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Abstract
Justification Automatic brain tumor classification by MRS
has been under development for more than a decade. None-
theless, to our knowledge, there are no published evaluations
of predictive models with unseen cases that are subsequently
acquired in different centers. The multicenter eTUMOUR
project (2004–2009), which builds upon previous expertise
from the INTERPRET project (2000–2002) has allowed such
an evaluation to take place.
Materials and Methods A total of 253 pairwise classifiers
for glioblastoma, meningioma, metastasis, and low-grade
glial diagnosis were inferred based on 211 SV short TE
INTERPRET MR spectra obtained at 1.5 T (PRESS or
STEAM, 20–32 ms) and automatically pre-processed. After-
wards, the classifiers were tested with 97 spectra, which were
subsequently compiled during eTUMOUR.
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Results In our results based on subsequently acquired spec-
tra, accuracies of around 90% were achieved for most of the
pairwise discrimination problems. The exception was for the
glioblastoma versus metastasis discrimination, which was
below 78%. A more clear definition of metastases may be
obtained by other approaches, such as MRSI + MRI.
Conclusions The prediction of the tumor type of in-vivo
MRS is possible using classifiers developed from previously
acquired data, in different hospitals with different instrumen-
tation under the same acquisition protocols. This methodo-
logy may find application for assisting in the diagnosis of new
brain tumor cases and for the quality control of multicenter
MRS databases.

Keywords Magnetic resonance spectroscopy ·
Pattern classification · Brain tumors · Decision support
systems · Multicenter evaluation study

P. Krooshof · W. Melssen · G. Postma · L. Buydens
Institute for Molecules and Materials, Radboud University
Nijmegen (Gelderland), The Netherlands

D. Monleón
Fundación de Investigación del Hospital Clínico
Universitario de Valencia, Valencia, Spain

À. Moreno-Torres
Research Department, Centre Diagnòstic Pedralbes
Esplugues de Llobregat, Barcelona, Spain

J. Pujol
Institut d’Alta Tecnologia-PRBB, CRC Corporació
Sanitària, Barcelona, Spain

M. C. Martínez-Bisbal · B. Celda
Departamento de Química-Física, Universitat de València
Valencia, Spain

123



6 Magn Reson Mater Phy (2009) 22:5–18

Abbreviations
A2 Astrocytomas grade II
AGG Aggressive tumors
Ala Alanine
BER Balanced error rate
BDK Bi-directional Kohonen networks
CDSS Clinical decision-support system
CDSSs Clinical decision-support systems
CDVC Clinical Data Validation Committee
Cho Choline
CNS Central nervous system
Cr Creatine
CV Cross validation
dLDA Linear discriminant analysis with

diagonal covariance matrix
dQDA Quadratic discriminant analysis

with diagonal covariance matrix
DSS Decision-support system
DSSs Decision-support systems
ERR Error rate
eTDB The eTUMOUR project

(eTUMOUR) database
eTUMOUR The eTUMOUR project
FE Feature extraction
FID Free induction decay
FLDA Fisher’s rank-reduced version of LDA
FFT Fast Fourier transform
GBM Glioblastoma
GE General electric
Gly Glycine
Glx Glutamate/glutamine
HEALTHAGENTS The HEALTHAGENTS EC project
HLSVD Hankel–Lanczos singular

value decomposition
HSVD Hankel singular value decomposition
ICA Independent component analysis
INTERPRET The INTERPRET project
IT Independent test
jMRUI java Magnetic resonance user

interface
Lac Lactate
LDA Linear discriminant analysis
LGG Low-grade glial
LS-SVM Least-squares support vector machine
MEN Low-grade Meningioma
MET Metastasis
mI myo-Inositol
ML Mobile lipids
MLP Multilayer perceptron
MM Macromolecules
MR (Nuclear) magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy

MRSI Magnetic resonance spectroscopic
imaging

NAA N -acetyl aspartate
PCA Principal component analysis
PCA-KNN K -nearest neighbours and local feature

reduced by principal component
analysis (PCA)

PI Peak integration
PPM Peak height of typical resonances
PR Pattern recognition
PRESS Point-resolved spectroscopic sequence
QDA Quadratic discriminant analysis
SNR Signal-to-noise ratio
SNV Standard normal variate
STEAM Stimulated echo

acquisition mode sequence
SV Single-voxel
SVM Support vector machines
Tau Taurine
TE Echo time
TR Repetition time
WAV Wavelet transform
WHO World Health Organization

Introduction

Magnetic resonance spectroscopy is slowly becoming an
accurate non-invasive complement to magnetic resonance
imaging for initial diagnosis exam of brain masses [1], since
it provides useful chemical information about metabolites
for characterizing brain tumors [2]. To achieve this status,
clinical and pattern recognition (PR)-based classification of
brain tumors using magnetic resonance spectroscopy (MRS)
data has been thoroughly investigated for more than fifteen
years [1,3–13].

The clinical decision-support systems (CDSSs) based on
PR should be developed in such a way so as to obtain high
accuracy in classification, interpretability by means of clini-
cal knowledge and the generalization of the performance to
new samples obtained subsequently in different clinical cen-
ters [14–17]. Standardization of acquisition conditions and
protocols should make data from different hospitals com-
patible and allow the development and evaluation of joint
CDSSs. This standardization prevents possible bias from
single-center or single-machine studies and, additionally,
increases the number of available cases for classifier deve-
lopment and test purposes.

During the INTERPRET project (INTERPRET) [8,18],
a protocol was defined to guarantee the compatibility of the
signals acquired at different hospitals [19,20]. As a result,
studies on automated brain tumor classification were carried
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out using these data. Hence, in previous studies [7,8,10,
21], the ability of automatic classifiers based on short echo
time (TE) MRS to discriminate among different brain tumor
diagnoses was demonstrated. In addition, in [11,13,21], the
automated classification by means of long TE MRS was
also studied and demonstrated. Other studies evaluated the
extension of the classifiers towards 1H magnetic resonance
spectroscopic imaging (MRSI) [12,21–24]. Every study
reported above was developed and evaluated using data acqui-
red during the same period of time. Besides, other automated
classification studies, such as [2,13,25–28], have been repor-
ted on single-center MRS datasets of brain masses.

In order to provide the clinical community with robust
results of automatic classification, the extension of the
evaluation in time is advisable. Hence, the validation of
classifiers through subsequent cases can consolidate the
confidence of clinicians in the potential applicability of
these classifiers. The multicenter The eTUMOUR project
(eTUMOUR) [29] (2004–2009) has benefited from the data
and expertise gathered by INTERPRET. The INTERPRET
acquisition protocols for clinical, radiological, and histo-
pathological data were extended to ex-vivo transcriptomic
(DNA microarrays) and metabolomic (HR-MAS) data acqui-
sition in The eTUMOUR project (eTUMOUR). Furthermore,
the raw MRS data acquired during INTERPRET were incor-
porated into the eTUMOUR dataset for classifier develop-
ment. This provides a unique opportunity to evaluate
INTERPRET-based models by means of cases from a later
date from partly different hospitals with different instrumen-
tation, but obtained using the same or compatible acquisition
protocols. The multiproject–multicenter evaluation proposed
in this study gives a close-up perspective of the conditions
that predictive models may face under different real clinical
environments.

In this study, six pairwise classifiers for glioblastoma
GBM, low-grade meningioma (MEN), metastasis (MET),
and low-grade glial (LGG) diagnoses were developed and
tested on single-voxel (SV) short TE MRS signals. Short TE
MRS is fast (typically 5 min) and robust, so it is considered
to be appropriate for routine clinical studies [1]. Most major
hospitals currently use this acquisition protocol for the MRS
evaluation of brain tumors. Short TE spectral pattern has
been reported to contain a larger amount of information than
long TE spectra, e.g. metabolites and other compounds that
are considered useful for classification purposes [1,8,11].
Hence, creatine (Cr) (3.02, 3.92 ppm), choline (Cho) (3.21
ppm), N -acetyl aspartate (NAA) (2.01 ppm), myo-inositol
(mI) and glycine (Gly) (3.55 ppm), mI/Taurine (Tau) (3.26
ppm), glutamate/glutamine (Glx) (2.04, 2.46, 3.78 ppm),
lactate (Lac) (1.31 ppm), and alanine (Ala) (1.47 ppm) are
observed at short TE. Furthermore, macromolecules (MM)
(5.4, 2.9, 2.25, 2.05, 1.4 and 0.87 ppm) and mobile lipids
(ML) are also well detected at short TE [1,8]. Comparative

studies on the use of short TE versus long TE have shown
the benefit of using short TE or the combination of both echo
times for automatic classification purposes [30].

Based on previous results from [10,11,18,21], good per-
formance of the PR models could be expected for most of the
classification problems, except for the discrimination of glio-
blastoma and metastasis [10]. Our performance estimations
of models trained with INTERPRET data and tested over
eTUMOUR cases confirmed this behaviour. We observed
that pairwise discrimination between glioblastoma, menin-
gioma, metastasis, and low-grade glial achieved an accuracy
of around 90%. The exception was for the discrimination
between glioblastoma and metastasis that did not perform
better than 78%. This study consolidates the results obtained
by previous studies in automatic brain tumor classification
using MRS. These results may also increase the confidence
of the clinical community in the use of CDSSs that incor-
porate this kind of classifiers for the interpretation of MRS
biomedical signals and the diagnosis of brain tumors.

Materials and methods

Data acquisition

The training data used for classifier development were SV
MRS signals at 1.5 T at short TE (point-resolved spectrosco-
pic sequence (PRESS) or stimulated echo acquisition mode
sequence (STEAM), 20–32 ms) that were acquired by inter-
national centers in the framework of INTERPRET [18]. The
classes considered for inclusion in this study were based on
the histological classification of the central nervous system
(CNS) tumors set up by the World Health Organization
(WHO) [31]: glioblastoma (GBM), MEN, MET, and LGG
(Astrocytoma gII, Oligoastrocytoma gII, or Oligodendro-
glioma gII). The number of cases by class is summarized
in Table 1.

211 SV 1H (nuclear) magnetic resonance (MR) spectra
from the INTERPRET database [19] were included. These
signals were acquired with Siemens, general electric (GE),

Table 1 Number of training (INTERPRET) and test (eTUMOUR)
cases per class used in the study

Class INTERPRET eTUMOUR

GBM 84 28

MEN 57 17

MET 37 32

LGG 33 20

211 97

Short TE 1H MRS data were acquired according to a consensus protocol
during the INTERPRET (2000–2002) and eTUMOUR (2004–2009)
projects
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Table 2 Breakdown of cases per manufacturer included in the training
(INTERPRET) and test (eTUMOUR) datasets

Manufacturer INTERPRET (%) eTumour (%)

GE 53.1 54.6

Siemens 6.6 12.4

Philips 40.3 33.0

and Philips instruments by six international centers. The
acquisition protocols included PRESS or STEAM sequences,
with spectral parameters: repetition time (TR) between 1,600
and 2,020 ms, TE of 20 or 30–32 ms, spectral width of
1,000–2,500 Hz, and 512, 1,024, or 2,048 data-points, as
described in previous studies [19]. Every training spectrum
and diagnosis was validated by the INTERPRET Clinical
Data Validation Committee (CDVC) and expert spectrosco-
pists [8].

The test data were provided by eight international ins-
titutions in the framework of eTUMOUR [29]. The cases
with the SV short TE (STEAM 20 ms, PRESS 30–32 ms)
MRS at 1.5 T signal validated by the expert spectroscopist
of eTUMOUR and with the original histopathology available
before 28 February 2007) were included. Therefore, 97 cases
from eTUMOUR were considered for testing in this study.
The test cases used to evaluate the performance of the clas-
sifiers were acquired from partly different hospitals in later
dates than the training cases and using instruments of the
three main manufacturers. Table 2 shows that the percen-
tages of cases by manufacturer included in the test data are
similar to the percentages in the training data. Table 3 shows
the percentage of cases by center included in the training
and test datasets. Forty percent of training cases belong to
one center that afterwards did not provide test data. Besides,
35% of test cases belong to three new centers that were not
providers of training data.

Pre-processing

Each signal was pre-processed according to the INTERPRET
protocol. A fully automatic pre-processing pipeline was avai-
lable for the training data. Besides, a semi-automatic pipeline
was defined for some new file formats of the test cases from
GE and Siemens manufacturers. The semi-automatic pipe-
line was designed to ensure compatibility of its output with
the automatic one.

Automatic pipeline

The steps of the automatic pre-processing pipeline were: (1)
Eddy current correction was applied to the water-suppressed
free induction decay (FID) of each case using the Klose algo-
rithm [32]. (2) The residual water resonance was removed

Table 3 Percentage of cases per acquisition center included in the trai-
ning (INTERPRET) and test (eTUMOUR) datasets

CENTERS Training from Test from
INTERPRET (%) eTUMOUR (%)

UMC Nijmegen 2.8 1.0

St. George’s Hospital 27.0 18.6

Medical University of LODZ 3.8 10.3

FLENI 1.9 6.2

IDI-Bellvitge 40.3

Centre de Diag. Pedralbes 24.2

Centre de Diag. Pedralbes + IAT 28.9

IDI-Badalona 17.5

Univ. de Valencia 16.5

Hospital Sant Joan de DEU 1.0

Cases of project

exclusive centers (%) 40.3 35.1

Last row indicates the percentage of training cases that belong to centers
that did not produce eTUMOUR cases, and the percentage of test cases
that belong to centers that did not acquired training data for INTER-
PRET

using the Hankel–Lanczos singular value decomposition
(HLSVD) time-domain selective filtering using ten singu-
lar values and a water region of [4.33, 5.07] ppm. (3) An
apodization with a Lorentzian function of 1 Hz of damping
was applied. (4) Before transforming the signal to the fre-
quency domain using the fast Fourier transform (FFT), an
interpolation was needed in order to increase the frequency
resolution of the low resolution spectra to the maximum fre-
quency resolution used in the acquisition protocols (see [8]
for details in the acquisition conditions and resolutions). This
was carried out with the zero-filling procedure. (5) After-
wards, the baseline offset, which was estimated as the mean
value of the region [11, 9] ∪ [−2,−1] ppm, was subtrac-
ted from the spectrum. (6) The normalization of the spec-
tral data vector to the L2-norm was performed based on the
data-points in the region [−2.7, 4.33] ∪ [5.07, 7.1] ppm. (7)
Depending on the signal-to-noise ratio (SNR) and the tumor
pattern, an additional frequency alignment check of the spec-
trum was performed by referencing the ppm-axis to (in order
of priority) the total Cr at 3.03 ppm or to the Cho containing
compounds at 3.21 ppm or the ML at 1.29 ppm. (8) Finally,
the region of interest was restricted to [0.5, 4.1] ppm, obtai-
ning a vector of 190 points for each spectrum where, after
the pre-processing filters, the resonances of the main meta-
bolites arise and where the contribution of the residual water
is expected to be minimal. In summary, 211 INTERPRET
cases and 47 cases of the eTUMOUR test dataset (32 from
Philips and 15 from GE) were pre-processed with the auto-
matic pipeline.
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Semi-automatic pipeline

Due to limitations of the automatic pre-processing software,
50 test samples were pre-processed by a semi-automatic pipe-
line that was partially based on the java magnetic resonance
user interface (jMRUI) [33]. Some modifications of the semi-
automatic pipeline with respect to the automatic pipeline
were in the following steps: (1) The phase of the water-
suppressed FID was mainly corrected with the reference
water. Additional manual zero-order and first-order phase
correction was performed when needed. (2) Residual water
was removed by means of the jMRUI-implementation of the
Hankel singular value decomposition (HSVD) algorithm [34].
The filter was parametrized as in the automatic pipeline. Steps
3–8 remained equivalent to the automatic pre-processing. As
a result, a pre-processing pipeline based on different software
implementations but compatible with the automatic one was
set up, and comparable signals for testing the PR models
were obtained.

Feature extraction

Several feature extraction methods based on PR were applied
to the real part of the spectra prior to any classification
approach. These methods included direct spectral peak inte-
gration (PI) on selected metabolite resonance regions [35],
peak height of typical resonances (PPM) [36], principal com-
ponent analysis (PCA) [37,38], independent component ana-
lysis (ICA) [39,40], and wavelet transform (WAV) [41,42].
Finally, some classification approaches were applied to the
full region of interest represented by a data vector of 190
points (190). The selected features for the classifiers were
derived from previous studies [10,30] or from model vali-
dation based on the training dataset. In some approaches,
standard normal variate (SNV) scaling was applied to the
obtained features. The wavelet basis used in the experiments
was coiflet 3 with nine levels [41]. Further information and
experimental details about the methods used can be found in
“Appendix A” of the on-line Supplementary Material.1

Classification methods

Ten methods were applied to address the pairwise
classifications. These methods included parametric discri-
minant analysis [43]: linear discriminant analysis (LDA),
Fisher’s rank-reduced version of LDA (FLDA) [44]), quadra-
tic discriminant analysis (QDA), linear discriminant analysis
with diagonal covariance matrix (dLDA) and quadratic dis-
criminant analysis with diagonal covariance matrix (dQDA).
Kernel-based models (support vector machines (SVM) [45]

1 Available from http://bmg.webs.upv.es/joomla_rpboys/articulos/
mmeval_mrs08.pdf.

and least-squares support vector machine (LS-SVM) [46])
were also applied. Additionally, artificial neural networks
(multilayer perceptron (MLP) [47] and bi-directional Koho-
nen networks (BDK) [27,48]) and single and ensemble [49]
classifiers using K-nearest neighbours and local feature redu-
ced by PCA (PCA-KNN) [50,51]) were used.

Bayesian strategies for regularization were also applied in
some of the classifiers based on LS-SVM [52] and MLP [53].
Further information about these methods can be found in
“Appendix B” of the on-line Supplementary Material.

A measure to evaluate unbalanced classifiers: the balanced
error rate (BER)

The performance was measured by means of the error rate
(ERR) and the balanced error rate (BER). In a binary clas-
sifier A versus B, BER is the average of the error rate on
the A and B classes [54]. Let nA be the number of cases
of the class A, and eA the number of misclassified cases.
Let nB be the number of cases of the class B, and eB the
number of misclassified cases. While the ERR is defined as
eA+eB
nA+nB

, the BER is defined as 1
2 ( eA

nA
+ eB

nB
). BER is useful

when one class is underrepresented compared to the other
class, e.g. GBM versus LGG and GBM versus MET in the
INTERPRET dataset and MEN versus GBM and MEN ver-
sus MET in the eTUMOUR dataset.

Results and discussion

For each task, different combinations of feature extraction
and classification methods were applied in the study. An
estimation of the ERR and BER for the INTERPRET dataset
using a tenfold cross validation (CV) was carried out for each
model. Afterwards, the estimations of the ERR and BER were
obtained on the independent test (IT) dataset of eTUMOUR.
Table 4 illustrates the results with the best pairwise classifiers
based on the IT estimations. A detailed list of the results is
available in Sect. 1 of the on-line Supplementary Material.

The classification problems

Most of the discrimination problems among the four classes
were solved with high accuracy in the eTUMOUR dataset.
Table 4 shows that most of the best classifiers among GBM,
MEN, MET, and LGG achieved an accuracy (1 − ERR) of
around 90%. Such decision support methodologies with these
ratios of accuracy may be useful to be incorporated in integra-
ted CDSSs for clinical purposes. Besides, for GBM versus
MET, the best result was an accuracy of 78% of the inde-
pendent test, which is far from the accuracy obtained for
the other discrimination problems. The glioblastoma versus
metastasis discrimination by means of the MRS is difficult

123

http://bmg.webs.upv.es/joomla_rpboys/articulos/mmeval_mrs08.pdf
http://bmg.webs.upv.es/joomla_rpboys/articulos/mmeval_mrs08.pdf


10 Magn Reson Mater Phy (2009) 22:5–18

Table 4 Best results obtained for the six pairwise classification problems

Task id Features Classif CV IT

ERR BER ERR BER

GBM versus MEN 1.6 190 MLP 0.06 0.07 0.07 0.09

GBM versus MET 2.13 PI LDA 0.33 0.40 0.22 0.21

GBM versus LGG 3.16 PI LS-SVM 0.12 0.18 0.08 0.09

MEN versus MET 4.21 PCA MLP 0.05 0.05 0.06 0.07

MEN versus LGG 5.10 ICA LS-SVM 0.08 0.09 0.08 0.08

MET versus LGG 6.13, 21, 25–26 PI LDA/FLDA/MLP/LS-SVM [0.01, 0.04] [0.01, 0.04] 0.06 0.07

The ERR and BER estimation based on CV over the INTERPRET data and based on the eTUMOUR IT set are shown. The columns of the table
are: task: classification problem defined by the classes to discriminate by the classifiers; id, identification of the classifier; features: acronym of
the feature extraction method, classif, acronym of the classification method; CV, results estimated by means of a tenfold CV in the INTERPRET
database; IT, results estimated by means of the independent test, with the INTERPRET database as training and the eTUMOUR dataset as test;
ERR, error rate; and BER, balanced error rate. [] interval within every result falls

GBM vs. MEN GBM vs. MET GBM vs. LGG MEN vs. MET MEN vs. LGG MET vs. LGG

0.1

0.2

0.3

0.4

0.5

0.6

B
E

R
(I

T
)

Fig. 1 Box-whisker plots of the performance for each problem in the
eTUMOUR dataset (based on the detailed list of results included in
Sect. 1 of the on-line Supplementary Material). Performance is measu-
red in BER. The box indicates the region between the lower (X0.25) and
the upper (X0.75) quartiles. The horizontal line inside the box indicates
the median of the distribution, and the vertical lines (the “whiskers”)
extend to at most 1.5 times the box width. Any outlier of the distribution
is displayed with a cross

with the use of SV spectroscopy alone [7,8,55–58]. Other
approaches, such as MRSI coupled with magnetic resonance
imaging (MRI) or the acquisition of an additional adjacent
voxel to the brain mass should provide relevant additional
information for distinguishing between these two types of
tumors [57–59].

Figure 1 shows the box-whisker plot of the performance
(BER based on IT) for each problem based on the detailed list
of the results (Sect. 1 of the on-line Supplementary Material).
Note the high deviation of the distribution for the GBM versus
MET with respect to the others. In a multiple comparison at
a 0.05 α-level based on the Tukey’s honestly significance
difference criterion for Kruskal–Wallis nonparametric one-
way analysis of variance [60], each problem had a mean rank

that was significantly different from the GBM versus MET
problem. The distributions of the other five discrimination
problems overlapped among them. Nevertheless, the smallest
non-outlier observation of the GBM versus LGG problem
was higher than the smallest non-outlier observation of the
remaining problems. This may indicate that the GBM versus
LGG discrimination is more difficult to solve by SV short
TE MRS than the other four discrimination problems.

The different approaches obtained good results for the
discrimination of the GBM and MEN classes. A multilayer
perceptron with the full spectra achieved a BER of 0.09. The
mode of the distribution of BER was below 0.20 for the GBM
versus MEN problem.

The difficulty of the GBM versus MET discrimination was
clearly observed in both CV-and IT-estimations (see Fig. 2).
In the distribution of the IT results for this problem, the BER
mode was 0.5, and the main distribution of the results ranged
from 0.4 to 0.55. Some methods achieved a BER of 0.2;
nevertheless, the main mass of the distribution was far from
this value, which makes it difficult to ensure reproducibility
of these performances. These results agree with those already
published in previous studies [8,10]. This is most probably
due to the similar necrotic profile (high lipid peaks mask the
rest of the metabolic information) of the Metastasis cases and
of most of the glioblastoma cases.

The mode of the BER for the GBM versus LGG problem
was 0.2. Nevertheless, there was a set of regularized classi-
fiers that obtained a BER of around 0.09. To be more precise,
the best BER corresponded to the Bayesian framework for
LS-SVM using peak integration (PI) values. Devos et al. [10]
obtained comparable performances for this problem using
LDA and standard LS-SVMs. In studies [25,61], significant
statistical differences between GBM and LGG and between
GBM and astrocytoma grade-III were also found for different
metabolite ratios with respect to Cr and/or water. In long TE,
Menze et al. [13] observed a better performance with regula-
rized methods than with the standard ones when classifying
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Fig. 2 Scatter plot of the performance measured in BER estimated by
the IT set consisting of new eTUMOUR cases and the BER estima-
ted by the CV using the INTERPRET cases. BER(IT) = BER(CV) is
represented by the solid-blue line and the trend of the (BER(CV) < 0.2,
BER(IT) < 0.3) region is indicated by the black-dashed line

normal, non-progressive tumors (with radiation injury and
stable disease) and brain tumors.

As expected, our results confirm that MEN can be easily
discriminated from MET no matter what method is used.
Most of the BER probability mass of the results was in the
interval from 0.1 to 0.2. The best result achieved a BER
of 0.07, which was based on PCA and a neural network
with Bayesian regularization. These results are consistent
with [10].

LS-SVM and LDA with different feature extraction
methods achieved BER of 0.08 and 0.11 for the menin-
gioma versus low-grade glial problem. Most of the results
for this problem were in the interval from 0.15 to 0.25,
and the mode of the distribution was under 0.2. The low
error in MEN versus LGG was also predicted by the CV
results on the INTERPRET data. This result is consistent
with the performances reported in Tate et al. in [7] on a
three-class discrimination problem: MEN versus astrocyto-
mas grade II (A2) versus aggressive tumors (AGG) (which
is composed of GBM and MET). In that study, the confusion
submatrix of MEN versus A2 indicates no misclassifications
between them. Identical results were obtained by Tate et al.
in [8] when extending the three-class classifier to MEN ver-
sus LGG versus AGG.

The distribution of BER for MET versus LGG had a clear
trend towards the lower values (BER of 0.1), showing good
performance for all the methods studied in this problem. PI
combined with LDA, FLDA, MLP, or LS-SVM classifica-
tion methods obtained the best performance for the IT set.
The CV estimations of the errors also indicated good per-
formance by the classifiers. These results are also consistent
with [10].

The pre-processing techniques

Eight out of 50 semi-automatically preprocessed test cases
were misclassified at least once by the pairwise BDK clas-
sifiers (GBM versus MET excluded). Also, 10 out of 47
of the automatically preprocessed test cases were misclas-
sified at least once by the same classifiers. Based on these
rates, no differences were observed in the classification of
automatic and semi-automatic pre-processed signals. The
semi-automatic pre-processing pipeline applied to the lar-
ger part of the test dataset was consistent with the automatic
pipeline applied on the training set. This is an important prac-
tical conclusion because it suggests the compatibility of dif-
ferent pre-processing software tools, either in an automatic
or a semi-automatic fashion for automatic classification in
CDSSs.

The feature extraction methods

All the feature extraction methods applied in this study were
based on PR. Therefore, we could not make any compari-
son between PR and metabolite quantification approaches.
Approaches that take advantage of the combination of dif-
ferent TE [25,26,30,62–64] were not considered in order to
ensure that results could be compared with previous analyses
of this type of data [7,8,10,12,27,28,65–67]. Furthermore,
although a feature extraction evaluation is not the aim of the
present study and the setup of this study is not designed spe-
cifically for it, some effects of the different feature extraction
methods are reported.

Figure 3 shows the box-whisker plot of the performance
(BER) for each feature extraction (FE) method. GBM versus
MET classifiers are not included because of their large diffe-
rence in performance with respect to the other classification
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Fig. 3 Box-whisker plots of the performance for each feature extrac-
tion method in the eTUMOUR dataset. Performance is measured in
BER and the box-whisker characteristics are the same as in Fig. 1
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problems. The distributions of the results for all FE methods
overlap, and no statistical differences were observed. Never-
theless, a noteworthy fact is the trend toward low values
of the peak integration method compared to other methods.
The study of Devos et al. [10] about the same four classes
obtained similar performances when comparing full region of
interest, peak regions and PI. In [12], Simonetti et al. compa-
red, PCA, independent component analysis (ICA), LCModel
[67] and PI for feature extraction on short TE MRSI data
and they also obtained the best results with PI. In a single-
center study, Opstad et al. [28] reported that the LCModel
quantification obtained better results than PCA for two-step
LDA classification. In long TE spectra, Lukas et al. [11]
observed a better performance using the full region of inter-
est rather than using PI or peak region extraction. Finally,
Menze et al. [13] and Luts et al. [68] obtained an impro-
vement when PR approaches (e.g. ICA, PCA, binned peak
region and WAV) were used in short or long TE instead of
quantification approaches.

The classification methods

The diversity of methods used for classification is broad
enough to have a good overview of the effect that this selec-
tion has on the performance of the classifiers. Figure 4 shows
the box-whisker plot of the performance (BER) for each
classification method. Analogously to the analysis of FE
methods, GBM versus MET classifiers are not included in
the distributions because of their large differences in perfor-
mance with respect to the other classification methods. As
observed in Fig. 4, the distributions overlap, but in general,
lower results of BER were obtained using a BDK. In [27],
BDK was used in PI values to discriminate over tumor grades
and other tissues in the INTERPRET multi-voxel dataset. The
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Fig. 4 Box-whisker plots of the performance for each classification
method in the eTUMOUR dataset. Performance is measured in BER
and the box-whisker characteristics are the same as in Fig. 1

study of Devos et al. [10] observed similar performances of
their LDA and LS-SVM classifiers based on PI and evalua-
ted by the area under the ROC curves. Tate et al. [7,8] based
their three-class classifiers on the LDA due to the ability of
this method for projecting the results in a two-dimensional
space for visualization. Note that FLDA shows similar results
when compared with the other methods in average; however,
other methods like LS-SVM and BDK might be preferable
for some discrimination problems (e.g. GBM vs. LGG).

Finally, in Fig. 2, we summarize and compare the BER
estimation obtained by the CV for the INTERPRET trai-
ning dataset and the IT consisting of the new eTUMOUR
cases. Most of the results are in the (BER(CV) < 0.2,
BER(IT) < 0.3) region, except for the GBM versus MET
problem, which had a sparse distribution. The general trend
in this region is indicated by the black-dashed line. This indi-
cates an underestimation of the BER by the CV evaluation.
The underestimation is typically observed in the PR chal-
lenges [54], and it is usually produced by the overfitting of
the models on the training dataset and the estimation of the
error with non-fully independent samples [69]. A notewor-
thy feature of our study is the evaluation of the predictive
models using the new subsequently acquired multicenter test,
that ensures the independence of the training and test sets.
With respect to the GBM versus MET results, they are scat-
tered in regions of larger error. For this problem, some ove-
restimations of the CV error are also observed. This may
show the difficulty of the problem and the randomness in the
results. The results obtained for the rest of the discrimination
problems confirm the expected behaviour of the predictive
models.

Use of the study for automatic validation of MRS entries
in brain tumour datasets

An intuitive method to compare datasets of signals is the
visual inspection of their prototypical patterns. Figure 5
shows plots of the unimodal prototypes of the short TE spec-
tra for the four tumour groups of the training and test datasets.
Each prototype is represented by the unsmoothed mean func-
tion and the mean function ± the standard deviation function.
The view is zoomed in the [0.5, 4.1] ppm region used in
our experiments. The observed resonances correspond to the
main compounds reported in the “Introduction”. In general,
the training and test prototype patterns for GBM, MET and
LGG are close to each other, whereas the MEN prototype dif-
fers visually more. This may be because of a higher standard
deviation on the test dataset around the 3.21 ppm peak with
respect to the training dataset. Besides, the variation around
the 2.2 ppm is higher in the test-set mean than in the training
one.

A practical result of this study is that cases that are repea-
tedly misclassified by the different techniques can be
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Fig. 5 Unimodal prototypes of
the short TE spectra for the four
tumour groups of the training
and test datasets. Each prototype
is represented by the
unsmoothed mean function and
the mean ± SD function. The
view is zoomed in the
[0.5, 4.1] ppm region used in
our experiments
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Fig. 6 Potential outliers (1/2)
detected as a consequence of
this study. Case numbering
corresponds to eTUMOUR
database (http://www.etumour.
net) entries. For each case, the
reference image and voxel
location is shown on the left,
and the region of interest of the
real part of the short TE
spectrum is shown on the right.
For an easier visualization of the
spectrum, vertical dashed lines
indicate the position of the main
resonances: Cho (3.21 ppm), Cr
(3.02), NAA (2.01 ppm), L1
(1.29 ppm), L2 (0.92 ppm)
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flagged as being susceptible of revision for possible pro-
blems in voxel positioning, acquisition artifact, normal-tissue
contamination, or limitation in the classification methodo-
logy (e.g. patterns replicated in non-tumoral diseases, atypi-
cal MRS patterns and underrepresented tumor subtypes). In
this way, even in the absence of biopsy, PR techniques can
contribute to the automatic validation of cases, assisting the
specialists on the detection of potential source of errors in
the biomedical data acquired from patients.

Figures 6 and 7 show some eTUMOUR misclassified cases
which may be interesting to review. The eTUMOUR case
et2274 was diagnosed by the original pathologist as oligo-
dendroglioma 9450/3 (grade II, WHO), although a comment
was added to the free text section of the eTUMOUR database
(eTDB) making reference to the presence of areas of anaplas-
tic oligodendroglioma (grade III, WHO). Still, the final diag-
nosis proposed was grade II oligodendroglioma. The voxel
allocation was carried out following the eTUMOUR acqui-
sition protocol. The ML pattern is uncommon, as the high
0.9 and 1.3 ppm resonances show. The disappearance of
these resonances at long TE (136 ms) discards a significant
necrotic contribution (results not shown, but see [30]). This

pattern has been observed before [30], for example in the
INTERPRET cases I0450 (oligoastrocytoma) and I0179 (oli-
godendroglioma), which are also misplaced in the short TE
latent space of the INTERPRET decision-support system
(DSS) 2.0 (http://azizu.uab.es/INTERPRET). In summary,
et2274 seems to behave as a class outlier and its consistent
misclassification in our analysis may be sampling precisely
that. The eTUMOUR case et2206 was originally diagnosed
as oligoastrocytoma 9382/3 (grade II, WHO), but there were
some discrepancies regarding the glial subtype on the valida-
tion done by the pathological committee. It was misclassified
by every MET versus LGG classifier, and also by some GBM
versus LGG and MEN versus LGG classifiers. Its ML pattern
at short TE is also uncommon, having relatively large 0.9, 1.3
and 2.8 ppm peaks that are reduced at long TE (results not
shown), which suggests, as well, a non-necrotic origin. The
eTUMOUR case et2349 is a GBM without clear visible ML,
which was misclassified in every classification problem. The
review of the experts did not indicate problems in the loca-
tion of the voxel, being this mainly positioned in the highly
cellular part of the tumour. The eTUMOUR case et2197 is a
MET with possible MRS pattern contribution from normal

123

http://www.etumour.net
http://www.etumour.net
http://azizu.uab.es/INTERPRET


Magn Reson Mater Phy (2009) 22:5–18 15

Fig. 7 Potential outliers (2/2)
detected as a consequence of
this study. Figure characteristics
are the same as in Fig. 6
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brain parenchyma, as it could be deduced by the relative dif-
ference of size between the voxel used for acquisition and the
small brain lesion. Its pattern shows similar Cho and Cr peak
heights and relatively high NAA at 2 ppm). However, the
appearance of high Lac/ML at 1.3 ppm at the same time sug-
gests abnormality. Nonetheless, it is clearly an uncommon
spectral pattern for a MET.

Conclusions

This study describes a multiproject–multicenter evaluation
of automated brain tumor classifiers using single-voxel short
TE MR spectra. To our knowledge, there is no previous work
that evaluates predictive models trained with data acquired
from a multicenter project using a new independent test set
subsequently acquired from partly different centers. Classi-
fiers were trained with cases acquired by six centers during
the 2000–2002 period. They were tested with posterior cases
acquired by eight institutions during the 2004–2007 period.
This strategy provides a view that is close to a real envi-
ronment where similar classifiers, integrated in a clinical
decision-support system (CDSS), may be used in multiple
hospitals to assist in the diagnosis of new cases.

Our major conclusion is that accurate classification of
those new cases is feasible using data acquired in different
hospitals, different instrumentation, but similar acquisition
protocols. Specifically, in our experiments, classifiers develo-
ped from the INTERPRET dataset seem to be robust enough
for predictive classification of prospective cases from
eTUMOUR.

The pairwise discrimination between Glioblastoma,
Meningioma, Metastasis, and Low-grade Glial achieved accu-
racies of around 90%. However, the discrimination of Glio-
blastoma and Metastasis did not achieve a result better than
78% accuracy. Our results consolidate the conclusions of pre-
vious studies on automatic brain tumor classification using
MRS but with multiproject–multicenter data for training and
subsequent test.

A well-defined protocol for the acquisition of MRS (e.g.
spectral parameters and voxel localization), and the appli-
cation of quality controls to MRS spectra should allow the
reproducibility of such classification rules and the successful
use of decision-support systems (DSSs) in clinical environ-
ments.

The methodology provided in the present study may also
be of use as “automatic flaggers” to help in the quality control
of cases during the eTUMOUR multicenter project and
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beyond. The approach used in this work could be of use for
pediatric brain tumour related studies [70] aimed at providing
predictive information to pediatric neurosurgeons.

Hence, the conclusions obtained in this study are directly
applicable to several of the tasks associated to a CDSS deve-
lopment for brain tumor diagnosis and prognosis and its
deployment in clinical environments.
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