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ABSTRACT 

Techniques for estimating the masses and decay couplings of multiquark 

hadrons (Qm a”, n + m 0 3) are developed with specific reference to the Q2G2 

sector, The dynamics is based on a quark-bag model of light, colored, and 

permanently confined quarks gauge-coupled to non-Abelian colored gluons, The 

SU(6) of “colorspin” generated by color-SU(3) and the SU(2) of relativistic 

j = l/2 quarks dominates the spectrum, Colorspin rules analogous to Hund’s 

Rules of atomic spectroscopy dictate that the lightest multiquark hadrons are 

not exotic, low spin and coupled predominantly to strange Q3 and Qa decay 

channels D Multi-quark hadrons are consequently elusive and may be mis- 

classified as conventional Qa mesons or Q3 baryons, 
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1, INTRODUCTION 

In a previous paper’ we presented the phenomenology of two-quark, two- 

antiq;rk hadrons in a quark-bag model. The discussion was based on a phe- 

nomenological Hamiltonian describing light , S-wave, colored quarks weakly 

coupled to massless colored gluons , all confined to the interior of a bag. Two 

major technical questions were left unanswered in Ref, 1 (referred to hereafter 

as I): first, how is the phenomenological Hamiltonian diagonalized in the space 

of color-flavor -spin eigens tates , and second, how are the couplings to fall 

apart decay channels calculated? These are the subjects of the present paper. 

Although we deal specifically with Q2G2 mesons, some effort is made to 

develop techniques applicable to all multiquark (QmQn; n, m 2 2) S-wave had- 

rons. In particular, we introduce colorspin-the SU(6) generated by color and 

the relativistic “spin” of S-wave quarks -in order to diagonalize the gluon inter- 

action terms in the Hamiltonian, The qualitative effects of the gluon interac- 

tions are summarized by analogues of Hund’% rules, which single out spectro- 

scopically prominent multiquark configurations on the basis of colorspin quantum 

numbers D They enable us to make general arguments why multiquark hadrons 

are-less prominent than might naively be expected, 

The paper is organized as follows: In Section II we introduce the necessary 

symmetry groups and define a convenient notation for the remainder of the paper. 

In Section III we construct eigenstates of the bag Hamiltonian. First we diago- 

nalize the flavor content of relevant SU(3) representations. This is the analogue 

of the (trivial) “magic mixing” of w and $ in the QB sector. Secondly, the gluon 

exchange interaction must be diagonalized in a basis of magically mixed flavor 

states, This leads us to introduce the SU(6) of colorspin. Rules are given for 

spectroscopically important states. In Section IV we summarize the recoupling 
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transformations which determine amplitudes for fall apart decays. In Section V - 
- 

we return to the colorspin formalism and show that the rules of Section III re- 
- 

duce the spectroscopic importance of multiquark states in general, Asimple expression 

for the quadratic Casimir operator of SU(3) or SU(6) is derived in the Appendix. 

II, SYMMETRIES, SYMMETRY BREAKING AND NOTATION 

Our quarks carry three labels 2,3,4 : color (SU(3),), flavor (SU(3)f) and 

spin (SU(2)), Color is gauged, unbroken and confined, Flavor is not gauged, 

broken by giving the strange quark a small’ mass and leaving the up and down 

quarks massless, and of course not confined0 Spin is not actually spin at all 

but rather the SU(2) generated angular momentum of fully relativistic quarks in 

S-wave modes in a cavity. Neither c nor L? is conserved in a relativistic quark 

model D Nevertheless, if we fix our attention on the j = l/2 (S-wave) sector of 

the theory, the algebra generated by the states and their currents is an SU(2). 

As discussed in I, the phenomenological Hamiltonian @I) includes a kinetic 

energy term diagonal in eigenstates of the strange quark number (n,) and inde- 

pendent of color and spin, and a gluon interaction term which is approximately 

diagonal in eigenstates of ns but mixes color and spin representations, The 

eigenstates of H are therefore characterized by the following quantum numbers 

(in the Q2G2 sector): 

1, The flavor multiplet of the two quarks, denoted 5 or 5; and of the two - 

antiquarks, denoted 3 or 6 - -0 

2. The colorspin (SU(6),,) multiplet of the two quarks, denoted [15] or 

[21] and of the two antiquarks, denoted CZ] or [z] 0 

3. The total spin, labelled by 2J+ I, of the quarks and antiquarks together. 

4. The total color, which is always a singlet, of the quarks and antiquarks 

together 0 
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It is important to understand why the other obvious quantum numbers are 

not diagonal. The total flavor is not a good quantum number because of magic 
-cI 

mixing, For example, many states in the 1_, S and 27 (which result from 5 @ 0) 

are mixed to diagonalize the number of s-quarks. Generally only the states at 

the periphery of weight diagrams (ee g. , the I = 2 multiplet in 27) are-pure SU(3)f 

eigenstates 0 

Total colorspin multiplets are mixed by the gluon interactions 0 For example : 

[2 l] 8 [21-j = [l] a3 [35] e [405] (2.1) 

The SU(3)c x SU(2) decomposition of these shows that total color singlets 

with J = 0 occur in both the [I] and [405] representations of SU(6)cs0 The 

gluon interactions mix these multiplets. 

Eigenstates of total colorspin, color and spin for Q2G2 are mixtures of 

color and spin representations of quarks and antiquarks separately. Again an 

example clarifies matters. The [I] in [21] Q [Zi] is a linear combination 

of (6,3)(6,3) and (3,1)(3,1), (The notation is (de(Q), 2jQ +l)(dc@), Zja+l). dc 

is the dimension of a color multiplet , 2 j + 1 is the dimension of a spin multiplet. ) 

Clearly both (6,3)(6,3) and (3,1)(3,1) can be coupled to total color and spin 

singlets 0 The (1,l) in [405] is the orthogonal linear combination, 

To summarize the notation introduced above: 

[ 1 d cs - denotes SU(6)cs multiplets labelled by their dimension. 

(dc ,2j + 1) - denotes SU(3), x SU(2) multiplets labelled by their color 

’ and spin dimensions. 

df 
- denotes flavor multiplets by their dimension, 

- 

It will always be apparent from context whether the notation refers to quarks, 

antiquarks or both taken together. For reference, the SU(6) representations 
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available to Q2, G2 and Q2 $ are summarized in Table 1, Generally states - 

- 
will be labelled with quark quantum numbers, antiquark quantum numbers, and 

overa: quantum numbers in that order. We will often suppress labels when 

they are unnecessary. Specifically, antisymmetrization fixes the flavor once 

the colorspin is chosen, ‘so we often suppress flavor labels, Also Q2 (or G2) 

SU(3)c x SU(2) multiplets belong to unique colorspin representations (see 

Table 1) so we may suppress colorspin labels if the SU(3)c X SU(2) representa- 

tion is given, 

III, EIGENSTATES AND INTERACTION ENERGIES 

Consider first the requirements of antisymmetrization, Quarks are [6] 

in colorspin, thus 

[6] @ [6-J = [15] @ [2I] (3.1) 

are representations for Q2. The flavor states available to two quarks are 3 and - 

g0 In both cases the smaller representation is antisymmetric; the larger, sym- 

metric 0 Antiquarks are in conjugate representations. There are four antisym- 

metric c ombinations : 

a. [Zl] 3 @ [Zi] 5 

(3.2) 

In addition to being antisymmetrized, these multiplets are not mixed by the 

gluon interactions. 
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A. Magic Mixing 

The flavor multiplets in Eq, (3,2 a-d) mix to diagonalize the strange quark 
-c, 

content. The problem is familiar from the Q a sector ( 7 - v I, w - $, f - f 0) 

where I = Y = 0 octet and singlet members mix. Typically 

(3.3) 

2 
qo= 3 T$+ $ $ $ % - - 

where 7 
1 

and r) 
8 

are singlet and octet members, while q. and 7, contain 

zero or two strange quarks, respectively. The mixing in the z @ 2 of Q2 G2 

is exactly opposite to that in the 3 @ 3 of QG (compare Eq. (3.3) with Table - - 

2), This has important phenomenological implications 0 ’ 

The mixing matrices for the four SU(3)f multiplets of Eq. (3,2) are given 

in Table 2. The magically mixed states are given as linear continuations of 

SU(3)f eigens tates 0 The 5 @ 3 representation and its conjugate cause 

special problems, The flavor octets in z @ 6 and 6 @ 3 individually - 

are -not eigenstates of G-parity. Appropriate linear combinations yield an f-type 

octet &, and a d-type octet Ed which have different hadronic decays and may 

have quite different physical masses though in our (zero-width) approximation 

they remain degenerate. The hypercharge zero members of 5 8 3 and 3 @ 6 - - 

mix to diagonalize G-parity5: 

(3.4) 

C 
S* =- =F 63’(s) 

- 
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The names of states are defined in Fig. 6 - 8 of paper I, and for the most part 

also in Table 2, This mixing will figure in the calculation of decay couplings. 

B. l%agonalizing the Gluon Interaction 

The spectroscopically important interaction between quarks (aside from the 

interaction with the Bag which provides confinement and sets the overall scale) 

is the spin-spin force mediated by one gluon exchange,, The gluon interaction 

Hamiltonian is given by4 

Hg=-3 2 c ??ioZ’j h>yM(miR, mjR) 

a=1 i>j 

(3.5) 

where Q! c = g2/4?r is the color fine structure constant (ac = 0.55); R is the 

bag radius, later to be eliminated by a boundary condition I,4 ; a labels colors 

. - 

and i (j) labels quarks, 5 and A: are the spin and color vectors for the i 
th 

quark. To be precise, if i or j indicates an antiquark, the following replacement 

should be understood : 

ai - -4; 

(3.6) 

‘i 
- -A? 

1 

M is the magnetic interaction strength determined by an integral over bag wave- 

functions 0 It is a function of quark masses, In paper I, we approximated M as 

follows : 

ns m nm 
M(miR, mjR) -M -$. , -%$ (3.7) 

where ns is the number of strange quarks in the state of being considered, N is 

the total number of quarks and ms is the strange quark mass (270 MeV). 
4 

M(x,x) 

may be read off of Fig. 3 in paper I,, So approximated, M may be removed from 

beneath the summation. 
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The products 0 k Aa are among the generators of SU(6)cs0 The entire al- -^ 

gebra is generated by these together with the 8 h-matrices and the 3 a-matrices. 
h 

Specifically, define the generators of SU(6)cs as follows : 

The 35 a’s generate an SU(6). They are normalized to Tr a2 = 4 (we have 

chosen Tr A2 = 2 and Trc2 = 2 , as is conventional). The SU(6) of the antiquarks 

is generated by 

It is straightforward to express Eq. (3,5) in terms of the quadratic Casimir 

operators of SU(2), SU(3)c, and SU(6)cs: 

-x c gi*5 A;$ =8N+; C6 (TOT) - f SToT(STCT+ 1) 

a i>j 

8 
+ c,(Q) + 3 ‘Q “Q + l) -C,(Q) 

+c3@)+3 Q Q 8s-(s-+1)-c6(Q) 

The Casimir operators are defined as follows: 

(3*9) 

(3.10) 

(3.11) 

a=1 \i=l ’ 
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(3,12) 

The labels Q, Q and TOT refer to the representations of the quarks, antiquarks 

and the entire system, respectively. The SU(2) Casimir is familiar. The SU(3) 

and SU(6) Casimirs may readily be evaluated if the SU(2) x U(1) or SU(3) x SU(2) 

content of a given representation is known, Simple formulas for C3 and C6 are 

derived in Appendix A. Values for C3 and C6 for representations of interest are 

given in Table 1. 

The systematics of multiquark spectroscopy may be read off from Eq. (3,9). 

We may enumerate a pair of “Hund% rules”6: The magnetic interaction is most 

attractive (negative) for states in which : 

Rule 1: The quarks and antiquarks are separately in the largest pos- 

sible representations of SU(6)cs0 

Rule 2: C6 (TOT) is as small as possible. 

Generally the Casimirs of colorspin dominate Eq. (3.9) because they are larger 

than those of color or spin (see Table 1) for the representations of interest, The 

spectroscopy is therefore less sensitive to S TOT , C,(Q), C,(&L &co7 In Sec- 

tion V, we combine these two rules with the requirements of antisymmetrization 

to establish some general patterns among exotic and cryptoexotic- masses, 

Armed with Eq. (3.9), we may construct the eigenstates of H 0 
g 

1. [21] @ [Zi] 

These are flavor nonets (see Eq. (3.2) and Table 2) and (according to 

Rule I above) should contain the lightest Q2Q2 states. First we must look for 
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color singlets in 

- [21] Q [ii] = [l] @ [35] CD [405] (3.13) 

SU(3)c X SU(2) decomposition of these reveals the following singlets: 

(121) = ‘[I] 
_ 

(193) c [35-j 

(1,l) and (1,5) c [405] (3.14) 

To apply Eq. (3,9), we must know which SU(3)c x SU(2) representations of 

quarks and antiquarks contribute which total color x spin multiplet, For total 

spin-l and spin-2, this is trivial (see Table 2): Both must arise from 

(6,3) 8 (6,3) since (3, 1) @ (3,l)canyield only spin zero. The wave functions of the 

JTOT 
= 1 and JTOT = 2 states are fixed, 

12+,9> s I (6,3)g; (6,3)3; (1,5)[405]), . (3.15) 

I l+,g> = I (6,3)?; (6,3)3; (1,3)[35]> (3.16) 

The corresponding magnetic energies are listed in Table 3. 

The two spin-0 states are linear combinations of (3,l) B (3,l) and 

(6,3) @ (6,3), Graphical techniques for calculating the coefficients weighting these 

states have been developed by J. Mandula. 
8 

The application of his methods yields: 

I O+z[l]> = $ I (6,3)j; (6,3)3; (Ll)) 

; (Ll)? (3. + $ 3 I (3,l)Z; (3,1)3 17) 
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10+9[405] > = /; I (W):; (K,3)3; (1~)) 
-n 

(30 18) 

Hg mixes these two states. The eigenstates are 

I O’,?) = e 972 10’9 [l] > + 0233 I 0’9 [405]) 

I O+,z*) =.233 I 0'9 [1]) - 0972 I O+z [405]> 

(3.19) 

(3.20) 

The eigenvalues are collected in Table 3. Notice that the lighter state (2) is 

predominantly [I] as dictated by Rule 2. The small admixture of [405] comes 

about through the effect of spin and color within colorspin eigenstates, 

2. [15] @ [xl , 

These multiplets - should be relatively heavy and contain truly exotic 

members. The calculation is analogous to [21] 8 [El: 

[151 @ b1 = [I] @ [35] @ [189] (3.21) 

with color singlets as follows : 

(133) c C35] 

(1,l) and (1,5) c [189] (3.22) 

The spin-l and spin-2 states are trivial: They are formed uniquely from 

(0) @ (3,3), 

I2+,36> = I (3,3)5; (3,3)c; (195) [189]> 

Ilf,36> = I (;7,3@; (3,3)P; (1,3) [35]> 

(3.23) 

(3.24) 
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The two spin-0 states are linear combinations of (3,3) @ (3,3) and 

(6, I>,@ t&l). Using Mandula1s8 methods : 

I o”g[l] > = g I (3,3@; (3,3)& (Ll)) 

+ 
d- ; I (6,1)5; (6,l)E; (1,l)) 

IO+36[189]) = fi 1 (3,3)5; (3,3)$; (l,l)> 

-/- 
; 1 (W)fj; (g,l)?j; (1~)) 

Once again these are mixed by H : 
g 

I O+,s > = -.998 I 0+ 36 [l]) + .063 I O+s -[189]) 

I O+,E*) = o 063 I 0+ 36 [I.-J>+. 998 I 0+ 36 [189]) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

The magnetic interaction matrix elements for all these states may be found in 

Table 3. 

3. [15] @ [E-J and [2213 @ [m 

The multiplets are related by charge conjugation, We discuss [21] @ [z] 

and obtain results for 1153 @ [E] by inspection: 

[21-J @ [id = [35] 63 [ZSO] (30 29) 

The overall color singlets are 

(193) c [35-J 

(193) c [280] (30 30) 
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which are linear combinations of (6,3) @ (g, 1) and (3, 1) @ (3,3) 

11’3 [35]> = & I (3,1)5;(3,3)5; (1,3)) 

-J” 3 I (6,3)z; (6,l)E; (1~3)) 

I If-[280]> = & 1 (s,l)z; (3,3)5; (1,3)> 

+ I (6,@; (c,l)“; (123)) 

- 

(3,31) 

(3032) 

which in turn are mixed to produce eigenstates of H : 
g 

l1’,i5> - = y 1 I+I3[35]) - $ 1 l+ 18 [280]> (3.33) 

I 1’, E*> I l+ 18 [280]> (3.34) - _ 

The wavefunctions for the states in [15] @ [E] are obtained from Eq, 

(3,29) - (3,34) by interchanging quarks and antiquarks. The reader should keep 

in mind that these two sets of states will be mixed by the available decay chan- 

nels 0 The magnetic interaction energies tabulated in Table 3 complete the in- 

formation necessary to calculate Q2$ masses0 The recipe for masses is re- 

viewed in paper I and discussed in detail in Ref, 4, 
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IV, RECOUPLING TO DECAY CHANNELS 

The decays of Q2G2 S-wave mesons are expected to be dominated by S-wave * 

(QG)(QG) channels into which they simply fall apart. ’ To estimate decay ampli- 

tudes, we transform from the Q2 a2 basis of the.previous section to a (QG)(Q?$) 

basis, The techniques for constructing these recoupling matrices are well known. 

The cases of interest to us have not been written down previously (to our knowl- 

edge) because the Q2 and a2 channels are separately unphysical. 

The calculation is conveniently performed in two steps: first the color and 

spin are recoupled; then flavor is recoupled, remembering the mixing induced by 

diagonalizing ns D 

A,, Color and Spin 

The crossing matrices for color and spin separately are given in Tables 4 

and 5, The recoupling of Hg eigenstates is obtained by combining the wavefunc- 

tions of the last section with the recoupling coefficients‘in Tables 4 and 5. The 

results, presented in Tables 4, 5, and 6 of paper I, express Q2Q2 eigenstates 

as linear combinations of Qa mesons of definite color and spin. 
9 

Notice that the lightest Q2 G2 state of each total spin recouples most strongly 

to the two lightest Qa states available (see Tables 4 - 6, Ref. 1). For example, 

the lightest O+, I 0+9) is predominantly two color-singlet pseudoscalars. This 

is to be expected in order that Hg be minimized, It has important phenomenological 

consequences. 

B. Flavor 

The SU(3) crossing matrix is given in Table 6. Were it not for the mixing of 

multiplets induced by the strange quark mass, the flavor recoupling coefficients 

could be read off Table 6, together with any standard table of SU(3) isoscalar 

factors, 
10 

We have rewritten mixed states as linear combinations of SU(3)f 
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eigenstates in Table 2. Tables 2 and 6, together with the isoscalar factors of 

de S&art 
10 

enable us to construct the relevant recoupling coefficients. The re- 

sults were given in Fig., 6 - 8 of Ref. 1. These provide a check on the magic 

mixing described in Table 2: the number of s and F-quarks .is conserved in fall- 
- 

apart decays 0 

V. GENERAL FEATURES OF MULTIQUARK SPECTRA 

Hadron masses are roughly linear in the number of quarks plus antiquarks. 

Without dynamical input, we would expect often to find a multiquark state 

(Qm8”) less massive than the ordinary (Qg or Q3) hadrons into which it might 

decay. No narrow exotics are known. This was the problem posed at the out- 

set of Ref. 1 which originally led us into this subject. Studying Q2G2 mesons, 

we found no narrow exotics. Instead we found broad heavy exotics and a low 

spin cryptoexotic nonet. Many states in the nonet contain “hidden” s s pairs which 

make them heavy and coupled to strange particles. 

This is a general phenomenon., The systematics of the colorspin interaction 

is such that for any QnGm sector of the quark-bag model: (1) the lightest multi- 

plets are generally not exotic; (2) they are low spin cryptoexotic states with many 

s or S quarks, making them heavier and coupled predominantly to obscure chan- 

nels (involving hyperons , K’s , r7 ‘s , etc. )0 The exceptions occur when n or m is 

a multiple of 3, where the situation is more complicated. 

The argument goes as follows: According to Eq, (3.9) (and Rule l), maximiz- 

ing C (Q) and C (g) minimizes the mass0 This generally selects SU(6) 
6 6 cs 

repre- 

sentations in which the maximum number of quarks (or antiquarks) are sym- 

me trized, 
11 

“Horizontal” colorspin Young Tableaux are favored. Antisymmetry 

requires the SU(3)-flavor Young Tableau to be conjugate-as antisymmetric as 
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possible, In fact, the largest SU(6)cs Casimir is associated with a 2 or 3 of 

flavq (with the noted exception). I1 Exotics are associated with less symmetric 

colorspin representations and are consequently heavier. 

Furthermore a nonet made from many quarks and antiquarks (n f m > 4) 

must contain triplets of Q’s and &‘s coupled to flavor singlets (&‘(uds) or 

--- 
d (ud s) )0 Consequently the states generally contain hidden SF-pairs. This 

elevates them to higher mass (not only are the squarks heavier but also their 

magnetic interactions are weaker) and dictates that they couple (fall apart) pre- 

dominantly into strange particles 0 

Rule 2 selects small representations of total colorspin, These generally 

contain only low spin states. The lightest nonet will have low spin. Higher 

spin nonets are heavier D 

The Q2 G2 states of Ref. 1 are a case in point. Another important example 

are the Q4 & baryons, 
12 

The lightest multiplet is a l/2--nonet of the form 

B ij = d(uds)Q. a. 
1 J 

(50 1) 

Were the strange quark massless, the nonet would lie at about 1200 MeV-embar- 

rassingly low. Unlike a Q3-nonet, the S = 0 doublet contains an s s pair making 

it heavier (1600 - 1700 MeV) and coupled predominantly to channels like KC, rlN 

and K A , not nN, as one would naively expect, Truly exotic Q4Q baryons are more 

massive. 

The moral of this section is that simple gluon exchange may provide a sys- 

tematic dynamical explanation for the failure to observe relatively narrow multi- 

quark hadrons in familiar channels. Perhaps the light O+-mesons are Q2Q2 

states. Further tests of the model await detailed calculations of other channels 

(e.g., Q4Q, Q3G3 , 0 0. ) and more experimental input. 



-17- 

ACKNOWLEDGMENTS 

Yhe author wishes to thank Ken Johnson for his collaboration on the early 

phases of this work and for many fruitful conversations subsequently. Thanks 

are also due Jeff Mandula for patient explanations of his graphical techniques 

for group representation theory., 

REFERENCES 

1. R. L, Jaffe, SLAC preprint, SLAC-PUB- 1772 (1976). 

2. A, Chodos, R. L, Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, 

Phys. Rev. E, 3471 (1974). 

3. A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Phys. Rev. DlO, 

2599 (1974). 

4. T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis , Phys. Rev, D12, 

2060 (1975). 

5. Hypercharge f 1 members would mix in the SU(3)f limit to diagonalize 

SU(3)-parity, Since this is presumably violated in decays, we ignore it 

here. See Ref. 1 footnote 16 for an explicit example. 

6. -F. Hund, Linienspektren und Periodisches System der Elemente (Springer, 

Berlin, 1927), p. 124. 

7. Often the limitations of the SU(3)c x SU(2) content of an SU(6)cs representa- 

tion prevent the color and spin Casimirs from playing any role at all. For 

example, in [21] (8r FIthe JTGT = 2 state occurs in [405) while one 

JTOT = 0 state occurs in [l] 0 The difference between C6 (1) and C6 (405) 

overwhelms the effect of the difference in J 
TOT” 

8, J. Mandula, private communication. 



-18- 

9. It is essential that the phases of Tables 4 and 5 be defined consistently with 

those of the mixed states of Section III, We have checked this internal con- 

sistency. 

10, J. J. deSwart, Rev, Mod. Phys, 35, 916 (1963). 

11. Only colorspin tableaux of three columns or less can be combined with 

SU(3)f tableaux antisymmetrically. Denote a tableau (nI, ,n2, n3) by the 

number of boxes in each column. For a fixed number of boxes, N, the 

dimension (and hence C6) is maximized when the differences ni - nj are 

minimized. The exception is the case N = 3n: The tableau (n, n, n) has 

smaller dimension than (n + 1, n, n - 1). For example, if n = 1, the 

tableau (1, 1,l) has d = 56 while (2,1,0) has d = 70. Consequently the lowest 

flavor configuration in Q3G3 is 8 @ 8 rather than 1 @ 1 0 - - 

12. R. L. Jaffe, Invited paper presented at the Topical Conference on Baryon 

Resonances, July 5 - 9, 1976, Oxford, (Stanford Linear Accelerator Center 

preprint SLAC -PUB-1774). 



-19- 

APPENDIX 

It is particularly easy to calculate the quadratic Casimir operator Cn for a 

given representation of SU(n) if the SU(2) content of the representation is known. 

(SU(n) always contains an SU(2) subgroup., ) As-an example,, consider SU(6): 
- 

Take the trace of C6 in the representation CR] of SU(6) (NR-dimensional): 

Since the generators are related by unitary transformations, all traces are 

identical : 

C6[R] = 35 TraE 
NR 

Choose u to be the third generator of the SU(2) subgroup 

C6[R] = $f- Trof 
R 

=70 
3NR c 

dj Tr. cJ2 
J Z 

j 

(AZ) 

(AS) 

The sum on j covers all SU(3) X SU(2) representations contained in [R] . dj is 

the dimension of the SU(3) representation. An analogous calculation for SU(2) 

itself gives : 

Trsaf = 
4(2s + 1) s (s + 1) 

3 (A5 ) 
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in a representation with spin-s, Finally, then, 

C+[R] = s 
R c 

dj (2sj + 1) sj (sj + 1) 

The analogous calculation for SU(3) makes use of the isospin subgroup: 

C3 (R) = $j$- 
R c 

(21k + i)Ik(Ik+ 1) 

k 

lA6) 

(A7) 

where the sum extends over all isospin multiplets in the given SU(3) repre- 

sentation, 



f 
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Table 1 

SU(6) REPRESENTATIONS 
-n 

Set tor 
Young 
Tableau 

Dimension SU(3) x SU(2) 
Content 

Casimir 

,t - 

Q 
L’ m 

I 
Q2G2 

1 

21 (6,3), t%l) 160/3 

15 (6, l), (333) 112/3 

1 (191) 0 

35 (1,3), (8,1), (823.) 

189 tl,l), (1,5), (8,1), 2(8,3), 
(8>5), (10,3), (m,3), (27,l) 

405 (l,l), (1,5), (8,1), 2(8,3), 
t8,5), (10,3), (m,3), (27,l) 9 
(2793)s (2725) 

280 (1,3), (8,1), 2(8,3), (8,5), 
(lO,l), (10,3), (10,5), (ml), 
(27,3) 

48 

80 

112 

96 

SU(3) REPRESENTATIONS 

Sector Tableau 

Q 
2t m 

Dimension Casimir 

6 40/3 

El 3 16/3 

Q2G2 
lfl 

1 0 

EP 8 12 

t-2 Q representations are obtained by interchanging quarks and antiquarks and 

drawing conjugate tableaux. 
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Table 2 

MAGIC MIXING IN Q2 a2 STATES -cI 

a. 383 - - 

Is ospin Hypercharge Name’ 8 
NuFber of 

1 s F - pairs 

0 

0 

0 

0 

0 

1 

b. 686 - - 

Number of 
Isospin Hypercharge Name’ 27 8 1 s S - pairs - 

0 0 Co (36 ) - 

0 0 

0 

0 

Cs (36) J 
3 - 5 

Css (36) - 

c?rt36) 
1 J- 5 

Cs,(E) 4 s ii- 

Cp6) - ; J- 

8 
-J- 15 

E \c2 0 

1' - J- 
3 

1 

J- s 1 2 

0 0 

0 1 

0 0 

0 1 
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Table 2 (cont’d) 

- c. 6@3 - - 

Number of 
Isospin Hypercharge Name’ 8f 

- Ld 10 s S pairs 

1 0 CT@> 0 

1 

l/2 

l/2 

0 

-1 

-1 

d. 3@,6 - - 

Isospin Hypercharge Name’ 
Number of 
sS pairs 

1 0 1 C,(E) - - - 1 

; &- z 
0 

1 

l/2 

l/2 

0 
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Table 3 

_PrlAGNETIC INTERACTION ENERGIES OF Q2Q2 EIGENSTATES 

State Wave Function 

IO’Q 
10’36) 
I o+ z*> 
I o+ g*> 
I l’Z> 

11’36) 

ll’iK> - 

I 1+ 18*> - 

12+9> 

12+36> 

eq. 3.19 

eq, 3.27 

eq. 3.20 

eq. 3.28 

eq. 3.16 

eq. 3.24 

eq. 3,33 

eq. 3.34 

eq. 3.15 

eq. 3.23 

Magnetic Interaction 
Energy ,(2 R Hg/ac M)? 

-43036 

-19.37 

- 1.97 

22.03 

-16 

0 

-40/3 

32/3 

32/3 

32/3 

t This is the eigenvalue of the operator of Eq. 3,9. 
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Table 4 

-n 
CROSSING MATRIX FOR COLOR 

1 (Q$ (QQ)1>1 
-I 

1 (&&)’ (QGj8>l 

I (Q2f (a2)’ 1 > VW -JW - 

I (Q’)’ (&2)3>1 dm-- -dim- 

t 
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Table 5 

CROSSING MATRICES FOR SPIN 

ItQG)3tQ&)3>1 1 tQ@ ‘,tQ&) ‘>l 
- 

l(Q2)3(q2)3>1 J 
1. 
4 

f I ItQ@3(QQ)3>3 ItQQ)3(Q~)1>3 I(Q@1(QG)3>3 

I (Q’) 1(&2)3>3 

1 
f z 

1 -- 
2 

1 
z 

l(Q2)3(iij2)3>5 1 

1 J - - 
2 

1 -- 
2 

1 
z: 
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Table 6 

CROSSING MATRICES FOR FLAVOR -n 

Singlet 

I I(&$ (Q&l I(&$)’ (&a)‘>’ ~~ * 
l(Q2)6(lii2)6>1 J 

2 
5 

I (Q2)3(a2)3>1 J 
2 
z 

f-type Octet 

I (&B)' tQQj8> 
8 
f I (Q$> 1(Qq)8>8f I(Q~j8(Qf$>8f 

I (Q2)6(~2)6>8f 
1 

J z 

I (Q2j3(Q2) 3>8f 

- 
1 (, (Q2)3(~2)s>8 

& 0 

+ l(Q2)6(~2~3>8 

5 J- 12 

J 1 - - 
2 

d-type Octet Anti-Decuplet 
- 

I (QqJ8 (QQj818’ I (&Qj8 (QGj8>lo 

1 (I (Q2)3(g2)6>8 - 

J2 1 I (Q2~3($2)F>10 1 

- I (Q’f (~2)3>8) 

Decuplkt 

I (Q@’ (QQJ8>10 

27-plet 

I(QQ)8(Q8)8>27 

, (Q2f t$‘) 3>10 I 
1 , (Q2)6(~2)F>27 I 

1 


