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Multipulse Operation and Limits of the
Kerr-Lens Mode-Locking Stability

Vladimir L. Kalashnikov, Evgeni Sorokin, and Irina T. Sorokina

Abstract—Numerical analysis in combination with the experi-

mental data for Cr2+:ZnSe as well as Ti:sapphire lasers reveal the
following main mechanisms of multiple-pulse generation for the
Kerr-lens mode-locked solid-state lasers: 1) continuum amplifica-
tion due to a spectral loss growth for ultrashort or chirped pulses
and 2) a bounded perturbation rise for high-energy pulses. The
role of such laser parameters as gain saturation and relaxation, sat-
urable and unsaturable loss, self-phase modulation, Kerr-lensing,
and pump intensity is analyzed. This analysis provides basic direc-
tions for single-pulse stability enhancement and for multiple-pulse
generation control.

Index Terms—Kerr-lens mode locking, multiple-pulse genera-
tion, ultrashort-pulse stability.

I. INTRODUCTION

U
LTRASHORT-PULSE laser oscillators demonstrate a ten-

dency toward destabilization and pulse splitting when the

pulse duration approaches minimal values (see, for example,

[1]). As the net group-delay dispersion (GDD) in the resonator

approaches zero, a nonregular pulsing or a stable multiple pulse

generation may occur. Both the unstable as well as stable multi-

pulse oscillation can be generally considered as the obstacle for

pulse shortening. At the same time, it is possible to use pulse

splitting for an additional duration decrease as well as for an in-

crease of the laser repetition rate. The analysis of this phenom-

enon is not straightforward because the ultrashort-pulse laser is

a complex system with different interacting nonlinearities.

At the moment, the following mechanisms for multipulse op-

eration have been considered: the appearance of negative feed-

back due to the growth of the pulse chirp [2], the growth of the

radiation scattering accompanying the decrease of the soliton

period [1], the contribution of the higher order dispersions to

laser dynamics [3], the growth of the laser continuum owing

to the positive net gain of the background radiation outside the

pulse [4], and the dynamical gain saturation and recovery [5].

Multipulse operation can also be considered as a result of the

higher order soliton dissociation [6].

In the framework of the soliton approach [7], [8], it was

shown that the multipulse oscillation can be caused by the

formation of the bounded multisoliton complexes in resonators

with both negative and positive net-GDD. The self-interaction

of such bounded soliton-like complexes is governed by the

relative phase of the constituent pulses [9]. The presence of
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the continuous local (i.e., through the pulse wings) interaction

between the pulses distinguishes such bounded soliton-like

complexes from the regimes created as a result of the repeti-

tion-rate multiplication due to the change of the gain and loss

saturation balance in the system [10]–[12]. One should also

distinguish the stable multipulse operation from the generation

of the double pulses colliding in an active medium [13]–[16].

It should be noted that the transition to multipulse operation is

not the sole scenario of the stability loss in the continuous-wave

(CW) mode-locked solid-state lasers: the automodulational in-

stability can produce regular as well as nonregular oscillations

of the single pulse or the so-called picosecond collapse with

the abrupt transition from the femtosecond to the picosecond

generation [17], [18].

The stable multipulse operation in the negative GDD region

was experimentally observed in Ti:sapphire [1], [19]–[21],

Cr:LiSGaF [22] and Yb:KYW [23] Kerr-lens mode-locked

lasers as well as in Nd:glass [24], Ti:sapphire [4], and

Cr :YAG [25] lasers mode locked by a semiconductor sat-

urable absorber mirror. In [26], the tendency toward multipulse

generation was reported for the positive-GDD regime in

the Cr :ZnSe laser with passive mode locking initiated by

acousto-optical modulation.

The latter medium, allowing diode pumping and possessing

excellent lasing characteristics [27], [28], is of interest as a tun-

able ultrashort pulsed mid-infrared (IR) source. At this moment,

a variety of generation regimes have been demonstrated: the ef-

ficient pulsed [29] and CW [30], diode-pumped operation [31],

active mode locking [32], and the active modulator-assisted pas-

sive mode locking [26]. Above all, Cr :ZnSe is of interest as

the model object for the study of multiple-pulse operation. This

interest is explained by the combination of unique character-

istics: very large nonlinear index of refraction [33] as well as

emission and absorption cross sections. As it will be shown later

on, these factors play a crucial role in pulse destabilization and

transition to multiple-pulse operation.

In order to explain the variety of the observed multipulse

regimes one needs to have a basic understanding of the na-

ture of multiple-pulse generation in Kerr-lens mode-locked

lasers. Our model takes into account the strong saturation of

the Kerr-lens induced fast absorber, the gain saturation and

recovery dynamics, the GDD and the self-phase modula-

tion, making it valid for the different femto- and picosecond

Kerr-lens mode-locked lasers and sufficiently simple to obtain

the physically significant conclusions.

Our analysis reveal the existence of the two basic mecha-

nisms causing multiple-pulse operation: the background ampli-

fication due to the gain saturation decrease and the increase of
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the “bounded” perturbation in the presence of the strong satu-

ration of the fast absorber. The basic laser factors defining the

pulse stability were found to be the gain and loss saturation in

combination with the spectral loss. As will be demonstrated, the

inter-pulse interaction is strong enough to produce the correla-

tions of the inter-pulse distances and phases, which are governed

by the GDD and the fast absorber parameters. The statistical and

multistable properties of the bounded multiple-pulse complexes

will be considered as well. Finally, the limits of the single-pulse

operation and the methods of the stability enhancement will be

analyzed.

II. MODEL AND PARAMETERS OF SIMULATION

Throughout this paper, we shall consider only the stable mul-

tiple pulses localized within the time window, which is much

shorter than the cavity round-trip period. The period and repe-

tition-rate multiplications as well as automodulational regimes

will not be considered. We also assume that the laser mode is

close to TEM . This allows the use of a one-dimensional propa-

gation model and the parabolic approximation for self-focusing.

A. Model

The main challenge in the simulation of the Kerr-lens mode-

locked lasers is a formulation of the model, which would ade-

quately describe the laser dynamics and at the same time would

not be too complicated to remain physically meaningful. The

soliton approach, which fulfills the latter requirement, does not

take into account the strong nonlinear behavior of the real-world

femtosecond solid-state lasers. Therefore, we make use of the

relatively simple, but sufficiently general numerical model, first

presented in [34].

The split-step scheme for the simulations of the slowly

varying field amplitude evolution can be represented as

(1)

(2)

(3)

(4)

(5)

where the different steps within the full cavity round trip

describe:

1) the self-phase modulation action (1), where is the

field intensity, (here, and are the

nonlinear and linear refraction indices, respectively, is

the double length of the active medium, and is the cen-

tral oscillation wavelength);

2) the Kerr-lens induced fast saturable absorber action

defining the self-amplitude modulation of the field,

is the modulation depth, is the inverse intensity of

the loss saturation (2); note that consideration of the

strong modulation is necessary in our case owing to the

low critical self-focusing power in ZnSe, which is only

0.2 MW [26] as a result of the large value of ;

3) the spectral filter action with the inverse bandwidth ,

which coincides with the gain bandwidth, is the field

carrier frequency coinciding with the minimum of the

spectral loss (3);

4) the homogeneously saturated gain and the output loss ac-

tion with coefficients and , respectively (4);

5) the net-GDD action with the dispersion coefficient

where is the linear phase retardation

of the field (5). The full round trip results from setting

.

In practice, when the field change over the round trip is small

(this is valid in our case), the scheme represents the distributed

dynamical equation of the Ginzburg–Landau type in the pres-

ence of an arbitrarily strong loss saturation

(6)

where is the formal longitudinal coordinate (the cavity

round-trip number).

The scheme (1)–(5) or, equally, (6), has to be supplemented

with an equation for the gain coefficient evolution, which for the

quasi-two level amplification scheme has the following form:

(7)

where is the pump intensity, and are the pump and the

lasing field frequencies, respectively, is the maximal gain

for the full population inversion, and are the absorption

and the gain cross sections, respectively, is the gain relaxation

time. When the pulse is much shorter than the cavity round-trip

period , which is obviously the case, and the dynamical

gain saturation is negligible (i.e., there is no time dependence

of on the scale of the pulse duration), which is correct for the

sub-picosecond solid-state lasers, (7) can be easily integrated to

eliminate the time dependence

(8)

where is the dimensionless pump inten-

sity, is the pulse energy flux, and is the gain

saturation energy flux.

The integration of (8) over yields [17]

(9)

It is convenient to use dimensionless quantities in the calcula-

tions and we shall normalize the time to and the field intensi-

ties to . Then, the pulse energy flux is normalized to ,
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TABLE I
MATERIAL PARAMETERS OF Cr:ZnSe AND Ti:SAPPHIRE ACTIVE MEDIA

resulting in the expression for the dimensionless inverse satura-

tion energy flux . This parameter plays a cru-

cial role in our model since it describes the contribution of the

gain saturation in the lasing dynamics in comparison to the con-

tribution of the self-phase modulation. Other key parameters are

, which is the pump energy stored during the cavity period (in

the units of absorption saturation energy), and the dimensionless

parameter , which describes the strength of the self-amplitude

modulation relative to the self-phase modulation. With this nor-

malization, the field intensity has the physical meaning

of the dimensionless ratio, where is the instan-

taneous power in the laser beam and

[33] is the critical power of self-focusing.

In the present form, the model is valid not only for the de-

scription of the Kerr-lens mode-locked solid-state lasers but also

for other laser systems with fast saturable absorbers, such as

the additive-pulse and self-polarization rotation mode-locked

solid-state and fiber lasers. However, we have to note that in

such schemes the strong loss saturation can turn to self-dark-

ening, which produces the passive negative feedback and influ-

ences the pulse stability [35]. This effect cannot be described

by (6), and the results of this paper can be applied to the addi-

tive-pulse and self-polarization rotation mode-locked systems

only as a weak nonlinear approximation.

B. Parameters of the Model

In the numerical calculations, we assume a generic setup for a

Kerr-lens mode-locked laser to employ a longitudinally pumped

active medium, an arbitrary dispersion-compensating scheme,

which together with the active medium provides the flat second-

order dispersion, and an instantaneous -based self-amplitude

modulation mechanism.

This generic scheme is suitable to model practically all the

published experimental studies of multipulsing in Kerr-lens

mode-locked lasers in different active media [1], [13], [14],

[19], [20], [22], [23], [26]. While our main interest stays

with the case of the Cr:ZnSe laser [26], we also consider the

Kerr-lens mode-locked Ti:Sapphire laser to verify our model.

For the latter, we take the well-documented experiment in [13]

for modeling. It is also important that for both experiments the

setup parameters are available in every detail.

Table I summarizes the relevant material parameters of

Cr:ZnSe and Ti:Sapphire, intrinsic to the chosen materials. In

Table II, , , , and represent the experimental pa-

rameters, which are used to obtain the modeling parameters ,

, , and . Intensities are calculated using the expression

for the mode area inside the active medium, taking into

account the astigmatism of the Brewster-oriented crystal.

In the simulations, we consider the parameters in Table II as

fixed, and , , GDD, , and as varying. In the experiment,

this corresponds to the pump power adjustment, the exchange

TABLE II
EXPERIMENTAL AND MODEL PARAMETERS

(FOR DEFINITIONS, SEE SECTION II-A)

of the output coupler, the variation of the distance between the

prisms and of their insertion, the slit width adjustment, and the

stability zone and the lateral crystal position scans, respectively.

If the Kerr-lens mode locking is based on the so-called soft aper-

ture, then the and parameters are simultaneously changed

by scanning across the stability zone, and the adjustment of the

crystal position and the pump focusing lens.

The simulations are performed at the grid with points

(102-ps time window) over transits corresponding to

0.6 ms of the real time, which guarantees the convergence to

the steady-state or, physically, the mode-locking self-start. The

solutions with deviations of the peak intensity within 1% during

the last 5000 transits are considered as steady state. The small

intensity single spike is chosen as the initial condition for ab

initio simulations. To make sure that the results are independent

from the time window and step size, we performed cross-check

simulations on the grid with points (6.6-ns time window,

comparable to ) and on the grid with a time step equal to

.

III. MULTIPLE-PULSE OPERATION

In this section, we describe the characteristic features of mul-

tipulse operation in the regions of negative and positive GDD,

the influence of the self-amplitude modulation strength, and

the typical parameters of the stable complexes of the bounded

multipulse solutions. To check the adequacy of the model, we

compare its predictions with the experimental results for the

Cr:ZnSe laser (positive GDD) and the Ti:sapphire laser (neg-

ative GDD).

A. Negative GDD

First, let us consider the case , which assures the quasi-

Schrödinger soliton formation. As was shown in [17] on the

basis of the aberrationless approximation, the soliton-like pulse,

i.e., the pulse with the -time profile and the negligible chirp,

exists in the parameter range, which is wider than the soliton

model prediction, and becomes unstable in the vicinity of

due to the automodulational instability.

The behavior of the pulsewidth in our case is presented

in Fig. 1 in dependence on the GDD variation. Approaching

zero GDD results in the generation of multiple pulses (up to

24 for given parameters, the example of the triple pulses is

shown in Fig. 2, the intensity of filling corresponds to value

of ). In Fig. 1, we depict only parameters of

the double and the triple pulses. The single-pulse shortening

caused by decreasing transforms into the double-pulse

generation, then the triple-pulse generation, etc. Each bifurca-

tion is accompanied by the drastic pulsewidth increase. The

characteristic feature is the multistable lasing in the region
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Fig. 1. Dependence of the pulsewidth on the GDD coefficient. Only single,
double, and triple steady-state pulse characteristics are shown. Captions
at points denote the inter-pulse distances. P = 8 � 10 , � = 10,
� = 1:3 � 10 ,  = 0:02, � = 0:01. Other parameters are mentioned in
the text.

Fig. 2. Contour plot of the ja(z; t)j logarithm for the stable triple-pulse
operation. P = 1:6 � 10 , � = 10, D = �2188fs . Other parameters
correspond to Fig. 1. Darker regions correspond to higher intensity. z is the
number of round trips.

of multiple-pulse generation: there exists a distinct hysteresis

in the pulse parameters behavior (see Fig. 1). The pulse

multiplication results in the strong instability in the vicinity of

. Such behavior is not the noise or the CW operation,

but multiple-pulse generation with strong coupling between the

pulses and nonregular changes of their parameters.

To analyze the nature of the ultrashort-pulse destabilization,

we shall consider the influence of the basic lasing factors: self-

phase modulation, GDD, self-amplitude modulation due to the

fast saturable absorber and the gain saturation, and the spectral

filtering.

First, let us examine the nonlinear phase shift contribution.

The solid curves in Fig. 3 show the phase-retardation at the

steady-state pulse peak after the full cavity round trip. One can

see that the phase shift is close to that for the Schrödinger soliton

(dashed curves) and is small in comparison to (especially for

the lower intensity multipulse regimes). Hence, the self-phase

modulation cannot produce the pulse spectrum fragmentation.

Moreover, approaching the stability boundary does not cause

Fig. 3. Dependence of the single-transit phase retardation on the GDD
coefficient. The negative GDD branches correspond to parameters of Fig. 1;
the positive GDD branches correspond to P = 1:6 � 10 ; � = 20. The
dashed curves show � corresponding to Schrödinger soliton.

any significant phase shift. As a result, there is no spectrum

fragmentation in our case.

As an additional destabilizing factor, the dispersive perturba-

tions in the laser system with self-phase modulation and nega-

tive net-GDD give rise to the spectral sidebands [1], [37], [38].

Their position in the absence of the higher order dispersion

can be found from the condition , where

, 2 , and are the normalized

to inverse cavity length wave numbers of the dispersive wave,

solitary wave, and periodic perturbation, respectively, is the

sideband frequency, is the width of the soliton-like pulse with

the shape , and is an integer. When , we

have . Our simulations show that the

spectral loss for the sidebands is too large in our case. Thus, the

sideband generation does not contribute to the ultrashort-pulse

destabilization for the given parameters. This prevents the scat-

tering radiation growth [1] and illustrates the validity of the dis-

tributed model in our case.

Thus, we see that, in our case, neither the self-phase modu-

lation-induced spectral fragmentation nor the sidebands gener-

ation caused by the dispersion perturbations produce multiple-

pulse operation. However, the former mechanism can cause the

chaotical behavior for , where the abrupt nonlinear

transformation due to self-phase modulation is not compensated

by GDD. The latter mechanism, i.e., the sideband generation,

can significantly influence the lasing due to the dispersion wave

amplification when the pulsewidth approaches .

The transition to multiple-pulse generation cannot be com-

prehended without taking into account the dissipative laser fac-

tors, such as the spectral filtering and the saturable, linear, and

spectral losses. Fig. 4 shows the dependencies of the absorber

loss saturated by the pulse peak intensity and the spectral loss for

the soliton-like pulse on GDD. One can see that the absorber is

saturated (solid curves) and almost does not contribute to lasing.

At the same time, approaching zero GDD leads to the shortening

of the pulsewidth and broadening of the spectrum. This pro-

duces the pronounced spectral loss growth (dashed curves). Al-

ternatively, for the comparatively large pulse durations caused,

for example, by the large , the essential spectral broadening
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Fig. 4. Dependence of the saturated absorber loss =(1 + �ja j ) (solid)
and spectral loss (dashed) on the GDD coefficient for the parameters of Fig. 1.
ja j is the steady-state pulse peak intensity.

Fig. 5. Dependence of the net-gain coefficient � � � �  on D for the
parameters of Fig. 4.

results from the chirp growth in the vicinity of the stability

boundary (but without spectral fragmentation). In both cases,

the spectral loss decreases the pulse energy. Consequently, the

gain saturation is reduced and the net gain increases

and becomes positive (Fig. 5). This causes the background am-

plification on the pulse wings resulting in multiple-pulse gener-

ation (the analysis of the stability loss in the case of is

given in [39]). The rise of the background with the subsequent

multiple pulses appearance is clearly visible in Fig. 2.

B. Positive GDD

A very interesting property of the system is the stable

multipulse generation in the region of the positive GDD

(Section III-E). This regime excludes the Schrödinger soliton

formation. The pulsewidth is shown in Fig. 6 in the dependence

on GDD. The transition to multiple-pulse generation, as a result

of , has the hysteresis character and allows reducing the

ultrashort-pulse durations essentially. In Fig. 6, only double-

and triple-pulse regimes are presented, but in the vicinity of

zero GDD, there may exist an even larger number of pulses

(up to 28 in our case), which have durations reduced down to

300 fs. There exist certain parameter sets when the pulses fill

Fig. 6. Dependence of the pulsewidth on the GDD coefficient (only single-,
double-, and triple-pulses regimes are shown). P = 1:6� 10 , � = 20. The
insets show the pulse spectrum profiles (a.u. at vertical axes).

the whole simulation window. In the vicinity of zero GDD, the

accuracy of the pulse characteristics is rather low, because our

model does not take into account the higher order dispersion,

which strongly contributes to the pulse dynamics in this case.

As it was in the case of the negative net-GDD, the round-trip

phase retardation is not sufficient for the pulse spectrum frag-

mentation, although it has a stronger dependance on (Fig. 3).

Our analysis demonstrates that the signatures of the transition

to multipulse generation are similar to those for the case of the

negative GDD:

1) the approach to zero GDD increases the pulse intensity

due to the dispersion spreading decrease;

2) as a result, the fast absorber saturates (although less than

in the negative GDD domain);

3) the gain saturation decreases;

4) multipulse generation appears due to the background am-

plification [the net gain becomes positive (Fig. 5)].

The decrease of the gain saturation results from the pulse en-

ergy decrease. The source of the energy decrease for the posi-

tive GDD is the spectrum broadening (see inserts in Fig. 6) due

to an increase of the self-phase modulation for small , which

is caused by the pulse intensity growth in the vicinity of zero

GDD.

Thus, we have identified the actual pulse breakup condition

which is the same for positive and negative GDD regimes:

crossing of the net gain of the zero line, caused by

the spectral widening of the pulse at decreasing GDD.

C. Variation of the Self-Amplitude Modulation

The variation of the parameter, which corresponds to the

change of the loss saturation intensity, is the common way to

adjust the mode-locking efficiency in a typical Kerr-lens mode

locking setup. For example, the growth of , corresponding to

the saturation intensity decrease, can be achieved by setting the

laser operating point closer to the edge of the cavity stability

range [40]. As was shown in [2] and [40], the typical normalized

to the self-phase modulation coefficient values of lie in the

range of 1 100 for the four-mirror Ti:sapphire laser.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 25, 2009 at 03:50 from IEEE Xplore.  Restrictions apply.



328 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 2, FEBRUARY 2003

Fig. 7. (a) Pulsewidth. (b) Net-gain coefficient outside the pulse.
(c) Time-bandwidth product related to the one for the Schrödinger soliton for
the single, double, and triple pulses versus �. Captions at points denote the
inter-pulse distances. P = 8� 10 , D = �5000fs .

As Fig. 7(a) shows, the increase of shortens the ultrashort

pulse. Such shortening is accompanied by the growth of the

phase retardation, the pulse energy, and the intensity due to the

saturation of the fast absorber. The energy rise decreases the net

gain outside the pulse due to the gain saturation [Fig. 7(b)]. It

should be noted that for the given parameters the single pulse is

almost chirp-free for the increasing [Fig. 7(c)].

The most interesting phenomenon caused by the change is

the existence of the mechanism of ultrashort-pulse destabiliza-

tion, which differs from the one considered above. We can see

from Fig. 7 that there exists the minimum and the maximum

of protected from the pulse destabilization. The small does

not allow the fast absorber saturation. The absorber loss remains

high, the pulse energy does not grow, and as a consequence, the

gain cannot saturate. Hence, the net gain becomes positive. This

results in the pulse destabilization due to the background radia-

tion growth (Section III-A).

The existence of the maximum providing the pulse stabi-

lization is less trivial. As we can see from the figure, the transi-

tion to multiple-pulse generation due to the increasing is not

accompanied by the sign change of the net-gain coefficient. In

this case, there is no satellite growing outside the pulse: the pulse

dissociates by itself. In the framework of the linear perturbation

analysis (weak nonlinear limit ), the satellite growth can

be described by the excitation of the perturbation modes with

continuous spectrum, while the pulse dissociation corresponds

to the discrete spectrum of the perturbations. The loss satura-

tion forms the potential well, which can contain the nondecaying

bounded “states” corresponding to the perturbations. This prop-

erty is enhanced by the potential deepening and widening, i.e.,

Fig. 8. Logarithm of the pulse intensity for � = 38 (solid), 30 (dash-dotted),
and 39 (dotted). Dashed curve correspond to the soliton profile.

with the pulse energy growth. (For examples of the slow sat-

urable absorber case, see [41] and [42].) The numerical analysis

outside the weak nonlinear approximation also demonstrates

the pulse destabilization due to the self-amplitude modulation

growth in the absence of the background amplification [43]. The

wings of such perturbations are visible in Fig. 8. Here, the solid

and dash-dotted curves show the field intensity in the vicinity of

the stability threshold and far from it, respectively. The dashed

line corresponds to the profile of the pulse. The slowly de-

caying exponential wings corresponds to the “bounded” pertur-

bations, which increase as a result of the approach to the stability

boundary (transition from the dash-dotted to the solid curve). As

the increase of the pulse intensity saturates the fast absorber, its

discrimination strength decreases [13], thus favoring the pertur-

bation growth and the pulse dissociation (dotted curve). The de-

scribed picture agrees qualitatively with the analytical analysis

presented in [45], where the complex amplitude of the perturba-

tion is proportional to the pulse energy and the parameter of the

saturation of the self-amplitude modulation. The profile of this

perturbation is close to the dotted curve in Fig. 8 [45].

We have to note also the existence of the strong multistability

as a result of the increase (Fig. 7). The region of the single and

double (and even triple) pulses coexistence is wide and becomes

apparent as a result of the variation of the initial field in the

simulations. If we start from the arbitrary initial (regular) field,

the probability of multiple-pulse generation is increased by the

increase.

D. Bounded Multiple Pulses

As has been found, multipulse generation can be caused

by the formation of the bounded soliton-like complexes with

strong correlation between components (see, for example, [4]

and [7]–[9]). The stability of the spectrum modulation in the

experiment suggests nearly constant inter-pulse distance and

phase difference.

The presence of the different mechanisms of the ultra-

short-pulse destabilization somewhat complicates the picture.

The number of the pulses in the bounded soliton-like complex

does not depend on the initial field only in the regions, where
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there is no multistability. Outside these regions, the number

of pulses, their intensity and durations depend on the initial

conditions.

The inter-pulse distance is more sensitive to the initial con-

ditions. The multiple pulses formed by the continuum amplifi-

cation have, as a rule, random distances because the pulse can

rise at the arbitrary moment within the cavity period. However,

the inter-pulse distance approaches the constant for the regular

initial signal due to an interaction of the pulses arising from the

common seed.

In the case of multiple-pulse generation caused by the

bounded perturbation growth, the pulses evolve through the

dissociation of the initial single pulse. Because the pulses

stay close coupled all the time, interaction between the pulses

plays a major role and the inter-pulse distance becomes less

dependent on the initial conditions.

In practice, the presence of the mode-locking startup assis-

tance (for example, due to the acousto-optical modulator [26])

will regularize the initial field and produce the repeatability

of the inter-pulse distances. However, the dissociation of the

bounded multiple-pulse complex always has the nonzero prob-

ability if only a fast saturable absorber is involved.

The interaction between the pulses in the bounded

soliton-like complex can result from the soliton interac-

tion mechanism and from the binding potential formed by

dissipative factors. The mechanism of the Schrödinger solitons

interaction was analyzed in the framework of the inverse-scat-

tering formalism [46]. It was found that the motion of the

soliton pair can be described as being influenced by the effec-

tive force, which depends on their relative phase , amplitude,

and distance . In the specific case of and the equal

amplitude of the interacting solitons, such interaction causes

the periodic collapse of the bounded multiple-pulse complex

with the period

[47], where is the initial inter-soliton distance normalized

to the soliton duration and is normalized to the dispersion

length. If we take the parameters of Fig. 1, this formula gives a

time of cavity round trips as the double pulses collapse

period. It is obvious that it is too small to explain the observed

steady-state behavior of multiple-pulse complexes, which are

interferometrically stable over seconds in the experiment.

Hence, the soliton mechanism cannot be considered as the

single and main source of the pulse interaction. First, this

mechanism does not describe the situation of the positive GDD

and second, the contribution of the spectral dissipation reduces

the interaction of the Schrödinger solitons [9], [48], [49].

As was found in [7], the perturbation of the nonlinear

Schrödinger equation by the linear and nonlinear loss terms and

by the spectral filtering produces the oscillating soliton wings.

The overlapping of these wings forms the soliton interaction

potential, which has a minimum. In fact, the interaction through

the oscillating pulse wings is suppressed in our case due to the

damping of the sideband generation (Fig. 8, [50]). Neverthe-

less, we suppose that the spectral loss [4] and the fast absorber

saturation may contribute to the interaction of the pulses.

Fig. 9. (a) Energy loss for the spectral filter (solid), the saturable absorber
(dashed), and their common action (dotted). (b) Functions F (solid), F

(dashed), and F (dotted). a = 0:1, � = 1, ' = 0, t = 12 t ,  = 0:02.
Inter-soliton half-distance � is normalized to the pulse duration t .

Let us consider (6) from this point of view. There is the

method to analyze the pulse interaction, which is based on the

study of the conserved momenta of (6) [8]

Multiplying (6) by , adding the complex conjugate, and

integrating over results in

(10)

which is the energy balance equation for the laser field.

Let us consider as the simplest example a superposition of

two pulses

where is the half-distance and and are normalized to the

pulse duration).

It is obvious that the interference between the pulses alters

the energy “transmission” increment [right-hand side of (10)].

Fig. 9(a) shows the energy loss due to the spectral filtering

(solid curve), the absorber saturation (dashed curve), and their

common action (dotted curve) in the dependence on .

One can see that there exists the minimum of spectral loss for

and . The appearance of this minimum is demon-

strated in Fig. 10. The merged pulses suffer the larger spec-

tral loss as a result of the widest spectrum (solid curve). The

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 25, 2009 at 03:50 from IEEE Xplore.  Restrictions apply.



330 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 2, FEBRUARY 2003

Fig. 10. Spectrum of the double-pulse complex with t = t =1:76, � = 0

(solid line), and 0.6 (dashed line), 1.8 (dotted line). � is normalized to t .

increase splits the spectrum and concentrates the energy in

its central part (dashed curve). The spectral loss is minimum

in this case. The further distance increase forms the more uni-

form modulation with the rise of the high-frequency part (dotted

curve). As a result, the spectral loss approaches that of the single

pulse. The spectral loss decrease produced by this mechanism

is larger for the shortest pulses. Hence, the region of its action

extends for the distances . The chirped pulses interact

even more strongly.

The next obvious mechanism is the fast absorber saturation,

which favors the pulses merging due to the stronger loss satura-

tion for the overlapping pulses. In the calculation, we took into

account only the first term in the expansion on in the last

term of (10) (dashed curve in Fig. 9(a); this treatment is similar

to that for the explanation of the colliding-pulses regime in [13],

where the double-pulse generation resulted from the stronger

Kerr lensing for the colliding pulses). The combination with the

spectral filtering can lead to the “absorption” of the pulses into

the “potential well” for the comparatively small and (dotted

curve in Fig. 9(a). But the increase of the field amplitude and the

saturation parameter lead to the pulse merging in the simplified

model of (10) because the last term approaches the maximal

value of as a result of the pulse amplitude or growth. Cur-

rently, it is not quite clear what mechanism prevents the pulses

from collapsing. It is obvious, however, that the distance be-

tween the pulses is a result of the balance between the pulling

force (the fast absorber saturation) and the as-yet unclear re-

pulsion mechanism. The pulse intensity growth causes stronger

saturation of the absorber and, therefore, increases the pulling

force. This is illustrated by Fig. 7(a) and (1), where inter-pulse

distance decreases with intensity growth caused by the in-

crease and , respectively.

Fig. 11. Histogram of the phase differences accumulated for the different
double- and triple-pulses regimes.

Some additional aspects of the pulse interaction can be re-

vealed by the consideration of the second momentum of (6),

which describes the force acting on the pulse along the axis

(11)

where and are the functions of and describe the

linear loss and gain action and the spectral filtering, respectively,

and is the function of , , peak intensity , and

, and describes the fast absorber action. , , and have

an analytical form, but the expressions are overcomplicated and

not instructive. A typical case is illustrated by Fig. 9(b). Besides

the trivial stationary points , , there exists some inter-

pulse distance causing zero interaction due to spectral filtering

(intersection of with zero line). As depends also on

and , the right-hand side of (11) can vanish at values of

which differ from 0, . Thus, the stable pulses can have

various phase differences.

Our calculations demonstrate, that the phase difference

changes in the process of the pulse evolution, in agreement

with [4], [9]. The simulation also reveals the existence of the

“attracting” set of values. The vicinity of these points is

the most probable place for the pulse to stay, as demonstrated

by the histogram in Fig. 11. This histogram was accumulated

from 750 multiple-pulse regimes corresponding to the various

system parameters as well as the various initial conditions. We

suppose, that the existence of this attracting set explains the

spectrum regularity, which is observed experimentally.
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Fig. 12. Simulated and experimental autocorrelations of multiple-pulse
Kerr-lens mode-locked Cr:ZnSe laser.

It should be noted, that the unbounded multiple-pulse com-

plexes can be stable over the whole simulation time. As the dif-

ference between the pulse intensities in the soliton-like com-

plex, as a rule, is small enough, this causes the constant phase

difference during the large time period. The last results in the ex-

perimentally observed regular spectra for the pulses with large

and nonuniform .

E. Cr:ZnSe Laser (Positive GDD)

For modeling, we have chosen the experiment described in

[26] with the following simulation parameters:

(corresponds to 1.5 W absorbed pump power at 1.61 m), output

coupling , and fs (material disper-

sion of the Cr:ZnSe crystal and acousto-optic modulator). As

Kerr-lens mode locking mechanism was of the soft-aperture

type, the exact value of the parameter is unknown. The level

of saturable losses was estimated from the output power level

to be up to two times higher than the losses due to the output

coupler. In the simulation, the ranges of and are 0.01 0.02

and 5 10, respectively.

Within these ranges, the modeling predicts stable multi-

pulsing with 2–28 pulses simultaneously present in the cavity.

The typical pulse duration was 0.3–5 ps; distance between

pulses was 1–15 ps. Fig. 12 compares the simulated autocor-

relation trace (pulse duration 4.4 ps, pulse distance 11.3 ps)

with the experimental autocorrelation signal [26] (pulse dura-

tion 4.5 ps, distance 13.5 ps). The result was obtained using

and parameters, both within the expected

range of parameters and demonstrates validity of the model in

the positive GDD regime.

F. Ti:Sapphire Laser (Negative GDD)

The multipulsing behavior of this laser is well-documented

(see, for example, [4], [13], [19] and [20]). We shall apply our

Fig. 13. Regions of pulse stability for Ti:sapphire laser. Solid and dashed lines
represent the single-pulse stability boundary for  = 0:024 and  = 0:015,
respectively.

model to the experiment from [13] inasmuch as in this study

the stability of the single-pulse generation was the subject of

the special investigation and comprehensive experimental data

is available.

We choose the following simulation parameters:

, corresponding to 2.5 W pump power

at 488 nm with 28 m Gaussian beam diameter; output cou-

pling ; , corresponding to

1.5-, 2-, and 2.5-mm aperture diameters, respectively.

We obtained the following results of the simulations. For the

maximum diffraction loss , both CW and ultra-

short-pulse generation are suppressed as it took place in the ex-

periment. The choice of the other two values of results in the

stable single-pulse generation. The corresponding regions are

shown in Fig. 13, where the curves, as usually, represent the

boundaries of the single-pulse stability regions. is

close to the optimal value of the modulation depth ([13, Fig. 1]).

In this case, the single-pulse generation takes place in the widest

region on our parametrical plane (solid curve). The minimal

pulse duration is 42.5 fs, which is in good agreement with the

experimental data ([13, Fig. 2]). The estimated experimental

values of were , which are close to the optimal

values in our simulations (Fig. 13) and are located on the lower

stability boundary. The destabilization for these occurs when

. This quite agrees with the experimental data.

The decrease of produces the shortening of the single-pulse

stability region (dashed curve in Fig. 13). In this case, as was

found in [13], the single-pulse operation is suppressed by mul-

tipulsing or CW generation. As a result, the minimum pulse du-

ration increases due to higher minimum .

This comparison demonstrates that the model is in quantita-

tive agreement with the experimental data for the Ti:sapphire

laser and the considered pulse destabilization scenarios have a

general character.
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Fig. 14. Regions of pulse stability. The parameters are varied relative to (a).
(b)  decrease. (c) � increase. (d) � increase. (e) Pump decrease. (f) T decrease.
P=1:6 � 10 (a–d, f), 8 � 10 (e); T = 6�s (a–e), 3 (f); � = 0:0013
(a–c, e, f), 0.0026 (d); � = 0:01 (a, b, d - f), 0.02 (c);  = 0:02 (a, c–f}), 0.01
(b). Regions marked A are the regions of the stable single-pulse generation, B
are the regions of the stable multiple pulse operation, and C are the regions of the
chaotical or CW lasing. Curve 1 shows the parameters providing the chirp-free
pulse generation in the soliton model; curve 2 is the limit of the pulse stability
from the soliton model.

IV. LIMITS OF ULTRASHORT-PULSE STABILITY

As was shown in Section III, there exist two basic mecha-

nisms of the ultrashort-pulse destabilization which cause stable

multipulse operation, viz., background amplification due to in-

sufficient gain saturation by the pulse with reduced energy or

excitation of the perturbation bounded within the high-energy

ultrashort pulse. Hence, there may exist a certain range of pa-

rameters providing a stable ultrashort-pulse operation.

Fig. 14(a)–(f) demonstrates such regions on the parametric

plane, viz., the GDD and coefficients. Increase of corre-

sponds to a shift toward the edge of the cavity stability region.

The confined regions marked A correspond to the stable single-

pulse operation (for negative as well as positive values of the

GDD coefficient). The B regions depict the stable multipulse

operation. Finally, the C regions are the domains of the unstable

pulsed operation or the CW generation (on the lower boundaries

of B). In Fig. 14, graph (a) is used as the reference and (b)–(f)

are obtained by variation of only one of the parameters. In par-

ticular, (b) illustrates the decrease of the modulation depth ,

graph (c) the increase of the output loss , graph (d) the increase

of the parameter, graph (e) the decrease of the pump , and

graph (f) the decrease of the gain relaxation time .

As we can see, there always exist certain upper and lower

limits on for stable single-pulse operation. The lower

boundary (small , i.e., the absorber is too “hard” to be

saturated) is caused by the background amplification and can

separate the single-pulse operation from the multiple pulses,

as well as from CW lasing (for the positive and large negative

GDD). The upper boundary (large , i.e., “soft” absorber with

low saturation intensity) results from the destabilization due to

the bounded perturbation growth. It should be noted, that as a

result of the strong hysteresis, the upper stability boundary has

a “fuzzy” character (Fig. 7).

A. Nature of the Stability Boundaries

The decreases as a result of the increase. Such

behavior can be obtained also on the basis of the soliton model.

For example, in the weak-nonlinear limit, one can obtain the

following condition of the background amplification [2]

shown by curve 2 in Fig. 14. Here, we keep the normalization

of and to and , respectively. We have only qualitative

agreement with the numerical results owing to the weak-non-

linear approximation and the simplified model of the gain be-

havior in the referenced model. However, even this simplified

model agrees with numerical calculation for the lower stability

threshold by the order of magnitude.

As can be seen from Fig. 14, the behavior of the lower sta-

bility boundary in the region of positive GDD agrees with our

qualitative treatment as well. We have to stress that the destabi-

lization in the framework of the soliton model takes place only

for the chirped pulses, while it is not a necessary condition in

the numerical model in the region of negative GDD. Curve 1

in Fig. 14 shows the location of the system parameters corre-

sponding to the chirp-free pulse for the weak-nonlinear

approximation (this is [17]; we keep the usual

normalizations). The vicinity of the stability boundary to this

curve causes the destabilization of the nearly chirp-free pulse.

The agreement with the soliton model results from the com-

paratively small loss saturation for small . The strong devia-

tion from the weak-nonlinear model takes place for ,

where the pulse intensities are sufficiently large for the strong

loss saturation.

The referenced expression for explains also the in-

crease of the stability boundary as a result of the modulation

depth decrease [see lower boundary of the A region for

in Fig. 14(b)] and the weak dependence of the lower stability

boundary on other laser parameters, with the exception of for

the large values of [Fig. 14(c), (e), (f)]. Formally, the depen-

dence of on is obvious in the weak-nonlinear approx-

imation: the expansion of (6) on gives as the self-am-

plitude modulation coefficient in the first order. The decrease

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 25, 2009 at 03:50 from IEEE Xplore.  Restrictions apply.



KALASHNIKOV et al.: MULTIPULSE OPERATION AND LIMITS OF THE KERR-LENS MODE LOCKING STABILITY 333

(a)

(b)

Fig. 15. (a) Net-gain and (b) time-bandwidth product related to the
Schrödinger soliton one at the single-pulse stability boundary shown in
Fig. 14(a).

reduces the contribution of the self-amplitude modulation, i.e.,

the difference between the pulse and background net gain, thus

favoring the pulse destabilization.

The influence of the self-phase modulation on the pulse

stability can be interpreted in the following way. Increasing

favors the pulse destabilization because the pulse en-

ergy decreases with growing spectral loss as a result of the

pulse-spectrum expansion. Additionally, this spectral expansion

reduces the gain saturation . This also leads to pulse

destabilization by the background. The growth intensifies the

gain saturation and so stabilizes the pulse against the back-

ground amplification [Fig. 14(d)]. Here, we do not consider the

possible stabilization against automodulations produced by the

self-phase modulation [17].

The contribution of the destabilization due to the bounded

perturbation growth complicates the picture. Since the am-

plitude of such perturbation scales with the pulse energy

[42], [44], the decrease of the pulse energy will result in the

pulse stabilization against this instability. The pulse energy

decreases for , but increases with . Hence, the

defining the pulse destabilization increases due to the

increase (Fig. 14). For some , switching between

destabilization mechanisms is possible (see the transition from

the positive to the negative net gain and from the chirped to

chirp-free pulses at the stability boundary presented in Fig. 15).

Since the pulse duration decreases with decrease, such

switching (if it takes place) confines the minimal duration of

the ultrashort pulses (the minimal pulsewidths are shown by

points in Fig. 14). It should be noted that destabilization due to

the spectral loss can occur also due to the chirp growth. This is

illustrated by Fig. 15(b), where the pulse spectral width at the

stability boundary is shown to be as much as 50 times that of

the bandwidth-limited pulse.

Thus, the existence of the minimal and maximal defining

the pulse stability results from the two different mechanisms

of the ultrashort pulse destabilization, viz., the destabilization

due to the continuum growth and pulse splitting due to the in-

crease of the bounded perturbations. The twofold character of

the destabilization complicates the laser optimization, as con-

sidered in the next section.

B. Pulse Stabilization

In this section, we summarize the ways to achieve the stable

single-pulse operation in the system prone to multiple-pulse

lasing. As the shortest pulsewidth for the fixed GDD is achieved

by the growth, the main goal of the system’s optimization

is to enhance the stability against the bounded perturbations.

The obvious way in this direction is the decrease of the intra-

cavity energy. Such decrease can be undesirable for some sys-

tems (the high-power pulse sources, for example) and can de-

grade the self-start ability for the Kerr-lens mode-locked lasers.

Moreover, this decrease can reduce the gain saturation and en-

hance the destabilization due to the background growth.

Let us describe the main approaches to the single-pulse

stabilization.

1) The increase of the modulation depth, i.e., the param-

eter, expands the region of the single-pulse generation

with subsequent pulse shortening and reduces the zone

of unstable operation (transition from b to a in Fig. 14).

It should be noted that such scenario decreases the

self-starting ability, and may be a bad choice for many

solid-state lasers. However, this way is acceptable for the

Cr :ZnSe laser due to its large values of and (for

given pump intensity ).

2) The increase of the linear loss expands the stability

region for the single-pulse operation. However, the pulse

shortening that can be achieved in this way is compara-

tively small [compare Fig. 14(a) and Fig. 14(c)]. This is so

because the background amplification is not suppressed

in this case owing to the reduced gain saturation (pulse

energy is lower in the case of higher ), so that there is

only small improvement to the minimum GDD defining

the minimal pulse duration.

3) The most appropriate choice is the increase of the

parameter [Fig. 14(d) in comparison to Fig. 14(a)].

The increase of the gain saturation in comparison to

the self-phase modulation contribution prevents both

the background and bounded perturbation growth.

Unfortunately, this parameter is constant for the given

laser medium with fixed length . Taking shorter active

medium with the same enhances the stability. In

this context, the Cr :ZnSe is very attractive in com-

parison to other media due to the large value of . For

example
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The high value of for ZnSe is partially compensated by

the large , , and (see definition of in Section II).

4) Another approach is to decrease by decreasing or

[Fig. 14(e) in comparison to Fig. 14(a)] or to de-

crease [Fig. 14(f)]. Unfortunately, the advantage of

Cr :ZnSe consisting in its large absorption cross section

turns into disadvantage: other parameters being equal,

the larger and smaller result in the larger . For

example, for 1.5 W of the absorbed pump power at the

center of the corresponding absorption lines and 100 m

diameter of the pumping beam, ,

, , and

. The upper-laser level lifetime

is the material constant, and can be reduced (e.g., by

heating or concentration quenching) only at the expense

of higher laser threshold.

It should be noted that, according to Fig. 14, the pulse in-

tensity decrease provided by the methods 2)–4) increases value

of , at which the minimum pulse duration is achieved. This

can demand a very thorough optimization of the laser design.

Note also that the finger-like shape of the stability region for

the small negative GDD providing the minimal pulse durations

requires fine system optimization by the appropriate choice of

. This feature is more critical for higher [compare Fig. 14(a)

and (b)].

V. CONCLUSION

The numerical analysis taking into account the saturable gain,

the spectral filtering due to the gain band profile, the net-group-

delay dispersion, the self-phase modulation, and the fast loss

saturation induced by the Kerr-lensing in the active medium al-

lows the identification of the main sources of multiple-pulse

generation in the Kerr-lens mode-locked solid-state lasers. As

was shown, the nature of the single-pulse destabilization leading

to multipulsing is defined by the interplay between the gain and

loss saturation in the combination with spectral filtering.

The stable single-pulse operation in the negative as well as

positive GDD regions is limited by the saturation parameter, so

that for the fixed GDD there exist its lower and upper values

confining the single-pulse stability region. The lower stability

boundary corresponding to the transition to multipulsing is

caused by the continuum amplification. This results from

the lower gain saturation caused by the decrease in the pulse

energy. The latter is induced by the growth of the pulse

spectral loss due to the pulse shortening or its chirping. Since

multiple-pulse generation originates from the continuum, the

inter-pulse distances and phase differences are random.

The upper stability boundary corresponding to the transition

to the stable or unstable multipulse generation comes from the

growth of the perturbation bounded within the pulse profile. The

continuum amplification plays the minor role in this case be-

cause the net gain for it is negative. As a result of the pulse

energy growth accompanying the increase, the pulse splits

and the pulse satellites appear. The inter-pulse distance, in this

case, has a good repeatability and the phase difference change

is very slow, so that there exists a set of attracting points, where

an inter-pulse phase difference “stays” a longer time. This pro-

vides regular autocorrelation traces and spectral profiles.

Our analysis suggests the existence of the inter-pulse interac-

tion producing their binding without the usual inter-soliton in-

teraction through the oscillating tales. This interaction is caused

by a balance of the saturable gain, the spectral and the sat-

urable loss. As a result of this balance, there exists a preferred

inter-pulse distance and a phase difference providing the min-

imal net-loss for the propagating pulses.

The revealed sources of multiple-pulse generation allow the

formulation of the main methods to suppress multipulsing.

These are reduction of the pump rate, decrease of the gain

relaxation time, and increase of the loss modulation depth,

the output loss, or the gain saturation. All these methods

can shorten the pulse duration due to the extension of the

single-pulse stability zone into the vicinity of zero GDD.

However, this occurs at the cost of worse Kerr-lens mode

locking self-starting ability or an increase of the parameter.

The latter demands very thorough laser optimization because

the high values in Kerr-lens mode-locked lasers are achieved

only at the very edge of the resonator stability range.

The obtained numerical results are verified for the Cr :ZnSe

laser operating in the positive net-GDD region and for the

Ti:sapphire laser operating in the regime of the chirp compen-

sation. There is both qualitative and quantitative agreement

between the theoretical and the experimental data. The pre-

sented analysis can be applied to the optimization of the lasers

based on the various well known active media and to the

estimation of the Kerr-lens mode locking stability of the new

prospective active crystals.
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