LRUrx) had a sharp minimum, while ST{WS,T) had a very

wide and flat minimal region; therefore, for x inJudiciously chosen,

the space tjme cost difference may fl'Jr exceed the 30% figure Just quoted.

Coffman and Hyan studied two measures of storage utilization, overflow

probability nnd mean amount by which demand exceeds resident set size,

comparing a working set partition against 8 fixed equipartition rC3J.

With respect to these measures, the working set part!ticn was always at

least slightly better, and significant differences would exist for larger

coefficient of variat:l.on in locnlity size.
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The W-pol1cies appear superior by many measures, their superiority

is associated with changing locality size in programs, and the degree,

of superiority i n c r e a 8 ~ s as the coefficient of variation in locality

size increases.

5. CONCLUSIONS

The first part of this paper explained a network representation

of a typical multiprogrammed computer system, and used it to establish

properties used later in the paper: a) Increasing the load (i.e., level

of multiprogramming) without changing system or program parameters increa-

ses processing efficiency. b) Decreasing the paging rate for fixed load

increases processing efficiency. c) Paging rates will generally increase

with increasing load because of the fixed total memory constraint. This

implies an optimum. load, above which efficiency drops rapidly (thrash-

1og)oo Load cantrol 1a necessary. d) Processing efficiency is a suitable

measure of system performance, since throughput is directly proportional

to it and response time inversely proportional to it.

The second part of the paper explellined basic properties and mea-

sures of program behavior. The principal observations are: a) The

faul t rate function of LRU 18 f'requently observed to be convex, while the

lifetime function frequently has a convex/concave shape. b) The fault

rate function of WS (working set) is frequently observed to be slgnifi-

cantly below that of LRU, a direct proof of locality size variation dur-

Ing program execution.
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The third part of the paper explained a classification of multi-

programmed memory manapement policies, then used the results of the

previous sections, together with information from the literature, to

establish a ranking among five classes of policies, from worst to best:

Pixed partition, balanced;

2.
,

!-'ixed partition, imbalanced;

3. V ~ r i a b l e partition, no correlation with program behavior (V1);
I

4. Variable partition, some correlation with program behavior (V2)j and

5. Varinble partition, direct estimation of locality (W).

(This ranking should be interpreted to mean that, given a policy at rank

1, there exists a better one at rank 1+1.) The principal c o n ~ l u s i o n s are:

a) 1mbalanced partitions are better than balanced partitions, partly

because they recognize inherently different memory requirements of programs,

and also because of the convex property of the lifetime function. In many

cases an equipartition is the worst possible, even among programs with

i ~ e n t i c a l memory deman~ characteristics. b) Even though they do not

correlate memory reallocations with program behavior, V1-policies may

nonetheless lmprove over fixed partition policies. Two factors operate:

the avoidance of the equipartition, and the effect of increasing average

processor demand over the virtual time of programs; both factors are

a t t r l b u t a b l ~ to the convexity of the lifetime function. c) V2-policies

do better than V1-policies because they obtain better space utilization

by reallocating from resident sets that are larger than contained local-

ities to resident sets that are smaller, and because, with proper load

control, they tend to keep each program's locality set present. d) w-

policies do better than V2-policies because they estimate locality directly,
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the estimiltes are independent of load and other programs' demnnds for

memory, and they have inherent load control. Numerous studies show

W-policip.s h ~ l ; t according to a variety of measures. Their implementation

cost is not significantly more than for V1 or V2, and the gain 1n perfor­

mance amply rewards the investment in them.

Working set (W) policies establish a limit on the load net) at

each time t. To the extent that these policies succeed in estimating

locality sets, net) will approximate the optimal load noCt). Experience

shows that these policies keep the probability of thrashing (i.e., the

probability t h ~ t net) > kOe(t) for some small constant k ~ 1) acceptably

small. In contrast, V1 and V2 policies h a v ~ no direct method of esti­

mating a proper load level. Typically they establish a prior limit N

on the load (sometimes with adjustments in N inversely with the system

paging rote); 5ince N must be chosen so that the thrashing probability

(the probability that knO(t) < N) is low, the system runs much of the

time at suboptimal efficiency. In other words, the more precise load

control of working set policies is of itself a significant reason for

their success.

All the arguments, and all the experiments, used to demonstrate the

superiority of working set policies rely directly on, or are correlated

directly with, significant variations in program locality size over vir­

tual time. Though there has been considerable work on modeling program

behavior (e.g., C4, G2, 55, 57), none of it has so far produced a working

model in which locality set size variation is accounted for. Many experi­

ments show that many programs exhibit a marked propensity for two or

more particular working set sizes [G2,Hl,R1J, and that working set fault
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rates are signficantiy less than LRU fault rates over a wide range of

memory constraints; these observations cannot be accounted for under the

assumption of fixed locality size. The next iteration in the process of

program behavior modeling must be the development of techniques for

representing locality set size variation.

The viability of working set policies and locality-based program

models appears assured.
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APPENDIX 1; COMFUTATION OF fo'AULT RATE FUNCTIONS

Outlined here are computationally efficient methods for finding

LRU .tnrl ;.,rs fault rate functions, for a given reference string ~ :: rCt) ••••-
r(k) •••r(K). The techniques are treated fully in C4, 04, Ml, and 54.

The LRU Algorithm. The LRU stack at v i ~ t u a l time k 1s a vector
~

~ ( k ) ~ (sl, ••• ,Sq(k» of distinct pages, in which 1 ~ i < j ~ q(k)

implies th.-It page 51 was more recently referenced than Sj' and q(k) is

thp. nu~~er of distinct pages referenced through time k. The initial

s t ~ c k s(O) is empty. The stack distance d(k) of the reference r(k)
~

is 1 if dk) is <l.t the ilb position in stack s(k-l), and is <D if r(k)
N

is not In stack s(k-l). If r(k):y, the new stack s(k) is related to- -
the former by

'.

s(k)
~

• {(Y'Sl'···'Si_l'Si+l' ••• 'Sq(k_l»

(y,sl,···,Sq(k_l»'

Note in the second case q(k)_q(k_1)+1.

if d(k) • i < q(k-1)

if d(k) • <D

Since the LRU algorithm always replaces the least recently used pager

it follows that the pages resident in an x-page memory managed by LRU

at time k ace precisely the first x entries in the stack ~ ( k ) ; and mace-

over that a page fault occurs at time k if and only if d(k) > x. There-

fore, the fault rate function f(LRU,x) i9 the fractional number of dis-

tances that exceed x. To calculate f(LRU,x), one must ~ o c e 6 s the

references r(1)r(2) ••• , computing the stacks 5(0)8(1)s(2) ••• , and record-
~ - '"

in9 the occurrences of stack distances d(1)d(2) ••• in the counters c[1:N]

and c((() ]. (The number of program pages is N.) When this 1s done, e[i]
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counts t h ~ n'Jr.1np.r of virtual tlmes k at which d(k).,i. Once the stilck

distance counts have been determined, the number of page faults for an

x-page page memory is c[x+l]+••• +c[N]+c[ao j j therefore, the LRU fault

rate is computed from the recursion formula

f(LRU,N)

f(LRU,x-l)

=

=

era> ]
K

+ f(LRU,x) I x = N,N-l, ••• ,l

To oht-,jn the counts, the following procedure is used:

c[l:N,CIlJ := OJ stack[l:N] := II;

for k:=l to K do
""'" ~-

[initialize]

y := r(klj [next reference]

i .- 1; candidate := stack[l];

while candidate F y and candidate # ~ do
~ ~ -

;~c~~~(candidate, stack[i+l])j

i := 1+1;

end-
if candidate = ~-

then c[al] := c[mJ+l
~

else cri] "- c[i] +1;,.....,...

[search and update

stack for entry y]

[update proper

counter]

stack[l] := Y; [put referenced

page atop stack]
end-
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Associate with R ~ r(l) •••r(k) •••r(K) a sequence of-
h~ckward distances B = b(l) ••• b(k) •••b(K), in which b(k)=l implies-
r(k-ihr<k.l <md r(k' )lrCk) for k-i < k' < k; take b(k) = m if dk)

is t ~ e first reference to a page. In other words, b(k) is the interval

since the prior reference to page r(k). (For example, if R = 1 2 3 2 3 1,-
j = rnoorn ~ 2 S.) The next reference r(k+l) is missing from the working

5 ~ t ~ ( k , T ) if ~ n d only if bCk+l) > T. Define the counters c(t:K] and

crcu] to r ( ~ c o r r l the Occurrences of backward distancesj thus c[il counts

the m l r . ' . h ~ r 0f ni:itinct virtual times k at which h(khi. Analogous to

LRU, the m i : . s i n ~ l page rate for put"e working set memory allOCution is

r l ~ f i n e d h'l the recursion formula

m(K)
0[",]

" K

m(T_i)
"

crT]
+ meT), T " K,K-1, ••• ,1K

To obtain the counts, this algorithm can be used:

c[l:K.G>] := Vj time[l:N] : .. 0;

for k: .. l to K do
~ -' ~

y := dk);

if tirne[y]=O-
then C[OD ] := e[G> ]+1
~

else i
'" k - time[y]

~

c[i] := c[i]+lj

time[y] ::::: kj

ond
~
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The working set size at llw! k is denoterl. by w(k,T) and the mean

working set she by

K

ti(l') ~ L w(k,'I')n

k:=-1

Define A(k,T) to be 1 if r(k) is missing from W(k-l , T) and 0 otherwise.

Then note wCk,T+1l ~ w(k-1,T)+ A(k,T)j substituting into the definition

of seT),

s(T+1) =
1 Kr
K b.t

1
w(k-l,T) + K

1 K
K r w(k,'J')

k=l

w(K.T)
K

1
+-

K

K

r 6(k,T).

k=l

~ ' = ! c r : : g n i . 7 . i n ~ ; th" Llst term as a definition of the missing page r-ate ro(T),

W ~ find t!-,· r r ' c u r ~ i o n formula for calculating mean working set size:,

s(Q) = 0

= seT) + meT) -
w(K,T)

K
T := O,l, ••• ,Y.-l.

~ j n ~ 1 1 y . ~ h ~ fdult rate function is denoted by f(WS,x) and is given

r ~ x ~ n e t r i c a l l y by

£(:'1'5, s(T» = meT) I T = O,l •••• ,K

~ x 3 r r . ? l e s . Consicer the three reference strings over a lO-page program,."- ............

=

=

=

10
01 •••9(9•••1001•••9)

20 20
01(01) 23 ••• 9(23••• 9)

10 10
01(1001) 23 •••9(9 ••• 3223 ••• 9)
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All have length K=210. ~ 1 ~ e p r e s e n t s a program using a single to-page

localitYi since B
1

has the property that, at any time the page with

thC" lilrgcst stCJck distance is also the one with the maximum forward

di5tn nCp. , LRlI is optimal for ~ 1 [Nl]. In contrast,.B:
2

and...B3 represent

programs which have two disjoint localities (O,t} and {2,3 , ••• ,9}. In

~ 3 ' LRtJ is optimal just as in ~ 1 . Pigure 10 shows the fault rate curves

for LRU and ~ S for these strings.

It is observed that LRU is always better for ~ 1 ' WS is at least

n!'i good for .D2' and '.5 is better for ..5
3

provided x > 6.6. The superior-

ity of ,IS over LiW for <Certain ranges of x in) 1!2 and !!3 directly

r0sults from thes'" two strings' exhibiting two distinct phases over

different size localities: For suitable choices of the window size T,

the w o r k i n ~ sP.t m ~ a ~ u r e s the locality set exactly (as long as the win-

dow i" contained within a phase) so that the only p ~ g i n g occurs during

locallty t r " n ~ i t i o n s . However, the average working set size is less than

that of t h ~ lArger locality; LRU operating at that same memory size pro­

in that phase
duces p,:,ge f luI ts continuously/because that locality will not fit into the

available space. It is especially important to note that, because of

its a ~ i l i t y to adapt its space requirement to varying program locality,

~ S is capahle of improving over an optimal fixed space algorithm(such as

LRU applied to ~ , ) . Similar observations hAve been made in practice

[Pl,P?,P.)] •

riqure 11 shows the lifetime functions for the three strings. Each

exhihits the characteristic convex/concave shape. The concave region

for the LHU lifetime function begins at the maximum locality size. Thf!

ronC~Vf! rrgion for the ~ s lifetime function begins at approximately thp.
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vi r bl.'ll t imp. aver.ilge local ity size (for- striry.gs)J" and.53' the C'lveruge

locality s i ~ e is computed as(2-42 + 8-168)/210 z 6.8).

API ~NnlX ;>: 1.~:,'1LYSIS OF Vi POLICIES [See a l s ~ D5]

~ Let {'1:} be a sequence containing at least two

distinct values such that the function h(x) is convex for m i n ( ~ } < x

~ ~~X(Xk}' e'lnd let {a
k

] be a set of positive weights that sum to 1.

A well known property of convex functions is

Cur o h j e c t i v ~ is proving relation (4.7) of the text which states

that, q i v ~ n ~ partition X ~ (X
1

, ••• ,x ) one may construct a V1-policy
- n

unnel:" which for each program Pi'

PI

where f
i

is the fault rate function, f
i

is the mean virtual time fault

l:""'ltc 'mdel:" the Vi-policy, and xi is the mean virtual time memory a11o­

c,) t ion under the Vi-policy. The lefthand inequal ity r-equires the con-

vpxity of ~ h e lifetime function, the righthand one the convexity of

thp fault rate function.

Let to=o and t
1

t
2

••• t
r

denote a sequence of successive page fault

time on a system's processor. Let t"1 denote the number of faults gener­

ated by program Pi in the observation interval (O,trJ, and note that

OJ



46

Lp.t xik ~ e n o t c the memory allocation of program Pi in the processing

i n t e r v ~ l j u ~ t precp.dlng its k ~ page fault (1 ~ k ~ r
i

>. Each x
ik

is

i):,!-;umed t.o lit;' jn thp. convex region of L
t

- The mean virtual t.1me

interval from the k - 1 ~ to the k ~ page fault 1n Pi is taken to be the

lifetime 1.
1

(x
ik

). (This is, in ;a-=t, an approximation. As will be

disCUS5P.d shortly, however, it does not affect the conclusions.) Under

=L.
1

(4)

these assumptions, the mean lifetime in Pi over the observation interval is

r
1

..l. ....
L. Li(X

ik
),

r i k=1

aoc the mean fault rate over this interval is f
i

= liLt" Define the

nuantity

x.
1

=

which i ~ the m p . ~ n memory allocation measured at page fault times.

Ne shall show shortly how the scheduler can choose the allocations x
ik

so that Xi is the same as the resident set size of Pi ~ c c o r d i n g to the

given fixed partition X.
~

Under the given fixed partition;6, the mean lifetime interval of

program Pi is Li(X
i
), so that the mean system lifetime interval is the

total processing time consumed divided by the total number of page faults:

( 6) =

n

1:
i.l

Under a V1 policy satisfying (5), the mean system lifetime interval is

(7) =

n

1:
1=1

r.
1 --L

r i

since riL i is (from (4» the total time consumed by Pi. Applying (1) to (4),
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, (8)

Since lifetime is the reciprocal of fault rate, this establishes the

lefthand inequality of C?). Applying (8) to (6) and (7), we have

L' > L, which implies that the relative utilization of the paging I/O

station satisfies

(9 ) R' ::::: S / [, < 5 Ii: =: R
p P

where 5 is the mean service time at the paging I/O station; together

with eQ. ( ~ . 1 4 ) of the text, this implies that a Vl-policy satisfying

(5) must increase processor utilization over the fixed partition X.-
A~ nn!:e~ ir. I : l ~ e text after eq. (2.9), the use of L' and r: in (9)

is an approximation. The processor utilization is in reality a function

of ~ l l the lifetime intervals, not just their mean. Ghanem [Gl] and

Spirn [361 have shown that, when L
i

are sufficiently convex, L' > [

will imply the increase in utilization as argued here. Spirn showed

that observed lifetime functions do usually have the required convexity;

hence, our simple argument is sufficient to justify our conClusions.

•

To establish the rlghthand inequality of (2), define Ti=riL
i

as

tr.e mean lifetime interval in Pi' and note that

;J. L
1
(x

1k
)

L T xik •
k ..1 i

(10)

Using the definition of fault rate as reciprocal of lifetime, and

assuming the fault rate function is convex, we have the inequalities

<is desired:
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> =

~;nce f
1

is decreasing, relation (11) implies xi > Xi- However xi > Xi

can be shown directly, even if f
1

is not convex: observe that there

exists u such that L
1

(x) ~ Lt(u) if and only if x > u and consider

= • o•

It ~ ? s noted prior to eq. (4) that the use of L,(x'k) is an approxi­, ,
mation. The r ~ a s o n is that the virtual time interval between the k-lst

dnd kth pagp faults may be interrupted by p ~ a file I/O requests, so

that I'1 i:1 fact experiences during this interval a resident set size

sequence YoYto ••Yp' in which YO 2: Y
t

.2:. ••• .2:. Yp and x
ik

'" Y
p

' However,

this implies that L
i

(x
lk

) underestimates the true lifetime in this inter­

val; t h ~ r e f o r e [1 underestLmates the true mean lifetime, and relations

( ~ ) ,md (q) remain valid. Moreover, Xi underestimates the true virtual

t i p ~ r:esi-lent sct size, and relation (12) remains valid. Finally (11)

r ~ ~ ~ ~ n s v a l i ~ : for: we can interpret f
i

~s the true value, observe that

t:!w !>ec:ond et1'uality in (11) is an identity, then recall that Xi is an

'In'1erp.fitirn-ltP. and f is decreasing. The errors introduced by this
i

~pproximation are not likely to be large, especially in systems with

K <' 1: - - ' ~ r : the me,," file I/O service time is usually 10 times the mean pa­
f

g1ng I/O service time, and R
f
~ 1 implies that p=O at least 90% of the

time.



lznplement<'ltlnn. ECiS. (6) and (7) allow for- the possibility of an
~

i . l r ! ~ i t r , ) r y scheduling discipline over- the obser-vation interva.l the

rat los r./r reflect the relative pr-iorities given to the p r o g r a ~ s .
1

F'or ~ I F ' O schedullng, each of these ratios will tend to be 1/n.

h V1-poli~J ~atisfying (5) for a given partition X may be approxi--
m<'lt~d arbitrarily closely using an adaptive procedure. Let 0i denote

the r p . l a t : i v ~ ! rleviClt10n of the mean resident size of Pi from the d e s i r ~ c
~ : . :,

(13 ) =

The e s t i m i ~ t o r Di can be updated on each page fault of Pi by the statements

( 14)

:= r.+1.
1

where 7.. is the resident set size at the page fault. ' 1 " h , ~ :·,Plll: t'} ,1 ~_')_
1

-:atir·n decision rule can be implemented as a two-phase repeating pro-

cerlurt:!. j)uring the "converge phase" a page fault in Pi will result

In a pagp. being removed from P
j

, where j=i if D
i
~ 0, and j is the
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index of the program with largest positive deviation if 01 < 0; the

effect of a m~mory reallocation during this phdse will be to reduce

the total relAtive deviation of the memory partition from the desired X.-
~uring the "diverge" phase a page fault in Pi will' result in a page

being removed from P., where j is the index of the program with smallest
]

"J-.solllte r!eviation; the effect of a main memory reallocation in this

rh·.'!;e will be an increase in the total relative deviation of the memory

?~rtition from the d e s i r e d ~ . At the end of a pair of diverge/converge

~ h ~ s p s a ~~rtition sequence that conforms to (5) will have been genera-

t ""!, wh~["p.\lpon the V1-policy has generated higher processor util iza ticn

thi",n t h ~ fIxed pnt"tition X.
. -

If X is nn equipartitlon, any symmetric memory reallocation pro--
Cf ·r1uCp. with FIFO scheduling - such as the cyclically permuted favored

;,t.<lte under the "biasing" policy [82,83] - is sufficient to produce a

V:-r~licy improving over ~ .

;·'ixcd I:nbnlanced Partitions. It is possible for a fixed imbalanced par-

t;tion to improve over an equipartition. Let X be a given partition-
in ~ h i c h dt lenst two resident sets have different size. Suppose that

FifO s C ~ I P d \ J 1 i n q is used at the p r o c ~ s : - ; o r drld paging I/O stations. Under

these as.:lumptions rilr = 1/n and xik"'X
i

for each i. The mean lifetime

for X will be larger than that of the equipartition if-
( : S) >

n

!:
1=1

if fact, if L i ~ L for all i, every

which 1s certainly true if there exists a convex function L passing

through the points Li(X
i

) and L (~).
in'
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imhalunccrl partition is better than the equipartition. (See also

;'1, 56, pertaining to networks with different queueing disciplines.>

~ x a m p l ~ . Consider two active programs with the same fault rate and
~

lifetimE' functions:

x f(x) L(x)

10 100/5 5/100

20 4/5 5/4

30 1/5 5

where S is the mean paging I/O station service time. Suppose that

the fjle I/O st2tlon is unused (Rf=O). Consider a (nondemarid paging)

v " ' l r i · l ~ l f ' p<!rtition policy that allocated memory according tci the par-

tit:on s ~ ~ u e n c e (10,30)(30,10) for equal numbers of page faults in each

p ~ r t i t l o n ; and a fixed partition (20,20). Using the formulae given

e o r l 1 ~ r w i t ~ S ~ 1 0 :

measure

E

i'

-x

partitions
(10,30)(30,10) (20,20)

5.05 2.50

0.20 0.40

29.8 20.0

20.0

0.43

20.0

0.24

The u t i l i ? , ~ t i o n Uo was computed according to Buzen' 5 method [B7] and

v e r i f i ~ d by simulation. A linear interpolation between f(20) and f(30)

gives f(xl ~ 0.11 and verifies reletion (2).

~ y the symmetry of the example, the imbalanced fixed partition

(10,30) will produce U
o

=O.43, while the balanced partition (20,20)

will produce U O ~ 0 . 2 4 , verifying that balanced partitions may be less

p,fflcjent than imbalanced ones.

:;""(' Ill'f. Wi for another vipw of this analysis.
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l.! i I ,:~l1X 1: N : ~ A R OPTIMAL PAItTITION5

,·'trJurP. 12 suggests why a working set policy is capable of generating

-I nr;lr-optimal partition. Consider a set of active programs having the

same lifetime function L under a working set ~ l i c Y I and suppose that L

nop" not increase much for x larger than the inflection point YO. (Speci­

f i c a ~ l y , assume that the slopes satisfy L'(X
O

) < L'(W
O
)' for W

o
to be

defined below.) For a partltlon~1 the mean lifetime (assuming FIFO queue­

i n ~ in the network) is

"

L(x)
~

1 n
= z: L(x

i
)·

n 1=1

(:llr o-o1 p cUve is finding a partition that maximizes L(x).
~

Cansi-net" a \"orklng set partition with average r e s l d ~ n t sizes

-- i.e., one in which the reserve memory W
o

1s allocated to an n+1st

program. Consider any other partition ~ = (vOtV1t ••• ,vn)' such as might

be generated under another variable partition policy. If any vi > YO'

~ cannot maximize L ( ~ ) since decreasing vi to YO and reallocating the

pages vi-YO to the program with smallest v
j

will i.rt::rease L ( ~ ) . Assuming

all vi < YO' then all Vi> wo' else vO+o •• +vnmM is impossible. Since

L(;::!) liF!:s on the chord connecting the points Wo and YO on the L curve,

and since L(v) lies below the chord b€tween V
o

and v on the L curve,
~ n

it is clear. that L(w) > L(v). In other words, w is an optimal partition
~ ~ ~

for n programs and will maximize processing efficiency.

An optimal partition for n-1 programs will have L ( ~ ) > L(yO) > L(~)i

whether it produces higher processing efficiency than ~ depends on

whether the increase in L offsets the decrease in load. A partition u'

'"
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L(x)

x

rigu~e 12. A p p r o x ~ t l n g an optimal partition.
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for fewer than n-1 programs will have L ( u ' ) ~ L(u) i si.nee it has smaller- -
l()~d thi'ln ~ , it is less efficient. It is not difficult to see that a

r~rtition ~I for n+1 programs (in which vi < YO) has L ( ~ " ) < L(~);

·...hether the processing efficiency for Vi exceeds that of w depends- -
on w h l ~ t h p . r the effect of increased lOfld o f ~ : e s t s that of decreased

I l f f ! t i m ~ .

The point is, the partition w will approximate an optimal parti-

tion and an ~ 1 J n a l load. It remains 'x11y to recall that the inflec-

ticn point YO Is approximately the mean locality size of the program,

which can be approximated by a working set policy for a wide range of

window size. (See also G1.)

,.
'.

•
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