
I~ULTiPROGRAMM~D MEMORY MANAGEMENT FOR RANDOM-SIZED PROGRANS ~

BerLhard Walke

AEG-TELEFUNKEN, Research Institute

D-7900 Ulm, W-Germany

Abstract

We consider a probabilistic model of a computer system with multipro-

gramming and paging. The applied work-load is derived from measure-

ments in scientific computer applications and is characterized by a

great variance of compute time. Throughput of a cyclic model is com-

puted approximately presuming program sizes with negative exponen-

tial distribution. After a review of previous results for a memory

allocation policy with prescribed number~ n, of working sets at least

to be loaded, an adaptive memory allocation policy is introduced

which dynamically changes the number, n. Thereby, it is possible to

reach the goal of having always enough memory available to load the

parachor of each program. Simulation results establish our approxi-

mations as being very good. CPU scheduling is chosen to be through-

put optimal. Our results are useful to demonstrate the benefits of

allocation policies with adaptive controlled degree of multiprogram-

ming. Previous contributions to this problem are to that date only

by means of simulation [5] .

I. Introduction

Throughput of a computer can be enhanced by increasing the degree

of multiprogramming, which results in better parallel work of central

resources (CPU, channels). But generally, this is only true if the

main memory is also enlarged adequately. Each of the multiprogrammed

jobs must be given enough space to keep its working set there~ other-

wise thrashing [2] would occur and throughput would vanish.

In this paper, we introduce a policy for controlling the degree of

multiprogramming in a paged memory with respect to maximum through-

put. This policy, ACM-n (~daptive ~ontrol of the ~ultiprogramming

degree of a number, not greater ~, of partly loaded programs) is a

working set policy in that it aims at keeping the parachor [3] of

each program in the main memory and dynamically changes the degre~

~) This work was partly supported by the 2 nd EDP-Program of the
Federal Republic of Germany.

of mu!tiprogramming to reach that goal.

A queueing network model of a computer system is developed and through-

put for a given workload is computed for the ACM-n algorithm. Pro-

gram size is assumed to be negative exponentially distributed. From

this assumption follows that for a memory of given size, the number

of fully (or partly) loadable programs changes over time~ e.g. some-

times only one working set could be loaded (when a program happens

to be very large), at other times many working sets together could

be kept there. We use a new technique (of the decomposition type

[q]) to approximately compute the steady-state utilization of the

CPU and from this the throughput.

A special case of the ACM-n policy which is called NPM-n policy

(~inimal ~rescribed ~ultiprogramming degree, ~, is fixed) was already

dealt with in [7]. Under this policy a number, n, or more programs

are multiprogrammed whenever they happen to fit completely together

in the main memory, otherwise n uncompletely loaded programs must

be multiprogrammed. The results are reviewed in chapter ~ of this

paper.

The subject of this paper is the case of a dynamically changing,

ACM-n controlled, multiprogramming degree of partly loaded programs.

For reasons of simplification of computation we restrict our model

to the case where this degree, n, is limited, n < 2. More than two

programs are admitted whenever they happen to be small enough to be

completely loaded into the main memory. Simulation results show

that our computational results are acceptable.

2. model of the workload

We assume all programs being of the same type, there are no different

classes of programs. Program size is assumed to be given by an inde-

pendent and identically distributed random variable, G, with proba-

bility distribution function (p.d.f.)

P(G S g) = ~ - ex~p(-g/E G) (2.1)

with mean E G. (Big letters without index denote random variables

throughout this paper, the corresponding small letter denotes an

assumed value of such a variable). The work for a program loaded

completely into the main memory consists exactly of two service

intervals: one transport from the background to the mainmemory

and one compute interval, which may be preempted but could be

64

serviced uninterruptedly. The term 'program s in this context is

chosen for such parts of service for jobs, for which the given des-

cription is appropriate (e.g. compilation, execution, etc.). The

transport back from main memory to the secondary storage is not

modeled explicitly. It should be thought of as included in the

loading transport of the program.

If the main memory, available for a distinct program, is limited

so that program size is greater than memory space, only a part of

the program (which is usually called the working set) is loaded. In

this situation a compute interval is limited by two I/O-demands,

one of which in front of the compute interval the other at the end.

For example page exception, segment call, or buffer overflow are

reasons to limit a compute interval (provided they could not be

serviced in parallel to CPU service for the same program). We call

the sequence of I/O-demand and compute interval a service interval

of a program. Fig. I illustrates this model for the execution of

a program: An alternating sequency of I/O-demand, T (transport),

and CPU service, C (compute).

1 st 2 nd i th i n t e r v a l

CPU C C C

' LI-1]-! ~/0 T ~ T

time

~ : Model of the progress of service for a not
completely loaded program (no concurrent pro-
grams assumed).

For our queueing model we assume the variable, T, to be an indepen-

dent random variable with p.d.f.

P(~ S t) = I - exp(-t/E~) (2.2)

and mean ET~

Compute intervals, C, are defined by a degenerate exponential d.f.

[6], fig. 2,

with mean

P(C <_ t) = Q - (l - p) ex~p(-t/E C,) (2 .3)

s C = (l - p) v, C, (2 . 4)

P(C<t)

p

0
0 t

Fis. 2: Degenerate exponential distribution
function.

This distribution is a special case of the well-known two-phase

hyperexponential d.f. and is much more suitable to approximate

measured cumulative d.f.'s of compute intervals, C, than the expo-

nential function (wich is a limiting case of eq. (2.3) for p = 0).

'Short' compute intervals are approximated by compute intervals of

the length zero, which appear in eq. (2.3) with probability p. Non-

zero compute intervals are approximated by a negative exponential

d.f. with mean EC,. Together with the LCFS-P (~ast ~ome ~irst ~erve

~reemptive) CPU-scheduling algorithm [4] this d.f. can be handled

computationally in the same way as a simple negative exponential

d . f . [6] .

We have chosen these two simple d.f.'s (eqs. 2.2, 2.3) for reasons

of mathematical tractability. As will be seen later, refinements

at these points seem to be of subordinate influence on throughput

compared with the influence of the parachor curve of programs.

Next we assume that the probability for each service interval being

the last one of a program is constant. From this follows that the

number, I, of intervals per program is given from a geometric dis-

66

tribution. The mean, m, depends on the portion, x, of the whole pro-

gram which is brought to the main memory. For fully loaded programs,

x = I, there results exactly one service interval per program and

therefore m equals one. For very uncompletely loaded programs,

x " O, the mean number of intervals approximates infinity, m---~ ,

fig. 3- The function m(x) has been approximated in the literature

in numerous ways, e.g. [2],and was sometimes called parachor curve.

re{x) i

~0 000

I 000

100

10

I

parachor

0 ~5 1 x

Fi~. 3: Mean number of service intervals, m,
dependent on the portion, x, of a
program loaded to main memory (parachor

curve).

For a demand paging system, for instance, the expression (m(x)-1)

may be the number of page faults during program execution. We choose

a simple function to describe the dependency of m(x) on x

m(x) = x -a (2.5)

where the variable, a, is a parameter. Measured parachor curves can

be approximated [7] by eq. (2.5) with parameter values a ~ 2. The

reciprocal, I/m(x), is sometimes called life-time function.

Next we assume that the CPU-time to execute a program is subdivided

in compute intervals whenever the program is loaded uncompletely,

but the whole mean compute time per program, ECp, remains unchanged

(no CPU-overhead is involved). For I/O-time, however, the analogue

must not be true.

67

Instead of this we introduce for our computations a function

E T = g(ETp,X) (2.6)

where ETp is the mean transport time of completely loaded programs.

Remember that by our definitions the expected values of compute in-

tervals, EC, and I/O-demands, ET, are functions of x. Our workload

description is chosen so that

Ecp = m(x) Ec(x) (2.7)

3. Nodel of the computer systems

The computer is modeled by a cyclic queueing network with two ser-

vers in tandem and n circulating programs, fig. ~. The queue dis-

cipline is FCFS for the channel-queue (on the secondary storage)

and LCFS-P for the CPU-queue (in main memory).

Inl'''1211t--O 1o1...121,l-0
secondary channel main

storage memory
C P U

Fig. 4: Cyclic queueing network model of a computer system.

If the number, n, of programs is constant, which is equivalent to

a fixed degree of multiprogramming and a fixed program size, CPU-

utilization, U, is known from [6] to be

n
U = D.Ecp = ~ - I g(ETp,X).m(x)/Ecp (x<q)

pn+1 _ q ' P:I (3.q)

Emp/ECp (x=1)

where the variable, D, is the program throughput. Mean turn-around

time, EB, is computed from throughput, D, by

E B = I/D (3.2)

68

When program size follows the p.d.f, given by eq. (2.1) and the me-

mory size, s, is limited, the number of completely loadabie programs

becomes a random variable. The probability, Pn' for "n[and not (n+~)]

independent programs completely fit in the main memory" is computable

[7] to be Poisson distributed

Pn = --n': exp (- y) , ~f= s/E G (3 .3)

Independent of memory size there is a certain probability, Po' that

no complete program can be loaded. If we demand a given degree,

n > I, of multiprogramming being upheld, the probability for "n com-

plete programs are not loadable" increases over Po" In what follows

we decide to load programs only in such a manner that all of themhave

the same portion, x, of their full size loaded. Then the portion, X,

which is now a random variable can be computed from

n n

X = i=I

I otherwise

where the variables, Gi~ a r e distinct random variables with p.d.f.

given by eq° (2.1). Our mean values~ Ec(X) , ET(X) ~ m(x), are for

each program dependent on the actual value, x, of the random vari-

able X. All the random variables, T, C, G, i, are assumed to be

independent of each other.

Now we are interested in the p.d.f, of the size of a number, n, of

programs which fit together each with a portion~ x, in a memory of

given size, s. This can be computed to be (cf. [7])

P (x % < s I % > s) : I -
(~/x2)jj! (

(xS1)

(3.5)

x, G n are defined from eq. (3.~). If we now prescribe the degree

of multiprogramming, n, which must be upheld, then we have from

eq. (3.3) the probability, Pk(k~n), of multiprogramming a number,

k, of completely loaded programs and from eq. (3.5) the p.d.f, of

the portion X, of partly loaded programs under a multiprogramming

d e g r e e , n®

69

4. A~proximate throushpu ~ computation bz decomposition methods

Decomposition methods are used to compute steady-state values of

complex systems with a large number of state variables from sub-

systems with small groups of variables. From Eli we know that this

technique still yields good approximations when interactions among

subsystems do exist but are weak compared to the interactions within

subsystems. Such systems are called nearly completely decomposable

and have the property that short run dynamics can be distinguished

from long run dynamics.

In our simple queueing network, fig. ~, a great complexity in time

is involved by the assumption that program size is a random variable

and from this the degree of multiprogramming, n, becomes a random

variable, N. This causes the portion, x, of uncompletely loaded

programs (which appear whenever less than a prescribed number, n,

of programs are loadable) also to be a random variable, X, eq. (3.4).

We interpret a time interval in which a number, n, of programs is

allocatable to main memory (fully, or each with a portion, x) as a

subsystem with short run dynamics and describe it by a network given

by fig. ~. Whenever a program has completed all its service inter-

vals, the next randomly chosen program with random size, G, is gene-

rated and the portion, x, or the degree, n, of multiprogramming is

altered, if programs had not been or had completely been loaded,

respectively. Such changes can be interpreted as long run dynamics.

Steady-state CPU utilization of the (in time) complex network,

fig. 4, is aggregated from the steady-state solutions for the sub-

systems weighted with the probabilities of appearance of these sub-

systems. Subsystems each are not time dependent but differ in the

portion, x, or the degree, n, of partly or completely loaded pro-

grams, respectively. The whole system utilization is only approxi-

mately computable because it is not completely decomposable. The

decomposition technique for our problem, which is a decomposition

in time, has been developed independently of the work reported on

in [1] and, by simulation, has proven to yield good results.

Now shortly we review the results for the policy MPN-n from E7].

From eq. (3.1, 3.2) we have the mean turn-around time, EB, for n

completely, (i.e. x = 1) and also for n not completely (x ~ 1)

loaded programs assuming constant program size. In the case of a

70

random program size and a number, n, or more completely loaded pro-

grams, one fraction of the whole turn-around time, EBw , is computed

by the weighted composition of subsystems with exactly n programs,

the weighting factor being the probability Pn' (eq. 3.3)- The other

fraction of ~w results from all subsystems with exactly n partly

loaded programs, each subsystem with another portion, x. The proba-

bility density function for a number, n, of programs being partly

loaded with exactly the portion, x, can be computed from eq. (3.5)

to be

n-1
p(x) = yn l {xn+l [n- ' l) ! ~ .yJ l j !] }-ex-p(-~,('11x-Q))~ (x<_1) (4-.1)

j=o

The whole mean turn-around time of a program, EBw , is composed from

~w = ~ Pm ~B (x=1) + ~ YJ/J: e~(-y)" p(x).~B(x<1)~ (~-.2)
m=n j = o x= o

with EB(X=I) and EB(X<I) from eq.(3.q, 3.2) with x=1 and x < 1, re-

spectively, and the multiplicative factor of the integral relating

to the probability of the event "n programs do not fit completely

in the main memory".

For reasons of discussion of this result, we use approximations for

the parachor curve, eq.(2.5), and the dependency of the mean I/O-

service time, ET, per demand of partly loaded programs on the por-

tion, x, and on the mean, ETp, (cf. eq. 2.6)

(~.3)
with e = 0.2, b=2

It has been found that the parameter values, e, b, have nearly no

influence on the decision which fixed number, n, for the FfPN-n poli-

cy should be chosen to minimize the mean turn-around time. The main

influence comes from the parameter, a, in eq. (2.5).

From fig. 5 we learn that for small values~ a = 2, there is a depen-

dency of the optimum number~ n, of the F~N-n policy on the memory

size. Programs with a good locality are represented by such a -

values [7]. For greater values, e.g. a = 5, the policy with n = I

71

gains the greatest CPU utilization of all MPN-n policies independent

of main memory Size. These qualitative results are independent of

the parameter, p.

.B / ;

/ / ' / I I /
" I ' i I ' i/"J"~ i//''=° ~ '/I / I /

.2 t ,

O" ° I
0 I 2

p =0.25

3 4 5

Fig. 5: CPU-utilization, U, over normalized memory
size, y , for the NPN-n policy and two para-
meter values, a, eq. (2.5). The parameter p
is given from eq. (3.1).

Under the FfPM-n policy with n > I sometimes the situation appears

that n very large programs must be loaded into a memory of given

size which results in a very small portion, x, for each. Then the

resulting mean number m(x) of service intervals is very large. It

could be argued that in such situations it would be better to

temporarily lower the prescribed degree of multiprogramming, n,

thereby reducing the number, m(x), substantially. This is the

basic idea of the ACN-n policy.

72

5- Throughput under adaptive control of the multipro~rammSng degree

Instead of prescribing a fixed numer, n, of programs at least to be

multiprogrammed, as is done by the F[PM-n policy, we now interpret

the number, n, as an upper limit. More than n programs are permit-

ted only if they can be loaded completely. Theoretically the number,

n, is arbitrary. For reasons of computability we decide to limit

it to the smallest possible number, n = 2, for which an adaptive

control could be demonstrated.

This means we consider an ACM-2 policy. The number, n, in the

ACM-n policy corresponds to n in the MPM-n policy. In addition we

introduce an estimated value, of a program's parachor, x2, the por-

tion of a program which corresponds to the working set size to be

loaded to avoid thrashing. During our approximate computation of the

CPU utilization (and thereby throughput) the parameter, x2, is ar-

bitrary. From the results it is possible to decide whether or not

an ACM-n policy is superior to an KPM-n policy and by how much.

Moreover, depending on the parachor curve parameter, a, the optimal

parachor value, x2, can be determined.

We now compose for the ACM-2 policy the mean turn-around time of

programs from three fractions. The first is the same as for the

M2M-n policy (cf.eq.@.2) and relates to a number, n, or more fully

loaded programs. The second fraction comes from subsystems (in time)

where exactly two programs, each with a portion x 2 ~ x ~ I~ are

multiprogrammed. This fraction is closely related to the second

term of the sum in eq. (4.2), the only difference being that the

integral is only computed for values x 2 ~ x ~ I. The third fraction

is characterized by only one program being loaded completely or

partly, because sometimes two programs together happen to be too

large, so that they do not fit together with the prescribed portion,

x2, in the main memory. The related probability~ Pq' is (cf.eq.(4.2)

with n = 2))

q x 2
= ~yJ/j!exp(-y)'f p(x)dx = (fl+ Y--) exp(-y/x 2) (5-fi) PI

j=o ~=o ~2

The computation of the third fraction of the mean turn-around time,

EBw , is separated into two parts. One of them results from the si-

tuation that exactly one program fits completely which appears with

73

probability, P~, the other part results from "one program fits only

with a portion x, (0 ~ x < I), in the memory" which has the pro-

bability, P* We assume now that programs that are too large to be o"
allocated together and therefore must be monoprogrammed, have the

same size d.f. (eq. 2.1) as all other programs. From the appendix

(eq. AT, A8) we have

PI = Y exp (-~/x2) (5.2)

and Po = [1 + ~ (t / x 2 - I)] e:,,'io(-Y/x2) (5-3)

The first term of the third fraction of EBw is computed from

PI.EB(x=I), cf. eq. (4.2), the second term from

Po " p (x) . E B (x < I) , i x
X=O n=l

cf.eqs. (4.1, 4.2).

So we have the composed mean turn-around time, EBw , from

EBw = k~2= Pk:EB (x=l)+(l+ ' f)exp(- 'Y) P(x)EB(x<I)dx+PIEB(X=I) +
x=x 2

Po Y/x2" ex~ (-~(I/x-I)) "EB (x<1)ax
X=O

(5.~)

To discuss our results we again insert our assumptions, eqs.(2.5,

4.3), and compute the mean turn-around time, EBw , and from that the

throughput, D, which we normalize on ECp (cp.eq. 3.1). We do this

for different assumed parachor curves represented by the parameter,

a, and for distinct assumed parachor values, x 2. For two limiting

values, x 2 = I and x 2 = 0, we obtain the same results as for the

NPN-1 and YLPN-2 policies, respectively. This is quite clear from

the definition of the ACN-2 policy.

From fig. 6 it becomes evident that the ACN-2 policy is superior

in respect to CPU utilization to both policies, HPN-I (x2 = I),

and FKPN-2 (x 2 = .0), whenever the parachor value, x2, is chosen

appropriately. The utilization gain for small memories, 0.4 ~ y~ 2,

is sometimes 10 %alld more.

0
0

74

x2 J

. 5 Q

=2

2 3 4 5

I io.2s

6y

~ : CPU-utilization, U, over normalized
memory size, for the ACM-2 policy and
two parameter values, p= 0.25,1. The
assumed parachor values are chosen to
be x 2 = 0.3, 0.5. a = 2.

Remember that the CPU utilization of the ACK-2 policy does not de-

pend critically on the estimate of the parachor, x 2. A wrong estimate,

for example, does not result in thrashing. Our results correspond

in some sense to the work, published in [3], where also the degree

of multiprogramming, n, may change dynamically, but we have used an

analytic model while simulation methods are used in [53.

From the graph, fig. 5, we obtain for an assumed parachor curve,

described by a value, a = 5, that under the ~IPM-n policy it would

be optimum to allocate only one program to main memory whenever more

than one program does not fit completely into it. Under the ACM-2

policy it results from eq. (5.4) that for a value, a = 5, it is also

superior to the best FIPM-n policy, namely the NPM-I policy. Our

findings establish the adaptive control of the degree of multipro-

gramming being much better than a fixed degree of multiprogramming

for partly loaded programs whenever the parachor value could be

estimated approximately in advance. The well-known rule of thumb

75

is verified that multiprogramming is only advantageous if the pro-

grams each have their parachor loaded into the main memory.

From the graphs, fig. 5,6, we find that for large memory sizes,

(~ > ~.~), the ~N-3 policy is advantageous over the ACN-2 policy,

independent of the parameter value, x 2. This indicates that an

ACN-n policy, with n > 2, would be better than the AC?~-2 policy.

Analytical computations to verify this suspicion have not been

carried out.

One important advantage of the ACM-n policy is that its CPU utili-

zation is never less than the smallest possible utilization, under

any NPN-n policy. A second advantage results from the chance to

reach a substantially better CPU utilization by an appropriately

chosen parachor value, x2, for the ACN-n policy than under any NPN-n

policy. Further work on this subject may be successful for the ge-

neral ACM-n policy with different assumed parachor values, xn, for

the dynamic change of the degree of multiprogramming from n to n-1

programs.

.8

.6

.2

X2=

Y
1 2 3

I to.2s

--Db

s 6 y

Fi~. 7: Computational and simulation results for
the CPU-utilization. The marks are the
confidence intervals for a 95 %-level of
confidence. Parameters of the model are
as given by fig. 6.

76

A simulation study made has had two objectives: firstly to verify

our computational results and secondly to test whether or not the

optimal value x2, could be determined by experiments. From the graph,

fig. 7, we learn that the CPU utilization of our simulation model

is in-satisfactory agreement with the computed results. The

optimal parachor values, x 2 = 0.3, 0.4 for parameters p = 0.25, 4,

respectively, for which the marks are defined were automatically

found by our simulation model. The automatism was obtained by re-

running the same workload, characterized by the parameter, a, on

the same system, characterized by the parameters,p,¥, changing for

each run the assumed parachor value, x2, as, long as a nearly maxi-

mum CPU utilization was reached. From the graph, fig. 6, we know

that the utilization depends uncritically on the chosen value, x2,

as long as it is near the optimum value of x 2. This was also con-

firmed by the simulation results. From eq. (5.~) it could be shown

that the optimum value, x2, depends on the memory size but this de-

pendency is non-essential and can be neglected in most applications.

6. Conclusions

A model of a computer system and its workload is introduced and CPU

utilization (and by this throughput) is computed. Program size is

assumed to be negative exponentially distributed. This results in

a very complex network (in time) with an infinite number of states.

The complex network is decomposed in simple subnetworks for which

closed solutions from queueing theory are available. Composing

these solutions we obtain an approximate outcome for the complex

network.

The degree of multiprogramming is controlled by an adaptive policy,

ACM-n, which aims at always keeping the parachor of each program

in the main memory and maintains this by dynamically changing the

degree of multiprogramming. CPU utilization under this policy is

compared with the outcome ol a non adaptive allocation policy,

l~M-n, and the superiority of the ACM-n policy is demonstrated.

The author is indebted to Prof. Dr. J. Swoboda for valuable dis-

cussionsamd the computations added as an appendix.

77

References

[I]

[2]

[3]

[4]

[5]

[6]

[7]

P.J. Courtois, Decomposability, instabilities and saturation
in multiprogramming systems, Comm. ACM, Vol. 18, No. 7 (1975)
PP. 371-77.

P.J. Denning, G.S. Graham, Nultiprogrammed memory manage-
ment, Proc. IEEE, Vol. 63, No. 6, June 1975, pp. 924-39.

C.J. Kuehner, B. Randell, Demand paging in perspective,
Am. Fed. Inform. Proc. FJCC, q968, pp. 1011-1018.

R.R. Nuntz, Analytic models for computer systems analysis,
Lecture Notes Comp. Science, 8, 1974, Springer Berlin/
Heidelberg/New York, pp. 246-65.

H. Opderbeck, W.W. Chu, Performance of the page fault
frequency replacement algorithm in a multiprogramming,
environment, IFIP congress 1974, Stockholm, Inf.Process. 74,
North Holland Publishing Company (1974), pp. 235-~1.

B. Wa!ke, Queueing networks with degenerate exponential
servers, Wiss. Bet. AEG-TELEFUNKEN 48, 1975, H.4, S.153-57.

B. Walke, Durchsatzberechnung fur Rechenanlagen bei w~hl-
barer Aufteilung des Arbeitssoeichers unter mehrere Pro-
gramme unterschiedlichen PlatzbedarfS~ PhD-Thesis, Uni-
versity of Stuttgart, 1975 (in German).

Appendix

Assume the random variables, G1, GI', having the p.d.f, given by

eq. (2.1). We are interested in the p.d.f, of G1 conditioned on the

sum, (GI+GI'), being greater than a given value g2. The abbreviations

GI+Gq'=G2, B = I Gq > gq I , F = IG2 > g21 are introduced with G1,

G2, being independent variables. Then for gq = s and g2 = s/x 2 the

p.d.f. P(BIF) means that one program out of two randomly chosen

programs fits not completely in the main memory, conditioned on the

event "two programs together do not fit each with the portion, x2,

(0 ~ x 2 ~ 1)" (i.e. x 2 . G2 > s and G1 > s). From eq. (2.1) we have

P(B) = exp(-gl/EG) (A1)

The p.d.f., P(F), can be computed from the density eq. (4.1) in-

serting parameter values, n = 2, s = O, by integration p(x)dx
to be an Erlang -2-d.f. o

P(F) = (1+g2/E G) exp(-g2/EG) (A2)

"/8

The probability, P(FJB)~ is computable and from this the computation

of the probability, P(BIF), is possible using the well-known relation-

ship

PCBnF) = PCBtF) . P (F) = PCFtB) . P (B) CA3)

The condition, B, means that a program of size, GI, has a minimum

size, g~, but if it is larger than gl then the variable GI is nega-

tive exponentially distributed with mean E G. The other program with

the size GI' follows the d.f., eq. (2.1). From these considerations

we derive

P(FIB) : P ({g l+G2 t > g2) : P (~2 > {g2 -g1~) (A~)

without a condition in the expression on the right hand side.

Eq. (A~) is related to eq. (A2) in that it also is an Erlang -2-d.f.

(I + g2-gl) , exp (

P(FJB) = { EG

1

g2-gl ~ for g2 > gl
E G /

otherwise

(As)

We are only interested in the solution for g2 ~ gl. From eqs.(A1,

A2, A3) we then have, with g2 = s/x 2 and g l = s,

P(BSF) I + V , (I / x 2 - I) (16)

To compute the unconditional probability, Po' i.e.

we use the relationship of eq. (A3)

P~ = P(BnF) : P(BIF) . P(F) : [~+ 7 (I/x2-I)] - exP(-7/x 2) (AT)
o

From the complementary probability~ I-P(BIF), we have the probabili-

ty, P~, for monoprogramming with a completly loaded program

P~ : [I-P(BJF) o P(P) = y exp(-~/x 2) (A8).

