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Abstract

Single sensor-based multi-modal biometrics is a promising approach that offers simple system construction, low cost,

and wide applicability to real situations such as CCTV footage-based criminal investigations. In multi-modal

biometrics, fusion at the score-level is a popular and promising approach, and data qualities that affect the matching

score of each modality are often incorporated as a quality-dependent score-level fusion framework. This paper

presents a very large-scale single sensor-based multi-quality multi-modal biometric score database called MultiQ

Score Database version 2 to advance the research into evaluation, comparison, and benchmarking of score-level

fusion approaches using both quality-independent and quality-dependent protocols. We extracted gait, head, and

height modalities from the OU-ISIR Gait Database and introduce spatial resolution (SR), temporal resolution (TR) and

view as quality measures that significantly affect biometric system performance. We considered seven and 10 scaling

factors for SR and TR, respectively, with four view variations. We then constructed a database comprising

approximately 4 million genuine and 7.5 billion imposter score databases. To evaluate this database, we set two

different protocols, and provided a set recognition accuracy for state-of-the-art approaches using protocols for both

quality-independent and quality-dependent schemes. This database and the evaluation results will be beneficial for

score-level fusion research. Additionally, we provide detailed analysis of the recognition accuracies associated with

gait, head, and height modalities in different spatial/temporal resolutions and views. These analyses may be useful in

criminal investigation research.
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1 Introduction
Biometrics technology recognizes a person based on their

physiological and/or behavioral traits [1], including their

DNA, fingerprint, palmprint, finger veins, face, signature,

and gait. Biometrics has been widely used in applications

such as access control, security, surveillance, and foren-

sics [2, 3]. Biometric systems that use a single biometric

trait for recognition are called uni-modal biometric sys-

tems, and are regarded as mainstream biometric system

approaches because of their simple configurations and

high usability. These systems are, however, commonly

affected by practical problems such as noisy sensor data,

non-universality, and vulnerability to spoofing attacks [4].
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One solution to these problems is to use multiple bio-

metric traits for recognition, and systems of this type

are known as multi-modal biometric systems [5]. A wide

variety of biometric modality combinations have been

discussed for recognition in the literature, including fin-

gerprint and iris [6], iris and face [7], face and ocular [8],

face and gait [9, 10], and face with gait and height [11].

The most important issue in multi-modal biometrics is

how to fuse these individual modalities. Fusion of mul-

tiple modalities can be performed at various different

levels, including sensor, feature, score, rank, and deci-

sion levels. In sensor-level fusion, the raw data that are

acquired from multiple sensors are integrated (i.e., by

mosaicing, where multiple individual 2D images are com-

bined to generate a single image); in feature-level fusion,

the features that are extracted from multiple modalities

are concatenated into a single feature vector and are then
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used for classification; in score-level fusion, the multi-

ple matching scores are fused into a single score and a

decision is then made on the basis of the fused score; in

decision-level fusion, multiple binary outputs are merged

to produce a final decision using a specified rule such as

a majority voting rule. Among these methods, score-level

fusion is the most popular approach because it offers rea-

sonable recognition accuracy and comparatively simple

implementation, and thus many researchers in the multi-

modal research community work in the score-level fusion

field [12–17]. These fusion approaches are summarized in

Table 1.

In a biometric system, some of the auxiliary informa-

tion or quality measures [18] that are associated with

the biometric samples affect the system’s discrimina-

tion capabilities, even though they do not provide the

capability to identify the subject by themselves. Many

quality measures that significantly affect the recogni-

tion accuracy have been reported in the literature to

date. These quality measures mainly fall into two fam-

ilies: sample-based quality, and sensor-based quality.

Examples of sample-based quality measures include the

degree of occlusion and/or blur, and texture richness in

iris recognition [19, 20]; the signal-to-noise ratio (SNR)

for speech recognition [21]; brightness, contrast, and

illumination for fingerprint and face recognition [20];

and the view for face and gait biometrics [22]. Cor-

responding examples for sensor-based quality include

image size or spatial resolution (SR) for image-based

biometric systems such as face and fingerprint recogni-

tion systems [20], and frame rate (i.e., temporal resolu-

tion) for video-based biometrics such as gait recognition

systems [23].

Quality measures play an important role in score-level

fusion systems and have been used to improve recog-

nition accuracy [18, 24, 25]. In the majority of these

approaches, the appropriate quality measures are calcu-

lated independently for each modality; this is a natural

approach because each modality sample is captured using

an individual and independent sensor, and the sensor’s

properties are a major factor in determining the sample

quality. For example, in multi-modal biometrics with face

Table 1 Fusion approaches at the various multi-modal biometric

system levels

Level of fusion Fusion approach

Sensor-level fusion Mosaicing

Feature-level fusion Feature concatenation

Score-level fusion Transformation-based approaches [12, 38–40]

Classification-based approaches [16, 28, 41]

Probability density-based approaches [13–15, 17, 44]

Decision-level fusion Majority voting

and fingerprint modalities, face and fingerprint samples

are captured using a digital camera and a fingerprint scan-

ner, respectively, and thus the fingerprint scanner never

affects the quality of the face modality. In contrast, a

single sensor-based system captures multiple modality

samples using a single common sensor, and the qualities

of multiple modalities are therefore affected by the same

sensor property. For example, face and gait images cap-

tured simultaneously using a single camera [26] are both

affected by the same sensor property (e.g., the SR of the

sensor affects both the face and the gait samples, and it

also affects the matching scores as a result). In general,

correlation of matching scores that originate from differ-

ent modalities are not so high in multiple sensor-based

multi-modal biometrics, but this is not true for single

sensor-based multi-modal biometrics, because the same

sensor property affects the sample qualities of multiple

modalities, and these qualities then affect the matching

scores.

In the multi-modal research community, there are few

multi-quality benchmark score databases; even Poh et al.

[20] generated a score database with modality-specific

quality measures (e.g., brightness and contrast for the

face modality, with texture richness for fingerprint and

iris modalities) and some general image quality mea-

sures, but this was a multiple sensor-based score database.

Unlike this multiple sensor-based score database, we con-

sidered a single sensor-based multi-modal score database

in this study, where the qualities commonly affect all

the modality scores that can be captured by a single

sensor.

With the growing trend for machine-learning

approaches, a large-scale dataset is essential to enable

efficient training of the model, and it is also required for

statistically reliable performance evaluation. Additionally,

in density estimation for the likelihood ratio test (e.g.,

in a forensic case), a large-scale database enables more

accurate estimation of the densities, which are dependent

on the relatively large score databases.

In this paper, we introduce a very-large-scale multi-

quality multi-modal biometric score database to advance

the state-of-the-art of quality-dependent score-level

fusion research. More specifically, we consider single

sensor-basedmulti-modal biometrics from gait, head, and

height modalities and focus on the sensor-based quali-

ties of spatial resolution (SR), temporal resolution (TR)

and sample-based quality of view, which all significantly

affect the scores of the individual biometric modalities.

The contributions made by the present paper are as

follows.

1. A benchmark database is constructed and is

composed of gait, head, and height biometric scores,

including three types of qualities (SR, TR, and view)
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drawn from a publicly available database: the

OU-ISIR Gait Database, Large Population Dataset

[27]. Additionally, our database contains a very large

number of scores because of the large numbers of

subjects and qualities that are included, with totals of

3,908,128 genuine scores and 7,468,432,608 imposter

scores, and thus will serve as a benchmark for

score-level fusion approaches for the multi-modal

biometrics research community.

2. We provide two protocols (i.e., quality dependent

and independent) and have conducted a performance

evaluation using a variety of score-level fusion

approaches, including transformation-based

approaches [12], classification-based approaches

[16, 28], probability density-based approaches

[13–15] and some of the quality-dependent versions

of these approaches. The results of this performance

evaluation are intended for use as a baseline for future

research on quality-dependent score-level fusion.

The score database that was constructed with detailed

protocol settings is publicly available1 for research

purpose. An earlier preliminary version of this work was

published in [29] and the extensions from it can be sum-

marized in the following points:

• We constructed our database by introducing the

multi-view concept, whereas the previously released

database [29] considered only the side-view, and

discussed use of the view as a quality measure; in

addition, we applied some pre-processing steps on

the feature level and have called this database

“MultiQ Score Database version 2”.
• We have added an analysis of how the quality

measures affect the recognition accuracy of each

modality.
• We have added the RankSVM as a new benchmark to

enable further discussion of the evaluation results.

Consideration of the RankSVM enables analysis of

the recognition accuracy in greater depth.

2 Related work

2.1 Existing score database

Initially, researchers developed multi-modal fusion

approaches using chimeric datasets because collection

of multi-modal data that were captured from the same

subjects is a laborious task. Because data of differ-

ent modalities should be independent of each other,

researchers believe that the properties of chimeric

datasets are similar to those of real data sets. Therefore,

a set of multiple modality features that are captured from

different subjects are used as a set of features from a

single virtual subject. For example, a face sample from

one person and a fingerprint sample from another person

are used as a multi-modal feature set for a virtual subject

[30]. While these types of databases are accepted to a

degree in score-level fusion research, serious questions

remain as to whether this was the correct thing. Poh et

al. demonstrated experimentally that the performance of

a database of real multi-modal users is not equivalent to

that of a database of chimeric users [31], while Wayman

mentioned that multi-biometric data may necessarily be

correlated [32], and thus the use of chimeric databases

should be avoided.

Recently, several real multi-modal biometric databases

and score databases have been released for research

purposes. The major real multi-modal score databases

that exist at present are summarized in Table 2. These

databases are briefly described here.

The BioSecure DS2 score database [20] was constructed

using the desktop scenario dataset of the BioSecure DS2

database [33] with face, fingerprint, and iris modalities.

Originally, the desktop scenario dataset contained voice,

face, signature, fingerprint, hand, and iris modalities, and

data were acquired in a desktop-based office environment.

A total of 333 subjects with equal male and female dis-

tributions are included in this score database, although

the age distribution is somewhat biased; two thirds of the

subject’s ages are in the 18–40-years-old range, while the

others are over 40 years old. The main characteristic of

the BioSecure DS2 score database is that it considers 14

quality measures for face modality; six of these measures

are face-related quality measures, and these qualities are

set on the basis of face detection (e.g., detection relia-

bility, number of pixels between the eyes, face with or

without glasses, rotation in the plane, rotation in depth,

and degree of frontal face); the remaining eight mea-

sures are related to the image quality. Additionally, the

database considers one quality measure for the finger-

print modality (e.g., texture richness), and three quality

measures for the iris modality (e.g., texture richness, dif-

ference between the iris and pupil diameters, and pro-

portion of the iris used for matching). In [20], multiple

evaluations were reported, including quality-dependent,

client-specific, and cost-sensitive fusion.

The BA-Fusion score database [34] was built from the

XM2VTS database [35] using face and speech modali-

ties. This score database is composed of eight matching

Table 2 Existing major score databases

Database #Subjects Modality Quality

BioSecure DS2 333 [20] Face, fingerprint and iris Yes

BA-Fusion 295 [34] Face and speech No

BANCA 52 [36] Face and speech No

NIST-Multimodal 517 [37] Face and fingerprint No
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scores; five of these scores are related to the face, while

the remaining three are related to speech. For face score

calculations, multiple feature extractors andmultiple clas-

sifiers are used, while for speech scores, multiple feature

extractors, and only single classifiers are used. This score

database is composed of scores from 295 subjects; both

genders were included, but the age distributions are biased

(in that the subjects are all adults). No quality measures

were provided in this database.

The BANCA score database [36] is composed of face

and speech modalities from 52 subjects in two groups.

This score database was generated using a set of state-

of-the-art baseline classifiers along with template-based

approaches. While this score database does consider con-

trolled (clean), adverse (under challenging conditions),

and degraded scenarios, no quality measures are provided

in this database.

The NIST-Multimodal score database [37] is composed

of two face and two fingerprint scores from 517 sub-

jects. Two fingerprint scores were obtained by comparing

a pair of left index fingers and a pair of right index fin-

gers. Two face scores were generated using two separate

face matchers. The numbers of generated genuine and

imposter scores are 517 and 517 × 516 = 266,772, respec-

tively. Again, no quality measures were provided in this

database.

In contrast to the existing score databases, the pro-

posed MultiQ Score Database version 2 may contain suf-

ficient variation in term of subjects, quality measures, and

very-large-scale genuine and imposter scores. The exist-

ing major multi-modal score database includes less than

600 subjects, as shown in Table 2, whereas the proposed

database contains 1912 subjects with an approximately

equal distribution of male and female subjects, and with

ages ranging from 2 to 82 years. All the modalities of the

proposed database are extracted using only a single sensor

while the other databases mentioned above used multiple

sensors.

2.2 Score-level fusion

In the score-level fusion of multi-biometric systems, the

most important issue is how to fuse the scores of the

different modalities. Many fusion techniques have been

proposed in the literature to date. As shown in Table 1,

these approaches can be classified into three generic cate-

gories: (1) transformation-based, (2) classification-based,

and (3) probability density-based approaches.

In a transformation-based approach, the scores are usu-

ally normalized to a common domain by one of sev-

eral normalization techniques (e.g., z-normalization [38],

F-normalization [39], and EER-normalization [40]) and

the normalized scores are then combined. Kittler et al.

focused on classifier combination and developed a the-

oretical framework for classifier combination [12]. They

used a sum rule, a product rule, a minimum rule, a maxi-

mum rule, a median rule, and majority voting as the basis

for the classifier combination scheme.

In the classification-based approach, multiple scores

that are derived from multiple matchers are treated as

a feature vector and the classifier is then constructed to

discriminate genuine scores from imposter scores. A sup-

port vector machine (SVM) is one such classifier and

the signed distance from the decision boundary is usu-

ally regarded as a fused score [16, 41]. Additionally, the

ranking SVM (RankSVM) [28] is a well-known exten-

sion of the conventional SVM that focuses more on

the relative distance between two classes. RankSVM has

been used in many research fields, including person re-

identification and gait recognition [42]. Because ranking

statistics play an important role in identification scenar-

ios [43], RankSVM can be considered to be a promising

approach to score-level fusion for identification scenarios.

The probability density-based approach is further

divided with respect to two specific aspects: generative vs.

discriminative approaches, and parametric vs. nonpara-

metric approaches. Parametric and generative approaches

explicitly or implicitly model the distributions for each

class separately and subsequently estimate the model

parameters from the training data. Nandakumar et al.

proposed a framework for a likelihood ratio-based fusion

rule and estimated the genuine and imposter distributions

in the form of a finite Gaussian mixture model (GMM).

It was shown that a likelihood ratio-based approach led

to high performance for quality-based biometrics when

using three multibiometric databases [15].

In contrast, discriminative approaches model the

posterior probabilities directly. Linear logistics regres-

sion (LLR) combines discriminative and parametric

approaches. In [14], the log likelihood ratio of genuine

and imposter scores is expressed as a linear combination

of these scores, and the weight of each modality score

is then optimized to minimize the loss function that is

derived from the logistic functions of the log likelihood

ratio. The main limitation of these parametric approaches

is that they can produce poor predictive performances if

the chosen model does not fit the actual distribution well.

The nonparametric approaches represent distributions

that use histogram bins or control points. Kernel density

estimation (KDE) is one of generative and nonparametric

approaches. Dass et al. proposed an approach that com-

puted the generalized densities that were estimated from

genuine and imposter training samples for each modality

and combined them using product rule or copulamethods

[13]. For discriminative and nonparametric approaches,

lattice-type control points are used to represent the Bayes

error gradient distribution in a nonparametric manner

[44]. In another approach, floating control points are used

in conjunction with generalized Delauney triangulation
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for a more efficient representation [17]. In both methods,

the estimation of individual genuine and imposter densi-

ties is bypassed and the discriminative function is trained

directly.

As shown above, a wide variety of approaches have been

proposed for each category in score-level fusion. In this

study, we have considered at least two approaches from

each generic category to evaluate the performance of the

proposed score database.

2.3 Quality-dependent approaches

Quality can be considered to be auxiliary information

that affects the matching score. Generally speaking, if

biometric samples are of good quality, matching scores

of the genuine and imposters are more easily separable.

Therefore, quality measurement/assessment algorithms

and recognition accuracy improvement using the quality

measures, enjoy a large body of literatures in biometrics

community [45–47].

Quality measures can be used at various stages in the

recognition pipeline to improve the recognition accuracy.

During the enrollment phase, a quality measure is used as

the criterion for sample recapture [48]. In the preprocess-

ing phase, both quality-dependent feature enhancement

and quality-dependent target region selection are con-

sidered [46]. In the matching phase, different matching

algorithms are used to calculate the scores for uni-modal

and multi-modal biometrics. In this phase, classifier or

distance metrics are selected adaptively depending on the

sample quality [49]. Another direction is to directly stack

the quality measures into a score vector, i.e., Q-stack vec-

tor and to treat it as a feature vector for classification

[50, 51]. Moreover, in [52, 53], biometric samples are clas-

sified into clusters based on the sample quality, and score

normalization or fusion are done in a cluster-dependent

way.

3 Single sensor-basedmulti-quality multi-modal
biometric score database

3.1 Overview of the OU-ISIR Gait Database, Large

Population Dataset

The OU-ISIR Gait Database, Large Population Dataset

[27] was collected with the aim to a statistically reliable

performance evaluation of large-scale gait recognition.

We used 1912 subjects, a subset of this dataset to gen-

erate scores. For this dataset, each subject was asked to

walk straight along a predetermined corridor in a natu-

ral manner twice, and two walking image sequences were

captured for each subject using a single camera placed at

a distance of 5 m. The image size was 640 × 480 pixels,

and 30 images (frames) were recorded per second (30 fps).

Each image sequence is divided into four segments based

on observation azimuth angles of 55°, 65°, 75°, and 85°.

Examples of the captured images are shown in Fig. 1.

Silhouette image sequences were generated initially

from the captured image sequences using a background

subtraction-based graph-cut segmentation method [54].

Head region image features were extracted from the cap-

tured image sequences using the information from the

silhouette images. Lens distortion removal, rectification,

and cropping processes were used in the processing to

generate the gait and height features. Rectification was

performed using the camera calibration parameters such

that the x and y axes of the image plane are located par-

allel to the walking and vertical directions of the real 3D

world, respectively. As a result of the rectification pro-

cess, calculation of the subject’s height becomes simple;

the vertical positions of the foot and the top of the head

can be obtained from the bounding box information, and

the actual height of the subject in the real 3D world can

then be calculated via a simple conversion process using

the camera calibration parameters because the distance

between the camera and the subject on the walking course

was the same for all subjects in the dataset.

3.2 Quality measures

We focus on the SR, the TR, and the view as factors

that affect the matching score of each feature, and gener-

ate a score database with different qualities using image

sequences with different values of these factors. To gener-

ate such a score database, we first generated datasets with

various qualities by scaling the image sequences down in

terms of their SRs. We also downsampled in terms of the

TRs and then generated image sequences using different

TRs.We then extracted the required gait, head, and height

features. Finally, we calculated the matching scores for the

gait, the head, and the height using these extracted fea-

tures, and saved them along with the associated SR, TR,

and view values. We considered the following SRs and

TRs.

SR: To simulate the image sequences with different

image sizes and/or image sequences of subjects at differ-

ent distances2, we set scaling factors to downsample the

original captured image sequences such that the average

height of all subjects does not fall below 20 pixels, because

extraction is difficult when the SR is too low. Specifi-

cally, we downscaled the original images using factors of

1/2, 1/3, 1/4, 1/5, 1/6, and 1/8, and then prepared image

sequences with sizes of 640 × 480, 320 × 240, 213 × 160,

160 × 120, 128 × 96, 106 × 80, and 80 × 60 pixels. Con-

sequently, image sequences with seven different SRs were

then used to construct the score database.

We followed some preprocessing to get better simu-

lated image sequences. Firstly, while previously release

score database [29] used nearest neighbor interpolation,

we used area interpolation implemented in OpenCV [55]

for more appropriate down-sampling simulation. As for a

silhouette sequence, since the area interpolation induces
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Fig. 1 Examples of captured images in the OU-ISIR Gait Database, Large Population Dataset

gray-scale values other than binary values (e.g., back-

ground or foreground), we applied thresholding to keep it

binary a silhouette image sequence after down-sampling.

Moreover, because the boundary of down-sampling by the

area interpolation (e.g., pixels whose horizontal or ver-

tical position is a multiple of k for down-sampling with

factors of 1/k) does not necessarily coincide with the

bottom of foot or the top of the head, we randomly shift-

up/down the boundary of down-sampling for each subject

in order to better simulate the walking position differ-

ences among subjects. More specifically, we generated a

random number for each subject to shift the silhouette

image sequences up or down such that the top of the

subject’s head or the bottom parts of their feet are not

moved outside the image. The entire silhouette image

sequence for each subject was then shifted up/down using

the set value, and the same process was applied to each

subject.

TR: To simulate image sequences at different frame

rates, we prepared 10 different TRs, including one at

the original frame rate. We selected images at specific

frame intervals from the original image sequences (that

we called frame-skipped image sequences), and subse-

quently generated corresponding image sequences with

frame rates of 15, 10, 7.5, 6, 5, 3.75, 3, 2, and 1 fps. Some

examples of these normalized silhouette sequences with

30, 10, 6, and 5 fps frame rates are shown in Fig. 2.

View: The image sequences of the OU-ISIR Gait

Database, Large Population Dataset are divided into four

segments based on the observation azimuth angle, as

shown in Fig. 1. We therefore used the image sequences

with observation azimuth angles of 55°, 65°, 75°, and 85°,

and use the view information as a quality.

3.3 Matching algorithm for score calculation

We calculated matching scores for the gait, head, and

height features to construct the score database. We briefly

explain the feature extraction and score calculation pro-

cesses used here for the gait, head, and height features.

Detailed explanations of these processes can be found

in [11].

Gait matching: Because the gait energy image (GEI)

[56] is the most widely used feature in gait recognition,

and because it can achieve good recognition accuracy

[27], we used the GEI as a gait feature. For GEI extrac-

tion, we first obtained the top, bottom, and horizontal

center (i.e., the median of the horizontal axis) of the

subject’s silhouette for all frames, and then applied a

moving average filter of three frames to obtain smooth

positional changes. We subsequently clipped a silhou-

ette image from each original silhouette image based on

the associated calculated position while maintaining the

aspect ratio, and the clipped silhouette image was then

normalized so that the image size was 88 × 128 pixels.

These normalized silhouette image sequences were used

to calculate the gait period using normalized auto corre-

lation (NAC) for the temporal axis. Finally, we averaged

the normalized gait silhouette images over a gait period

and generated a GEI. Some examples of these GEIs with

different views and SRs are shown in Fig. 3 and GEIs

with different TRs are shown in Fig. 4. For the gait-based

matching scores, we calculated the Euclidean distance

between the gallery and the probe gait features. Let Gg

and Gp be the feature vectors that are associated with the

GEIs extracted from the gallery and from the probe image

sequences, respectively, and let Sgait be the gait-based

matching score that is calculated using the gallery and
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Fig. 2 Full period normalized silhouette sequences at various TRs from 85° view. The top row shows normalized silhouette sequences at 30 fps; the

second row shows normalized silhouette sequences at 10 fps; the third row shows normalized silhouette sequences at 6 fps; and the bottom row

shows normalized silhouette sequences at 5 fps. The silhouette sequences were taken from frame-skipped image sequences that started from the

first frame

probe GEIs. The gait-based matching score is calculated

using

Sgait = ||Gp − Gg ||2, (1)

where || · ||2 is an operator of the L2 norm.

Head matching: Many sophisticated face recognition

methods have been proposed in the literature, and they

generally use the inner region of the face for recognition.

However, these methods often cannot achieve reason-

able accuracy when the targeted face is extremely small

[57, 58]. We therefore used the texture information from

the head region, including the inner face region, the hair

and the face contour parts in this paper, and call it the head

feature of the target subject because our feature differs

from the general face feature. Specifically, we have defined

the upper region above the neck of a target person as the

head region; this concept is similar to that of [59], which

extends the iris feature into a periocular feature.

We calculated the head-based matching score using

the following multiple steps. First, we used the silhou-

ette image associated with the target image as a mask,

and localized the head region. We then extracted the

image of the head region and set it as a template for the

head feature of the image. We then extracted a template

from each frame of the probe image sequences sepa-

rately for each quality. Finally, we apply the conventional

template matching algorithm using the template to the

gallery image sequences, and then calculate a head-based

matching score. In contrast, the previously released score

database [29] extracted both the template and the gallery

image from the original captured image sequences only

and not those for all SR qualities, and then downsampled

to generate the different SR qualities. For the score calcu-

lation process, we use the color texture information. Let

Fig. 3 GEIs extracted from 30 fps images of various sizes from 85° and 55° views. The top row show GEIs with the 85° view and the bottom row shows

GEIs with the 55° view. Image sizes: (a) 640 × 480, (b) 320 × 240, (c) 213 × 160, (d) 160 × 120, (e) 128 × 96, (f) 106 × 80, and (g) 80 × 60 pixels. The

sizes given are not for the bounding box, but are for the original/scaled-down images



Uddin et al. IPSJ Transactions on Computer Vision and Applications  (2017) 9:18 Page 8 of 25

30 10 6 5 3 1

Fig. 4 GEIs extracted from fixed size (640 × 480 pixels) normalized silhouette sequences at various TRs [fps]

Fpi be the template of the head feature associated with

the ith frame of the probe. Let Fgj,k be a masked image of

the same size that is associated with the jth frame and the

kth spatial displacement within the gallery search regions.

We then calculate the head-based matching score using

correlation-based template matching using

Shead = min
i,j,k

[

1 − fNCC(Fpi , Fgj,k )
]

. (2)

Here, fNCC(Fpi , Fgj,k ) is an operator that is used to calcu-

late the normalized cross-correlation (NCC) between Fpi
and Fgj,k , and templatematching was performedwithin the

region of interest that is defined by the silhouette mask of

the gallery.

Note here that we did not use the advanced techniques

that are associated with face recognition, including the

feature extraction process [60], pose normalization [61],

and/or face alignment [62]. In this paper, we consider

multiple image sequences over a wide SR range, from

mid-level SR (see Fig. 5a) to extremely low-level SR (see

Fig. 5d); the advanced techniques do not work consis-

tently well on image sequences with wide SR ranges, but

the NCC-based technique works stably for these image

sequences. While the NCC-based technique is simple and

not a state-of-the-art algorithm, its working stability prop-

erty is essential for the work in this paper. This is because

the same techniques should be used to image sequences

with different SR values.

Height matching: Because of the rectification pro-

cess and the fact that each subject walked in a straight

line at a fixed depth from the calibrated camera, the

actual height of each subject in the real 3D world can

easily be computed from the apparent height from the

image by simply multiplying the ratio of the focal length

and the depth from the subject. Note that the actual

height was computed in a frame-by-frame manner and

the height of the subject can vary with the up-and-

down motion caused by walking; we therefore define the

height feature as an average of the height values com-

puted over the image sequence. Let Zi be the computed

height from the ith frame of a target image sequence,

and let h be the height feature (scalar). We assume that

the target image sequence is composed of Nf pieces of

frames and then the height feature can be computed

using

h =
1

Nf

Nf
∑

i=1

Zi. (3)

         (a)     (b)         (c)       (d) 

Fig. 5 Head templates extracted from both the original images and the scaled-down images. The top row shows template images with the 85° view

and the bottom row shows template images with the 55° view. The head template size is dependent on both subject and view; in this figure, the

template sizes of the original image are 30 × 26 and 26 × 20 pixels for the 85° and 55° views, respectively. a Original. b Half. c Quarter. d One-eighth
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Let hp and hg be the heights of the subjects in the

probe and in the gallery, respectively. The height-based

matching score Sheight was calculated to be

Sheight = |hp − hg |. (4)

3.4 Constructed score database

Because we considered three independent quality

measures, we could then set several different quality

settings by combining different values of the SR, TR,

and view. Using these combinations, we constructed a

multi-quality, multi-modal score database.

When we generate image sequences with different TRs

by a process of selection of specific frame intervals, mul-

tiple image sequences can then be generated from a single

image sequence because the selected frames must be dif-

ferent and are dependent on the starting frames. For

example, we consider two different image sequences with

frame rates of 15 fps; an image sequence composed of an

odd number of frames and an image sequence composed

of an even number of frames can be generated from a sin-

gle image sequence with a rate of 30 fps. In this paper, all

frame-skipped image sequences that started from differ-

ent frames were considered as probes, while only a single

frame-skipped image sequence that started from the first

frame is considered as the gallery to avoid a quadratic

increase in the number of scores. We therefore used 2, 3,

4, 5, 6, 8, 10, 15, and 19 3 frame-skipped image sequences

per probe for frame rates of 15, 10, 7.5, 6, 5, 3.75, 3, 2, and 1

fps, respectively. We denote the number of frame-skipped

image sequences by NTR.

We then generated features for each of the NTR probes

and galleries separately for each modality, for example, by

generating normalized silhouette sequences for each NTR

probe and for the first frame-skipped image sequences for

the galleries. The first frame-skipped image sequences for

the same subject with different TR are shown in Fig. 2.

Finally, we calculated the score matrices for the gait, the

head, and the height between 1912 NTR probes and 1912

galleries for all combinations of the SRs (seven variations),

the TRs (10 variations) and the views (four variations),

which gives a total of 280 different quality settings with

the different combinations of the SRs, TRs, and views.

It should be noted that the score matrices were calcu-

lated between probes and galleries with the same qual-

ity values. The constructed score database4 includes the

matching score distance matrices and the subject ID list

along with the quality measures (i.e., the SRs, TRs, and

views). As a result, we can draw on NTR score distance

matrices with 1912 NTR genuine (true match) scores and

1912 NTR × 1,911 = 3,653,832 NTR imposter (false match)

scores for each biometric modality and quality, which

results in a very large-scale database containing 3,908,128

genuine scores and 7,468,432,608 imposter scores for each

modality.

4 Performance evaluation
4.1 Overview

We performed two evaluations of the constructed score

database, evaluations of each modality, and evaluations

of the score-level fusion. The purpose of the first evalu-

ation is to analyze the properties of each modality score

against the various quality conditions, and/or the impact

of quality on each modality; we therefore evaluated the

recognition accuracy for each modality independently for

different quality settings. The second evaluation was per-

formed to give baseline accuracy for score-level fusion.

Because we expect the score database constructed here

to be used in score-level fusion research to improve the

score-level fusion approaches, the recognition accura-

cies when using the benchmark algorithms, including the

state-of-the-art algorithms, are useful. For this purpose,

we set two different protocols, i.e., quality-independent

and quality-dependent protocols, and provide the recog-

nition accuracies of the benchmarks under both protocols.

4.2 Accuracy analysis of each modality and impact

analysis of each quality

In this section, we analyze the recognition accuracy of

eachmodality under different quality conditions.We eval-

uate the recognition accuracy in two different modes:

verification and identification. For this purpose, we used

the receiver operating characteristic (ROC) curve, which

indicates the trade-off between the false rejection rate

(FRR) of genuine and the false acceptance rate (FAR)

of imposter with varying thresholds for verification and

a cumulative matching curve (CMC) for identification.

Because of space limitations, we only report the ROC and

CMC curves of all modalities under typical settings for

the quality considered in Figs. 6 and 7. Additionally, we

summarize the equal error rates (EERs) and the Rank-1

identification rates in Table 3 with Fig. 8 and Table 4 with

Fig. 9, respectively.We can see that each quality affects the

accuracy of each modality.

A gait feature includes shape information combined

with motion information, and thus the recognition accu-

racy of gait features is affected not only by the SR, but also

by the TR. When the TR is 30 fps, the gait recognition

accuracy degrades as the SR decreases, but the degrada-

tion is moderate during verification. In this range, we can

see that the motion information provides a reasonable

discriminative ability, and thus, even with a low SR, rea-

sonable accuracy is maintained. In the middle TR range,

the gait accuracy degrades as the SR decreases muchmore

clearly than that at 30 fps during both verification and

identification. It can be considered that, in this range,

some of the motion information is missing, and the shape
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(a)

(b)

(c)

(d)

Fig. 6 ROC curves for individual modalities. The left column is for the 85° view and the right is for the 55° view. Note that the scales differ among the

graphs. a 640 × 480 pixels SR with 30 fps TR. b 640 × 480 pixels SR with 1 fps TR. c 80 × 60 pixels SR with 30 fps TR. d 80 × 60 pixels SR with 1 fps TR
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(a)

(b)

(c)

(d)

Fig. 7 CMC curves for individual modalities. The left column is for the 85° view and the right is for the 55° view. Note that the scales differ among the

graphs. a 640 × 480 pixels SR with 30 fps TR. b 640 × 480 pixels SR with 1 fps TR. c 80 × 60 pixels SR with 30 fps TR. d 80 × 60 pixels SR with 1 fps TR
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Fig. 8 EERs [%] for the individual modalities and qualities. Note that the scales used differ among the graphs

information plays a much more important role than it

does in the high TR scenario. The shape information is

missing when the SR is low, and this missing informa-

tion affects the recognition accuracy directly. In contrast,

under low TR conditions, the gait recognition accuracy

does not vary much as the SR changes. In this range, the

gait feature only provides a low level of information for

discrimination, and this information does not decrease

as the SR decreases during verification, but some useful

information is lost for the identification process.

For the TR, the gait recognition accuracy generally

degrades as the TR decreases, but there are some excep-

tions. We can see that the Rank-1 identification rate

at 6 fps was lower than that at 5 fps and the rate at

3.75 fps was lower than that at 3 fps for the 85° view.

This occurred because of temporal aliasing when an

image is generated by downsampling from the original

image sequences. Specifically, we downsampled the orig-

inal image sequences to simulate the image sequences

with different frame rates. The gait is an almost bilater-

ally symmetrical motion, and thus if we downsample the

image sequence of the side view (i.e., 85°) with a specific

frame interval, then images with the same stance appear.

As shown in Fig. 2, the first, second and third silhouette

images were similar to the fourth, fifth and sixth images,

respectively, for the 6 fps image sequences, and therefore

the gait information that is included in the GEI at 6fps is

smaller than that at 5 fps. This is the cause of the incon-

sistency. With regard to the view, large differences cannot

be observed, but the recognition accuracy at 55° seems to

be slightly worse than that of the other view.

Head features are essentially static information, and

therefore recognition accuracy severely affected by SR.

For example, when TR is 1 fps, recognition accuracy

degrade drastically as SR becomes low. Head feature is also

affected by TR. When SR is 640 ×480 pixels, recognition

accuracy improved as TR becomes high. Head modality

is affected by a number of factors such as illumination

changes and pose. Because head features were extracted

from walking image sequences, illumination and pose can

be different in each frame. Consequently, data with high

TR can include more head features with variety of illumi-

nation and pose than data with low TR, and this leads to

accuracy improvement.We also observe that recognition

accuracy of head modality is different depending on view.

We think three factors can be the cause. The first factor is

that the texture information included in the head modal-

ity is changed depending on observation view. The second
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Fig. 9 Rank-1 identification rate [%] for individual modalities and qualities. Note that the scales differ among the graphs

factor is that the observed shape of head region is also dif-

ferent depending on observation view. The third factor is

size of the head region. Because data with different views

were captured from a single walking person by a single

camera in this data set, distance between the sensor and

the subject is different in each view as shown in Fig. 1. And

this difference leads to the size difference.

As for height modality, we observe that the accuracy of

height is affected by not only SR but also TR. Because

the height of the subject is calculated by averaging the

height of each frame, and the height of each frame is

affected by the posture. In the case of TR is low, the cal-

culated height is heavily affected by the postures of the

sampled frames, and this can lead to accuracy degrada-

tion. As for view quality, the impact of view difference is

not so large, because essentially, height is view-invariant

feature.

4.3 Evaluation protocols for score-level fusion

Protocol 1: Constructed score databases can be used

to develop and evaluate quality-independent score-

level fusion approaches. Because our constructed score

database contains many subsets with different quality

settings, and thus the properties of each subset can be

different, it is possible to compare multiple algorithms

on these subsets with different properties. This is the

main reason why we set Protocol 1 for the constructed

score database. The purpose of this protocol is to enable

benchmarking of quality-independent score-level fusion

approaches. To prepare subsets with different properties,

we selected two typical settings for each quality; i.e., we

selected high and low SRs of 640 × 480 pixels and 80 × 60

pixels, respectively, high and low TRs of 30 fps and 1 fps,

respectively, and two views of 85° (almost a side view) and

55° (an oblique view). Having considered all of the combi-

nations of these qualities, we consequently prepared sub-

sets with eight typical settings, denoted by QHH85, QHL85,

QLH85, QLL85, QHH55, QHL55, QLH55, and QLL55, where the

first and the second subscripts denote high (H) or low (L)

for the SR and TR, respectively, and the third subscript

denotes the view (e.g., QHH85 corresponds to 640 × 480

pixels at 30 fps from the 85° view). For the evaluation,

each subset was randomly divided into training and test

sets, disjointed with respect to the subjects, and twofold

cross-validation was performed. This twofold cross-

validation was repeated 10 times to reduce the effects

of the random divisions. The scores were normalized

before fusion.5
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A variety of normalization schemes have been intro-

duced in the literature, including min-max normalization,

z-score normalization [38], and F-normalization [39],

but some of these schemes (e.g., min-max normaliza-

tion) are sensitive to outliers [16]. We therefore used a

more statistically-based scheme, i.e., z-score normaliza-

tion, because it is widely used in research into both multi-

modal biometrics and score-level fusion [11]. Specifically,

we computed an average μm and a standard deviation

σm for each modality m ∈ {gait, head, height} among the

training set, and computed a normalized score S̄m from a

raw score Sm as

S̄m =
Sm − μm

σm
. (5)

Because we intend to perform normalization with

respect to the modality, we simply picked a specific qual-

ity, i.e., QHH85, to compute the average and the standard

deviation for the normalization process and used these

values for the different subsets.

To evaluate the performance, we selected two settings:

multi-modal fusion (for gait, head and height) and bi-

modal fusion (for gait and head). We then evaluated the

accuracy in both verification and identification scenarios

with typical measures such as ROC curves, EERs, FRRs

at specific FARs, area under curves (AUCs), the half total

error rates (HTERs), which is the average of the FAR and

the FRR, CMC curves, and rank-n identification rates for

each subset. Here, the HTER is calculated based on [34].

We select an optimal threshold � based on the concept

that the distributions of genuine and imposter accesses

are equal and the threshold is set at a value that mini-

mizes 1
2 (FAR (�) + FRR (�)). We set the threshold using

the training dataset.

Protocol 2: A major characteristic of the constructed

score database is that this database is composed of multi-

modal scores with multiple different qualities. Therefore,

this score database is appropriate for evaluation of quality-

dependent score-level fusion approaches. This protocol is

intended for benchmarking of quality-dependent multi-

modal score-level fusion approaches where the score

database is disjoint in terms of both subjects and quali-

ties, unlike Protocol 1, where the same qualities are shared

between the training and test sets. The quality settings for

the training and test sets are defined as shown in Table 12.

Specifically, we selected three settings for the SRs: “640 ×

480, 213 × 160, 128 × 96, 80 × 60”, “640 × 480, 80 × 60”,

and “213 × 160, 128 × 96”. For the settings of “640 × 480,

213× 160, 128× 96, 80× 60”, and “640× 480, 80× 60”, all

test set qualities lie between the training qualities; the dif-

ference between these two spatial settings is the density of

the quality. For the TRs, we considered four settings: “30,

10, 7.5, 5, 3, 1”, “30, 1”, “10, 7.5, 5, 3”, and “7.5, 5”. For the set-

tings of “30, 10, 7.5, 5, 3, 1” and “30, 1”, all test set qualities

lie between the training qualities; however, some of the

test qualities do not lie between the training qualities in

“10, 7.5, 5, 3”, and “7.5, 5”. Using a combination of these set-

tings for the SRs and TRs, we designed the experiment for

Protocol 2. We believe that this protocol is both interest-

ing and important for score-level fusion research. In this

protocol, the test sets are composed of scores with differ-

ent quality settings. For the evaluation, we do not report

on the accuracy of each test set separately, but report on

the total accuracy based onmerging of the test scores with

different quality settings.

4.4 Benchmarks for score-level fusion

Protocol 1: Score-level fusion approaches mainly fall

into three generic categories: transformation-based,

classification-based, and probability density-based

approaches, as described in subsection 2.2. We there-

fore provide a total of seven benchmarks based on a

wide variety of score-level fusion approaches for Pro-

tocol 1. Specifically, we provide the sum rule (Sum)

and the minimum rule (Min) for the transformation-

based approaches [12]; an SVM with a radial basis

function kernel [16] and RankSVM [28] for the

classification-based approach; and the GMM6 [15], LLR

[14], and KDE [63] for the probability density-based

approaches.

Protocol 2: We provide both quality-independent

and quality-dependent score-level fusion approaches

to discuss the effectiveness of the quality-dependent

approaches when compared with the quality-independent

approaches. Specifically, we first select the three best

approaches with respect to their verification perfor-

mances in a quality-independent protocol: they are GMM,

LLR, and RankSVM, in addition to Sum, which is used as

a baseline. To estimate the parameters of these models in

a quality-independent manner, we trained the parameters

using the training set with the highest SR and TR from the

side view (which is QHH85). Using these parameters, we

can then realize quality-independent approaches. We also

introduce the Q-stack [51], which is a concatenated vec-

tor of the multi-modal biometric scores and the quality

measures. Using this Q-stack, we can then realize quality-

dependent approaches. In our database, the Q-stack is

defined as a six-dimensional vector that is composed of

three biometric scores, i.e., the Sgait , the Shead , and the

Sheight , along with three quality measures: qSR for SR, qTR
for TR and qView for view. Note that we define qSR and

qTR based on a logarithmic scale of spatial reduction and

a frame rate for numerical stability, respectively, and qView
is based on a view in units of radians. The Q-stack vectors

of the training sets are then fed into each of the GMM,

LLR and RankSVM methods to create quality-dependent

versions, which are called GMM (Q-stack), LLR (Q-stack)

and RankSVM (Q-stack), respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 ROC curves for Protocol 1 (the first cross-validation set) for multi-modal fusion. Note that the scales differ from graph to graph. a QHH85

b QHL85 . c QLH85 . d QLL85 . e QHH55 . f QHL55 . g QLH55 . h QLL55

4.5 Evaluation result for score-level fusion

Protocol 1: The performance evaluation results for

Protocol 1 for multi-modal fusion are indicated by the

ROC and CMC curves see Figs. 10 and 11. In addition, we

selected some typical measures, including the EERs, FRRs

at 1% and the 10% FARs, and the HTERs along with the

AUC for the ROC, which are related to verification and

are summarized in Tables 5, 6, 7, 8 and 9, and Rank-1 and

Rank-5 for the identification are summarized in Table 10

for both the multi-modal and bi-modal fusion types.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 CMC curves for Protocol 1 (the first cross-validation set) for multi-modal fusion. Note that the scales differ from graph to graph. a QHH85

b QHL85 . c QLH85 . d QLL85 . e QHH55 . f QHL55 . g QLH55 . h QLL55
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Table 5 EER [%] for Protocol 1

Fusion rule
Bi-modal (gait and head) Multi-modal (gait, head, and height)

QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55 QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55

Sum 2.3 29.0 4.4 40.1 3.3 32.7 5.6 41.4 1.9 23.0 3.9 33.9 2.8 26.4 4.7 34.6

Min 4.2 10.8 4.9 43.4 4.5 13.8 5.7 40.5 4.2 17.0 4.9 31.7 4.5 15.8 5.7 36.5

SVM 1.9 32.9 3.3 47.8 2.9 28.6 7.2 50.2 1.6 18.0 2.7 38.1 2.7 17.3 6.6 41.8

GMM 1.6 10.6 2.6 39.1 2.5 13.5 4.4 37.2 1.5 8.5 2.1 25.6 2.4 10.3 4.2 25.1

LLR 1.7 10.6 2.5 39.8 2.7 13.6 4.4 40.4 1.4 7.3 2.0 25.6 2.2 8.8 3.8 24.0

KDE 1.8 10.8 3.7 39.2 2.7 15.6 5.7 37.3 1.6 8.3 3.6 48.8 2.4 11.7 4.9 44.2

RankSVM 1.7 10.7 2.6 39.8 2.8 13.6 4.5 40.4 1.6 7.0 2.1 25.6 2.7 8.7 4.1 24.1

Bold and italic bold fonts indicate the best and second best accuracies throughout the work in this paper, respectively

From these multi-modal and bi-modal fusion results,

we observed that accuracy of multi-modal is better than

that of bi-modal in all cases of verification and in majority

cases of identification. Moreover, we see that some of the

probability density-basedmethods such as GMMand LLR

and classification-based approach such as RankSVM per-

form stably and well in verification scenarios (see Fig. 10)

because probability density-based approaches guarantee

optimality in terms of the ROC [64] on the condition that

the estimated probability densities are correct. One inter-

esting observation is that the efficiency of the KDE, which

is also a probability density-based approach, is unsta-

ble and is heavily dependent on the quality settings. The

KDE assumes that each score is independent. We there-

fore believe that this independent assumption may be a

cause of the unstable efficiency. From the viewpoint of

the quality settings, we can see that both the SRs and

the TRs have major effects on the accuracy of the fusion

approaches. In the case of both high SR and high TR (e.g.,

QHH85), because all the modalities work relatively well, the

improvements in accuracy when compared with the Sum

as a baseline are not as large (e.g., 1.9% EER for Sum and

1.4% EER for the LLR for multi-modal fusion). In the case

of high SR and low TR (e.g., QHL85), because the head

modality still works well, while the gait modality does not

work because of the low frame rate, the accuracy improve-

ment when compared with the Sum is significant. While

the EER of the Sum is 23.0%, the EERs of the RankSVM

and the LLR are 7.0 and 7.3%, respectively, for multi-

modal fusion. These results indicate the importance of

adaptive weighting of the modalities. Similarly, we can see

accuracy improvements in the case of low SR with high

TR, in which case the headmodality does not work but the

gait modality still works. Also, the view affects the accu-

racy of the fusion approaches. When compared with the

EERs of views of 85° and 55° under low SR and low TR

conditions for multi-modal fusion, the GMM, LLR and

RankSVM achieves better accuracy for the 85° view, but

the LLR, and RankSVM achieve better accuracy for the 55°

view.

With regard to the identification scenarios (see Fig. 11

and Table 10), the accuracy trend for each benchmark

is, however, slightly different from that for the veri-

fication scenario, i.e., the RankSVM achieves the best

or second best results for all qualities except for the

rank-1 identifix cation rate of QLL85 for multi-modal

fusion. This point will be discussed in greater depth in

the discussion section. We then select the best meth-

ods with respect to both verification and identification

in the subsequent evaluation of Protocol 2. Specifically,

we selected the three best methods, GMM, LLR, and

RankSVM, and used them in the following accuracy

analysis for the quality-dependent settings, i.e., for

Protocol 2.

Table 6 FRR [%] at 1% FAR (FRR1%) for Protocol 1

Fusion rule
Bi-modal (gait and head) Multi-modal (gait, head, and height)

QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55 QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55

Sum 3.2 82.7 10.3 92 5.5 86.6 11.3 92.4 2.5 78.0 10.4 89.9 4.3 83.2 11.9 90.8

Min 7.4 38.4 12.3 92.9 9.5 51.5 11.8 92.8 7.4 89.9 12.3 92.9 9.5 82.7 11.8 92.8

SVM 2.0 87.5 5.1 95.5 3.6 84.9 10.9 96.6 1.7 74.6 3.8 93.4 3.0 76.3 9.7 95.6

GMM 1.9 36.6 4.7 89.9 3.7 49.7 9.3 90.2 1.8 45.0 3.6 86.0 3.3 53.3 9.3 89.5

LLR 2.2 37.8 4.3 92.2 3.9 51.4 9.4 92.2 1.7 29.1 3.2 88.5 3.5 43.3 8.6 87.7

KDE 2.1 37.1 6.7 90.7 3.9 99.7 10.7 91.6 1.9 26.8 6.9 95.1 3.2 99.0 11.3 92.4

RankSVM 2.2 37.9 4.4 92.1 4.4 51.9 9.3 92.2 1.9 26.5 3.5 88.3 4.1 40.6 8.6 88.0
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Table 7 FRR [%] at 10% FAR (FRR10%) for Protocol 1

Fusion rule
Bi-modal (gait and head) Multi-modal (gait, head, and height)

QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55 QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55

Sum 1.0 56.6 2.5 73.3 1.6 64.4 3.7 75.5 0.6 45.9 1.7 65.8 1.3 54.7 2.1 68.0

Min 0.9 11.5 2.2 77.1 1.1 17.9 4.4 70.2 0.9 40.2 2.2 75.4 1.1 32.9 4.4 70.2

SVM 1.6 61.6 2.5 82.5 2.4 54.3 6.3 86.2 1.3 34.2 2.3 75.4 2.3 34.2 6.0 79.3

GMM 0.6 11.0 0.9 69.2 1.1 17.2 2.6 66.2 0.6 6.5 0.9 53.0 0.9 11.6 2.0 52.1

LLR 0.7 11.2 0.9 73.1 1.1 17.4 2.5 74.0 0.5 5.0 0.6 53.5 0.7 7.5 1.9 55.0

KDE 0.9 11.4 2.3 69.3 1.6 24.5 4.1 66.1 0.6 7.1 2.0 82.8 1.2 14.4 3.1 73.9

RankSVM 0.8 11.2 0.9 73.1 1.2 17.5 2.6 74.0 0.5 5.1 0.6 53.5 0.9 7.4 1.9 54.7

Protocol 2: Firstly, we evaluated the accuracies of

quality-independent and dependent approaches (e.g.,

using training Set 1) and drew the ROC and CMC curves

as shown in Fig. 12 and summarized the EERs and FRRs

at FARs of 1 and 10%, along with the AUCs, HTER and

Rank-1 and Rank-5 as shown in Table 11. In the ver-

ification scenario, we see that the quality-independent

approaches such as Sum, GMM, LLR, and RankSVM do

not perform well, with EERs of more than 25%. Con-

versely, the quality-dependent approaches, such as LLR

(Q-stack) and RankSVM (Q-stack) achieve much higher

accuracies than the quality-independent approaches (e.g.,

the EERs for the LLR (Q-stack) and the RankSVM (Q-

stack) are 13.0 and 20.9%, respectively), while the EERs

of the LLR and RankSVM are 25.8 and 28.8%, respec-

tively.) One exception to this trend is GMM (Q-stack).

The accuracy of GMM (Q-stack) is worse than that is

a quality-independent approach. This exceptionally poor

performance by the GMM (Q-stack) is caused by degener-

ation of the GMM covariance matrices due to the discrete

training qualities used (see Table 12). As a result, the

probability density for the test quality, which is different

to the training quality, becomes zero for both positives

and negatives, and the fused score therefore loses its

discrimination capability.

As identification scenario, we can see that quality-

independent approach works better than quality-

dependent approach in general. This results can be

related to the evaluation settings. In this paper, although

biometric data with multiple qualities were prepared,

cross-quality matching were not considered, in other

words, qualities of probe gait feature are always the

same as those of gallery gait features. Under this setting,

quality information given by Q-stack cannot be useful in

identification, because all gallery gait features matched

to a probe gait features have the same quality measures.

Therefore, we cannot improve identification accuracy by

only employing Q-stack under this setting. This implies

that the additional quality-dependent approaches are

expected to improve the identification accuracy in the

scenario where the qualities of the probe and the gallery

are the same.

Second, we evaluated the quality-dependent fusion per-

formance when using different training sets to analyze

how the performance varied. For this purpose, we selected

the best approach LLR (Q-stack) for Set 1 to act as a

benchmark. Figure 13 shows the ROC and CMC curves

and the EERs and FRRs at FARs of 1 and 10%, along with

the AUCs, the HTER, and Rank-1 and Rank-5, as shown

in Table 13.

From these results, we can obtain some interesting

observations. In cases where we fix the TR quality setting

for training, SR quality setting for training does not have

much impact on accuracy for both verification and identi-

fication. For example, the EERs of Set 1, Set 5, and Set 9 are

13.0, 13.1, and 12.9%, respectively, and Rank-1 of Set 1, Set

Table 8 AUC [%] for Protocol 1

Fusion rule
Bi-modal (gait and head) Multi-modal (gait, head, and height)

QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55 QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55

Sum 0.5 20.1 1.1 35.6 0.7 25.2 1.5 37.3 0.3 13.9 0.8 27.0 0.4 17.7 0.9 27.8

Min 0.6 4.6 0.9 39.6 0.7 6.7 1.5 36.8 0.5 9.7 0.9 24.5 0.6 8.4 1.5 29.6

SVM 0.8 26.6 1.0 46.5 1.4 22.4 3.4 50.0 0.8 10.5 0.8 32.4 1.3 9.6 3.1 38.4

GMM 0.3 4.5 0.6 33.7 0.5 6.4 1.1 32.1 0.3 3.1 0.4 16.6 0.3 4.3 0.8 15.9

LLR 0.3 4.5 0.4 35.0 0.5 6.6 1.0 36.1 0.2 2.2 0.3 17.3 0.3 3.2 0.7 15.8

KDE 0.3 4.8 0.7 33.9 0.6 10.6 1.6 32.3 0.3 2.8 0.7 48.9 0.5 7.6 1.1 41.6

RankSVM 0.4 4.5 0.4 35.0 0.5 6.6 1.1 36.1 0.2 2.3 0.3 17.3 0.3 3.2 0.8 15.8



Uddin et al. IPSJ Transactions on Computer Vision and Applications  (2017) 9:18 Page 20 of 25

Table 9 HTER [%] for Protocol 1

Fusion rule
Bi-modal (gait and head) Multi-modal (gait, head, and height)

QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55 QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55

Sum 2.1 28.6 4.3 39.9 3.3 32.6 5.3 41.1 1.8 22.6 4.0 33.9 2.6 26.1 4.7 34.6

Min 3.9 10.7 5.1 43.5 4.4 13.9 5.4 38.9 3.9 15.0 5.1 30.1 4.4 14.4 5.4 32.7

SVM 1.5 32.8 2.8 45.1 2.3 28.4 5.2 46.5 1.3 17.2 2.2 37.2 2.0 16.3 4.9 40.0

GMM 1.5 10.5 2.5 38.5 2.3 13.5 4.3 36.3 1.4 8.1 2.1 24.4 2.2 9.7 4.1 23.6

LLR 1.6 10.6 2.5 39.6 2.5 13.6 4.3 40.0 1.4 7.3 2.0 24.9 2.3 8.8 3.7 23.1

KDE 1.5 10.7 3.4 38.5 2.5 15.6 5.2 36.4 1.4 8.2 3.5 50.0 2.2 11.7 4.8 50.0

RankSVM 1.6 10.6 2.6 39.6 2.6 13.7 4.5 40.0 1.5 7.0 2.2 25.0 2.5 8.7 4.1 23.2

5, and Set 9 are 31.1, 32.2, and 29.5%, respectively. In cases

where we fix the SR quality setting for training, TR qual-

ity setting for training have much impact on recognition

accuracy, and impact on verification and identification are

different. For verification, in cases where test TR qualities

lie between the training TR qualities, the EERs of Set 1

and Set 2 are both 13.0%, and the EERs of Set 9 and Set

10 are almost the same (i.e., 12.9 and 13.0%) even though

the densities of TR training qualities are different; but in

cases where some test TR qualities lie outside the training

qualities, verification accuracy become worse. For exam-

ple, the EERs of Set 4 and Set 12 are 15.8 and 15.2%,

respectively. On the other hand, for identification, in case

where TR qualities of “7.5 and 5” are used for training, we

observed that Rank-1 becomes good even though some

test TR qualities lie outside the training TR qualities. As

discussed in the first experiment of Protocol 2, this may

be related to the evaluation settings where the qualities of

the gallery and the probe are the same. But we guess that

some specific fusion parameters may work well on many

quality settings for identification.

5 Discussion and future work
Inconsistency between verification and identification

scenarios: As written in the section on the evaluation

results for score-level fusion, the benchmark performance

is dependent on the specific verification or identification

scenario. Since Nandakumar et al. [65] proposed amethod

to extend the fusion for the verification scenario (i.e.,

using a likelihood ratio-based approach) into that for the

identification scenario, it may be expected that the best

benchmark for the verification will also achieve the high-

est accuracy in the identification scenario. Their method

[65] imposes the strong assumption that the genuine and

Table 10 Rank-1/5 identification rates for Protocol 1

Bi-modal (gait and head) Multi-modal (gait, head, and height)

Fusion rule Rank-1[%]

QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55 QHH85 QHL85 QLH85 QLL85 QHH55 QHL55 QLH55 QLL55

Sum 96.3 14.3 88.0 4.1 94.9 9.2 86.6 4.0 97.2 17.5 85.4 4.8 96.1 11.7 82.3 4.7

Min 91.8 54.9 85.0 6.0 90.7 43.6 84.3 5.0 91.7 5.4 85.0 5.9 90.7 12.1 84.3 5.0

SVM 96.8 10.1 90.9 2.2 95.4 10.0 84.7 1.5 97.3 16.0 91.3 3.4 96.1 14.0 85.4 1.7

GMM 97.2 54.5 91.0 5.8 96.2 41.4 87.4 5.3 97.0 41.3 90.3 5.0 96.3 30.9 84.6 4.1

LLR 97.2 53.0 92.5 3.9 96.4 40.5 88.8 4.0 97.7 52.8 91.4 5.2 96.8 39.1 86.8 5.2

KDE 96.5 51.3 88.1 5.3 94.9 15.9 84.1 4.1 97.1 58.1 86.5 2.0 95.8 20.4 82.5 2.8

RankSVM 97.2 52.8 92.6 4.0 96.2 39.7 88.7 4.0 97.7 56.2 91.6 5.1 96.5 42.4 87.4 5.1

Rank-5[%]

Sum 98.2 22.2 95.8 8.3 97.5 14.7 94.1 7.7 98.9 28.0 94.3 10.6 98.4 19.3 93.5 10.2

Min 96.6 72.9 93.2 10.2 96.0 64.8 91.0 10.4 96.4 9.9 93.2 9.9 96.0 17.2 91.0 10.4

SVM 97.9 17.2 95.4 4.5 97.0 18.9 90.5 3.1 98.4 29.4 96.0 7.1 97.1 26.8 91.9 3.8

GMM 98.7 72.7 96.1 11.6 98.1 63.6 94.0 11.3 98.6 58.5 96.1 12.1 98.3 50.0 94.0 10.9

LLR 98.7 71.1 97.0 8.1 98.1 61.4 95.1 8.0 99.1 73.1 97.1 10.5 98.9 62.0 95.8 12.1

KDE 97.9 70.5 93.1 10.9 96.7 35.6 90.5 9.9 98.2 77.2 92.9 4.4 97.1 42.4 90.7 6.8

RankSVM 98.7 70.9 96.9 8.2 98.1 60.4 95.0 8.0 99.1 76.3 97.2 10.6 98.6 66.6 95.8 11.9
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Fig. 12 ROC (left) and CMC (right) curves for the quality-independent and quality-dependent approaches for Protocol 2

imposter scores are drawn from the same distribution,

regardless of the subjects. However, subject dependence

of the score distribution has been observed in our score

database, and good benchmarks are therefore shown not

to be consistent among the verification and identification

scenarios on our score database. In fact, a recent study [66]

performed a preliminary experiment to demonstrate that

a low-performance verification system may still achieve

good performance in an identification scenario. Addition-

ally, DeCann and Ross demonstrated in [43] that sets of

genuine and imposter scores that generate the same ROC

curve can generate different CMC curves. This is because

the verification performance is dependent on the aggre-

gated distributions of the genuine and imposter scores,

while the identification scenario is dependent on probe-

dependent ranking statistics. Suitable approaches for the

verification and identification scenarios can be different

in principle. It was also reported in [43] that this type

of difference between the ROC and CMC curves tends

to be particularly outstanding for soft biometrics such

as gait. It is therefore convincing in this case that the

different benchmarks yielded higher accuracies for each of

the verification and identification scenarios. Specifically,

the probability density-based approaches consider the

aggregated score distributions directly and thus yielded

higher accuracies for verification. In contrast, because the

RankSVM considers the probe-dependent rank statistics

directly, it yielded the best or second best accuracies for

the identification scenarios for multi-modal fusion, which

is consistent with the discussion above.

Multiple algorithms: While we considered multiple

scores that were derived frommulti-modal biometrics and

provided a single matcher for each modality in this work,

it is also possible to introduce multiple scores that are

derived from multiple matchers, as per the existing bio-

metric score database NIST-Multimodal [37], which con-

tains scores that are derived from multiple face matchers.

From a quality-dependent score-level fusion viewpoint,

it is particularly interesting to introduce matchers with

different sensitivities into the quality measures that were

used in this paper (i.e., SR and TR). For example, gait fea-

ture representations that are encoded with more temporal

and/or motion information (e.g., [67, 68] may be sensi-

tive to TR variations (i.e., yielding higher accuracies for

higher TRs), while those that are encoded withmore static

(shape) information (e.g., [69]) may be insensitive to the

TR.

Additionally, we can improve the sensitivity to both

the SR and the TR by incorporating spatial and/or

temporal super-resolution techniques [23]. In fact,

Table 11 EER, FRR1% ,FRR10% , AUC, HTER and Rank-1/5 identification rates of quality-independent and quality-dependent approaches

for Protocol 2

Fusion rule Training set EER [%] FRR1% [%] FRR10% [%] AUC [%] HTER [%] Rank-1 [%] Rank-5 [%]

Sum

QHH85

33.2 74.5 50.4 23.3 41.2 38.5 50.6

GMM 26.4 76.4 40.1 19.5 32.5 26.0 38.7

LLR 25.8 71.1 43.5 16.8 34.2 41.8 56.1

RankSVM 28.8 72.2 46.1 18.4 37.2 40.9 54.4

GMM (Q-stack)

Set 1

49.9 99.0 89.9 49.9 49.9 0.1 0.5

LLR (Q-stack) 13.0 69.8 18.9 5.5 12.5 31.1 48.1

RankSVM (Q-stack) 20.9 68.4 37.4 11.0 26.1 38.7 54.6

FRR1% and FRR10% are FRR at 1% FAR and FRR at 10% FAR respectively
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Table 12 Qualities for training and test sets in Protocol 2

Data set SR [pixels] TR [fps] View [deg]

Training

Set 1 640 × 480, 213 × 160, 128 × 96, 80 × 60 30, 10, 7.5, 5, 3, 1

85, 55

Set 2 640 × 480, 213 × 160, 128 × 96, 80 × 60 30, 1

Set 3 640 × 480, 213 × 160, 128 × 96, 80 × 60 10, 7.5, 5, 3

Set 4 640 × 480, 213 × 160, 128 × 96, 80 × 60 7.5, 5

Set 5 640 × 480, 80 × 60 30, 10, 7.5, 5, 3, 1

Set 6 640 × 480, 80 × 60 30, 1

Set 7 640 × 480, 80 × 60 10, 7.5, 5, 3

Set 8 640 × 480, 80 × 60 7.5, 5

Set 9 213 × 160, 128 × 96 30, 10, 7.5, 5, 3, 1

Set 10 213 × 160, 128 × 96 30, 1

Set 11 213 × 160, 128 × 96 10, 7.5, 5, 3

Set 12 213 × 160, 128 × 96 7.5, 5

Test 320 × 240, 160 × 120, 106 × 80 15, 6, 3.75, 2 75, 65

spatially super-resoluted face images are used to fuse

gait with side-view face in [70]. Construction of an

advanced multi-modal biometric score database that

includes both multiple matchers and super-resolution

techniques would therefore be an interesting future

research direction.

Extension to real scenes: In addition, while we treat

the SR and TR as quality measures in the context of the

fusion of gait, head, and height biometrics, there are even

more qualities that can be considered in real situations.

In particular, because our biometric score database was

built upon the OU-ISIR Gait Database, Large Population

Dataset [27], which was collected in a relatively controlled

situation (e.g., indoors, with controlled illumination and

a predefined course) with a limited observation view, we

must consider the variety of covariate factors that may

well arise in a real situation. For example, background

motion artifacts that are caused by trees or additional

persons may degrade the silhouette qualities that are

required for gait biometrics, and illumination changes

caused by cloud cover could dramatically change head

textures. It would therefore be useful to collect biometric

scores in real situations while using additional quality

measures (e.g., illumination changes, view changes,

clothing, and silhouette qualities) to achieve a more

sophisticated fusion approach. This will required not

only data collection but also generation of algorithms to

measure the associated quality, specifically sample-based

quality. This will also be included in our future research.

We guess that Q-stack based quality-dependent fusion

can improve accuracy even for identification if we employ

sample-based quality measures, because the qualities

of the probe and the gallery are not always the same.

Because fusion of a high-dimensional Q-stack vector

containing a plethora of multi-modal multi-matcher bio-

metric scores along with the quality measures described

above represents a more challenging task, it is also

essential to add a benchmark for the score-level fusion

that incorporates dimensional reduction of the quality

measures as a preprocessing step (e.g., [71]) to avoid both

Fig. 13 ROC (left) and CMC (right) curves for the quality-dependent approach LLR (Q-stack) when using different training sets for Protocol 2
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Table 13 EER, FRR1% , FRR10% , AUC, HTER and Rank-1/5 identification rates of the quality-dependent approach using the different

training sets for Protocol 2

Fusion rule Training set EER [%] FRR1% [%] FRR10% [%] AUC [%] HTER [%] Rank-1 [%] Rank-5 [%]

LLR (Q-stack)

Set 1 13.0 69.8 18.9 5.5 12.5 31.1 48.1

Set 2 13.0 73.9 19.3 5.7 14.6 29.1 45.8

Set 3 13.8 53.7 18.2 5.9 15.7 40.2 55.9

Set 4 15.8 50.6 21.8 7.3 19.2 41.7 56.7

Set 5 13.1 69.2 18.9 5.5 12.6 32.2 49.3

Set 6 13.3 74.3 19.7 5.8 13.5 30.0 47.0

Set 7 14.1 52.2 18.6 6.1 16.6 41.2 56.9

Set 8 16.2 49.3 22.4 7.7 20.3 42.3 57.5

Set 9 12.9 69.3 18.8 5.4 12.4 29.5 46.3

Set 10 13.0 73.6 19.0 5.7 14.0 27.5 43.6

Set 11 13.4 53.6 17.7 5.6 15.0 39.3 55.1

Set 12 15.2 50.9 20.8 6.9 18.0 41.1 56.2

FRR1% and FRR10% are FRR at 1% FAR and FRR at 10% FAR respectively

the risk of overfitting and the curse of dimensionality

problem.

6 Conclusion
We constructed a single sensor-based multi-quality

multi-modal biometric score database. We focused on the

OU-ISIR Gait Database, Large Population Dataset. We

extracted the required gait, head, and height biometrics

from a single walking image sequence. We considered the

SR, the TR, and the view as quality measures. As a result,

the database contains an extremely large number of bio-

metric scores: approximately 4 million genuine scores and

7.5 billion imposter scores for a total of 280 combinations

of SRs, TRs, and views. We defined two protocols for

quality-independent and quality-dependent score-level

fusion, and also provided performance evaluation results

with several benchmarks for each protocol, which will

advance the research into quality-dependent score-level

fusion. The constructed score database has been opened

to the research community with the benchmark results.

We therefore believe that the constructed score database

with its benchmark results will be highly beneficial for

biometric researchers because score-level fusion is a

promising technique for improvement of the recognition

accuracy.

Endnotes
1The database and evaluation protocol settings

is available at http://www.am.sanken.osaka-u.ac.jp/

BiometricDB/BioScore.html.
2Because the distance from the camera to the sub-

ject is sufficiently large when compared with the subject

size, the assumption of weak perspective projection with

respect to the subject can be almost true, and we can thus

simulate image sequences of the same subjects at different

distances.
3While 30 frame-skipped image sequences can be

generated from 1 fps downsampling of an original 30

fps video in principle, only 19 frame-skipped image

sequences are used. Because the minimum number of

frames, including one gait image sequences of some sub-

jects, is only 19, we maintain consistency among all

subjects by limiting the number to 19.
4Matching score distance matrices for each modal-

ity and quality setting will be published separately in

comma-separated values (CSV) format, where the rows

and columns correspond to the probes and the galleries,

respectively.
5Note that score normalization does not essentially

affect the performance for training-based approaches

(with the exceptions of Sum and Min) because any dif-

ferences in the score scales are absorbed in the training

process.
6The number of the mixture component are deter-

mined to be between 1 and 20 to optimize the minimum

description length criterion, and the random selection

process of the initial seeds is repeated 10 times for each

number of mixture components to mitigate the effects of

randomness.
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