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Abstract

Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on

their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation

of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of

this sector of particle physics phenomenology and present some considerations attempting a coherent description of

the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection

rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going

through all of the observed resonances with particular attention to their common features and the purpose of providing

a starting point to further research.
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1. Introduction

Yet another review on tetraquarks, pentaquarks, and all that?

Indeed this paper comes after a number of encyclopædic reviews on the theme appeared since the discovery of the

X(3872) — see [1–5] and the latest, very comprehensive [6].

Despite the considerable amount of information provided by these articles, what presented here is a further attempt

to report more specifically on those efforts made to find simple theoretical descriptions, even though incomplete, which

include and explain, in a unitary picture, most of the exotic resonances observed at the time of this writing. Along

these lines, some new arguments and work in progress will also be presented.

We assume that there is a common theoretical description of the X0(3872), Z
0,±
c (3900), Z

′0,±
c (4020), X0(4140),

Z
0,±
b

(10610), Z
′0,±
b

(10650), Z(4430) and the pentaquarks, and we collect those ideas which appear to us to be functional

to formulate such a comprehensive picture, even if it cannot yet be considered as complete and satisfactory.

The non-observation of X±(3872), the isospin violating decay pattern of X0, the absence of X0,± partners in the

beauty sector, which challenge the compact tetraquark interpretation [7, 8], are taken as starting points of our analysis 1.

On the other hand, an obvious merit of compact tetraquark models was that of strongly motivating the research on

charged resonances, which were eventually copiously observed, contrary to most expectations.

The evident proximity of meson-meson thresholds to the observed states, which appears as an impressive fine-

tuning in the case of the X0(3872), is also taken as a serious indication which, in the light of available data, seems

unlikely to be accidental.

Meson molecule models have the same problem with the proliferation of states, despite of the attempts made to

solve it. Moreover they have definitive problems at explaining prompt production at hadron colliders, especially in the

case of the X. Bona fide molecules like the deuteron are observed at hadron colliders, but only at very low transverse

momenta, contrary to the X, which is detected at extremely large transverse momenta (p⊥ � 15 GeV). These are very

serious features, often forgotten, which should not be ignored.

Because of these and other reasons, explained with more details in the text, we might conclude that none of these

two models reaches a fully satisfactory or definitive description of what observed in experiment, even though we must

recognize a certain degree of success of both of them at explaining the features of some specific resonances.

On the other hand, we are convinced that diquark degrees of freedom are essential for the construction of a theory

of multiquark resonances and that most of the work done in refining the predictions of the diquarkonium picture must

be part of it.

What has been missing in the diquarkonium model are sort of ‘selection rules’ explaining the paucity of states

which have been observed over the years. Same for the hadron molecules. Together with the presentation of hadron

molecule and diquark-antidiquark models, we collect here some ideas we have been working on, which never appeared

in an extensive discussion, to show one possible way to describe X and Z resonances as the result of an effective

interaction in meson-meson channels leading to the formation of resonant metastable states. This effective interaction

is due to the presence of the discrete spectrum of diquarkonia immersed in the continuum spectrum of would-be

molecules.

Special conditions are needed to switch on this interaction, but once they are met, sharp resonances are expected to

1We assume here that the experimental situation is definitive on these matters, being understood that any variation on these data, would revolu-

tionize our understanding of multiquark resonances.
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be produced. These conditions strongly restrict the number of possible states and we have used the best experimentally

assessed tetraquark resonance to test the picture. This discussion is presented in Section 6 and the arguments there

formulated are admittedly not yet fully satisfactory, although showing rather suggestive aspects.

The paper is organized as follows.

We first analyze the core of ideas and methods at the basis of meson molecule models, starting from those textbook

results on low energy scattering which we found useful to set the frame for the arguments to be developed. We criticize

the limits of the hadron molecule approach, and discuss just some of the various technical solutions employed. This is

done in Sections 2 and 3.

In Section 4 we present the diquarkonium model and the methods developed to obtain a spectrum of states which

remarkably reproduces the X,Z,Z′ mass pattern. The limitation of this model resides in the number of states predicted

which, at the time of this writing, have not been observed. If in some future the experimental picture will be revolu-

tionized by the appearance of the large number of expected resonances, together with X± states (which mysteriously

evaded observation until now) etc., the diquarkonium model alone will certainly be, in our view, the strongest and

most grounded option to describe this physics.

A more theoretical discussion of tetraquarks in the 1/N expansion [9] adds confidence on the specific role of

diquarks as the right degrees of freedom to treat the emergence of tetraquark poles in meson-meson amplitudes. This

is discussed in Section 5, which reproduces some results recently obtained.

This review might be read as a standalone research paper by skipping the first five sections. Section 6 stems

from some work initiated in [10] and especially in [11]. However incomplete it might appear, the approach presented

appears to us as one of the possible routes which should be explored to overcome the phenomenological problems of

XYZ resonances.

In addition to this, in Section 7 we have presented known results on some interesting approaches, which are needed

to offer a coherent picture of the work done in the field, going beyond the molecule picture of hadrons held together

by nuclear forces. This is also done with the purpose of underscoring the efforts towards a ‘unified’ approach to the

description of the observed phenomenology.

A report on the experimental situation can be found in the last part of the review, Section 8. We go through reso-

nance by resonance, referring to the theoretical interpretations presented in the paper and highlighting connections and

common features. The aim is always that of finding more or less hidden connections among the observed resonances.

This part is intended to be a guide to the existing spectroscopy, especially meant for ‘model-building’ purposes. We

omit a number of details which have been presented in other reviews.

The discussion on pentaquarks is limited to a brief report on what has already been done, especially in the diquark

model. Pentaquarks were, before their discovery, a highly undesirable option for hadron molecules. If new resonances

with tetraquark or exaquark quantum numbers will be discovered, and if the approach described in Section 6 will resist

to new forthcoming data on tetraquarks, it might straightforwardly be applied to more complex hadron structures. The

rules for doing these steps are explained, as we understand them at the moment.

Most likely to explain the nature of XYZP resonances does not require ‘new physics’, in the most common adopted

meaning, but likely some conceptual leap in the use of ‘old’ strong interaction dynamics. We also do not think that

XYZ resonances are sort of nuclear chemistry phenomena as they also occur, as witnessed by the prompt production

of the X, at very large transverse momentum.

We hope to offer in this paper some perspective on the field and hopefully a support to identify new research

directions.
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1.1. Naming and conventions

There is some confusion about the naming of the resonances. At the beginning, the letters X, Y and Z were

used with no clear criteria. The PDG decided to call X(mass in MeV) all the exotic quarkoniumlike states, with the

exception of the χc0(3915) (initially X(3915), then promoted to the ordinary charmonium name χc0(2P) in the PDG

2014, now assessed). However, a sort of convention is generally followed in the literature, which calls Z(mass) the

charged quarkoniumlike states, Y(mass) the vector 1−− ones, P(mass) the pentaquarks, and X(mass) all the other ones.

We will follow this convention, with the addition of the superscripts and subscripts used by Belle and BES III, to wit

Zc,Z
′
c,Zb,Z

′
b
,Z1,Z2, as well as Pc for the hidden charm pentaquarks. We call X(4140) the state seen in J/ψφ (known in

the past as Y(4140)), χc0(3915) the state seen in J/ψω (known in the past as X(3915), Y(3915), or Y(3940)), Z(4430)

the state seen in ψ(2S ) π (sometimes called Z(4475)).

The charged conjugated modes are always understood, unless specified. The convention for the phases is such that

C
∣∣∣D0
〉
=
∣∣∣D̄0
〉
, while C

∣∣∣D∗0
〉
= −

∣∣∣D̄∗0
〉
. The reader has to pay attention to different conventions used in the literature.

With a little abuse of notation, we will talk of C-parity for charged states, meaning “the C-parity eigenvalue of the

neutral isospin partner”.

We do not discuss the former Z(3930) and the X(3823), which are good candidates for the ordinary charmonia

χc2(2P) and ψ2(1D), respectively.

1.2. A very brief survey of the experimental picture

A detailed analysis of the experimental status of multiquark resonances will be presented in the last Section of this

report, together with their theoretical interpretations and references to experimental analyses.

Here we shall briefly review the basic experimental facts about the most compelling XYZ resonances to set the

stage for the discussion to follow.

The first clearly exotic multiquark resonance is the Z(4430), first claimed by Belle in 2007, but confirmed only in

2014 by the LHCb collaboration. It was observed in the

B̄0 → K−(ψ(2S ) π+) (1.1)

channel, i.e. Z(4430) → ψ(2S ) π+. The s quark from the weak b → cc̄s transition makes a K− with a ū quark from

a vacuum uū pair. The remaining u and d̄ quarks, together with the cc̄ pair, constitute the valence of the (ψ(2S ) π+)

resonance. How does hadronization work in this process? Is the (ψ(2S ) π+) resonance, otherwise dubbed Z(4430),

a compact four-quark hadron, like a baryon or a meson, but with a different quark skeleton? Or is it just a hadron

molecule kept bound for a finite lifetime by long range residual strong interactions?

In 2013 another resonance, the Zc(3900), was observed simultaneously by BES III and Belle, as a decay product

of the Y(4260)

Y(4260)→ π+(J/ψ π−) (1.2)

with Y(4260) being a JPC = 1−− neutral state, produced in initial state radiation in e+e− collisions. Y(4260) is also a

multiquark resonance candidate, albeit neutral, with a cc̄ quark pair in its valence. Therefore the (J/ψ π−) resonance,

otherwise dubbed Zc(3900), has again a minimal valence quark content of four, and JPC = 1+−.

The Zc(3900) appears in the three states of charge, and the same occurs for Z′c(4020), another, slightly heavier

JPC = 1+− resonance, also found in BES III data and also unequivocally exotic.
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The most aged of these resonances is however the neutral X(3872), first observed by Belle in 2003 in the decays

of the B meson, and then confirmed by all collider experiments. This can be also be found in the decay product

Y(4260)→ γ X(3872) (1.3)

as well as promptly produced at the vertex of hadronic collisions. The X(3872) has JPC = 1++ quantum numbers, as

confirmed with a high degree of precision. This resonance encodes some very problematic features

1. It does not have charged partners (so far);

2. Its mass is almost perfectly fine-tuned to the mass of the D0D̄0∗ meson pair;

3. It decays into J/ψ ρ and J/ψ ω with almost the same branching fraction;

4. It is an extremely narrow resonance, its width being Γ � 1 MeV;

5. It is almost degenerate to the JPC = 1+− Zc(3900) resonance.

The absolute neutralities of the X(3872) and Y(4260), which seems to be experimentally well assessed at the time

of this writing, does not speak loud as a signal of a four-quark structure, as it is instead the case for Z(4430), Zc and

Z′c. On the other hand we have to observe that a charmonium cannot decay violating isospin. A more complex quark

structure is therefore needed. The spectacular vicinity to the D0D̄0∗ threshold has suggested to many that the X(3872)

is a D0D̄0∗ loosely bound molecule. It is from this latter picture that we will start our discussion on models of XYZ

resonances, in the next Section.

Summarizing, in the charm sector we have X(3872),Zc(3900),Z′c(4020) and Z(4430). The latter might not be

included among the lowest states — it can be considered as a radial excitation of Zc(3900). In addition we have the

Y(4260), which might be considered as an orbital excitation of X(3872).

Therefore, on the basis of some elementary theoretical assumptions, let us stick to the three resonances X(3872),

Zc(3900), Z′c(4020), reminding that the X(3872) appears only in the neutral state of charge, differently from the other

two. Is this pattern repeated in the beauty sector? The answer that we can give to this question, on the basis of present

data, is ‘not entirely’.

Indeed a pair of resonances have been found in the b-sector, Zb(10610),Z′
b
(10650), very close to were expected

on the basis of simple quark mass considerations — and again very close to the B(∗)B̄∗ thresholds — and in the three

states of charge. But no trace of a neutral or charged Xb has been observed so far.

Strange valence quarks can be found in another resonance, first observed in 2009 by the CDF collaboration in

B→ K (J/ψ φ) (1.4)

named X(4140). The quark content is cc̄ss̄ and very recently the LHCb collaboration has confirmed its existence and

discovered similar resonances at higher masses.

In late 2015, two charged pentaquarks were observed in Λb baryon decays

Λb → K− (J/ψ p) (1.5)

the lowest lying with JP = 3/2− quantum numbers and the next with JP = 5/2+, with masses at 4380 MeV and

4550 MeV respectively. The exotic nature of pentaquarks, sometimes dubbed as Pc, is very clear, as it is the case for

the Zcs and Zbs.

On the basis of what said, we might also observe that low lying four-quark states appear with positive parities

whereas five-quark ones with negative.
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State M (MeV) Γ (MeV) (IG)JPC Details

X(3872) 3871.69 ± 0.17 < 1.2 1++ Section 8.1

Zc(3900)+ 3888.4 ± 1.6 27.9 ± 2.7 (1+)1+− Section 8.2

Z′c(4020)+ 4023.9 ± 2.4 10 ± 6 (1+)1+− Section 8.2

Y(4260) 4251 ± 9 120 ± 12 (0−)1−− Section 8.4

Z(4430)+ 4478 ± 17 180 ± 31 (1+)1+− Section 8.5

X(4140) 4146.5+6.4
−5.3

83+30
−25

(0+)1++ Section 8.6

Zb(10610)+ 10607.2 ± 2.0 18.4 ± 2.4 (1+)1+− Section 8.3

Zb(10650)+ 10652.2 ± 1.5 11.5 ± 2.2 (1+)1+− Section 8.3

Table 1: A brief summary of the exotic states we will discuss in the following. For more details, see Section 8, or the subsections devoted to the

single particle. Because of isospin breaking, the IG quantum numbers are not defined for the X(3872). With a slight abuse of notation, we will refer

to the C eigenvalue for charged states, as to “the C eigenvalue of the neutral isospin partner”. For the Zc(3900), we update the PDG 2014 average

with the more precise results by BES III.

Table 1 enumerates the properties of the states we briefly discussed here. To our understanding, those listed are the

more solid multiquark resonances on experimental grounds. Probably the amount of data available at this time is not

yet sufficient to fully understand the nature of XYZP resonances, but this is the challenge undertaken by many, which

we mean to review in this paper.

2. Scattering in presence of shallow bound states

In this and in the following Section 3, we will collect some known results from low energy scattering theory and

present, especially in Section 3, some arguments on the limitations of the loosely bound hadron molecule approach to

the interpretation of the X(3872) resonance.

The D0D̄0∗ molecule interpretation of the X(3872) is however very popular, and is functional to explain the X

isospin violation pattern. Thus we start from our discussion on models of multiquark resonances from this inter-

pretation. Some general results rederived here will be of use also in other Sections, when discussing the alternative

approaches to the hadron molecule.

2.1. Shallow bound states: the phase shift from wave mechanics

Consider two open-charm (or beauty) mesons a = {D0, B0} and b = {D̄∗0, B̄∗0} interacting at low energies through

a potential V which is a weak, large distance residual of strong interactions into hadrons. Assume that V allows a

discrete level at −B with B ≈ 0 as in the scheme in Figure 1. What is the effect of this bound state level on the ab→ ab

scattering?

The a and b mesons are approaching to each other from large separation r, where we assume they have a total

energy E ≈ 0 and V(r → ∞) = 0: the system with reduced mass m = mamb/(ma + mb) moves to small r values,

see Figure 1. The radial wave function χ(r) = r Rℓ=0(r) of the system at large separation is

χII(r) = A sin(kr + δ0) (2.1)
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where the subscript II defines a region of r such that r ≫ r∗, r∗ being a point where the wave functions at short and

large separations have to be matched. The region on the left of r∗ will be named region I and r∗ is assumed to be quite

larger than the effective range r0 of V but also quite smaller than 1/k. The value of k is k =
√

2mE ≈ 0 and the very

long-wavelength in (2.1) allows the approximation

χ′
II

χII

∣∣∣∣∣∣
r∗
≃
χ′

II

χII

∣∣∣∣∣∣
r=0

= k cot δ0 (2.2)

The determination of the phase-shift δ0 (which we will calculate in absence of orbital angular momentum, ℓ = 0) fully

defines the scattering amplitude 2

f (ab→ ab) =
e2iδ0 − 1

2ik
=

1

k cot δ0 − ik
(2.3)

The logarithmic derivative in (2.2) has to be matched with χ′
I
/χI . In region I the Schrödinger equation is

χ′′I − 2mVχI = 0 with χ(0) = 0 (2.4)

because V ≫ B, E all over I. Eq. (2.4) means that the ratio χ′
I
/χI will be independent of energy and, in particular, it

will stay the same also at some small negative energy ∼ −B. In that case

χ′
I

χI

∣∣∣∣∣∣
r∗
≃ (Ce−κr)′

Ce−κr

∣∣∣∣∣
r∗
= −κ = −

√
2mB (2.5)

where we took χI to be the wave function of the stationary state with binding energy −B. Therefore realizing the

matching condition, i.e. equating (2.2) and (2.5) we get the ‘universal’ result

cot δ0 = −
√

B

E
(2.6)

Both B and E are supposed to be close to zero, but in a fixed, finite, ratio. The phase shift determined does not

depend on the details of the unknown potential V(r), but only on its shallow discrete level at −B. Any potential which

allows a shallow bound state at −B will have the same scattering amplitude at low energies. Since strong interactions

between color singlets are expected to be weak and no definite form for their potential exists, it is natural to resort to the

results here described, whenever the recoil energies of the color singlets are small enough to allow the approximations

needed.

2.2. Shallow bound states: the phase shift from scattering theory

The same result (2.6), obtained in wave mechanics as in [12], can be re-derived in scattering theory 3. The

advantage of the following derivation is that it allows to study directly the overlap between a superficial bound state in

some potential V and the continuous spectrum scattering state.

The Lippmann-Schwinger equation for the scattering in-state Ψ+α is

Ψ+α = Φα +
1

Eα − H0 + iǫ
V Ψ+α (2.7)

2The scattering length as is defined as limit limk→0 k cot δ = −1/as so that the potential scattering cross section, in the same limit, is given by

σ = 4πa2
s .

3We follow closely the derivation in S. Weinberg [13] selecting those key results which are most useful to our discussion.
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Figure 1: Scheme of the very low energy (E ≈ 0) meson-meson scattering in a potential V , large-distance residual of strong interactions inside

hadrons. Assume V ≫ B, E within its r0 range, where −B is a discrete level of V , assumed to be attractive throughout the entire r range. Here it is

assumed that L = 0: no centrifugal barrier.

which is the solution of

(H0 + V)Ψ+α = EαΨ
+
α (2.8)

given that the unperturbed free states Φα are defined by

(Eα − H0)Φα = 0 (2.9)

Here α is a compound index labeling types and numbers of particles in the state, momenta and spin 3-components. We

consider V in the adiabatic approximation, i.e. V → 0 for t → −∞. This implies that Ψ+α = Φα in the far past t → −∞,

and that the energy eigenvalue Eα, which is independent of time, is the same for the two states.

Equation (2.7) can be multiplied on the left by V

V Ψ+α = V Φα + V
1

Eα − H0 + iǫ
V Ψ+α (2.10)

and a formal solution of the latter equation is

V Ψ+α = T (Eα + iǫ)Φα (2.11)

where

T (W) = V + V
1

W − H0

T (W) (2.12)

as is verified by substituting (2.11) into (2.10) and using (2.12) in the resulting lhs of (2.10). The expression in (2.12)

can be solved obtaining

T (W) =

(
1 − V

1

W − H0

)−1

V = V(W − H0)
1

W − H
= V + V

1

W − H
V (2.13)

where in the last equality one uses (W − H0) = (W − H + V). The in-state Ψ+α , which looks like a free particle state at

t → −∞, at later times t → +∞ looks like 4

Ψ+β =

∫

α

S αβΦα (2.14)

4given that out-states Ψ−α look like Φα at late times
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where the S -matrix is found to be 5

S αβ = δ(α − β) − 2πi δ(Eβ − Eα) Tαβ (2.15)

and

Tαβ ≡ 〈Φα|T Φβ〉 = 〈Φα|V Ψ+β 〉 (2.16)

according to (2.11).

The second term on the rhs of Eq. (2.13) allows two terms by completeness: one can be obtained summing on

bound states ψi, if any, the other summing on in-states Ψ+γ . Thus we get the Low equation,

Tαβ(Eα + iǫ) = Vαβ +
∑∫

i

〈Φβ|V ψi〉〈Φα|V ψi〉∗

Eα − Ei

+

∫

γ

TαγT
∗
βγ

Eα − Eγ + iǫ
(2.17)

where we sum over both the discrete and continuum labels (like momentum) characterizing the bound states ψi and

we defined Vαβ = 〈Φα|V Φβ〉. The completeness relation over the states in the discrete and continuous spectra requires

a contribution to the T matrix also from bound states: the form Ψ+α will assume at later times t → +∞ (scattering) is

affected by bound states in the potential V . We showed above that even not knowing the details of V(r), the scattering

phase shift can be determined if it is assumed that the potential admits a shallow bound state at E1 = −B and scattering

occurs at very low energy E. Following the derivation in [13] we will re-obtain the same result (2.6) for the phase shift

by solving the Low equation (2.17), i.e. determining Tαβ from the equation above, under the same general assumptions

on V and E.

At very low energy Eα, and in presence of a single shallow bound state at −B, very close to the onset of the

continuum, the second term on the rhs of (2.17) will be dominated by 6

〈Φβ|V ψi〉〈Φα|V ψi〉∗

Eα + B
(2.18)

with Eα ≈ B ≈ 0. This also dominates over transitions in the continuum spectrum Vαβ, thus we will neglect the latter.

This term is particularly relevant to our discussion and will be recalled in Section 6.

By Φα we mean a two-particle state with some total energy E = Eα relative to the rest frame and zero total

momentum P. In this discussion we will only consider S -wave states. To simplify the notation, we will not explicit

spin degrees of freedom. Therefore Φα ≡ ΦE,P=0 in the center of mass of the two-particle system. These states will

have the convenient normalization

〈ΦE′,P′ |ΦE,P〉 = δ(E′ − E) δ(P′ − P) (2.19)

if

ΦE,P =

∫
d3 p

1
√
μ|p|
δ(E − E1 − E2)Φp ; P−p (2.20)

where the latter two-particle states Φp ; P−p have conventional continuous spectrum normalization

〈Φp′
1

; p′
2
|Φp1 ; p2

〉 = δ(p′1 − p1) δ(p′2 − p2) (2.21)

Here μ = E1E2/(E1 + E2) derives from the definition of relative velocity in the center of mass

v =
|p|
E1

+
|p|
E2

(2.22)

5Substitute (2.15) and (2.16) into (2.14) finding Ψ+
β
= Φβ − 2πi

∫
α
δ(Eβ − Eα)〈Φα |V Ψ+β 〉Φα. This is the same result that would be obtained by i)

integrating (in β) the Lippmann-Schwinger equation (2.7) with weights f (β) e−iEβt , where f is a smooth function ii) using completeness onΦα in the

second term on the rhs of (2.7) iii) taking the t → +∞ limit, i.e. computing the contour integral on the Eβ lower half plane, keeping
∫
β
δ(Eβ−Eα) · · ·

to enforce the result of the residue theorem. The factor e−iEβt is needed to perform the contour integral.

6For the sake of comparison with (6.4) we have the interesting case α = β in which Tαα =
|〈ψi |V Φα〉|2
Eα−Ei+iǫ

.
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and in general E1 =

√
m2

1
+ p2, E2 =

√
m2

2
+ (P − p)2 (P = 0 in the center of mass). In the non-relativistic limit

μ ≡ m, the reduced mass 7.

The numerator in (2.18), because of the 1/
√
|p| factor in (2.20), would be singular for very low recoils |p| → 0,

which contradicts the analyticity requirement on the S -matrix. On the other hand

〈Φp ;−p|V ψP〉 (2.24)

has to be an analytic function when |p| → 0 — roughly speaking a constant at |p| = 0. Here the bound state is defined

by the total momentum P which in (2.24) is set to be zero (see (2.26)). Therefore using (2.20) in the determination of

〈Φβ|V ψ〉 ≡ 〈ΦE′,0|V ψP〉 (2.25)

we find

〈ΦE′,0|V ψP〉 ∼ δ(P)

∫ √
p E1dE1 δ(E

′ − E1 − E2) = g δ(P)
√
|p(E′)| (2.26)

where p =
√

2μE and μ is the reduced mass 8. Here the constant g measures the overlap of the bound state ψP=0 to the

continuum one ΦE′,0. The constant g can be determined as a function of μ and B by substituting V = H −H0 in (2.26).

We report this solution below.

The bound state term (2.18) can therefore be rewritten as

√
p(E)p(E′)

E + B
|g|2 δ(P) δ(P′) (2.27)

The denominator is the energy gap between E and −B as in Figure 1. The smaller this energy gap, the better is the

approximation of neglecting Vαβ in the Low equation, which otherwise would require the knowledge of V . Since we

have in mind the residual strong interactions between color neutral hadrons, and have little clue on the explicit form

of V , it is better to be in the approximation of small E + B gap.

As for the T -matrix elements in the Low equation (2.17) they are expressed in the center-of-mass of the two-particle

system as

Tαβ = TE,0 ; E′,P′ ≡ T (E, E′) δ(P) (2.28)

so that (2.17) becomes

T (E, E′) =

√
p(E)p(E′)

E + B
|g|2 +

∫ ∞

0

dE′′
T (E, E′′)T ∗(E′, E′′)

E − E′′ + iǫ
(2.29)

This version of the Low equation admits a solution

T (E, E′) =
√

p(E)p(E′) t(E)

t(E) =
|g|2

E + B
+

∫ ∞

0

dE′
p(E′)

E − E′ + iǫ
|t(E′)|2 (2.30)

7 Indeed, using (2.21) we find that

〈ΦE′ ,P′ |ΦE,0〉 =
∫

d3 p
1
√
μ|p|
δ(E′ − E1 − E2)

∫
d3 p′

1
√
μ|p′ |

δ(E − E′1 − E′2)〈Φp ; P′−p|Φp′ ;−p′ 〉 =

=

∫
d3 p

1

μ|p| δ(E
′ − E1 − E2) δ(E − E1 − E2) δ(P′) =

≡ δ(P′)

μ

∫
p dp δ(E′ − E)δ(E − E1 − E2) =

δ(P′)

μ
δ(E′ − E)

∫
E1 dE1 δ(E − E1 − E2) (2.23)

and the last integral gives exactly μ as can bee seen by replacing E2 =

√
E2

1
− m2

1
+ m2

2
8We have also used the last integral in (2.23) and p2/2m1 + p2/2m2 = E

12



as can be seen by direct substitution in (2.29). The function t(E) can be expressed in terms of p(E) =
√

2μE as follows

t(E) =

⎛⎜⎜⎜⎜⎜⎝
E + B

|g|2 + (E + B)2

∫ ∞

0

dE′
√

2μE′

(E′ + B)2(E′ − E − iǫ)

⎞⎟⎟⎟⎟⎟⎠
−1

(2.31)

The derivation of the previous solution is based on dispersion theory integrals and can be found in [13]. As explained

there, it is not unique as it relies on some analyticity requirements. However, all the different solutions converge to

Eq. (2.31) in the B→ 0 limit.

The latter integral can be computed in the complex plane with a cut on the real positive axis and using the residue

theorem at the poles E′ = −B and E′ = E + iǫ. This calculation gives

t(E) =

⎛⎜⎜⎜⎜⎜⎝
E + B

|g|2 +
π(B − E)

2

√
2μ

B
+ iπ

√
2μE

⎞⎟⎟⎟⎟⎟⎠
−1

(2.32)

As a last step towards the solution of the Low equation, let us analyze the coupling g reconsidering Eq. (2.26)

g δ(P)
√
|p(E)| = 〈ΦE,0|V ψP〉 = 〈ΦE,0|(H − H0)ψP〉 = (−B − E)〈ΦE,0|ψP〉 (2.33)

thus

〈ΦE,0|ψP〉 = −g δ(P)

√
|p(E)|

E + B
(2.34)

On the other hand

δ(P) = 〈ψP|ψ0〉 =
∫

E,Q

〈ψP|ΦE,Q〉 〈ΦE,Q|ψ0〉 = |g|2δ(P)

∫

E

⎛⎜⎜⎜⎜⎜⎝

√
|p(E)|

E + B

⎞⎟⎟⎟⎟⎟⎠
2

(2.35)

or

1 = |g|2
∫ ∞

0

dE

⎛⎜⎜⎜⎜⎜⎝

√
|p(E)|

E + B

⎞⎟⎟⎟⎟⎟⎠
2

(2.36)

with the solution 9

|g|2 =
√

2B

μ π2
(2.37)

which gives for the elastic T -matrix

T (E, E) =
1

π

√
E

√
B + i

√
E

(2.38)

We observe here the B ∼ |g|4 dependency which will be reobtained later, in a similar form (3.10), when connecting the

binding energy of the X(3872), interpreted as as a loosely bound molecule of open charm mesons, and the effective

strong coupling regulating its decay in the constituent mesons.

The phase shifts for elastic scattering, in the center of mass, are defined by the equation for the scattering amplitude

M

ME,0 ; E,0 = e2iδ(E) − 1 = −2πi T (E, E) (2.39)

where

S αβ = δ(α − β) + δ(Eα − Eβ) δ(Pα − Pβ) Mαβ (2.40)

to be compared with the expression in (2.15).

9More comments on this formula can be found in [14].
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Combining (2.38) and (2.39) gives again (2.6)

cot δ = −
√

B

E
(2.41)

where B, E → 0 remaining in a fixed ratio.

We use this result on the phase shifts in the next Section. We notice again that the formula obtained does not

depend on the details of the potential, but only on the position of the bound state energy level B compared to the

energy E of the scattering system. This is particularly useful in the case of strong interactions for which will not need

to model the static potential between two color-neutral hadrons. We might simply assume that there is some residual

strong interaction at long distances between two hadrons, like the D0 and D∗0 mesons in our specific case, and that the

potential is deep enough to accommodate a superficial (close to continuum) discrete level at energy −B.

From Eq. (2.37) we see that the overlap between the bound state ψP=0 and the the continuum state ΦE′,0 goes to

zero as B→ 0.

3. Loosely bound molecules

This section is devoted to the molecular picture of the X(3872), trying to cover most of its implications. We

will also discuss how the relation between binding energy and total decay rate constrains the most simple hadron

molecule interpretation, with particular reference to the case of the X(3872), and we will remark that a deuteron-like

interpretation of X has to confront with data on the production of light nuclei in in pp and Pb-Pb collisions at the LHC.

3.1. Relation between binding energy and the decay rate of X(3872)

We can use the result (2.41) in (2.3), or equivalently divide the rhs of (2.39) by 2ik, to obtain

f (ab→ ab) =
1
√

2mE

−
√

E
√

B + i
√

E
= − 1
√

2m

√
B − i

√
E

E + B
(3.1)

where μ = m, the usual reduced mass. The scattering amplitude displays a pole at E = −B, and the cross section 4π| f |2
has a resonant character

σ =
2π

m

1

E + B
(3.2)

at E ∼ B ≈ 0. Within a interval of time τ ∼ 1/(E + B) the free particle can be ‘locked’ in the finite motion region I

in Figure 1 and behave temporarily as a bound state c. The value of σ close to the resonance, is larger than 4πr2
0

(the

‘natural’ size for the cross section), where r0 is the range of the potential, because kr0 ≪ 1 meaning r2
0
≪ 1/E ∼ σ

at resonance. We limit our considerations to the S -wave cross section because we have in mind the problem of the

X(3872) as a resonance in the DD∗ scattering at low energies k → 0 where δℓ ∼ k2ℓ+1. Also, since X has 1++ quantum

numbers whereas D, D∗ are 0− and 1− respectively a P-wave scattering is forbidden by parity, while the D-wave option

would give a very small phase shift.

Here comes indeed the main point: in quantum mechanics the formation of a resonance requires the interplay

between the attractive potential and a repulsive centrifugal barrier, especially if the potential is weak, as in the case

of strong interactions between color singlets. This does not happens for an S -wave scattering, and hence it does not

happen for the X(3872).

14



In presence of a centrifugal barrier, a ‘quasi-discrete’ (metastable state) positive energy level at ǫ > 0 would be

possible, allowing a narrow resonance: the energy region in which fℓ ∼ 1/k, i.e. large compared with r0, has a relative

width ΔE/ǫ ∼ k2ℓ−1 for ℓ � 0 10.

Stated differently, even though the cross section enhancement (3.2) might be possible (although E ∼ B is a rare

event in hadron collisions with hard cuts, see Appendix A), it cannot anyway generate narrow resonances which

would require higher partial waves. In the case of the X(3872) at least ℓ = 2 would be required: but such partial waves

do not give significant contributions to the phase shifts when k → 0. A loosely bound DD∗ hadron molecule in a high

orbital angular momentum state would tend to be even larger than what it is in S -wave, damping the J/ψ (ρ/ω) decay

rates.

In quantum field theory, the process is ab→ c→ ab where we associate the propagator function to the temporary

bound state c. In this case, in place of the potential scattering description reported above, the interaction between a and

b is determined by the coupling of the two components to c. The propagator pole dominates the scattering amplitude

M in 11

f (β→ α) = − 1

8πEMαβ (3.3)

which in the standard relativistic formalism is defined by

S αβ = δ(α − β) − i(2π)4δ4(pα − pβ) Mαβ (3.4)

Eq. (3.3) is for elastic two-to-two body scattering, computed with a relativistic formalism (and including the phase

space calculation of the final particles). Therefore we can write

f (ab→ c→ ab) =
1

8π(ma + mb + E)
G2 1

(pa + pb)2 − m2
c

(3.5)

where E has the same meaning given in the previous section: total energy relative to the rest mass. Since E ≪ ma,b

we will neglect it in the first factor on the lhs. The constant G here defines the strong coupling of the free components

ab to the bound state c, G ≡ Gabc.

Recall now that

mc = ma + mb − B (3.6)

(pa + pb) ≃ ma + mb + E (3.7)

so that

(pa + pb)2 − m2
c ≃ 2(ma + mb)(E + B) (3.8)

where the very small terms B2 and E2 have been neglected. Therefore we have

f (ab→ c→ ab) ≃ G2

16π(ma + mb)2

1

E + B
(3.9)

Expressions (3.1) and (3.9) are two different descriptions of the same process whose cross section is obtained by

dσ/dΩ = | f |2. The first one is derived in low energy scattering theory. The second involves the propagation of a

10At low energies fℓ ≈ δℓ/k ∼ k2ℓ. Thus, if we write fℓ = 1/(gℓ − ik), the gℓ expansion starts at k−2ℓ (k−2ℓ ≫ k), larger terms like k−2ℓ−1 · · · are

neglected. Writing gℓ as gℓ ∼ B(E − ǫ) + · · · , with B ∼ k−2ℓ, we are retaining the first two terms, k−2ℓ and the subdominant k−2ℓ+1. Interpret ǫ > 0

as the quasi-discrete energy level quoted above. In order to have fℓ ∼ 1/k, i.e. large compared with r0, we need E ∼ ǫ. This region has a width

ΔE ∼ k2ℓ+1, and the relative width is ΔE/ǫ = ΔE/k2 ∼ k2ℓ−1. We finally observe that the low energy behavior tan δℓ ≈ δℓ ∼ k2ℓ+1 does not hold for

B = 0 in the case of (2.6) where tan δ0 → ∞.
11 dividing Mαβ by (2π)3 and including the wave function normalizations 1/

√
2E in Eq. (3.6.9) in Ref. [15]. Here E is the total energy which in

the non-relativistic approximation is E = E + ma + mb.
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virtual state as in quantum field theory. The non-physical pole appears in both with the same power. Indeed, at the

E = −B pole we find a relation between binding energy and strong coupling G which can be written as 12

B ≃ G4

512 π2

m5

(mamb)4
(3.10)

The advantage of this expression is that the strong coupling constant G is the same as that entering in the computation

of the decay rate c→ ab, which in general is an accessible experimental information. Observe that the scaling relation

between B and G

B ∼ G4 (3.11)

was already appreciated in the discussion of the Low equation (see (2.37)), but in that case g is normalized with the

nonrelativistic convention: G = 4π(ma+mb)g. Notice that in the calculation of the rate Γ(c→ ab) = G2Φ/2(ma+mb),

G has dimensions of energy, the two body phase space Φ being dimensionless.

We might suppose that the experimentally observed X(3872) resonance is the effect of a shallow bound state in

the potential V , describing the strong interaction within the D̄0D∗0 meson pair when low energy scattering D̄0D∗0 →
D̄0D∗0 occurs. As commented above, the D̄0D∗0 system might temporarily behave as a bound state, with very loose

binding energy B ≈ 0. Indeed we know that B = mD + mD∗ − mX ≈ 0. We found that a relation between B and the

strong coupling describing the decay of X into its components D̄0D∗0 holds.

In the case at hand ma = mD, mb = mD∗ and we define the strong coupling G through 13

〈D0D̄0∗(ǫ, q)|X(λ, P)〉 = G λ · ǫ∗ (3.12)

Taking into account the spin of D∗ and X, one should rather use

G2 → G2 1

3

⎛⎜⎜⎜⎜⎝2 +
(m2

X
+ m2

D∗ − m2
D

)2

4m2
X

m2
D∗

⎞⎟⎟⎟⎟⎠ (3.13)

which, however, turns out to be numerically ≃ G2. The actual value of G is extracted from data on the branching ratio

B(X → D̄Dπ), which is measured experimentally to be larger than 32%. However the total width is poorly known:

Γ(X) � 1.2 MeV. Using these two extreme values and the X → D̄Dπ decay rate

Γ(X → D̄Dπ) =

∫ (mX−mD)2

(mD+mπ)2

ds
1

3

1

8πm2
X

3
(
G
√

2
)2

p∗(m2
X ,m

2
D, s)×

× 1

π

s/mD∗ ΓD∗ B(D∗ → Dπ)

(s − m2
D∗ )

2 + (s/mD∗ ΓD∗ )2

mD∗√
s

p∗(s,m2
D
,m2
π)

p∗(m2
D∗ ,m

2
D
,m2
π)

(3.14)

where the decay momentum is p∗(x, y, z) =
√
λ(x, y, z)/2

√
x, λ being the Källén triangular function, it is found that

G ≈ 4 GeV. Considering for example a branching fraction of B(X → D̄Dπ) ≃ 0.32, we obtain B = Bexp on assuming

a total width of the X as large as ≈ 300 keV: lower values of ΓX would also be possible for higher branching ratios

B(X → D̄Dπ), whereas higher ΓX values are excluded. These conclusions are displayed by the shaded areas in

Figure 2, which are limited by the hyperbolae

B(X → D̄Dπ) · Γ(X) ∼ G2 ∼
√

B (3.15)

obtained fixing the value of B [17]. The not-excluded region is quite small and a high resolution on the width of

the X(3872) would be necessary — one should be able to go below Γ(X) � 300 keV. An accurate determination of

B(X → D̄Dπ) and Γ(X) would allow to test (3.10) and the molecular interpretation behind it.

12A derivation of this formula, which is a straightforward consequence of the considerations in [12] leading to (3.1), can be found in [16].
13Since X has positive charge conjugation, the final state is | f 〉 = (|D0D̄0∗〉− |D̄0D0∗〉)/

√
2. When extracting g defined in (3.12) from data a factor

of
√

2 has to be included: G →
√

2G.
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Figure 2: Given the experimentally excluded region (shaded), a loosely bound molecule, has total width ΓX , branching ratio B(X → D̄Dπ)

and binding energy B = mD + mD∗ − mX as in the plot. The approximate values are used: mX = 3871.66 MeV, mD = 1864.84 MeV and

mD∗ = 2006.96 MeV for B = 0.14 MeV and a slightly modified value for mX = 3871.79 MeV in order to get B = 10 keV. A measurement of the

total width Γ(X) ending in the shaded area would falsify the low energy resonance scattering mechanism described.

3.2. Scattering length of the X(3872) as a loosely bound molecule

The extremely small binding energy of the X(3872) makes it an ideal candidate for a loosely bound molecule,

and a perfect example where the rigorous low energy universality could be applied. This was firstly done in [18] and

slightly later in [19] to study different implications of the shallow bound state theory to the study of the X.

A priori, the quantum mechanical state for the X(3872) can be a superposition of all the hadronic states with the

right quantum numbers, JPC = 1++ [19]

|X〉 =
√

Zmol

∫
d3 p

(2π)3
ψ̃(p)
|D0(p)D̄∗0(−p)〉 + |D̄0(p)D∗0(−p)〉

√
2

+
∑

H

√
ZH |H〉 (3.16)

In the previous expression ψ̃(p) is the momentum space wave function of the D mesons — see Eq. (3.19) below

— while |H〉 are other hadronic states, discrete or continuous. These can be other molecular components like

|D+(p)D∗−(−p)〉, charmonium states or even compact four-quark objects. The presence of the latter ones will play

an essential role in the mechanism explained in Section 6. The key question is which of these different components is

relevant to the total wave function or, in other words, how the probabilities Zi look like.

The probabilities for the states scale as ZH ∼ 1/δ2
H

as, where δH is the mass splitting of the X — or of the loosely

bound molecule in general — with respect to the state H.14 This behavior has been computed in [19] using an explicit

effective field theory calculation but can also be seen qualitatively from the more general Eq. (2.34). It tells us that

√
ZH ∼

g

δH

⇒ ZH ∼
|g|2

δ2
H

∼
√

B

δ2
H

∼ 1

δ2
H

as

(3.17)

14 The fact that δH ≃ 0 and 8 MeV for D0D̄∗0 and D+D∗− respectively implies a suppression of the second one in Eq. (3.16). This explains the

observed isospin violation of the X from a molecular point of view.
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where we used E+B ≈ δH and that fact that, as can be seen from (2.6) and (2.41), in the E ∼ B ∼ 0 limit the scattering

length of the ab→ ab process becomes

as =
1
√

2mB
(3.18)

which is divergent in the strict B→ 0 limit. Applying this result to the case of the X with m = mDmD∗/(mD +mD∗ ) and

B = mD +mD∗ −mX one finds as ≃ 11.97 fm, an extremely large number. It has been shown in [20] that this scattering

length can hardly be reconciled with the one extrapolated from experimental data on the full width of X(3872), since

the latter one appears to be at least a factor of 3-4 times smaller that the one expected from shallow states theory.

Moreover, the wave function of the loosely bound molecule for separations r ≫ ℓ, ℓ being the typical size of the

components, is universally given by [12, 21] (see also Eq. (2.5))

χ(r) ∝ e−r/as ⇒ Rℓ=0(r) =
χ(r)

r
∝ e−r/as

r
(3.19)

Therefore, the typical size of the loosely bound molecule is as itself. The X(3872) would therefore be an unnaturally

extended objected, much larger than the typical hadrons (and ∼ 3 times larger than the deuteron) and of the typical

range of interaction between heavy mesons, 1/mπ. In other words, while the binding energy for the X would be

expected to be of order m2
π/2m ≃ 10 MeV, while the actual value B ≃ 0.14 MeV is much smaller. From a certain point

of view this feature can explain some of the peculiar properties of this resonance but, on the other hand, it requires a

good degree of fine tuning that, if not properly explained, might make the molecular interpretation questionable.

In [19] two possible explanations for this phenomenon are given. The first possibility is to have a fine tuning that

only interests the D0D̄∗0 component of (3.16), without influencing the others. This could happen, for example, in the

meson-meson potential so that it allows for a bound state very close to threshold. If the other detunings δH are larger

than the natural energy scale, the very large scattering length would suppress all the other states |H〉. In this case, the

X(3872) would be a purely D0D̄∗0 molecular state. Although this is an appealing solution, we will see in the next

section that a real, negative energy meson molecule faces severe difficulties when the prompt production at hadron

colliders is taken into account.

The second mechanism proposed in [19] to explain the large scattering length instead relies on a Feshbach reso-

nance mechanism [22, 23] between the D mesons and one charmonium level, specifically the χc1(2P). This situation

is, however, probably too fortuitous to be taken seriously. First of all, the χc1(2P) has not been observed yet and sec-

ondly, potential models [24, 25] predict δχc1(2P) ≃ 90 MeV. To bring it down to values compatible with the application

of the Feshbach formalism would require quite large theoretical errors.

If one ignores for the moment the issues related to the prompt production, and assumes that the X(3872) is indeed

a purely molecular state, it is also rather immediate to explain the narrow width of this particle. The total width, ΓX ,

will get contributions from both the decays of its constituents, D∗ → Dπ and D∗ → Dγ (see e.g. Eq. (3.14)), and

the decays into other hadronic states, like for example lower charmonia, X → ψ(2S )γ or X → J/ψ ππ. However,

since the states |H〉 in (3.16) are suppressed by 1/as, the second possibility can be neglected and one remains with

ΓX ≈ ΓD∗ ≃ 65 keV [26].

The scattering amplitude (3.1) can be rewritten in terms of the scattering length as

f (ab→ ab) ≡ f (E) = − 1

γ + i
√

2mE
(3.20)

where we have neglected the iǫ regulator for convenience and defined γ = 1/as. As already pointed out, if γ > 0, f (E)

has a pole for E < 0, in which case we are in presence of a real bound state. On the other hand, if γ < 0 then the

pole happens still for negative values of E, but on the unphysical Riemann sheet, and in this case we refer to a virtual

(anti-bound) state.
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This is all strictly true for a stable shallow bound state. In order to take into account the finite width of the X(3872),

the authors of [26] allowed both the scattering length and the reduced mass that is implicit in E to have an imaginary

part:

f (E) = − 1

Re γ + i Im γ + i
√

2m(E + Γ(E)/2)
(3.21)

with Γ(E = 0) = ΓD∗ . While the latter one takes care of the direct decay of the D∗ constituent, Im γ accounts for

inelastic scattering processes. It can be argued that if the total energy E is close to the D0D̄∗0 threshold then the line

shape dΓ(B+ → K+D0D̄∗0)/dE has energy dependence that only comes from the | f (E)|2 factor.15 Using the 2003 data

reported in [27] by the Belle collaboration, it was shown that the Re γ > 0 situation was favored with respect to the

opposite one [26], hence suggesting for the X to be a real, negative energy bound state — again, if the other difficulties

of the molecular model are ignored.

3.3. X(3872) as a deuteron-like state

3.3.1. Prompt production disfavors a pure molecule interpretation

At very low energy, proton-neutron scattering pn→ pn, with S = 1 as in deuteron, has a cross section

σpn =
2π

m B
≃ 2.41 b (3.22)

using the binding energy B = 2.22 MeV in deuteron. This agrees fairly well with the experimental value ∼ 3.6 b. This

does not mean that a bound state deuteron gets formed, which might only happen if the pn system looses energy and

falls in the bound state. It is rather the manifestation of the enhancement in the scattering cross section due to the

presence of a shallow bound state.

As suggested in the previous sections, the X(3872) might be a deuteron-like object: a real bound state whose

lifetime is given by the shorter lived component, the D∗. Are deuterons produced at LHC at large transverse momenta?

How do their production rates compare with that of of X(3872)? If the nature of the two particles is indeed almost the

same, then the behavior of the X should not be too far away from that of the deuteron.

In a deuteron-like description of X(3872) based on a (three-dimensional) square well potential of depth V0 ≃
6.7 MeV and range R ≃ 3 fm, a bound state energy B = 0.14 MeV is obtained. The expectation value of the kinetic

energy in the bound state ψ is found to be

〈T 〉ψ ≃ 1.29 MeV (krel ≃ 50 MeV) (3.23)

with an average radius of 〈r〉 ≃ 10 fm.16 Note that the relative momentum has a rather higher value with respect to

those discussed before. However we have to observe that, in this model, the D and D̄∗ mesons have indeed finite

negative total energy, i.e. they are stably bound together. To make this happen, the initially free D̄D∗ pair produced

in pp hadronization must interact with at least a third hadron, to change abruptly its relative kinetic energy and fall in

the discrete (even though superficial) level of the attractive potential [20, 30] — see the discussion in Appendix A.

The expected X width would therefore be ΓX ≡ ΓD∗ ≈ 65 keV, even at a binding energy as large as B = 0.14 MeV

(compare to Figure 2), for it would be a stable bound state whose lifetime coincides with the lifetime of the shortest

lived component.

15For energies close to threshold the decay matrix elements gets a f (E) resonant factor [26].
16Using the central value of the latest measurement of the binding energy [29], B = (3±192) keV, one would find krel ≃ 20 MeV and a humongous

size of 〈r〉 ≃ 58 fm!
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Figure 3: Comparison between the prompt production cross section in pp collisions of X(3872) (red), deuteron (green), helium (orange), and

hypertriton (blue), from [28]. The X data from CMS are rescaled by the branching ratio B(X → J/ψ ππ). Deuteron data in pp collisions are taken

from ALICE. The helium and hypertriton data measured by ALICE in Pb-Pb collisions have been rescaled to pp using a Glauber model. The

dashed green line is the exponential fit to the deuteron data points in the p⊥ ∈ [1.7, 3.0] GeV region, whereas the dotted orange one is the fit to the

helium data points. The solid and dot-dashed blue lines represent the fits to hypertriton data with RAA = 1 (no medium effects) and an hypothetical

constant value of RAA = 5. The hypertriton data points are horizontally shifted at the bin centers of gravity — being defined as the point at which

the value of the fitted function equals the mean value of the function in the bin. Left Panel: the hypertriton data are fitted with an exponential curve,

and the light blue band is the 68% C.L. for the extrapolated RAA = 1 curve. helium data in the p⊥ ∈ [4.45, 6.95] GeV region are also fitted with

an exponential curve. Right Panel: the hypertriton and helium data are fitted with blast-wave functions, whose parameters are locked to the helium

ones.

We conclude that the formation of the X resonance might occur either via a low energy resonant scattering phe-

nomenon or via multi-body final state interactions producing a deuteron-like state whose metastability is provided

by the shorter lived component in the system, namely the D∗ particle — energetic arguments do not suggest that the

formation of the D̄D∗ molecule stabilize the D∗ within the bound state.

The deuteron-like case, might be more realistic when considering X prompt production in high energy pp collisions

at the LHC, with high transverse momentum cuts on hadrons. Indeed in this case it is very unlikely that the relative

energy in the center of mass of the D̄D∗ system is E ∼ B ∼ 0 as required by the shallow bound state formalism,

especially when high transverse momentum p⊥ cuts are considered. This latter point has thoroughly been discussed

using Monte Carlo simulations [20, 30–32]: the main observation is that the relative momentum in the center of mass

of the pair krel has an average value 〈krel〉 ≈ 1.3p⊥ which grows with p⊥ and the X(3872) has been measured with high

cross section at CMS with p⊥ � 12 GeV — see Figure 3 [28]. For more details on this point see Appendix A.

On the other hand, if we wish to interpret the X(3872) as a deuteron-like particle formed in hadronization, then

we have to confront with data on production of deuteron, or other loosely bound light nuclei, in pp collisions at high

transverse momenta. In particular it is useful to compare the large production cross sections of X(3872) observed by

CMS at high p⊥ with the extremely small deuteron production expected in the same region extrapolating recent data

from the ALICE collaboration, shown in Figure 3. Data points at higher p⊥ will be collected in the future to help this

comparison. At any rate, the extrapolation of the data on deuteron, Helium-3 and hypertriton — all bona fide loosely

bound molecules — clearly shows how the X(3872) is too copiously produced at the vertex of high energy collisions

to be easily interpreted as a meson molecule with tiny binding energy. Although more data will clearly provide an

essential insight, it is our opinion that the comparison with the experiment speaks against a molecular interpretation

of this resonance.
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Recently, it has been proposed that, at high pT , the production of exotic states depends on the short-range nature,

namely on the number of quarks which compose the state, regardless of their molecular or compact nature, so that

prompt production could give no information about the nature of these states. This would agree with the predictions

of counting rules [33–35]. However these rules are derived for the exclusive reactions only, where all the (relatively

small, as discussed in [35]) center of mass energy is shared among few final hadrons, and do not apply to very high

energy inclusive production of exotic states. In any case, in Figure 3 one can appreciate that the slope of the deuteron

is much steeper than the one of hypertriton, which is at odds with the naı̈ve counting (6 quarks versus 9 quarks).

The short-range nature of the production would also be inconsistent with the use of final state interactions to get the

enhancement of two orders of magnitude needed to reach the experimental value of the cross section [36–39] — see

also Appendix A.

3.3.2. Production through cc̄

An alternative idea that can justify the X(3872) prompt production cross section has been proposed in [40, 41]. As

already explained in Sec. 3.2, the X(3872) can a priori be represented by a superposition of all the hadronic states with

the right JPC = 1++ quantum numbers.

The authors of [40, 41] express the X(3872) state as

|X〉 =
√

Zcc̄ | χc1(2P)〉 +
√

Zmol |DD∗〉 (3.24)

where states with a different number of ‘valence’ quarks are superimposed.

Here the state |DD∗〉 is intended as summed over momenta — see Eq. (3.16). The observables like the prompt

production, the b-production and the quark annihilating decays can be explained through the charmonium component,

while the hadronic decays into DD π, DD γ, J/ψρ and J/ψω through the molecular one.

The results of the two papers are in agreement. Here we will follow the notation used in [41]. The authors use

the Non-Relativistic QCD (NRQCD) approach [42] at Next-to-Leading Order (NLO), which has proven to be quite

successful in reproducing the yields of J/ψ [43] and χcJ(1P) [44] at Tevatron and LHC. The production cross section

of the X(3872) in the J/ψπ+π− mode can then be written as

dσ(pp→ X(J/ψπ+π−)) = dσ(pp→ χc1(2P)) Zcc̄ B(X → J/ψπ+π−) (3.25)

while the cross section for the production of the charmonium can be written using the NRQCD factorization as

dσ(pp→ χ1c(2P)) =
∑

i, j,n

∫
dx1 dx2Gi/p(x1)G j/p(x2) dσ̃(i j→ (cc̄)n)〈Oχc1(2P)

n 〉 (3.26)

In the previous expression i and j enumerate the partons, and run over gluons, light quarks (u, d, s) and antiquarks.

Moreover, Gi/p(x) is the Parton Distribution Function (PDF) of the proton and dσ̃ is the partonic cross section. The

collective index n instead contains color, spin and angular momentum of the intermediate cc̄ pair, and 〈Oχc1(2P)
n 〉 is a

long distance matrix element embedding the conversion from cc̄ to an actual charmonium. At NLO we only have

n = 3P
[1c]

1
, 3S

[8c]

1
.

The authors of [41] then use the available data from CMS [45] to fit the free parameters of Eq. (3.26), and success-

fully reproduce CDF data [46]17. They show that both the prompt production and the production from B decays can

be explained with a large weight for the χc1(2P) component estimated to be

Zcc̄ = (28 − 44)%. (3.27)

17The prediction obtained from the fit underestimate the LHCb data [47] by a factor of 2, which might be due to a large theoretical uncertainty.

21



Nevertheless there is no reason not to include in the state (3.24) a compact diquarkonium state (see Sec. 4) or any

compact tetraquark state. It is more natural to superimpose states having an equal number of ‘valence’ quarks rather

than states with an increasing number quarks as in (3.24). A compact tetraquark content would as well account for

both the production and decays of the X(3872), resulting in a simpler description which is able to explain the same

observables. We remind here that the model for baryon production (incorporated in shower Monte Carlo libraries

and generally used to study hadron collisions) is based on the diquark-quark color neutralization. In that case no

meson-meson component would be needed.

3.4. Consequences of the Heavy Quark Spin Symmetry

The results obtained in the previous section for shallow bound states apply to every type of molecule. Also Heavy

Quark Spin Symmetry (HQSS) can be used to make universal predictions. It arises in systems with heavy Q and light

quarks in the mQ → ∞ limit, with Q = {c, b}. In fact, the hyperfine interaction between the spin of the heavy quark and

the chromomagnetic field generated by the light degrees of freedom appears at O(1/mQ) in the Heavy Quark Effective

Theory (HQET) Lagrangian. Consequently, in the mQ → ∞ limit, the properties of heavy mesons and quarkonia

(e.g. their masses) are independent of the heavy spin. Light quarks are insensitive to the spin and flavor of the heavy

quark, which behaves as a spectator.18 In particular, since pseudoscalar and vector heavy mesons and quarkonia are

degenerate at lowest order, they can be collected in spin multiplets, e.g. (D,D∗), (B, B∗), (ηc, J/ψ ) and (ηb,Υ). This

symmetry holds for heavy meson molecules as well, and can be employed to study their spectrum and decay modes,

independently of the details of the potential. Corrections to this approximations are of order O(ΛQCD/mQ), i.e. ∼ 25%

for the charm and ∼ 10% for the bottom, if constituent quark masses are considered.

To lowest order, the spin of the heavy quark and that of the light one are completely decoupled. When this happens,

the Hilbert spaces of the heavy quark spinors and of the remaining degrees of freedom are completely separated.

Consequently, for pseudoscalar (P) and vector (V) heavy-light mesons, the total wave function can be written as the

direct product of the heavy quark spinor times the wave function of the remaining degrees of freedom

ΨP = ψ̄q σ
2 χQ and ΨV = ψ̄q σ

2σ χQ (3.28)

where χQ is the Pauli two-dimensional spinor of the heavy quark, ψ̄q is the wave function of the bound light antiquark

and the spinless heavy quark and σ are the Pauli matrices, suitable to spin-1 states. Note that we are using a non-

relativistic formalism, and hence the antiparticles are independent of the particles, i.e. ψ̄q � ψ
†
q.19 This implies that no

creation/annihilation of pairs is allowed. In general ψ̄q(r) will be a complicated object containing information about

everything but the spin of the heavy quark, e.g. spinor of the light antiquark, spatial distribution of the Qq̄ pair, etc.

Note also that with our notation, the wave functions for the respective antimesons are [48]

Ψ̄P = χ̄Q σ
2ψq and Ψ̄V = χ̄Q σ

2σψq (3.29)

Since the spin-flip of the heavy degree of freedom is suppressed by powers of 1/mQ, the spin of the QQ̄ pair can

be used as a “label” for the state. If one assumes the X, ZQ and Z′
Q

to be molecular states, then using the SU(2) Fierz

identities as explained in Section 4.3, it is possible to rewrite the total spin wave function of the molecule in the [QQ̄]

and [qq̄′] basis rather than in the [qQ̄] and [Qq̄′] one. If in Eqs. (3.28) and (3.29) we only focus on the spin part of the

full wave function, it is possible to find [48, 49]

X ∼ Ψ̄VΨP − Ψ̄PΨV ∼ |1QQ̄, 1qq̄〉 (3.30a)

ZQ ∼ Ψ̄VΨP + Ψ̄PΨV ∼ |0QQ̄, 1qq̄′〉 + |1QQ̄, 0qq̄′〉 (3.30b)

Z′Q ∼ Ψ̄V ×ΨV ∼ |0QQ̄, 1qq̄′〉 − |1QQ̄, 0qq̄′〉 (3.30c)

18This is exactly analogous to ordinary atomic physics where, at the lowest level, the heavy nucleus just provides a static source for the Coulomb

field.
19ψq only contains annihilation operators for the particle.
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where by Sq1q2
we represent the spin of the q1q2 pair, P = (D, B) and V = (D∗, B∗).

The previous spin decompositions can be used to extract selection rules for the decay of the would-be meson

molecules into quarkonia. For example, one readily deduces that the hadronic transition X → ηcππ should be sup-

pressed because the spin of the ηc is Scc̄ = 0, while the decay into spin-1 charmonia should be favored. In [49],

Eq. (3.30a) is used to estimate the ratio between the widths Γ(X → π0χc1) and Γ(X → π+π−J/ψ ),

Γ(X → π0χc1)

Γ(X → π+π−J/ψ )
≈ 0.35

(
0.5 GeV

μ

)2
(3.31)

where μ is a dimensional factor that takes into account the P-wave emission of the single π0. The X has, in fact,

JP = 1+ while the π0 and χc1 are JP = 0− and 1+ respectively. Therefore, in order to conserve both angular momentum

and parity the decay must be in P-wave. From the above equation it is clear that for reasonable values of μ the decay

into π0χc1 should have an observable rate.

In [48] HQSS is also employed to make several predictions about the Zb and Z′
b

states. These considerations clearly

apply to the charm sector as well, albeit with larger uncertainties. First of all, Eqs. (3.30b) and (3.30c) show that the

magnitude of the couplings to J = 0 and J = 1 bottomonia are the same in both the Zb and the Z′
b
. Moreover, in the

mb → ∞ limit, the 0bb̄ and 1bb̄ bottomonia are degenerate, as well as the Zb and Z′
b
. It then follows that the two Z

(′)
b

states are expected to decay into degenerate states with lower masses and their widths should be roughly the same,

Γ(Zb) ≈ Γ(Z′
b
). Moreover, since the combinations (3.30b) and (3.30c) are orthogonal, the decay Z′

b
→ B̄B∗ is forbidden.

Both these predictions are in good agreement with the data. In [48] considerations about the Υ(5S ) → Υ(nS ) π+π−

process as compared to the Υ(5S ) → hb(kP) π+π− were also made. In particular, even though the coupling to J = 0

and J = 1 bottomonia have the same magnitude, they have opposite sign. This is manifest in the interference pattern

for the two decay previously mentioned.

In [50] the HQSS was employed for the study of the Y(4660). Because of its decay into ψ(2S ) π+π−, it is interpreted

in the molecular picture as a ψ(2S ) f0(980) bound state.20 The main consequence is the expected existence of the other

state of the heavy spin multiplet, namely the Yη = η
′
c f0(980). In particular, it can be estimated [50] that the branching

ratio for the B+ → η′c K+π+π− process is of order 10−3 and hence it should be very likely to observe the Yη in the

η′c π
+π− final state of the previous decay at Belle and BABAR.

3.5. An effective field theory approach to heavy meson molecules

Another potential-independent tool for the study of the decays of loosely bound molecules has been developed and

employed in [52–58]. It is a Non-Relativistic Effective Field Theory (NREFT) obtained from the time-honored Heavy

Meson Chiral Theory [59]. The work on this topic is copious and it has been applied mostly to the prediction of the

branching fractions for the radiative and hadronic decays of the XYZ resonances.

The hypothesis about the molecular nature of the states is implemented in the model by forcing the exotic reso-

nances to couple to their constituents only, as a consequence of Weinberg’s compositeness theorem [14, 60]. It then

follows that every decay into a final state different from the constituents themselves must happen via a heavy meson

loop. In Figure 4 we report an example of such process for the Zc → J/ψ π decay.

The typical velocity of the heavy mesons involved in the previous loops is

v ≈
√
|MX − 2m|

m
(3.32)

20The same authors consider the f0(980) to be a KK̄ molecule [51]. The Y(4660) would be a sort of ‘matryoshka’ molecule, where the interplay

of the different scales involved is not clear.
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Figure 4: Typical heavy meson loop used in NREFT to describe the decay of the exotic states. In this figure the Zc → Jψπ decay happens through

an intermediate DD∗ loop, as imposed by the molecular nature of the Zc(3900).

where MX is the mass of the exotic states and m that of the open flavor mesons. Being the former ones very close to

threshold, such velocities are small and hence allow for a non-relativistic treatment. This is done by letting vμ → (1, 0)

in the HQET bi-spinors (see Section 3.6.1 below for their definitions). As a result of this procedure, the interaction of

the XYZ states with heavy pseudoscalar and vector mesons is described by the following terms

LX =
gX√

2
Xi†
(
P̄V i − PV̄ i

)
+ h.c. (3.33a)

LZQ
=

gZQ√
2

Z
i†
Q

(
P̄V i + PV̄ i

)
+ h.c. (3.33b)

LZ′
Q
= igZ′

Q
ǫi jk(Z′Q)i†V̄ jVk + h.c. (3.33c)

The fields X and Z
(′)
Q

annihilate the exotic meson states, while the P (P̄) and V (V̄) annihilate the pseudoscalar and

vector (anti)mesons respectively. In particular, the normalization of the states is such that P|P(p)〉 = √mP|0〉 and

V i|V(p, λ)〉 = λi √mV |0〉, where λ is a polarization vector. The indices i, j and k are only spatial, as a consequence of

the non-relativistic limit. The gi’s are effective strong couplings to be fitted from the data — see e.g. [54, 56, 57].

The smallness of the velocities also allows to substitute the relativistic heavy mesons propagator with its non-

relativistic version

i

p2 − m2 + iǫ
−→ 1

2m

i

p0 − p2

2m
− m + iǫ

(3.34)

It is important to note that the effective couplings can be large and hence it is not obvious a priori that including

one-loop diagrams only is enough. However, since v is here a small parameter, one can indeed apply a power counting

procedure to estimate the relevance of higher order processes and consequently determine the applicability of pertur-

bation theory. In particular, heavy meson loops imply a non-relativistic integral over dp0d3 p/(4π)2 and hence count as

v5/(4π)2 while the propagator in Eq. (3.34) contributes with a 1/v2, given that the states are close to threshold. Lastly,

if the interaction vertices in (3.33) contain derivatives they will come with either an additional power of v or of the

outgoing momenta q, depending if the derivative acts on the heavy meson running in the loop or on the external legs.

This NREFT has been employed in [57] to shown that the branching ratios for the Z
(′)
c → ηc ρ decays can provide a

powerful tool of discrimination between meson molecule and compact tetraquark. In Figure 5 we report the likelihood

distributions for the following ratios

RZ =
B(Zc → ηc ρ)

B(Zc → J/ψ ρ)
and RZ′ =

B(Z′c → ηc ρ)

B(Z′c → hc π)
(3.35)

computed using the two models. As one immediately sees, the predictions differ from each other by more than 2σ

and hence the ηc ρ channel can be used as an experimental tool to probe the internal structure of the charged Z
(′)
c

states. The same authors fitted the couplings gZc
and gZ′c from data, assuming for the total width to be saturated by
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Figure 5: Likelihood distributions for the ratios in Eq. (3.35) as computed in [57]. The red line corresponds to the results obtained using the NREFT

for the molecular model, while the black one corresponds to the diquarkonium picture. The yellow (green) band corresponds to the 68% (95%)

confidence region. The two models provide significantly different predictions.

the D(∗)D∗, ηc ρ, hc π J/ψπ and ψ(2S ) π final states. Once the couplings are known one can compute the ratios for the

decays of the two different Z
(′)
c into the same final state, assuming molecular nature. One finds

B(Zc → hcπ)

B(Z′c → hcπ)
= 0.34+0.21

−0.13 and
B(Zc → J/ψπ)

B(Z′c → J/ψπ)
= 0.35+0.49

−0.21 (3.36)

The previous estimates essentially tell us that, within theoretical errors, the branching fractions for the Zc and Z′c
into the same final state should be of the same order of magnitude. Both should be observed in both channels. The

hcπ channel might indeed be compatible with experimental data, where a hint of Zc is seen (albeit not statistically

significant). On the other hand the Z′c is completely missing from the J/ψπ final state, which seems to be in contrast

with the molecular prediction — see Section 8.2.

A slightly different approach has been used in [19, 52, 58] to describe the X(3872). In this case, the interaction

Lagrangian does not contain the X field explicitly but it only describes the interaction of the D mesons with pions

and charmonia. Instead of requiring the presence of intermediate open flavor meson loops as explained above, the

authors automatically implement the molecular hypothesis by describing the X(3872) with the interpolating field

X = (DD̄ − D̄D)/
√

2. This method has been used to describe the X → D̄0D0π0 [52] and X → χcJπ
0 [58] decays,

as well as to provide an explicit implementation of the fine tuning required to explain the unnaturally large scattering

length of the X(3872) [19] — see Section 3.2 above.

3.6. Phenomenological realizations of the meson-meson potential

Most of the considerations made so far about loosely bound molecules follow strictly from the application of the

theory of shallow bound states, or of the HQSS. The results obtained in the two cases are universal in the B → 0

and mQ → ∞ limits respectively, as they do not rely on the detailed knowledge of the binding potential, but rather

on the mere existence of a (loosely) bound state. The actual interaction between the two mesons is the complicated

result of residual strong forces between color singlet objects. It then follows that its description must rely on some

phenomenological picture and approximations, which necessarily introduce a good degree of model dependence in

the final results, e.g. the value of the binding energy or even the very existence of bound states. Here we introduce the

most popular models for the explicit realization of the inter-hadron potential.
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3.6.1. One-pion-exchange

It is well known that the force that holds the deuteron together can be described by a potential whose main con-

tribution comes from the exchange of a pion between the two nucleons. With this in mind, it is rather natural to try

to extend the same approach to mesons and see whether or not this so-called one-pion-exchange potential allows for

bound states. This program was first carried on in [61, 62], mainly for the study of light mesons and extended to the

heavy sector by several different authors, e.g. [57, 63–66]. It was already pointed out in the original references that

using only this kind of potential could only provide plausibility arguments since the full treatment would require the

inclusion of coupled channel effects, two-pion-exchange, etc.

The leading order contribution to this potential comes from the exchange of a single pion between the two mesons.

Although the result is true also for light mesons, as computed in [62], here we will derive the potential starting from

the HQET formalism (see e.g. [59, 67]). It is well known that in the mQ → ∞ limit, the interaction between the light

pseudoscalar mesons and the heavy mesons can be described by the following Lagrangian

L = − g

fπ
tr
[
H̄aHbγμγ5

]
∂μMab (3.37)

where fπ ≃ 132 MeV is the pion decay constant and g is some dimensionless axial coupling (typically around 0.5 −
0.7 [59]). The expression is traced over Dirac indices. Ha is a bi-spinor containing the operators Vaμ and Pa describing

respectively the vector and pseudoscalar heavy mesons as

Ha =
1 + /v

2

[
Vaμγ

μ − Paγ5

]
and H̄a = γ0H†aγ0 (3.38)

where a and b are flavor indices. The light pseudo-Goldstone boson fields are instead contained in

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 −
√

2
3
η8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.39)

The interaction in Eq. (3.37) can then be rewritten as

L = −2g

fπ

(
Vμ∂

μMP† + h.c.
)
+

2ig

fπ
ǫαβμνV

β∂μMV†αvν (3.40)

where we recall that vν is the HQET four-velocity appearing in Eq. (3.38). From the previous equations one can find

the nonrelativistic momentum space potentials for the exchange of a pion between vector and pseudoscalar heavy

mesons

Vπ(VV) = −Vπ(VV̄) =
8g2

f 2
π

(τ1 · τ2) (Σ1 · q) (Σ2 · q)
1

q2 + m2
π

(3.41a)

Vπ(PV) =
8g2

f 2
π

(τ1 · τ2) (11 · q) (12 · q)
1

q2 + μ2
(3.41b)

to be sandwiched between appropriate polarization vectors. Here τi are isospin Pauli matrices, Σi and 1i are spin-1

matrices, and μ2 = m2
π − (mV − mP)2. The definition of μ is supposed to approximately take into account recoil effects

due the different masses of the constituents.21 Note that PP interactions in the one-pion-exchange approximation are

forbidden by parity conservation.

21This prescription is meaningful as long as μ2 is not too far from m2
π as, for example, in the bottom case. Less obvious is its validity in the charm

sector where mD∗ − mD ≈ mπ, or even for K̄K∗ molecules, where μ2 < 0.
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The two potentials are both in the form

Vπ(q) =
8g2

f 2
π

(τ1 · τ2) (A1 · q) (A2 · q)
1

q2 + m2
(3.42)

with obvious definitions. The position space potential is therefore given by their Fourier transform

Vπ(x) =
8g2

f 2
π

(τ1 · τ2)

∫
d3q

(2π)3
(A1 · q) (A2 · q)

eiq·x

q2 + m2
= −8g2

f 2
π

(τ1 · τ2) (A1i · ∂i)
(
A2 j · ∂ j

) ∫ d3q

(2π)3

eiq·x

q2 + m2

= − 8g2

f 2
π

(τ1 · τ2) (A1i · ∂i)
(
A2 j · ∂ j

) e−mr

4πr
(3.43)

Now, recalling that ∂2(1/r) = −4π δ(3)(x), we obtain the one-pion-exchange potentials in configuration space

Vπ(x) = −8g2

f 2
π

(τ1 · τ2)A1iA2 j

{[(
3

xix j

r2
− δi j

) (
1 +

3

mr
+

3

m2r2

)
+ δi j

]
m2

3

e−mr

r
− 4π

3
δi jδ

(3)(x)

}
(3.44)

Because of the singular behavior at r = 0 the previous potential needs to be regularized. This is typically done

introducing some form factor for the πV and πP vertices, which also allows to neglect the δ-function contribution.

At any rate, this short term contribution could be ignored since one-pion exchange is not a fully reliable model for

meson-meson short range interactions. Once the potential is specified it is just a matter of numerically solving the

Schrödinger equation and verify whether a bound state is present or not.

In the very first attempt [61], the author tried to identify the observed f1(1420), f0(1710), f ′
2
(1525) and f0(1500)

mesons with respectively KK̄∗, K∗K̄∗, ωω and ρρ bound states. However, the numerical analysis later performed [62]

showed that, although attractive, one-pion-exchange potentials alone are not enough to bind light mesons molecules.

On the other hand, they are allowed in the heavy sector. In particular, charm bound states are predicted to be very near

threshold while their bottom counter part should have a binding energy around 50 MeV.22 The detailed analysis of the

allowed bound states and their quantum numbers, in the heavy quark sector is carried out in [62, 65]. The results are

reported in Table 2. One immediately notices that there are good candidates for the X, the Z′c and Z′
b

(even though the

mass of the last one does not comply with experimental data) while there are no bound states corresponding to the Zc

and Zb. The latter ones should, in fact, be PV̄ molecules but with JPC = 1+−.

The absence of observed bound states from the present model does not rule out the molecular interpretation of

the exotic resonances. It rather means that the long range, pion mediated interaction alone, as captured by the present

model, cannot describe the observed spectrum. A contribution from short range potential is therefore needed. Such

interactions are, however, complicated and their phenomenological realization can hardly be deduced from first prin-

ciples. In the following section we will report one of this attempts.

In [66] it was also observed that because of the τ1 · τ2 term in Eqs. (3.41), the potential for a given molecule made

of isospin-1/2 mesons, and with total isospin I and third component I3, comes with an overall factor

C 〈I, I3|τ1 · τ2|I, I3〉 = 2C

(
I(I + 1) − 3

2

)
(3.45)

where C is the eigenvalue of the charge conjugation. This means that in the one-pion-exchange approximation, if the

I = 0 channel is attractive the I = 1 is repulsive and viceversa. Hence, for a given set of quantum numbers, isosinglets

and isovectors are unlikely to coexist. Indeed, in the case of the X(3872) assumed as an isosinglet, we have C = +,

I = 0, which is attractive. For the almost degenerate Zc(3900), we have C = −, I = 1, which is still attractive, although

22In [68] it was also noticed that, even in presence of an attractive one-pion-potential, meson-meson bound states are only allowed for sufficiently

large reduced mass.
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Constituents JPC Expected mass (MeV) Constituents JPC Expected mass (MeV)

DD̄∗ 0−+ ≃ 3870 BB̄∗ 0−+ ≃ 10545

DD̄∗ 1++ ≃ 3870 BB̄∗ 1++ ≃ 10562

D∗D̄∗ 0++ ≃ 4015 B∗B̄∗ 0++ ≃ 10582

D∗D̄∗ 0−+ ≃ 4015 B∗B̄∗ 0−+ ≃ 10590

D∗D̄∗ 1+− ≃ 4015 B∗B̄∗ 1+− ≃ 10608

D∗D̄∗ 2++ ≃ 4015 B∗B̄∗ 2++ ≃ 10602

Table 2: Bound states allowed by the one-pion-exchange potential as found in [65]. All state have I = 0.

with a three times smaller potential. Indeed it was for a long time considered too weak to allow for a bound state. The

argument was withdrawn as soon as the charged states were observed. This is in contrast with the predictions obtained

in the diquarkonium picture for the tetraquark model, as found in Section 4. In fact, for a given JPC , the model admits

both I = 0 and I = 1 states. This is for example, the famous case of the charged partners of the X(3872).

From the phenomenological description of the potential it is clear that meson molecules should mainly decay

in their constituents. Channels with large phase space are, in fact, mediated by heavier particles, and are therefore

suppressed by the large size of the bound state — see again Section 3.2.

As we mentioned at the beginning of the section, the results obtained from the previous potentials are only reliable

as long as they are considered as plausibility arguments. There are several instances where the one-pion-exchange

model fails. For example, it has been shown [69, 70] that the presence of a shallow bound state corresponding to the

X(3872) is not certain, as the results strongly depend on the value of the phenomenological cut-offs that one introduces

in the regulator of the potential as well as in the vertex form factor. Furthermore [71], since the X is very close to the

DDπ threshold as well (only ≈ 7 MeV), all the long range terms of the S -wave potential are suppressed, leaving only

the contact δ(r) term in the mD∗ = mD + mπ limit.

To overcome these problems one can try to go beyond the tree level approximation including, for example, addi-

tional terms to describe the short range part of the meson-meson potential or to use a three-body formalism for the

DD̄π system [72, 73]. However, these approaches add in general several complications and appear to be rather ad hoc.

3.6.2. Interaction potential at the quark level

Because of the small pion mass, the potential described in the previous section is a long range one. An interesting

model to describe the short range meson-meson interaction has been introduced in [74], and then applied to the case

of the X(3872) in [75] (see also [1]). In this picture, the interaction between the two mesons is described as interaction

between their four constituents via the following Hamiltonian

HI =
∑

i< j

λi

2
·
λ j

2

(
αs

ri j

− 3b

4
ri j −

8παs

3mim j

Si · S j δ
(3)(ri j)

)
(3.46)

where λa are the Gell-Mann matrices, ri j is the separation between the i-th and j-th quark, mi their masses and Si their

spins. The first and second terms are the phenomenologically well-known Coulomb and confining terms, while the

last one is a short range spin-spin hyperfine interaction motivated by one-gluon-exchange. The point-like δ-function

is regularized with a Gaussian

δ(3)(ri j) −→
(
σ3

π3/2

)
e−σ

2r2
i j (3.47)
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The different parameters can be estimated from the observed meson spectrum. It should be mentioned that exponential

form factors produce wrong analytic properties in r2 and should therefore be avoided.

The interaction in Eq. (3.46) can be used to compute the scattering amplitude for four mesons in a AB → CD

process [74]. The scattering matrix is parameterized as

S AB→CD ≡ −2πi δ(EAB − ECD) δ(3)(PAB − PCD) hAB→CD (3.48)

For each Feynman diagram describing the four quarks in the AB→ CD process, the amplitude can be written as

h
(diagr.)

AB→CD
= S Iflavor Icolor Ispin Ispace (3.49)

Here S = ±1 is ‘signature’ factor that takes into account the permutation of fermion operators in the scattering matrix

elements, Iflavor is the overlap coefficient between the flavor states of the incoming and outgoing mesons, Icolor is the

color factor associated with usual QCD diagrams, and Ispin and Ispace are the overlap integrals of the meson spin and

space wave functions respectively. See [74] for details.

Once the quark level amplitude hAB→CD is known, one can compute the same thing using an effective meson-meson

potential. This is usually parametrized as a sum of Gaussians

Veff =
∑

i

αi e−r2/2β2
i (3.50)

Equating the results obtained with the two techniques, the αi and βi parameters can be fixed. In Figure 6 we show an

example of effective potential extracted from the DD̄∗ → J/ψω process [74].
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Figure 6: Effective potential for the meson-meson interaction as extracted from the DD̄∗ → J/ψω scattering amplitude. The dashed lines describe

the theoretical error due to the approximate knowledge of the initial and final mesons wave function. See [74] for more details.

The shape of the potential shows how this short range interaction could in principle admit bound states in the

DD̄∗, J/ψω or J/ψρ systems. However, given the quark level Hamiltonian (3.46), it is not clear how to distinguish a

‘molecular’ bound state obtained with it from a compact tetraquark object — see Section 4. The typical distinction

between the two cases is that a molecule is an extended object (several fm) while a tetraquark is an almost point-like

object. A bound state of HI alone would have the typical hadronic size of 1 fm and hence would be distinguishable

from a diquarkonium only because of its color structure. From a quantum field theory point of view, the latter one is a

meaningless distinction since different color arrangements mix with each other under renormalization.

In any case, more detailed calculations show that the depth of Veff is not sufficient, and therefore a contribution

from the one-pion-exchange potential needs to be added anyway [75]. On the basis of the observations made in the
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previous section, one can conclude that neither the long range one-pion potential, nor the short range quark potential

alone are able to reproduce the observed XYZ spectrum. If one wants to insist in a molecular description of these

states, a combination of the two is needed. However, this inevitably introduces a good degree of model dependence

on the physical results.

3.7. Open problems with the molecular model

The molecular description of the XYZ states has many appealing advantages, as we explained during the previous

section. However, it is now hopefully clear that it is also plagued by some serious limitations that make its plain

application questionable. In summary, the most relevant issues with this framework are

1. It is not able to convincingly solve the prompt production problem. The production cross section of a meson

molecule with very small binding energy should be extremely suppressed in high energy collisions at high

p⊥. The high relative momentum between the two constituents should prevent their binding. This intuition

is supported both by MC simulations (see Appendix A) and experimental data on deuteron, Helium-3 and

hypertriton (see Section 3.3). This is in striking contrast with the prompt production of the X(3872) with

p⊥ � 12 GeV.

2. The theory of shallow bound states is universal in the limit E, B→ 0 (see Section 2). However, exception made

for the X, the would-be binding energy of several XYZ resonances is of some 10 MeV. This value escapes the

rigorous application of the shallow bound state formalism. If this is not possible, one has to rely on phenomeno-

logical realizations of the meson-meson potential (see Section 3.6). This introduces a large degree of model

dependence on several quantities like the binding energy, but also on the very existence of bound states. This is

clearly not a problem of the molecular interpretation per se, but rather of the available models, which have little

predictive power.

3. As it can be seen from Table 2, and its obvious extensions, the molecular model predicts a large number of states

which are still largely unobserved.

4. Diquark building blocks

Heavy-light diquarks were introduced by Maiani et al. in [7] to discuss the X(3872) following the suggestion of

Jaffe and Wilczek [76] to use light diquarks in exotic spectroscopy, with particular reference to some experimental

hints of a light pentaquark.

Evidence that in a tetraquark system the two quarks arrange their color in a diquark before interacting with the

antiquarks has also been found on the lattice in the static limit [77]. The same authors also show how the four

constituents arrange themselves in a H shaped configuration, as already predicted in the literature [78–82] — see

Figure 7.

The diquark-antidiquark model of XYZ resonances has inspired the search of charged resonances, like the Z(4430)

and Zc,bs since it straightforwardly predicts complete charge multiplets, contrarily to the molecular models applied to

the description of the X(3872) soon after its discovery.

We are convinced that diquarks are good degrees of freedom to understand the XYZ phenomenology, and we

will illustrate the indisputable successes of the diquark-antidiquark model, together with its obvious limitations. The

attempt to incorporate diquarks in an extended picture including the role of meson-meson threshold will be extensively

discussed in Section 6.
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Figure 7: Lagrangian density 3D plot for a four quark system, from [77]. The meson meson mixing with the tetraquark is sufficiently small to

produce such a clear tetraquark H flux tube.

4.1. General features

As discussed in Appendix B, in SU(3) there is attraction between qq pairs in the color antitriplet channel and this

is just twice weaker than in the color singlet qq̄ in the one-gluon exchange approximation. Because of this we will

usually refer to diquarks in the antisymmetric color configuration

dA
Γ = qαΓq′β − qβΓq′α ≡ [qq′]S (4.1)

where A stands for ‘antisymmetric’, Γ are matrices to characterize the diquark spin S and α, β are color indices.

A kind of fermion-boson transformation can be defined

q→ d̄A (4.2a)

q̄→ dA (4.2b)

as a generic rule to build new structures with diquarks starting from mesons and baryons.

In particular there is a special relation between baryons and tetraquarks. If we start from an antibaryon, the

substitution in Eq. (4.2b) produces the tetraquark dAq̄q̄ = dAd̄A. Applying (4.2b) once again, one obtains a pentaquark,

dAdAq̄, and finally, with a third substitution, a state with baryon number B = 2, a dibaryon with the configuration

dAdAdA.

It is clear that iterating this procedure a whole bunch of new multiplets of particles might be expected with a large

variety of flavors and charges. The first steps in this direction were done in [7, 83]. The search even extended to

excited states as discussed [84] and considering also strange light quarks [85]. This program was reported in [2]. As

of today the experimental situation in the field of XYZ resonances does not seem (yet?) to be compatible with such a

multitude of particles.

The first and better known resonance, the X(3872), appears as a neutral state alone: the charged counterparts

X+, obviously predicted by a dAd̄A assignment, have never been observed. Moreover the X0 is observed to decay

with strong isospin violations, having almost the same branching ratio in the J/ψρ and J/ψω decays, as if there were

two almost degenerate states Xu = [cu][c̄ū] and Xd = [cd][c̄d̄], causing maximal isospin violation. These should be

observed in the vicinity of 3872 MeV [86] but, as of today, this has not been the case.

31



On the other hand, the diquark approach, differently from all other models of XYZ states discussed in the literature,

was the first pointing to the existence of charged resonances in decays such as J/ψ π+ [7, 8, 87]. We consider a

remarkable success of this model the fact that it stimulated the experimental search, and discovery, of the charged states

Z(4430), Zc(3900), Zc(4020), Zb(10610) and Zb(10650). They came as a surprise for those working with molecular

models tailored to describe the special case of the X(3872).

The X(3872), besides being the worst enemy against a straightforward construction of tetraquarks as diquark-

antidiquark states for the reasons just reminded, has as an additional oddity which has inspired a lot of work: the

double-fine-tuning of the X mass with the J/ψ ρ and, especially with D̄0D∗0 threshold, which has been discussed at

length in previous Sections. The latter case is really remarkable, leaving a difference of few keVs (compatible with

zero within experimental errors). To our knowledge there is no simple way to explain this fact in the diquarkonium

picture. As we saw in the previous Section, the tiny binding energy of the X can be related to a low energy scattering

enhancement in the D̄0D∗0 system — with all the difficulties we discussed.

Another straightforward prediction of the diquark-antidiquark model would be the existence of a [bq][b̄q̄] partner

in the beauty sector of the [cq][c̄q̄] in the charm one. Also this has not been found so far.

Therefore, despite the success with the qualitative prediction of charged resonances decaying into charmonium +

charged meson, the diquark model has way more states than what observed and the research of selection rules within

the diquarkonium picture has never been really attempted.

The large number of predicted states is a problem afflicting also models based on the idea of loosely bound

molecules. The number of expected states, is basically the same, especially if a resonance is associated to each

possible meson-meson threshold. The good point about insisting on the relevance of the vicinity of the X(3872) to the

D̄0D∗0 threshold is that also the most recently discovered Z(4430), Zc(3900), Zc(4020), Zb(10610) and Zb(10650) have

meson-meson thresholds rather close to their masses.

This could also seem to be a casual feature due to the fact that the meson-meson thresholds from the Particle Data

Book form a quasi-continuum spectrum of states.

However, looking at things in greater detail, there are very suggestive facts. The Zb(10610) happens to be exactly

at the B̄0B∗0 threshold, as is the case for the X(3872). Zc(3900), Zc(4020) and Zb(10650) do not feature the same

impressive tuning with thresholds but are still very close to some of them, being a bit heavier — so that no ‘standard’

molecule interpretation can be given, the binding energy having the wrong sign!

So, on one hand the diquarks seem to be the right tools to easily build a spectroscopy of exotic hadrons like

tetraquarks, pentaquarks and dibaryons. On the other hand the feature of vicinity to thresholds seems to have a relevant

phenomenological role. In Section 5.3, we will examine the role of diquarks in the 1/N expansion of QCD showing

that they are good degrees of freedom to describe tetraquarks in the s-channel cuts of meson-meson amplitudes.

In Section 6 we will present a theory which eventually might explain

1. The absence of X+(3872);

2. The absence of a degenerate doublet of X0
1,2

neutral doublet, required from the naı̈ve diquarkonium picture to

explain the isospin violation pattern in the X decay;

3. The extremely small width of the X(3872) (ΓX � 1 MeV);

4. The appearance of Zc and of Zb ;

5. The difference in total widths of these states as related to their mass values.

In order to reach this description of XZ phenomenology, we will begin by reviewing the diquarkonium picture,

and then show how diquarkonium discrete levels with some JPC might induce an effective interaction between color

neutral mesons with the same quantum numbers, leading to the formation of a resonance [11].

32



A dynamical picture for the diquarkonium has been proposed by Brodsky et al. in [33, 88, 89], which leads to

interesting predictions for the decay into charmonia, and for the production cross section at lepton colliders. Different

extensions of the constituent quark models for the tetraquark spectroscopy have been explored by Valcarce et al.

[90–94], Buccella et al. [95, 96] and Santopinto et al. [97, 98]. The idea of probing the number of constituents by

producing tetraquark pairs has been discussed in [33–35]. A different and very interesting viewpoint is given by Rossi

and Veneziano [78, 79, 82]. The consequences of color dynamics and Rosner duality for exotic states are reviewed

in [99]. Lastly, the problem of light tetraquarks have been approached from a field theoretical point of view using the

Dyson-Schwinger formalism in [100]. Its application to the heavy sector as well might give an interesting contribution

to the discussion.

In the next few sections, we will review the notion of diquark and especially the algebra needed to deal with them

when discussing tetraquarks in the form of diquarkonia.

Diquarks appear in several branches of QCD, especially in the non-perturbative regime, see for example [101] and

reference therein, concerning the behavior of hadronic matter at high density studied with techniques of condensed

matter theory. New phases of matter and their properties are predicted with interesting consequences also for the

astrophysics of neutron stars, for example. Diquarks can have an interesting role also for the discussion of proton and

neutron structure functions [102], see also [103]. A tetraquark condensate, built with diquarks, could be the order

parameter for an additional chiral phase transition in QCD as recently discussed in [104].

4.2. Diquarks: color

In the four spinor formalism the spin zero diquark JP = 0+ is

[cq]i = ǫi jk c̄
j
cγ5qk ≡ ǫi jk (c j)T Cγ5 qk (4.3)
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where i, j and k are color indices and c indicates the charge conjugated four-spinor 23. The charge conjugation operator

is

C = iγ2γ0 = (σ2 ⊗ iτ2)(1 ⊗ τ3) = (σ2 ⊗ (−1)τ1) = −

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 σ2

σ2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

where both σ and τ are Pauli matrices. It follows that

Cγ5 = (σ2 ⊗ (−1)τ1)(1 ⊗ τ1) = −σ2 ⊗ 1 (4.13)

Irrespective of the overall phase, we see that (4.3) has a non-relativistic limit, which in the Pauli bispinor notation

writes

[cq]i = ǫi jk(c j)Tσ2qk (4.14)

In the four spinor formalism the spin one diquark JP = 1+ is

[cq]i = ǫi jk c̄
j
cγqk ≡ ǫi jk (c j)T Cγ qk (4.15)

and

Cγ = −(σ2 ⊗ τ1)(σ ⊗ iτ2) = (σ2σ ⊗ τ3) (4.16)

Therefore a spin-1 heavy-light diquark in the non-relativistic limit is

[cq]λi = ǫi jk(c j)Tσ2σλqk (4.17)

The formation of diquarks follows from the attractive nature of the color antitriplet qq channel, when color force

is mediated by the exchange of one gluon (see also Appendix B). Thus diquarks are antisymmetric in color indices,

and they can be antisymmetric in spin, if S = 0, or symmetric if S = 1. The fact that we can have both spin 0 and 1

heavy-light diquarks derives from heavy quark spin symmetry.

23 A light-light diquark with spin 0 has to be antisymmetric in flavor for Fermi statistics. If we consider two flavors only this would write

[qq]i = ǫi jk ǫ
ab (qa j)T Cγ5 qbk (4.4)

where the flavor structure is (the transposition in (4.4) is with respect to spinor indices)

ǫab qa j qbk = qT (iσ2) q (4.5)

being ǫab = (iσ2)ab and leaving aside non-flavors labels and matrices commuting with flavor indices.

Under a SU(2) flavor transformation we have

(eiσ·θq)T (iσ2) (eiσ·θq) = (qT eiσT ·θ) (iσ2) (eiσ·θq) (4.6)

Since σ2σ = −σTσ2

eiσT ·θ (iσ2) eiσ·θ ≡ iσ2 (4.7)

we conclude that (4.4) is SU(2) invariant. With three flavors, the flavor antisymmetric diquark would be

ζai = [qq]a
i = ǫi jk ǫ

abc (qb j)T Cγ5 qck (4.8)

which transforms non trivially under SU(3) as

ζ → Vζ (4.9)

where

Vad =
1

2
ǫabc ǫdb′c′Ubb′Ucc′ (4.10)

A tetraquark condensate can be constructed

Φab = (ζaL i)
∗ ζb j

R
(4.11)

which transforms under SU(3)L ×SU(3)R as

Φ→ VR ΦV
†
L

(4.12)

i.e. like the standard quark condensate, with interesting consequences for chiral phase transitions [104].

34



The color-spin Hamiltonian describing the interaction between the constituents of a tetraquark is [103]

H = −2
∑

i� j,a

κi j Si · S j

λa
i

2
·
λa

j

2
≡
∑

i� j

Hi j (4.18)

The indices i, j run over the four quarks, while a is the index of the adjoint SU(3) representation. The λa are Gell-Mann

matrices, the Si are spin vectors and the κi j are unknown effective couplings. Let us discuss the color interaction for

the moment.

We introduce the (normalized) color singlet/octet states using the following notation which turns out to be rather

practical for calculations

|c̄c1, q̄q1〉 :=
1

3
1c̄c ⊗ 1q̄q (4.19a)

|c̄c8, q̄q8〉 :=
1

4
√

2
λa

c̄c ⊗ λa
q̄q (4.19b)

where by λa
c̄c, for example, we mean c̄i (λa)i

j
c j using latin letters for color indices.

With the notation |cq3̄, c̄q̄3〉1 we mean (aside from overall phases) an overall color singlet state of a diquark-

antidiquark pair

|cq3̄, c̄q̄3〉1 ∼ [cq]i[c̄q̄]i = c jc̄
jqkq̄k − c jq̄

jqkc̄k (4.20)

which, using

(λa)i
j(λ

a)k
l = 2

(
δilδ

k
j − 1/3 δijδ

k
l

)
(4.21)

can be written as

|cq3̄, c̄q̄3〉1 ∼
2

3
1c̄c ⊗ 1q̄q −

1

2
λa

c̄c ⊗ λa
q̄q = 2|c̄c1, q̄q1〉 − 2

√
2|c̄c8, q̄q8〉, (4.22)

i.e. the octet-octet component has twice the probability of the singlet-singlet one. This fact may have interesting

consequences. Strong interactions are known to preserve the spin of the heavy quark pair (see Section 3.4).

The previous state can itself be normalized in the following way (multiply by 1/
√

12)

|cq3̄, c̄q̄3〉1 =
1
√

3

(
1

3
1c̄c ⊗ 1q̄q − T a

c̄c ⊗ T a
q̄q

)
(4.23)

and use the T a = λa/2 matrices.

Let us represent states of the fundamental representation with the symbol |i〉 whereas those of the anti-fundamental

are | j〉. Then we have

〈 j|T a|i〉 = (T a)
j

i
(4.24a)

〈 j|T a|i〉 = −(T a)i
j (4.24b)

i.e. one is the opposite-transposed (complex-conjugate) of the other. From the latter equation we get for example

T a|i〉 = −| j〉(T a)i
j (4.25)

Consider a generic state |v〉
|v〉 = |i〉vi (4.26)

then

|T av〉 = T a|v〉 = T a|i〉vi = −| j〉(T a)i
jvi (4.27)
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Rules of color manipulation

Oq1
O ′q̄2q1

= − (OO ′)q̄2q1
Oq̄2
O ′q̄2q1

= (OO ′)q̄2q1

T a
q̄1q2
⊗ T a

q̄3q4
= 1

2
1q̄1q4

⊗ 1q̄3q2
− 1

6
1q̄1q2

⊗ 1q̄3q4

1q̄1q2
⊗ 1q̄2q1

= Tr(1)

T a
q̄1q2
⊗ T b

q̄2q1
= Tr(T aT b)

Table 3: Useful rules for the manipulation of color indices and operators. The quantities with a single quark index are operators acting on the

Hilbert space of that quark, e.g. T a
c acts on the charm quark, while the quantities with two quark indices are operators saturated with quark states,

e.g. Oq̄1q2
= q̄1i Oi

j
q

j

2
.

Thus we get that (multiply the latter by 〈k | and then rename k → i)

T avi = −(T a)
j

i
v j (4.28)

whereas

T avi = (T a)i
jv

j (4.29)

It then follows that, aside from an overall minus sign, the different quark indices, e.g q1q2 in T a
q1q2

, can be treated as

ordinary matrix indices. In Table 3 we report some useful rules for the manipulation of color states and operators. With

this rules we can compute the action of of the color part of the Hcq Hamiltonian on a diquark state defined in (4.23)

Hcq|cq3̄, c̄q̄3〉1 ∝ T b
c T b

q

1
√

3

(
1

3
1c̄c ⊗ 1q̄q − T a

c̄c ⊗ T a
q̄q

)
= − 1

√
3

(
1

3
T b

c̄c ⊗ T b
q̄q −

(
T aT b

)
c̄c
⊗
(
T aT b

)
q̄q

)
(4.30)

and thus

1〈cq3̄, c̄q̄3|Hcq|cq3̄, c̄q̄3〉1 ∝ −
1

3

(
1

9
Tr(T a) Tr(T a) − 2

3
Tr(T aT b) Tr(T aT b) + Tr(T aT bT c) Tr(T aT bT c)

)

= −1

3

(
−2

2

3
− 2

3

)
=

2

3
(4.31)

where we have used

Tr(T aT b) =
1

2
δab and Tr(T aT bT c) =

1

4
(dabc + i f abc) (4.32)

and

f abc f abd = 3 δab (4.33a)

dabcdabd =
5

3
δab (4.33b)

This means that, as far as color is concerned, taking matrix elements on diquark-antidiquark color-neutral states,

amounts to redefine the chromomagnetic couplings by some representation-dependent numerical factor like 2/3, when

the Hcq and Hc̄q̄ terms are considered. Actually we will assume that the dominant couplings in the Hamiltonian are

κcq and κc̄q̄, i.e., intra-diquark interactions [8]. At a first sight, this assumption may look to violate the 1/mQ scaling

of the couplings, which would suggest κqq̄ > κcq > κcc̄. Instead, this is due to the very short range nature of spin-spin

interactions (see also Eq. (3.46) and Sec. 4.4), which makes the interaction between two quarks of different diquarks

vanish. This ansatz turns out to be compatible with experimental data. Charge conjugation symmetry also implies

κ = κcq = κc̄q̄
24.

24 If extra diquark couplings were considered we could determine them, e.g. κcc̄, from the masses of standard L = 0 mesons observing that

1〈cq3̄, c̄q̄3 |Hc̄c |cq3̄, c̄q̄3〉1 =
1

4
〈c̄c1, q̄q1 |Hc̄c |c̄c1, q̄q1〉 (4.34)
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In view of what found in this section we understand that mass splittings among tetraquark states conceived as

diquarkonia, will be determined solely from the spin-spin part of the Hamiltonian in (4.18).

4.3. Diquarks: spin

Heavy-light diquarks are different from light-light ones in that they can have either spin 0 or spin 1, whereas light-

light are preferably spin 0, the so called ‘good diquarks’ [103]. Heavy quark symmetry is such that the light degrees

of freedom are blind to the flavor and spin of the heavy quark source (see again Section 3.4) and this spin decoupling

feature makes equally possible heavy S = 0, 1. The use of diquarks in exotic hadron spectroscopy was suggested

in [76] and heavy-light diquarks, their properties, and masses were first discussed in [7]. Light-light diquarks and their

possible role in light scalar meson spectroscopy is discussed in [105, 106].

We generally use the definitions (see also [4])

|1q, 0q̄〉 =
1

2
σ2σi ⊗ σ2 (4.35a)

|0q, 1q̄〉 =
1

2
σ2 ⊗ σ2σi (4.35b)

|1q, 1q̄〉J=1 =
i

2
√

2
ǫ i jkσ2σ j ⊗ σ2σk (4.35c)

With the symbol q we either mean a diquark in the order cq or c̄q̄ or a quark-antiquark pair in the order cc̄ or qq̄. The

ordering is relevant (see [4] for normalizations 25).

In these notations a particle with the quantum numbers of X(3872), would be described by

X =
|1cq, 0c̄q̄〉 + |0cq, 1c̄q̄〉√

2
= |1cc̄, 1qq̄〉J=1 =

|1cq̄, 0qc̄〉 − |0cq̄, 1qc̄〉√
2

(4.37)

Since diquarks are defined to be positive parity states, overall we have JP = 1+ and C = +. This diquark-antidiquark

arrangement is a natural candidate to describe the X(3872), which is a 1++ resonance decaying into J/ψ +ρ/ω, compat-

ibly with the |1cc̄, 1qq̄〉J=1 assignment — especially for what concerns the heavy spin. Similarly the last term on the rhs

is compatible with the DD∗ decay mode of the X(3872). Anyway, light quark spins in Qq̄ or Q̄q configurations might

rearrange also to allow DD or D∗D∗ decays but the latter is phase space forbidden and the former is simply forbidden

by quantum numbers.

The orthogonal combination to the lhs of (4.37) can be formed by

Z =
|1cq, 0c̄q̄〉 − |0cq, 1c̄q̄〉√

2
=
|1cc̄, 0qq̄〉 − |0cc̄, 1qq̄〉√

2
= |1cq̄, 1qc̄〉J=1 (4.38)

This has JP = 1+ and C = − for the neutral component (if an isospin triplet is to be considered, the G-parity has to be

G = +). The state has C = − since, in the charmonium basis

C = (−1)L+S qq̄+S cc̄ (4.39)

25 For example, the normalization in (4.35c) is obtained by

〈1q, 1q̄ |1q, 1q̄〉J=1 = −
1

4 × 2

(
Tr(σ j Tσ j) Tr(σk Tσk) − Tr(σ j Tσk) Tr(σk Tσ j)

)
= − 1

4 × 2
(2 × 2 − 2 × 2 × 3) = 1 (4.36)
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In the quark-antiquark basis there is another state with C = −, orthogonal to Z

Z′ = |1cq, 1c̄q̄〉J=1 =
|1cc̄, 0qq̄〉 + |0cc̄, 1qq̄〉√

2
=
|1cq̄, 0qc̄〉 + |0cq̄, 1qc̄〉√

2
(4.40)

which is indeed a 1+− state. Exchanging the coordinates, spins and charges of two fermions/bosons having each spin

s and total spin S , the total wavefunction has to be completely antisymmetric/symmetric under this exchange

(−1)L(−1)2s+S C = ∓1 (4.41)

which in the case of (4.40) (first term on the rhs) is

(−1)0(−1)2+1C = +1 (4.42)

giving C = −. The case of X = |1cc̄, 1qq̄〉J=1 is different as the charge conjugation operator concerns the distinct cc̄ and

qq̄ pairs.

Linear combinations of Z and Z′ which diagonalize the spin-spin Hamiltonian can be identified with Zc(3900) and

Zc(4020). We will not treat here scalar or tensor states whose discussion in terms of diquarkonia can b found in [4].

4.4. Spectrum for L = 0 and the X,Z,Z′ system

We assume that the spin-spin interactions within the diquark shells are dominant with respect to quark-antiquark

interactions. This is the main assumption in [8] and, as we will see, it gives the right mass pattern for the X,Zc,Z
′
c

system.

This hypothesis leads to believe that diquarks are quite separated from each other in the tetraquark and this feature

could be modeled with some potential keeping the diquarks relatively apart in space — recall that the spin-spin inter-

action is proportional to δ(r) as in Eq. (3.46). At the same time this potential might be responsible for the reluctance

of diquarks at mixing or decaying into meson pairs. Widths of actual diquarkonia measure this behavior.

Then spin-spin Hamiltonian is (color factors have been reabsorbed in the definition of chromomagnetic couplings

as discussed above)

H ≈ 2κ (Sq · Sc + Sq̄ · Sc̄) (4.43)

Consider for example

4Sq · Sc|1cq, 0c̄q̄〉 = σ(q) · σ(c)|1cq, 0c̄q̄〉 :=
1

2
(σ j)Tσ2σiσ j ⊗ σ2 (4.44)

where summation over j is understood. The matrix (σ j)T works on c whereas σ j on q. Considering that

1

2
(σ j)Tσ2σiσ j ⊗ σ2 = −1

2
(σ2σ jσiσ j) ⊗ σ2 =

1

2
σ2σi ⊗ σ2 = |1cq, 0c̄q̄〉 (4.45)

where we have used iǫ i jkσ jσk = iǫ i jkiǫ jkℓσℓ = −2σi. Thus |1cq, 0c̄q̄〉 is an eigenstate of Sq · Sc with eigenvalue 1/4.

Considering also the antidiquark contribution one readily finds

4Sq̄ · Sc̄|1cq, 0c̄q̄〉 = −3 |1cq, 0c̄q̄〉 (4.46)

thus

4(Sq · Sc + Sq̄ · Sc̄)|1cq, 0c̄q̄〉 = −2 |1cq, 0c̄q̄〉 (4.47)

and

H|1cq, 0c̄q̄〉 = −κ |1cq, 0c̄q̄〉 (4.48)
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Similarly

H|0cq, 1c̄q̄〉 = −κ |0cq, 1c̄q̄〉 (4.49a)

H|1cq, 1c̄q̄〉J=1 = +κ |1cq, 1c̄q̄〉J=1 (4.49b)

The Hamiltonian (4.43) is diagonal in the diquark-antidiquark basis formed by the 1+− states

(H)1+− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
−κ 0

0 κ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4.50)

with eigenvectors |1〉 = 1/
√

2(|1, 0〉 − |0, 1〉) ≡ |Z〉 and |2〉 = |1, 1〉J=1 ≡ |Z′〉. This requires |Z〉 to be lighter than |Z′〉.
Similarly

(H)1++ = −κ (4.51)

Therefore we conclude that the X(3872) and the Z(3900) are degenerate in first approximation, their masses being

twice the diquark mass plus the same spin-spin interaction correction

MX = MZ = 2m[cq] − κ (4.52)

The Z′ is instead heavier by a gap of 2κ

M(Z′) = 2m[cq] + κ (4.53)

This pattern of X,Z,Z′ masses is observed in experimental data. In particular, the two relations in Eqs. (4.52) and

(4.53) are both satisfied within 20 MeV for

κ = 67 MeV (4.54)

4.5. Scalar and tensor states

The diquark-antidiquark model also allows JP = 0+, 2+ states with C = +. We have two JP = 0+ states and a

tensor one

X0 = |0cq, 0c̄q̄〉J=0 =
1

2
|0cc̄, 0qq̄〉 −

√
3

2
|1cc̄, 1qq̄〉J=0 (4.55a)

X′0 = |1cq, 1c̄q̄〉J=0 =

√
3

2
|0cc̄, 0qq̄〉 +

1

2
|1cc̄, 1qq̄〉J=0 (4.55b)

X2 = |1cq, 1c̄q̄〉J=2 = |1cc̄, 1qq̄〉J=2 (4.55c)

which are all charge-conjugation even, C = +. Following the same notations introduced above we have

|0q, 0q〉J≡0 =
1

2
σ2 ⊗ σ2 (4.56a)

|1q, 1q〉J=0 =
1

2
√

3
σ2σi ⊗ σ2σi (4.56b)

|1q, 1q〉J=2 =
1

2

(
σ2σ(i ⊗ σ2σ j) − 2

3
δi jσ2σℓ ⊗ σ2σℓ

)
(4.56c)

where i, j indices are symmetrized in the last equation (a factor of 1/2 has to be included in the symmetrization) and

the trace is subtracted. For the determination of the normalizations coefficients see [4].
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We can also determine

(H)0++ = −3κ

(H)0++′ = κ

(H)2++ = κ (4.57)

There are no official candidates for these scalar and tensor states. However, there is the tantalizing possibility for the

Z1(4050) state decaying into χc1π to be a scalar or a tensor (see for example [107]). In this case, it would be degenerate

with the Z′c(4020) within errors, and would be the natural candidate for the 0++′ (2++) tetraquark. We also remark that,

if the Z(4430) is considered as the radial excitation of the Zc(3900), it is natural to identify the Z2(4250) as the radial

excitation of the lowest 0++ tetraquark, given that their mass difference, mZ(4430) − mZ1(4250) ≃ (230 ± 190) MeV is

compatible with 2κ ≃ 130 MeV.

In Figure 8 we show a pictorial representation the spectrum obtained from the Hamiltonian (4.43). In Table 4 we

instead list the predicted states and their quantum numbers.
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Figure 8: The spectrum of Hamiltonian in Eq. (4.43).

Table 4: Summary table of states. We refer here to the neutral components.

JPC |S cq, S c̄q̄〉 |S cc̄, S qq̄〉
0++ |0, 0〉 1

2
|0, 0〉 +

√
3

2
|1, 1〉J=0

0++ |1, 1〉J=0

√
3

2
|0, 0〉 − 1

2
|1, 1〉J=0

1++ 1√
2
(|1, 0〉 + |0, 1〉) |1, 1〉J=1

1+− 1√
2
(|1, 0〉 − |0, 1〉) 1√

2
(|1, 0〉 − |0, 1〉)

1+− |1, 1〉J=1
1√
2
(|1, 0〉 + |0, 1〉)

2++ |1, 1〉J=2 |1, 1〉J=2

4.6. Y resonances and L = 1 diquarkonia

Tetraquarks with JPC = 1−− can be obtained with odd values of the angular momentum. The lowest lying have

L = 1. We select states with odd charge conjugation.
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In the diquark-antidiquark basis of [cq][c̄q̄] we have

Y1 = |0cq, 0c̄q̄〉 C = (−1)L=1 (4.58a)

Y2 =
|1cq, 0c̄q̄〉 + |0cq, 1c̄q̄〉√

2
C = (−1)L=1 (4.58b)

Y3 = |1cq, 1c̄q̄〉S=0 (−1)L(−1)2s+S C = +1⇒ C = (−1)1(−1)2×1+0 (4.58c)

Y4 = |1cq, 1c̄q̄〉S=2 C = (−1)1(−1)2×1+2 (4.58d)

The spin structure of Y2 and X in (4.37) is the same and therefore the mass difference between them might entirely

be attributed to the orbital excitation of Y2. The fact that Y2 and X have the same spin structure also suggests that

radiative transitions with ΔL = 1 and ΔS cc̄ = 0 might occur

Y2 → γX (4.59)

As an important caveat, we have to add here that the experimental assessment of the Y states, at the time of

this writing, is still rather unclear, even more so with the new results by BES III [108, 109]. In particular, the very

existence of a Y(4008) is controversial. The identification of the structures seen in J/ψ ππ with the ones in hcππ

is problematic too, and would undermine the assignment even of the well known Y(4260) (see Section 8.4 for the

experimental details). The assignments made below are based on the existence of these resonance, and are therefore

subject to variation if these state turn out not to be confirmed. We preferred to stick to these hypotheses for the sake

of illustration of the method of constructing the states in the diquarkonium picture. As we will comment in Section 6,

orbitally excited and radially excited resonances present more difficulties than lowest lying states.

Anyway, if a distinct Y(4260) does exist, its identification as the Y2 excitation would be supported by the conspic-

uous radiative decay mode [110]

Y(4260)→ X(3872) + γ (4.60)

The Y(4360) and Y(4660) are interpreted as radial excitations of Y1 = Y(4008) (see Table 5) and Y2 = Y(4260).

As a check for this assumption we may note that they indeed present mass splitting similar to the one observed

between ordinary ground state and excited charmonia, i.e. M(χbJ(2P)) − M(χbJ(1P)) ≃ M(Y(4360)) − M(Y(4008))

and M(χcJ(2P))−M(χcJ(1P)) ≃ M(Y(4660))−M(Y(4260)). For the identification of the Y3 state as the structures seen

in e+e− → hc ππ, χc0 ω, see [111].

As for the Y(4630), decaying predominantly intoΛ+cΛ
−
c , we recall that there is also the possibility of its assignment

to a tetraquark degenerate with Y(4660) [81].

Table 5: Possible assignments for Y1,Y2,Y3,Y4. Observe that Y3 is predicted to decay preferably in hc(1P) where S cc̄ = 0. The state Y(4220)

correspond to the narrow structure described in [109, 112, 113]. Radiative decays are suggested by conservation of the heavy quark spin ΔS cc̄ = 0.

The relative probability of having spin 1 versus spin 0 in the cc̄ pair as read by Table 4.

State P(S cc̄ = 1) : P(S cc̄ = 0) Assignment Radiative Decay

Y1 3:1 Y(4008) γ + X(0++)

Y2 1:0 Y(4260) γ + X(1++)

Y3 1:3 Y(4220) γ + X(0′++)

Y4 1:0 Y(4630) γ + X(2++)

To find the spectrum of the Y states we use the same Hamiltonian form (4.43) with the addition of a spin-orbit and

a purely orbital term — here the chromomagnetic coupling κ′ is taken to be a priori different from κ used in (4.43).
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We already discussed that the spatial separation of the diquarks makes the other couplings vanish. We have then

H ≈ 2κ′(Sq · Sc + Sq̄ · Sc̄) − 2A S · L + 1

2
B L2 (4.61)

in such a way that the energy increases for increasing L2 and S2, provided κ′, A, B are positive. Indeed the masses of

Y states will be given by

M = M′0 + κ
′(s(s + 1) + s̄(s̄ + 1) − 3) + A(L(L + 1) + S (S + 1) − 2) + B

L(L + 1)

2
(4.62)

where s, s̄ are the total spins of diquark and antidiquark. The latter equation can be simplified to

M = M0 + (A + B/2) L(L + 1) + AS (S + 1) + κ′(s(s + 1) + s̄(s̄ + 1)) (4.63)

with

M0 = M′0 − 2A − 3κ′ (4.64)

From Eq. (4.63), the mass of the state Y1 in (4.58a) is given by

M1 = M0 + 2(A + B/2) (4.65)

for s = s̄ = 0, therefore implying S = 0, and L = 1. The Y2 state in (4.58b) has s = 1 or s̄ = 1, thus S = 1 —

considering that M0 contains −3κ′ we can determine the mass gap between Y2 and Y1

M2 − M1 = 2κ′ + 2A (4.66)

hence implying M2 > M1. The Y3 state has both spins s = s̄ = 1 but S = 0 so that

M3 − M2 = 2κ′ − 2A (4.67)

which can take either sign depending on the κ′ − A difference; κ′ and A have in principle similar sizes. Finally Y4 has

both spins s = s̄ = 1 and S = 2 so that

M4 − M3 = 6A (4.68)

implying M4 > M3. So the mass ordering is M1,M2,M3,M4 or M1,M3,M2,M4 from lighter to heavier. Using the

assignments in Table 5, from (4.66) and (4.67) we obtain 26:

κ′ = 53 MeV and A = 73 MeV (4.69)

The values found for κ′ have to be compared with the value of κ = 67 MeV obtained studying the spectrum of L = 0

states. They look reasonably consistent, also in consideration of the simplicity of the model described. In the original

formulation for the diquarkonium model for the XYZ states, all the couplings κi j were kept non-zero and their value

was fitted from known meson and baryon masses. In that case is was found κ ≃ 22 MeV. We conclude that diquarks

inside a tetraquark behave differently than those inside a baryon.

4.7. Pentaquarks from diquarks

In the diquark composition model, pentaquarks are clusters of diquarks of the form

P = dAdAq̄ (4.70)

26In the original paper [8] also the possible assignment Y3 = Y(4290) was considered. However, the energy scan by BES [109] pushes the mass

of the state to be 100 MeV heavier, thus making this assignment unlikely.

42



where dA is the antisymmetric diquark introduced in Eq. (4.1). There are several flavor compositions which may

realize a pentaquark, and the diquark model would clearly predict a great variety of states.

Eventually there was a stunning observation by the LHCb collaboration [114] reporting the observation of two

new resonances in the Λb decay

Λb(bud)→ P+K− (4.71)

each decaying according to

P+ → J/ψ p (4.72)

Thus the new particles carry a unit of baryonic number and feature the valence quark composition

P+ = c̄cuud (4.73)

whence the name pentaquarks. The best fit quantum numbers and masses are

JP = 3/2− M ≃ 4380 GeV fract. ≃ 8.4 %

JP = 5/2+ M ≃ 4450 GeV fract. ≃ 4.1 % (4.74)

The very fact that two pentaquarks have been observed with opposite parities strongly suggests that diquarks should

have a role in their composition — bound states of color neutral hadrons cannot appear in orbitally excited configura-

tions.

The quarks in (4.73) have to be arranged into diquarks of different spin and flavor. The standard lore that light-

light diquarks have to be spin zero, which has some support from lattice calculations [115], is dubious in the case of

diquarks in baryons. Indeed spin one light-light diquarks (Jaffe’s ‘bad diquarks’), while conspicuously absent in light

meson spectroscopy, are well established in baryons as indicated by the Σ−Λ mass difference [116] and confirmed by

Σc,b − Λc,b mass differences [7].

At first sight, the near 70 MeV difference between the masses in (4.74) does not go well with the energy associated

to orbital excitation. One orbital excitation in mesons and baryons carries an energy difference which is typically

of order 300 MeV, as exemplified by the mass difference M(Λ(1405)) − M(Λ(1116)) ≃ 290 MeV. Mass formulae

for the orbital excitation in XYZ mesons are discussed in [8] and the associated energy difference is estimated to be

ΔM(L = 0→ 1) ≃ 280 MeV.

However, the mass difference between light-light diquarks with spin s = 1, 0 [116], estimated from charm and

beauty baryon spectra, is of order 200 MeV, e.g. M(Σc(2455)) − M(Λc(2286)) ≃ 170 MeV and M(Σb(5811)) −
M(Λb(5620)) ≃ 190 MeV.

If we use spin one light-light diquarks in the compositions

P(3/2−) =
(
c̄ [cq]s=1[q′q′′]s=1, L = 0

)
(4.75)

P(5/2+) =
(
c̄ [cq]s=1[q′q′′]s=0, L = 1

)
(4.76)

the orbital gap is reduced to about 100 MeV, which brings it back to the range of spin-spin and spin-orbit corrections

indicated by (4.74). In other works the heavier diquark in the L = 0 state shortens the mass distance from the L = 1

state with a spin zero (i.e. lighter) diquark.

Notice that the intrinsic parity of the L = 0 state is dictated by the presence of an antiquark: therefore, differently

from standard baryons, the low lying state has negative parity. The opposite holds true for tetraquarks: the low lying

ones have positive parities — whereas the low-lying mesons have negative parities.

Concerning the production of a spin-1, light-light [ud] diquark in Λb decay, we note that there are in fact two

possible mechanisms leading to the pentaquark production — see Figure 9. In the first one (diagram A in Figure 9) the
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[ud]s=0

b
c →
c̄

K−

[ud]s=0,1

u →
(A)

[ud]s=0

b
c →
c̄

K−

u →

(B)

Figure 9: (A): The [ud], spin zero diquark in the Λb is transmitted to the Pu type pentaquark as a spectator — it is expected that Λb contains a spin

zero light-light diquark of the [ud] flavor. (B): The u quark from the vacuum participates in the formation of the light-light diquark: spin zero and

one are both permitted. Mechanism (B) may also produce a [uu]s=1 diquark.

b-quark spin is shared between the Kaon and the c̄ and [cu] components. Barring angular momentum transfer due to

gluon exchanges between the light diquark and light quarks from the vacuum, the final [ud] diquarks has to have spin

zero. In the second mechanism, however (diagram B), the [ud] diquark is formed from the original d quark and the

u quark from the vacuum. Angular momentum is shared among all final components and the [ud] diquark may well

have spin one.

Diquarks are antisymmetric in color indices and can be symmetric or antisymmetric in spin indices (S = 1, 0

respectively). When a diquark contains light quarks with flavors u, d, s, the overall state must be antisymmetric by

Fermi statistics (strong interactions do not distinguish the flavors u, d, s). That means

S = 0⇒ Flavor Antisymmetric (4.77a)

S = 1⇒ Flavor Symmetric (4.77b)

A diquark with the composition [uu], [dd] or [ss] must be spin 1 necessarily. Pentaquarks realizing the valence quark

structure (4.73) are therefore of two types

Pu = ǫ
i jk c̄i [cu] j, S=0,1 [ud]k, S=0,1 (4.78a)

Pd = ǫ
i jk c̄i [cd] j, S=0,1 [uu]k, S=1 (4.78b)

where greek indices are for color, diquarks are in the color antisymmetric, 3̄, configuration and overall antisymmetry

requires flavor symmetric light-light diquark with s = 1. The Pd component can appear only in (4.75).

This shows that a remarkable number of pentaquarks are immediately predicted once an SU(3) analysis is done.

Depending on the flavor symmetry of the light-light quark, given that the heavy-light has flavor 3, we have that,

depending on the spin of the light-light diquark

S = 0⇒ 3 ⊗ 3̄ = 1 ⊕ 8 (4.79a)

S = 1⇒ 3 ⊗ 6 = 8 ⊕ 10 (4.79b)

Moreover the J quantum numbers have to be considered. If we stick to the case L = 0, depending on the spin S of the

light-light diquark we have

S = 0⇒ J = 1/2 (2 ways), J = 3/2 (1 way) (4.80a)

S = 1⇒ J = 1/2 (3 ways), J = 3/2 (3 ways), J = 5/2 (1 way) (4.80b)
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which gives a further J multiplicity of 10 states. An analysis of expected states and decays in the diquark model can

be found in [117] together with an extension in [118].

From these considerations we understand that selection rules in the naı̈ve diquark model should be found to limit

the number of pentaquark states as well. On the other hand the experimental situation is too preliminary to allow these

kind of reasonings and comparisons. For this reason, the following section, which is devoted to the presentation of a

different approach to the understanding of XYZ phenomenology, does not contain any reference to pentaquarks.

What we can learn from the recent observation of pentaquark resonances is again the indication that diquarks must

be good degrees of freedom to describe the nature of exotic hadronic resonances. A new study on the diquark structure

of pentaquarks which revises some of the conclusions drawn here is found in [119].

5. Tetraquarks and diquarks in the 1/N expansion

This Section is especially based on a work by Maiani et al. on tetraquarks in the 1/N expansion [9], where N is

the number of colors, following a stream of papers on the same subject initiated by Weinberg [120]. The contributions

to this discussion by Knecht and Peris [121] and Cohen and Lebed [122] where also particularly useful to us.

The reputation of tetraquarks was somehow obscured by a theorem by S. Coleman and E. Witten [123, 124] stating

that: tetraquarks correlators for N → ∞ reduce to disconnected meson-meson propagators. The theorem follows

from the simple fact that a four quark operator can be reduced to products of color singlet bilinears. Connecting each

bilinear with itself, one gets two disconnected one-loop diagrams, i.e. a result of order N2, while connected tetraquark

diagrams are one-loop, thus of order N.

The argument was reexamined in [120], where it is argued that if connected tetraquark correlators develop a pole,

it will be irrelevant that its residue is subleading with respect to the disconnected parts. After all, meson-meson

scattering amplitudes are of order 1/N, in the N → ∞ limit, but we do not consider mesons to be free particles.

The real issue, according to Weinberg, is the width of the tetraquark pole: if it increases for large N, the state will

be undetectable for N → ∞. Weinberg finds that decay rates scale ∼ 1/N in the large N expansion, making tetraquarks

a respectable possibility. We will show that widths are even narrower than this. The tetraquark-meson ‘decoupling’

we find here will be functional to the discussion in Section 6.

After a concise review of the 1/N expansion in QCD we will show that tetraquark poles should appear at non-planar

orders of the 1/N expansion [9]. In particular we are interested in the role of diquarks as tetraquark constituents. Their

special role is discussed in Section 5.3. The results obtained in Section 5.3 will be used extensively in Section 6.

For a comprehensive review on the papers which followed Weinberg’s remark [120–122, 125–127] we also refer

to [4].

5.1. 1/N expansion in QCD: a short reminder

The behavior of QCD for N → ∞ has been characterized by G. ‘t Hooft [128]. Consider the gluon self-energy

diagram in Figure 10 with external gluon colors fixed to ā, b̄.

This diagram involves the product
∑

c,d

f ācd f cdb̄ = Tr
(
T ā

adjT
b̄
adj

)
= N δāb̄ (5.1)
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Figure 10: Gluon self-energy diagram with fixed colors ā = b̄.

in the adjoint representation of SU(N). The gluon loop therefore contains a multiplicity factor of N in SU(N). To make

the large N limit of this diagram finite, one requires that the couplings at vertices, g
QCD

, scale with N as g
QCD
=
√
λ/N

so that
λ

N
× N = λ independent of N (5.2)

where λ is known as ‘t Hooft coupling. The large-N limit is obtained keeping λ fixed.

The gluon field is characterized by the color indices

(Aμ)
i
j = Aa

μ (T a)i
j (5.3)

The number of independent components of this matrix in SU(N) are N2 − 1. In the large N limit however we can

neglect the traceless condition, and treat it as a N × N matrix, with N2 independent real components Aa
μ, and represent

the gluon line by a double color line — carrying a pair of color indices i, j. With this notation the diagram in Figure 10

can be represented as in Figure 11.

Figure 11: Gluon self-energy diagram in the large N. With this notation the multiplicity factor N traced above in the f structure constants, has a

clear origin in the color loop at the center.

The origin of the multiplicity factor discussed above becomes apparent in the double-line notation: the factor of

N arises from the color loop in Fig. 11 and the factors of 1/
√

N at the vertices make the large N limit smooth. From

the same figure we argue that the quark-gluon coupling will therefore also scale as 1/
√

N and the quadrilinear gluon

coupling as 1/N.

‘t Hooft shows that in the N → ∞ limit, the quark lines have to be at the edge of the diagram (valence quarks),

whereas diagrams with internal quark lines are suppressed (quenched theory). Internal gluons are instead allowed, but

only planar diagrams, where gluon lines do not step over each other, survive at leading order.

Let us consider the correlation function of a color singlet quark bilinear. With no gluon lines, the result is obviously

proportional to N, the number of colors running in the loop. A gluon line traversing the loop, see Figure 12, can be

represented by two color lines running in opposite directions and joining the quark and antiquark lines that flow in the

vertex. Thus we get two loops, i.e. a factor of N2, times the factor 1/N, therefore a contribution of order N again. The
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1/
√
N

1/
√
N

∼

Figure 12: One gluon exchange correction to the correlation function of a color singlet quark bilinear, represented by the open circle. Representing

the gluon line by two, oppositely running lines joining the quark lines on the edge, one sees that the diagram reduces, for color number counting, to

a two loop diagram. Thus one recovers a result of order N, like the lowest order diagram, multiplied by the color reduced coupling λ.

same adding trilinear or quadrilinear gluon vertices. As long as gluons are inserted within the the surface delimited by

the external quark lines and as long as they are planar, the N power counting does not change. Non-planar gluons, as

we will see, are instead subleading.

The sum of all planar diagrams of this kind will again be of order N, times a non-perturbative function of λ, which

may well develop poles for certain values of the external momentum, q2.

The sum of all planar diagrams like the one on the lhs of Figure 12 is represented by

〈0|J(p)J†(p)|0〉 ∼ N (5.4)

where the operator J† acts on the vacuum to create a meson state, and

〈0|J(p)J†(p)|0〉 =
∑

n

〈0|J(p)|n〉〈n|J†(p)|0〉
p2 − m2

n

=
∑

n

f 2
n

p2 − m2
n

(5.5)

with the decay constant fn = 〈0|J(p)|n〉.

The behavior at large momenta of 〈0|J(p)J†(p)|0〉 is expected to be logarithmic 27. However the sum over meson

states in Eq. (5.5) can scale as ∼ ln p2, at large p2, only if it has an infinite number of terms, as can be seen by

substituting
∑

n →
∫

dm2
n. Thus we have an infinite number of poles, corresponding to a tower of (stable) meson states

in the correlation function 〈0|J(p)J†(p)|0〉. These have a given flavor content, e.g. quarkonium mesons with varying

spin and parity. Meson masses are independent of N and the entire N dependency of the rhs of (5.5) is encoded in fn.

In the case at hand this means that each fn ∼
√

N.

In the strict N → ∞ limit, mesons are non-interacting particles and hence they are stable. This can be seen by

considering a three-point function, a loop like the one in Fig. 12 with three meson insertions. The color loop of order

N has to be confronted with f 3
n g, so that g ∼ 1/

√
N.

5.2. Tetraquarks in the 1/N expansion

5.2.1. From planar to non-planar diagrams

Following [121], diagrams with tetraquark operator insertions can be depicted as in Figure 13, where a two-point

correlation function of a neutral tetraquark is represented. We do not include diagrams with heavy quark annihilations,

which are expected to be suppressed (OZI rule).

27The asymptotic behavior of the correlators is indeed driven by asymptotic freedom, and apart of a factor pn given by dimensional analysis, it is

expected to scale with fractional powers of logarithms, according to the anomalous dimension of J, see [129].
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q

Q

Q̄

4q

Figure 13: Free two-point correlation function of a tetraquark meson.

The dashed lines represent the cuts where tetraquarks could be found. Apparently tetraquark intermediate states

are possible, along with tetraquark-meson mixings. This is basically the point of view developed in [121], following

Weinberg in [120].

The simplest way to include color interactions in the tetraquark cut of Fig. 13 is that of adding planar gluons.

Consider for example one planar gluon on the light quark line as in Fig. 14 (A). Using the double line notation,

Fig. 14 (B), one sees that the tetraquark cut contains color disconnected components. This motivated the considerations

in [9].

(A) (B)

(C) (D)

Figure 14: (A) A piece of a correlation function with two quark bilinear insertions and a planar gluon. Except for the interaction gluon, like the

left hand half of the diagram in Fig. 13 with the light quark line deformed to run on the perimeter of the diagram. Let the two bilinear insertions

be Qiqk and Q̄ℓq̄m (i � k, ℓ � m). (B) Double-line reperesentation of (A). Cuts might only intercept color-disconnected four-quark configurations:

the cut in figure is for example Qiqk q̄kQ̄r . (C) Non-planar diagram with a gluon running on the perimeter of the amplitude. (D) Double-line

representation of (C). Cuts might intercept connected four quark configurations like Qiq3Q̄r q̄3 in figure. Although (D) can topologically be

deformed into a simple loop diagram — which is what one usually do to count external color loops. Closing the right end half of the loop, the order

in the 1/N expansion is N × (1/
√

N)4 ∼ 1/N instead of N. Notice alternatively that diagram (A) is of order T aT a × (1/
√

N)2 ∼ N whereas (C) is

T aT bT aT b × (1/
√

N)4 ∼ 1/N × N2 × 1/N2 ∼ 1/N i.e. 1/N2 with respect to (A).

The main content of [9] is that non-planar diagrams may provide cuts with color correlated tetraquarks. In essence

this can be seen in Fig. 14 (C), whose double line notation version, (D), shows that this is a possibility. Diagrammatic

considerations of this kind do not provide a proof that tetraquark cuts are indeed found in the non-planar approximation,

but at least suggest that tetraquarks are more strongly decoupled from mesons than expected.
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4q +∼
f4q f4q f4q f4q

f4q−Mf4q−M

(meson theory)

Figure 15: The same diagram as in Figure 13 with its counterpart in meson theory on the rhs. The diagram on the lhs is of order N therefore f4q in

the meson theory is of order
√

N and the mixing f4q−M ∼ N0. This counting relies on the fact that we might have only the tetraquark propagator in

the meson theory. If we assume instead that the loop diagram only involves 4q − M mixings we would simply get f 2
4q

f 2
4q−M

∼ N. In other words,

diagrams on the rhs are meant to be summed on meson/tetraquarks intermediate states. This eventually generates a contact term in the second

diagram on the rhs, which is represented by the first diagram. This means that f4q in the first diagram is equivalent to f4q f4q−M in the second. In

the following we will consider mostly diagrams of the type of the second one on the rhs.

The non planar gluon in Fig. 14, is like a handle applied to the diagram and the amplitude of Figure 14 goes like

1/N, as can be checked by direct calculation.

Even though we cannot provide a proof that diagrams with one handle have indeed a tetraquark pole, we find that

different correlation functions are consistent with the factorization of residues at the pole, as we discuss below.

Let us consider again the diagram in Figure 13, and the corresponding effective meson theory diagrams, as done

in Figure 15. Since the quark loop diagram is of order N (whatever planar gluon interactions might be inserted), the

4q +∼
f4q

G
fM

fM
f4q−M

GMMM

(meson theory)

M

M

Figure 16: The coupling G is found to be of order G ∼ 1/
√

N to match the quark loop diagram, which is ∼ N. Also G ∼ N0 × 1/
√

N using the

mixing in Figure 15. Because of this either writing the diagram with no 4q − M mixing and G or writhing the diagram with mixing and f4q−M/
√

N

is the same thing. The N order of the diagram will be f4q f4q−M/
√

N (
√

N)2 ∼ N or f4q f4q−M/
√

N ∼ 1. Also here, as commented in Figure 15, the

first diagram on the rhs corresponds to the contact term generated by the infinite sum over mesons on the second diagram. This in turn corresponds

to the identification G = f4q−M 1/
√

N.

f4q decay constant f4q = 〈0|J|4q〉 has to be such that f 2
4q
∼ N or (see discussion around Eq. (5.5))

f4q ∼
√

N (5.6)

Since the rhs in Figure 15 also scales as f 2
4q

f 2
4q−M

, the latter requires the tetraquark-meson mixing to be

f4q−M ∼ N0 (5.7)

We might use the result found for f4q in the three-point function responsible for the decay of a tetraquark into two

mesons. The 4q-MM vertex contains the coupling G and G f4q f 2
M
∼ N to match the N order in the loop diagram —

see Figure 16. Since fM ∼
√

N, we have that G ∼ 1/
√

N; this can also be seen through the 4q-M mixing of the rhs
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of Figure 16. It goes like G ∼ f4q−M GMMM ∼ N0 × 1/
√

N, from the fact that the trilinear meson vertex scales as

GMMM ∼ 1/
√

N.

The conclusion that

G ∼ 1/
√

N (5.8)

reached in [120], implies that tetraquarks will be narrow resonances in the large N limit. In other words they are states

which in principle might be observed as narrow resonances, contrarily to the fall apart decay which is intrinsic in the

Coleman-Witten argument mentioned above. In these respects if connected tetraquark correlators develop a pole, it

will be irrelevant that its residue is of the subleading order N (instead of N2). What is really important is that the total

width will scale as Γ ∼ 1/N.

If we assumed that only 4q-M mixings are allowed in meson theory, and that the first term on the rhs of Figure 15 is

the contact term resulting from a (infinite) sum over the mesons on the second term, we would simply have f 2
4q

f 2
4q−M

∼
N which means

f4q ∼
√

N

f4q−M

(5.9)

leading to

G ∼
f4q−M√

N
(5.10)

consistent with the second term on the rhs of Figure 16. To compute the order of G in the large N expansion, the

mixing f4q−M should be computed from another diagram. Consider the two-point MM correlator in Figure 17 where

M M
f4q−MfM

∼

(meson theory)

Figure 17: The diagram on the lhs is of order N0 therefore f4q−M ∼ 1/
√

N, which is not consistent with f4q−M ∼ N0 in Figure 15.

it is found that

f4q−M ∼ 1/
√

N (5.11)

where it is used the standard result fM ∼
√

N. This leads to G ∼ 1/N.

From what just found, we observe an inconsistency. In fact, from Figure 15 one deduces f 2
4q−M

∼ N0, while from

Figure 17 is found that f 2
4q−M

∼ 1/N.

This inconsistency is removed if tetraquark decay and mixing constants are extracted from non-planar diagrams as

shown in the next Section.

5.2.2. Non-planar diagrams

We suggest that tetraquark poles, if present, should appear in non-planar diagrams. The correct way to extract the

decay constant involving a four-quark state is therefore to repeat the previous analysis to the first non-planar order. We
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consider the following diagram in Figure 18, which contains one handle. The 1/N order is determined by

N2−L−2H (5.12)

where L is the number of quark loops and H is the number of handles. In the case in Figure 18 we have L = 2,H = 1

giving N−2, as can be seen also using the standard perturbative counting rules introduced in Figure 12.

M M
f4q−MfM

∼

(meson theory)

Figure 18: In this non-planar diagram the quark loop order is 1/N2 and f 2
M

f 2
4q−M

∼ 1/N2, giving f4q−M ∼ 1/(N
√

N) instead of N0 as in Figure 17.

From the counting of powers in Figure 18 it results that

f4q−M ∼ 1/(N
√

N) (5.13)

We can determine the f4q decay constant from the non-planar two-point correlator of the tetraquark. In the meson

theory we have the 4q − M mixings — contact terms are inessntial to our discussion. The non-planar diagram in

Figure 19 is of order 1/N3 = N2−1−2×2, which corresponds to f 2
4q−M

. Therefore we need

f4q ∼ N0 (5.14)

We must check if the power counting leading to f4q ∼ N0 does not produce conflicting results in other correlation

4q
f4q

∼
f4q−M

(meson theory)

Figure 19: This diagram is of order 1/N3 thus, in the meson theory we have f 2
4q

f 2
4q−M

∼ 1/N3. Using f4q−M = 1/(N
√

N) from Figure 18, we get

f4q ∼ N0 (in place of f4q ∼
√

N found in Figure 15).

functions.

For this purpose consider the trilinear correlator giving rise to the tetraquark decay into two mesons. This is

represented in Figure 20 to the non planar order with one handle. We find that

G ∼ 1/N2 (5.15)
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(meson theory)

+

Figure 20: The quark loop diagram is of order 1/N. Therefore f4q G (
√

N)2 = f4q f4q−M 1/
√

N (
√

N)2 ∼ 1/N gives G ∼ 1/N2, taking f4q ∼ N0.

Also here, as commented in Figure 15, the first diagram on the rhs corresponds to the contact term generated by the infinite sum over mesons on

the second diagram. This in turn corresponds to the identification G = f4q−M 1/
√

N.

M

M M

M
(meson theory)

+∼

Figure 21: A consistency check. Here we can use that G ∼ 1/N2 and f4q−M = fM−4q = 1/(N
√

N) to verify that G2 (
√

N)4 =

f 2
M−4q

(1/
√

N)2 (
√

N)4 = 1/N2 as in the quark-loop diagram — we used G ∼ 1/N2 as found in Figure 20. Also here, as commented in Fig-

ure 15, the first diagram on the rhs corresponds to the contact term generated by the infinite sum over mesons on the second diagram. This in turn

corresponds to the identification G = f4q−M 1/
√

N.

using f4q and f4q−M introduced above. As a consistency check we also analyze the MM → MM four-point function

finding a match between the N order in the loop diagram and in the meson theory, the decay and mixing constants

being fixed. This is done in Figure 21.

Therefore we conclude that the tetraquark states can be even narrower than what expected at the order N, since we

found G ∼ 1/N2 in place of G ∼ 1/
√

N. With this approach we consistently find f 2
4q−M

∼ 1/N3.

5.2.3. Charged tetraquarks

The determination of the coupling G is different if charged tetraquarks are taken into account. Consider for example

the two-point function containing the charged tetraquark cuc̄d̄, in Figure 22 — i.e. assume that the amplitude in Fig. 22

connects a hidden-charm+light meson cc̄ + ud̄ pair to two open-charm mesons cd̄ + uc̄. Like in the cases examined

previously, the four quarks in the cut are found in color disconnected configurations at the planar order, whereas color

connections are forced in non-planar diagrams, see Fig. 23.

The same topology can be used to represent a two-point function of tetraquark operators, 4q→ 4q, or a 4q→ MM

correlator. In the first case it is obtained that f4q ∼ 1/
√

N, since the graph with one handle is of order 1/
√

N. In the

second case

f4q G f 2
M ∼ 1/N ⇒ G ∼ 1/(N

√
N) (5.16)

Neutral tetraquarks found in the cuts of Fig. 19 can mix with meson-meson states, see the rhs of Fig. 19. Such mixings

are not present when we come to topologies as the one in Fig. 23. Therefore charged tetraquarks, which do not mix with

mesons, tend to be broader than neutral ones, which do. Indeed we see that Gcharged ∼ 1/(N
√

N) = 1/ f4q−M Gneutral.
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4q 4q

1 3

2 4

Figure 22: Charged tetraquark two-point correlation function. This might be untwisted in a MM → MM meson-meson amplitude, with no

tetraquarks in the s-channel.

4q

M

M

Figure 23: Decay of a charged tetraquark in two mesons in the lowest non-planar diagram. Following the same reasonings from this topology we

see that i) f 2
4q
∼ 1/N and ii) f4q G (

√
N)2 ∼ 1/N thus G ∼ 1/(N

√
N) (see text for more details) differently from what found for neutral tetraquarks

(G ∼ 1/N2 in Figure 20).

Without the color connections present at non-planar orders, these amplitudes would be saturated by meson-meson

channels, as observed at the beginning of this Section. Diagrammatic arguments are not a proof of the existence of

tetraquark poles, but an indication of the fact that they might occur at non-planar orders. However what found indicates

that tetraquarks are reluctant to mix with meson states.

As we will see in the next subsection, any diquarkonium tetraquark can be written in terms of its meson-meson

quantum numbers (Fierz rearrangement) but this does not contain any dynamical information about the probability

amplitude of a compact tetraquark to rearrange its quark content and decay into a meson-meson state (or viceversa) or

to mix with a meson state. 1/N expansion is used to shed some light on these aspects.

Taking the large N considerations at their extreme consequences (N → ∞), the fact that the 4q − M and 4q − MM

mixings are found to be rather suppressed at large N would make the observed prominent decay modes very unlikely.

However N = 3 and the numerators of the 1/N expansion are unknown.

More interestingly for us, an enhancement mechanism of the mixing, as that proposed in Section 6, would explain

why some of these very narrow states are being observed in experiments.

5.3. Diquarkonia in the 1/N expansion

For N strictly infinite, qq̄ mesons generated by quark bilinear correlators are free particles. Interactions are gener-

ated by letting N to be large but finite. Irreducible vertices with k external mesons are of order N1−k/2.
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We refer to Figure 22 for the flavor composition of a charged tetraquark. Non-planar quark diagrams with the same

flavor structure, as in Figure 23, would develop tetraquark poles in the s-channel contributing an amplitude of order

G ∼ 1/(N
√

N).

We consider S -wave meson-meson scattering in the channel with JP = 1+ and the the three pairs of ‘in’ pseu-

doscalar and vector mesons (M1 M2) together with the three pairs of ‘out’ open charm mesons (M3 M4)

M1 M2 = ηc ρ
+, ψ π+, ψ ρ+ (5.17)

M3 M4 = D̄0 D∗+, D+ D̄∗0, D̄∗0 D∗+ (5.18)

As commented above, a diagram like the one in Figure 22 might be interpreted as a meson-meson MM → MM

scattering diagram converting hidden charm+light mesons into open charm ones.

To appropriately consider the quantum numbers of the M1,2,3,4 mesons, we have to insert the spin matrices of each

of them (written as q̄Γi q′) in the vertices, and obtain the spin factor 28

S (12; 34) = Tr
(
Γ1Γ

†
3
Γ2Γ

†
4

)
≡ 〈Γ1Γ

†
3
Γ2Γ

†
4
〉 (5.19)

The order in the trace follows backward the arrows in the diagram of Figure 22.

The quark diagram is such that it transforms the hidden charm, into open charm channels. If we take for example

M1M2 = ηcρ
+ and M3M4 = D̄0D∗+, we obtain

S ab(ηcρ
+; D̄0D∗+) = C 〈σ2 · σ2 · σ2σa · (σ2σb)†〉 = C 〈σaσb〉 = 2C δab (5.20)

and the same for ηcρ
+ ↔ D+ D̄∗0

S ab(ηcρ
+; D+ D̄∗0) = 2C δab (5.21)

For ηcρ
+ ↔ D̄∗0 D∗+, we obtain

S ab(ηcρ
+; D̄∗0D∗+) = C′ 〈σ2 · σdσ2 · σ2σa · σcσ2〉 (−iǫbcd) = 4C′ δab (5.22)

According to the definitions in Eqs. (4.35) C = 1/2 and C′ = 1/
√

2. We can then complete the spin factor matrix of

hidden (H) to open charm (O) transitions H ↔ O

S ab(H; O) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D̄0 (D∗+)b D+ (D̄∗0)b (D̄∗0 × D∗+)b

ηc (ρ+)a 1 1
√

2

ψa π+ 1 1 −
√

2

(ψ × ρ+)a
√

2 −
√

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
1

2
δab (5.23)

The first row is explicitly given by (5.20), (5.21), (5.22).

The state in the cut must be a superposition of the ‘in’ state and the ‘out’ one to project on both. If we fix the

quantum numbers of the ‘in’ state to be (IG) JPC = (1−) 1++, we are choosing M1 M2 = ψ × ρ
+. The out state can then

be the superposition D̄0 D∗+ − D+ D̄∗0 (last row of the above matrix), which happens to have the right JPC quantum

numbers. For the sake of brevity, from now one we will omit the normalization factors and assume that the hadronic

states are everywhere normalized to one. We then find that the state in the cut of Figure 22 should be

ψ × ρ+ ± (D̄0 D∗+ − D+ D̄∗0) (5.24)

28γ-matrices associated to the quark gluon interaction i) do not count since they reduce to γ0 = ±1, in the non-relativistic limit.
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But this, apart from phases, corresponds to the X+ meson written as a compact diquarkonium (to make sure that

attraction in diquarks makes sense in the 1/N expansion we refer to Appendix B)

X+ = [cu]S=0[c̄d̄]S=1 + [cu]S=1[c̄d̄]S=0 =

= (ǫγαβc
α σ2 uβ)(ǫγα

′β′ c̄α′ σ
2σ d̄β′ ) + (σ2 ↔ σ2σ) =

= (cα σ2 uβ)
[
(c̄α σ

2σ d̄β) − (c̄β σ
2σ d̄α)

]
+ (σ2 ↔ σ2σ) =

= −i(cσ2σ c̄) × (uσ2σ d̄) −
[
(cσ2 d̄)(uσ2σ c̄) − (cσ2σ d̄)(uσ2 c̄)

]
=

∼ −iψ × ρ+ +
(
D+D̄∗0 − D̄0D∗+

)
(5.25)

In the first row we have used the definition of the X+(JPC = 1++) state in terms of diquarks, in the second we have

assumed attraction in the antisymmetric color representation (see Appendix B), in the fourth we neutralize color

composing color singlets and used the Fierz rearrangement results from the Table 6 and (σ2σ)T = σ2σ, (σ2)T = −σ2.

In addition to the results in Table 6, other useful relations which will be needed in the following, are listed below

– (σ2)ik(σ2σ) jl (σ2σ)ik(σ2) jl i(σ2σ)ik × (σ2σ) jl

(σ2)i j(σ
2σ)kl +1/2 −1/2 +1/2

(σ2σ)i j(σ
2)kl −1/2 +1/2 +1/2

i(σ2σ)i j × (σ2σ)kl +1 +1 0

Table 6: Coefficients of the Fierz rearrangement of JP = 1+ quadrilinears. Notice that the square of this matrix is equal to the identity.

(σ2σ)i j · (σ2σ)kl =
3

2
(σ2)il(σ

2)k j −
1

2
(σ2σ)il · (σ2σ)k j (5.26)

or

(σ2σ)i j · (σ2σ)kl = −
3

2
(σ2)ik(σ2) jl −

1

2
(σ2σ)ik · (σ2σ) jl (5.27)

together with

(σ2)i j(σ
2)kl =

1

2
(σ2)il(σ

2)k j +
1

2
(σ2σ)il · (σ2σ)k j (5.28)

or

(σ2)i j(σ
2)kl =

1

2
(σ2)ik(σ2) jl −

1

2
(σ2σ)ik · (σ2σ) jl (5.29)

Similarly one can show that (see (4.56c))

(σ2σ(a)i j(σ
2σb))kl −

2

3
(σ2σc)i j(σ

2σc)kl = (σ2σ(a)ik(σ2σb)) jl −
2

3
(σ2σc)ik(σ2σc) jl (5.30)

A factor of two must be taken into account from each spinor exchange — notice the + sign of the spin exchanged

term. Each time spinors are exchanged a factor of −1 is included: a term like (uσ2 c̄) = (c̄σ2 u) ∼ D̄0. In the fifth row

we assume a simplified hadronization of the quark bilinears (light spin might be not conserved), and, up to an overall

normalization, restore the 1/
√

2 normalizations. We thus found that the ‘eigenchannel’ of matrix S (H; O) contains X+

written as a diquarkonium state.

Let us consider the G-parity transformation properties of the second term on the fourth row of in (5.25). Recall

that Gu = −d̄,Gd = ū and Gd̄ = u,Gū = −d. Then we get that under G-parity

[
(cσ2 d̄)(uσ2σ c̄) − (cσ2σ d̄)(uσ2 c̄)

]
→
[
(c̄σ2 (−u))(d̄σ2σ c) − (c̄σ2σ (−u))(d̄σ2 c)

]
(5.31)
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but the latter term is equivalent to (−1) times the term on the lhs (because (σ2)T = −σ2 and (σ2σ)T = σ2σ and a −1

is to be included each time spinors are exchanged). Therefore the G parity is G = −, which means that the neutral

state will have C = +. The same can be concluded just starting from ([cu]0[c̄d̄]1 + [cu]1[c̄d̄]0). The G-parity analysis

proceeds in the same way also for the two following terms.

Similarly we can write (notice the − sign in the spin exchanged term)

Z+ = (cα σ2 uβ)
[
(c̄α σ

2σ d̄β) − (c̄β σ
2σ d̄α)

]
− (σ2 ↔ σ2σ) =

= −
[
(cσ2 c̄)(uσ2σd̄) − (cσ2σ c̄)(uσ2 d̄)

]
− i(cσ2σ d̄) × (uσ2σ c̄)

∼ ηc ρ
+ − ψπ+ + i D̄∗0 × D∗+ (5.32)

to be compared with the difference between the first two rows in (5.23), and

Z′+ = i(cα σ2σ uβ) ×
[
(c̄α σ

2σ d̄β) − (c̄β σ
2σ d̄α)

]
=

= −
[
(cσ2 c̄)(uσ2σ d̄) + (cσ2σ c̄)(uσ2 d̄)

]
+
[
(cσ2 d̄)(uσ2σ c̄) + (cσ2σ d̄)(uσ2 c̄)

]

∼ ηc ρ
+ + ψπ+ −

(
D̄0D∗+ + D+D̄∗0

)
(5.33)

from the sum of the first two rows in (5.23). Meson-meson amplitudes of the kind described in Figure 22 contain

diquarkonia in both the JPC = 1++ and JPC = 1+− eigenchannels.

As for the neutral component

Z0 ∼ ηc ρ
0 − ψπ0 + i D̄∗0 × D∗0 − i D̄∗− × D∗+ (5.34)

The neutral components for the X are particularly interesting. We may have as well

Xu = [cu]0[c̄ū]1 + [cu]1[c̄ū]0

Xd = [cd]0[c̄d̄]1 + [cd]1[c̄d̄]0 (5.35)

Here C = +. Take the Xd for example. It may be rewritten as

Xd ∼
(
D∗−D+ − D∗+D−

)
+ i
(
ψ × ρ0 − ψ × ω0

)
(5.36)

whose charge conjugation C = + is obtained by by 29

(cσ2 d̄)(dσ2σ c̄) − (cσ2σ d̄)(dσ2 c̄)→ (c̄σ2 d)(d̄σ2σ c) − (c̄σ2σ d)(d̄σ2 c)

= −(dσ2 c̄)(cσ2σ d̄) + (dσ2σ c̄)(cσ2 d̄) (5.37)

Given that Xd contains both I = 0, 1, we include both ω and ρ in Eq. 5.36. The same for the Xu state. Exchanging

d → u

Xu ∼
(
D̄∗0D0 − D∗0D̄0

)
− i
(
ψ × ρ0 + ψ × ω0

)
(5.38)

In other words, should the quark loop diagram in Figure 22 develop a pole in one of the eigenchannels, the meson

pairs coupled to the resonance would have precisely the right quantum numbers to arise from the color Fierz rearranged

diquark-antidiquark state.

It is tempting to assume that all three channels corresponding to the antisymmetric diquark develop a pole, in

which case molecules at meson-meson thresholds and tetraquarks would coincide.

29Actually, under charge conjugation uσ2 c̄ ≡ uT σ2 c̄ which is the non-relativistic limit of ψT Cγ5 χ → ψT
c Cγ5 χc = ψ

T
c Cγ5C−1C χc =

ψT
c γ

T
5

C χc ≡ (ψT
c γ

T
5

C χc)T = χT
c CTγ5 ψc(−1) = χT

c Cγ5 ψc = cσ2ū. On the other hand proceeding like in Eq. (5.37) we would have uσ2 c̄ →
ūσ2 c ≡ (ūT σ2 c)T = −cT (σ2)T ū = cT σ2 ū corresponding to cσ2 ū. When considering charge conjugation in cases like uσ2σ ū, the same

techniques apply, but we also have to remember that CγμC
−1 = −γT

μ .
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5.4. Further remarks

The issue of tetraquarks in the 1/N expansion has been commented thoroughly in a number of papers with different

approaches, like putting all quarks in the antisymmetric representation, as done in [126] — the two representations

coincide for N = 3. What found there is that in such large-N limit, a sort of extreme version of the Corrigan-Ramond

scheme [130] (which would take only one of the quarks to transform according to the two-index antisymmetric rep-

resentation and leaves the remaining ones in the fundamental representation), one can produce tetraquarks in a com-

pletely natural way, because new color-entangled operators exist.

In [120] it is shown that the Coleman-Witten lore that no tetraquarks occur at large-N, because their residue

disappears at N → ∞, is flawed. In particular, to evaluate the tetraquark n-point correlators one has to work large but

finite N and only at the end send N → ∞. In this case, they appear as very narrow states. Therefore tetraquarks can

be made the way Weinberg suggests, but with the concerns discussed in [122, 125]. All this was of further stimulus to

study if tetraquarks poles could instead be relevant at higher orders in the 1/N expansion, as discussed in the previous

Sections. The fact that subleading topologies may be important, as pointed here, seems to emerge also to explain the

large-N behavior of the lightest scalars [127].

Aside from the intrinsic interest of the topic, the present discussion should be considered as instrumental to the

following section. The key points one should keep in mind are:

1. Neutral or charged tetraquarks could appear in non-planar diagrams only. For the latter ones the tetraquark

contribution cannot disappear from the cut diagrams unless the order of the expansion is changed.

2. The mixing of tetraquarks with mesons and the decay constants are found to be suppressed by powers of

f ∼ 1/(N
√

N) and G ∼ 1/N2 (G ∼ 1/(N
√

N)) for the neutral (charged) tetraquarks. This means that produc-

tion, mixing with ordinary mesons, and decays of tetraquarks are quite suppressed in the large N limit, and

tetraquarks might appear more like glueballs, largely decoupled from the meson sector;

3. Color meson-meson amplitudes correlating hidden-charm+meson to open charm states, especially in the large

N limit, display diquarkonia in their eigenchannels.

In many respects what emerges from this discussion of tetraquarks in the 1/N expansion reinforces the thesis that

a dynamical interplay between diquarkonia and thresholds should be at work.

6. An alternative picture of XZ resonances

In this Section we propose some arguments on an alternative explanation of the exotic hadron spectrum of XZ

resonances, following some early discussions appeared in [10, 11, 30]. Differently from other Sections, this one

contains a higher fraction of material not discussed before and it relies on results discussed in Sections 2, 4, and 5. The

mechanism we are going to describe, has been considered in different setups, for ordinary hadron spectroscopy [131],

and more specifically for the XYZ states [19, 132].

In brief the conclusion of this Section is the following: effective interactions, rearranging the quarks in meson-

meson pairs into specific compact tetraquark states whose mass is higher than the meson-meson threshold, are en-

hanced when the energy of the free meson-meson pair in the continuum spectrum matches the mass of the compact

tetraquark (a discrete level in a binding potential).

Not all compact tetraquarks are experimentally visible because their mixing to mesons is extremely small — as

suggested by 1/N expansion arguments. In our view, only those tetraquarks that receive an enhancement from the
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mechanism described below will manifest themselves in the experimental data. This also explains why not all meson-

meson thresholds have a resonance associated to it: simply there are no loosely bound meson-meson molecules in this

picture.

The attempt is that of responding to the most evident problems plaguing the compact tetraquark and molecular

models with a simple scheme able to describe most of the best assessed experimental states.

6.1. The discrete spectrum of diquarkonia in the continuum of free meson-meson states

Let us consider a system of four quarks produced in a small enough phase-space volume. The quantum state Ψ

describing this system can be represented as a superposition of alternative ways of neutralizing the color

Ψ = αΨd + βΨm (6.1)

where

Ψd = (ǫi jk Q jqk) (ǫ imn Q̄mq̄′n) (6.2)

is the diquark-antidiquark alternative and

Ψm = (Qiq̄i) (Q̄kq′k) or (QiQ̄i) (q̄kq′k) (6.3)

is the meson-meson alternative. There are no know superselection rules forbidding to consider such a coherent super-

position.

In the Coleman-Witten picture, the compact tetraquark is equivalent to two free mesons 30, therefore there should

be no real distinction between Ψm (two free mesons) and Ψd. But what we called a diquarkonium tetraquark in the

previous Section, only appears at subleading non-planar orders and its mixing with mesons is rather suppressed at

large-N. This allows to keep Ψm and Ψd distinguished.

Let us assume that |α| ≪ |β|, treating the diquarkonium state as a perturbation to the prominent free meson-

meson state. We consider the persistent non-observation of several predicted diquarkonia to be a consequence of this

hypothesis.

The Ψm state has energy Em in the continuous spectrum, with Em ≥ M1 +M2, where M1,2 are the masses of its free

meson components. The Ψd states, being bound states of colored objects, can have discrete values of the energy Ed,

corresponding to the fundamental and excited diquarkonium states produced by strong interactions. Consider values

of Ed such that Ed ≥ M1 + M2.

If the Ψd and Ψm states are in orthogonal spaces (see Appendix C), m→ m transitions with amplitudes

Tm m ∼
|〈Ψd |HI Ψm〉|2
Em − Ed + iǫ

(6.4)

are allowed. Here we consider only that particular Ed, if any, which occurs close (from above) to the M1 + M2 thresh-

old. It corresponds to the mass of the would-be diquarkonium. The numerator, containing the effective interaction

Hamiltonian HI in the continuous spectrum, is difficult to estimate, but expected to be small, on the basis of large-N

arguments. Therefore the term Tm m is not negligible only when Em ∼ Ed.

Eq. (6.4) should be confronted to Eq. (2.18) noting that in the latter case the discrete level is found in the negative

energy spectrum of some potential V whereas in the case of (6.4) the discrete level is on the same side of the continuous

30The two-point function of a tetraquark is equivalent to the product of two free meson two-point functions.
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spectrum (therefore the iǫ prescription is needed, as in the third term of Eq. (2.17)), but pertains to a different potential

with respect to that giving the onset of continuum levels31.

The total rate for all reactions initiated by Ψm in a volume V (i.e. with a density of initial meson-meson pairs

produced in hadronization = ρ = 1/V) is given by unitarity

Γ = −16π3 ρ Im(Tm m) ≃ 16π3 ρ
ǫ

(Em − M4q)2 + ǫ2
|〈Ψd |HI Ψm〉|2

= 16π4 ρ δ

(
p2

2M1

+
p2

2M2

− δ
)
|〈Ψd |HI Ψm〉|2 (6.5)

where the detuning parameter δ = M4q−M1−M2 is represented in Fig. 24 and it is assumed |p| ≪ M1,2. Hadronization

randomly generates relative momenta p between the components of the meson-meson system Ψm. The expected width

Γ is the average of Γ over all p’s within the ball |p| � p̄ — where p̄ is the support of the diquarkonium tetraquark

wavefunction in momentum space 32. We consider p̄ to be roughly less than the average radial excitation gap between

diquarkonia levels.

Assuming M1 ≃ M2 ≃ M we have therefore 33

Γ ≃ A
√
δ (6.6)

provided that
√

Mδ < p̄. Here

A =
48π4

p̄3
ρ |〈Ψd |HI Ψm〉|2M3/2 ∼ 48π4|〈Ψd |HI Ψm〉|2M3/2 (6.7)

because the density of states scales like p̄3. Therefore the expected width scales with the square root of the detuning

δ between the mass of the diquarkonium state (which can be estimated theoretically) and the nearest meson-meson

threshold having the same quantum numbers. If T
j

i
is a diquarkonium tetraquark with an antidiquark of color i and a

diquark of color j, a simple ansatz for HI is

HI = B (T
j

i
ǫ jℓmǫ

ikn Mℓk Mm
n ) (6.8)

i.e. an operator crossing the quarks from T to the meson-meson MM pair. The coupling B has dimensions of MeV

and assume that it scales as B ∼ ǫ M, ǫ being a small numerical coefficient. Meson fields and tetraquark fields

might have spin. To avoid the momentum dependent transformation matrices associated with each particle spin,

which arise under Lorentz transformations, one generally sums over spins to form the Lorentz invariant amplitude

EM1
EM2

ET

∑
spins |〈Ψd |HI Ψm〉|2 ≡ R. Therefore we have A ∼ 48π4ǫ2(M2/M3) R M3/2, i.e. the mass dependence in

A gets soften to A ∼ M1/2. This is computed in the meson-meson frame for sufficiently small recoils allowing to

exchange energies with masses (see discussion in Section 3).

A fit to data can be done to estimate A and to verify if and to which extent it is universal among the various X,Z

resonances — see Fig. 25.

The derivation of (6.6) is based on the assumption that

1. δ > 0: the mass of the diquarkonium must be larger than the relative meson-meson threshold — δ < 0 corre-

sponds to a zero rate

31This strongly differentiates our metastable state from a true resonance. The latter is above threshold but belongs to the same potential as for the

two-meson state
32In the type II model the diquarks are considered to be quite distant in space (see Section 4.4). A large separation in position corresponds to a

small support in momentum space.
33Similarly one finds that σ̄ does not depend on δ. This has the interesting consequence that we expect the Z’s to be produced in prompt hadron

collisions.

59



�

∆ detuning�
V1

V2

diquarkonium

free meson�meson pair

0 2 4 6 8 10

0

�V0

Distance � �fm�

E
n

er
g

y
�M

eV
�

Figure 24: The short range color potential has discrete levels: the lowest lying one is shown with a thicker line. Just for the sake of illustration we

qualitatively sketch a quarkonium-like potential V2 for the radial excitations, but do not assume any explicit functional form for it. The detuning δ

is the energy-gap measured from the onset of the continuous spectrum of the long-range potential to the mass of the diquarkonium state in V2.
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Figure 25: Width of the observed exotic mesons as a function of their detuning δ to the closest, from below, two-meson thresholds. The solid curve is

the fitted function A
√
δ, with A = (10.3±1.3) MeV1/2 with χ2/DOF = 1.2/5 (without the X(4140), the quality of the fit would be χ2/DOF = 0.2/4).

The two points associated with the Z′c(4020) correspond to the two measurements of its width obtained from D̄∗0D∗+ (solid black) and the hc π

(dashed gray) channels and which differ at 2σ level from each other. In the fit we considered the Γ(Z′c) ≃ 25 MeV measured in the D̄∗0D∗+ channel,

which is consistent with the width of the neutral Z′0c partner. We also show the prediction for the Z(4430) width, which underestimates the total

width as expected. The red point corresponds to the X(5568) state whose observation has been claimed by D∅ [133]. On the left panel we use the

X(4140) width as measured by CMS [134]. On the right we use the most recent LHCb value [135, 136] — see Sections 6.4 and 8.6.

2.
√

Mδ < p̄: the contribution of (6.4) to Γ comes only from small enough detunings

3. The diquarkonium state, when Fierz-transformed in terms of meson singlets, does not contain the meson com-

ponents in the meson-meson pair (6.4))

With the discovery of charged Zcs and Zbs resonances, the connection to open charm/beauty meson-meson thresh-

olds has become manifest. The X(3872) mass is fine tuned with the D̄0D∗0 threshold. Also the Zb(10610), Zb(10650),

Zc(3900) and Z′c(4025) are close to the BB∗, B∗B∗, DD∗ and D∗D∗ thresholds respectively, but at energy distances of

+2.7, +1.8, +7.8, +6.7 MeV; this positive sign trend does not appear to be an accidental feature. It means that, lying

above threshold values, Z resonances cannot be deuteron-like states!

As illustrated in Fig. 25, the
√
δ fit works rather well for X, Zb, Z′

b
, Zc, Z′c, and X(4140). For all of them the δ > 0

condition is met (in the case of Zb, Z′
b
, Zc, and Z′c, the detunings are therefore δ = 2.7, 1.8, 7.8, 6.7 MeV respectively).
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The estimate of A = (10.3 ± 1.3) MeV1/2 is compatible, within 2σ, with the A ∼ M1/2 behavior34. More will be said

on condition (3) in the following.

This approach badly fails to accommodate the X(5568) which was considered to falsify this approach, until its

experimental disproval.

What is callled an X,Z resonance could therefore result from the non-vanishing amplitude 〈Ψd |HI Ψm〉 inducing an

effective interaction in the continuous spectrum of meson-meson states due to a diquarkonium Ψd located just above

threshold. The free meson-meson state gets temporarily locked in the discrete level within V2 thanks to the interaction

HI — the diquarkonium state is produced. If HI were zero, the only effect in the continuous spectrum of V1 could

come from a shallow bound state, if any, at −B. However anything appreciable in the cross section would need a gap

E + B ≈ 0, as reported in Section 2, whereas, as we see from phenomenology, E can go rather far from threshold

in the continuous spectrum (the fact that E + B can be as large as E + B ≈ 10 MeV, would contradict most of the

hypotheses we have worked with in Section 2). In absence of a level at −B, and assuming HI = 0, we recall that

S -wave (re)scattering of meson-meson pairs alone could not generate narrow width resonances.

The only fact that diquarkonium levels exist, provides an effective interaction in the meson-meson channel which

allows the temporary ‘hybridization’ of the meson-meson system into a diquarkonium. In other words, all diquarko-

nium tetraquarks predicted should in principle be observed, but only few of them get produced: the conditions de-

scribed above should be met. Under these conditions an enhancement of the tetraquark-meson mixing (otherwise

extremely small) becomes possible.

6.2. Ψm and Ψd states

We used Ψd for diquarkonium states and Ψm for free meson-meson states, with negligible residual strong interac-

tions.

Let us consider the particular case of the Zc(3900) resonance. From (IG) JPC = (1+) 1+− quantum numbers the Ψd

state is

Ψd = [cu]S=0[c̄d̄]S=1 − [cu]S=1[c̄d̄]S=0 (6.9)

and, from (6.2), this notation is a shorthand for

Ψd = ǫαβγ(c
ασ2uβ) ǫα

′β′γ(c̄α′σ
2σd̄β′ ) − (σ2 ↔ σ2σ) (6.10)

Here ǫαβγ(c
ασ2uβ) describes a spin zero diquark whereas ǫα

′β′γ(c̄α′σ
2σd̄β′ ) has spin 1. Upon Fierz rearrangement we

found

Ψd ∼ ηc ρ
+ − ψπ+ + i D̄∗0 × D∗+ (6.11)

The closer (i.e. fulfilling
√

Mδ < p̄) meson-meson threshold below the measured Zc(3900) mass is D̄0D∗+, therefore

the relevant threshold is

Ψm ∼ D̄0D∗+ (6.12)

This is orthogonal to Ψd: there is no D̄0D∗+ component in the Ψd Fierz-transformed state. The Ψm might be taken as

a superposition of different meson-meson states and constructed in such a way to be orthogonal to Ψd. However we

computed the total rate for all reactions initiated by a selected meson-meson state with fixed quantum numbers and

flavor, and this is why we stick to Ψm as in (6.12).

In the Z′c case we found in (5.33)

Ψd ∼ ηc ρ
+ + ψπ+ −

(
D̄0D∗+ + D+D̄∗0

)
(6.13)

34Meaning that (10.3 + 2.6)/(10.3 − 2.6) ≃
√

M(Zb)/M(Zc).
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whereas the relevant threshold must be

Ψm ∼ D̄0∗D∗+ (6.14)

The case of the Zbs resonances is completely analogous.

In the case of the X(3872) we have

Xd = [cd]0[c̄d̄]1 + [cd]1[c̄d̄]0 (6.15)

where the subscript d stands here for d-quark. As it was shown in Section 5.3, this latter state can be rewritten as

Ψd ∼
(
D∗−D+ − D∗+D−

)
+ i
(
ψ × ρ0 − ψ × ω0

)
(6.16)

whereas

Ψm ∼ D̄0D∗0 (6.17)

so orthogonality between Ψm and Ψd is at work. Any Ψm ∼ D+D∗− would be slightly heavier than the M(Ψd) mass

and is not to be considered here.

On the other hand there is also a Xu component which would Fierz to neutral open charm states. We might

observe that since the mechanism we consider for the formation of the observed resonances relies on the orthogonality

between Ψd and the open charm meson pair D0D̄0∗, only the Xd component gets involved. This would rule out the

Xu component therefore inducing isospin violations in X(3872) decays, with no need of any hyperfine neutral doublet

close to 3872 MeV. This point will be discussed again in Section 6.3.

From this discussion we see that

1. We do not expect a narrow resonance in proximity of every single meson-meson threshold but only free meson

pairs unless a Ψd, with the right quantum numbers, occurs right above threshold

2. We do not expect a resonance in correspondence of every diquarkonium state: pure diquarkonia might have

small probabilities to be formed on their own given |α| ≪ |β| in (6.1)

6.3. The Xb in the beauty sector, isospin violations and the non-observation of X+

A pressing question is about whether we should expect a twin particle of the X(3872) in the beauty sector. Also

in this case, the determination of the discrete diquarkonium level should be precise enough to allow a prediction.

According to (4.50) and (4.51), the twin of the X in the beauty sector should be almost degenerate with the lighter of

the two Zbs and from (4.52)

M[X([bq][b̄q̄])] ≃ M[Zb(10610)] = (10607 ± 2) MeV (6.18)

If the relevant threshold is B̄0B∗0, in perfect analogy with the charm sector, we have

M(B0) + M(B∗0) ≃ (10604.4 ± 0.3) MeV (6.19)

This alternatively tells that

1. There is a very narrow partner of the X(3872) in the beauty sector if indeed the diquarkonium level is higher by

few MeVs as from the above rough estimate

2. There is not such a resonance because the diquarkonium mass would be below the value of 10604 MeV in (6.19)

We might prefer the second option because it is observed in the charm sector that the experimental mass difference is

M(Zc) − M(X) ≃ (32 ± 3) MeV (6.20)
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whereas the diquarkonium model would predict an approximate degeneracy. This leads to infer that the twin diquarko-

nium level of the Xb falls below the relevant threshold, and no such resonance will be discovered. On the other hand,

in going from the mass value of the charm to that of the beauty, we could observe a sensibly smaller lift of the Zb − Xb

degeneracy and consequently a narrow Xb particle could be eventually found in pp collisions.

As for the time of this writing, there are no experimental clues of an Xb in the beauty sector located close to

10604 MeV (see Section 8.3).

Besides the absence of a relative of the X(3872) in the beauty sector, another serious problem with a naı̈ve diquarko-

nium interpretation of this resonance is the absence of a almost degenerate doublet of neutral states Xu = [cu][c̄ū] and

Xd = [cd][c̄d̄]. The need of it comes from the observation of strong isospin violation in the X decays [137]

B(X → J/ψ ω)

B(X → J/ψ ρ)
≃ 0.8 ± 0.3 (6.21)

If the mass matrix were of the kind

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2m[cq] 0

0 2m[cq]

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + ǫ
⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (6.22)

it would have two eigenstates

|1〉 − |2〉
√

2
with λ = 2m[cq]

|1〉 + |2〉
√

2
with λ = 2m[cq] + 2ǫ (6.23)

corresponding to two isospin eigenstates I = 0, 1 with approximately the same mass, ǫ being a small annihilation term

uū↔ dd̄. Here |1〉 and |2〉 are the basis vectors

|1〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∼ Xu |2〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∼ Xd (6.24)

If ǫ is negligible with respect to m[cq], i.e. annihilations are negligible, we can set it to zero to first approximation

and this breaks isospin giving Xu and an Xd, degenerate in mass, each maximally isospin mixed. Each of them, Xu and

Xd, can therefore decay into J/ψ ω and J/ψ ρ with almost the same rate. However an hyperfine splitting between them

is expected and it even seemed to be in data for some time [86] — those results were never confirmed in successive

data analyses.

On the other hand, as discussed in Eqs. (6.15,6.16), only the Xd is subject to the hybridization phenomenon

described. The state Xu would instead have a projection on the D̄0D∗0. Ruling out Xu in favor of Xd at the same time

breaks isospin, as required by data, and solves the problem of the absence of an hyperfine neutral doublet at about

3872 MeV.

Finally, also the problem of the non-observation of X+ might be addressed within the same scheme. The V2

potential gives almost degenerate X+, X0 would-be compact tetraquark levels. On the other hand the D+D̄∗0, D̄0D∗+

thresholds happen to be slightly heavier than those. This might be the reason why we do not observe X+ resonances.

Most remarkably the Ψd state for the X+ is not orthogonal to the relevant (neutral) threshold. This is summarized in

Table 7.

The J/ψ ρ and J/ψ ω thresholds are sensibly above M(Ψd), the mass of the diquarkonium state. This might be a

reason not to include them in this discussion. However, given the width of the ρ meson especially, they could have.
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Yet J/ψ ρ and J/ψ ω are not included in the total width calculation in (6.5), because of (6.16): the enhancement in (6.5)

is obtained for Ψd and Ψm orthogonal states only.

Even though X, in this picture, is prominently produced by DD∗, it can also decay in J/ψ ρ(ω), with a phase factor

penalty, as it is clear from observations on X0.

The case of X(3872), among the one examined here, is particularly extreme because of the very narrow splittings

involved.

The picture described here of a resonant hybridization with a tuned diquarkonium level in the meson-meson chan-

nel has been first discussed in [11]. Some earlier considerations on the same topic can be found in [138] and in [10, 30],

although formulated differently.

6.4. The special case of the X(4140)

As discussed in Section 4.4, diquarkonium spectra can be computed assuming an interaction Hamiltonian depend-

ing on the spin degrees of freedom of quarks within diquarks [8]. From Eqs. (4.52, 4.53)

MZ′ − MZ = 2κ (6.25)

and

MZ′ + MZ = 4m[Qq] (6.26)

so that

κcq ≃ 67 MeV

m[cq] ≃ 1980 MeV (6.27)

We argue that

m[cs] ≃ m[cq] + (ms − mq) ≃ 2100 MeV (6.28)

with (ms − mq) ≃ 120 MeV from the SU(3) decuplet (this mass difference, when taken from Ds mesons, would be

lighter by ∼ 20 MeV). It is also worth noticing that the difference in mass between X(4140) and X(3872) is consistent

with the ψ − ρ mass difference. We use the naı̈ve scaling law to determine

κcs = κcq

mq

ms

≃ (45 ± 3) MeV (6.29)

where the quark mass are the constituent ones as taken from Table I in [7]. Therefore, from the spectrum in Figure 8

we have (see also [139])

M(X(4140; 1++)) = 2 × 2100 − 45 = 4155 MeV (6.30)

(or as light as 4410 MeV with a smaller mass difference) which, considering the approximations made, results in

reasonable agreement (4130±20 MeV) with the experimentally observed mass value. This estimate improves on what

was found before the discovery of the Zcs system [85].

The X(4140), also reported in Figure 25, is a 1++ state, like the X(3872), but in the diquarkonium picture it has

quark content [139, 140]

X(4140) = [cs]0[c̄s̄]1 + [cs]1[c̄s̄]0 (6.31)

which is indicated by the experimental observation of the decay mode

X(4140)→ J/ψ φ (6.32)
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fixing C = +. As in Eq. (5.36) we have

Ψd ∼
(
D∗−s D+s − D∗+s D−s

) − i (ψ × φ) (6.33)

On the other hand, the closest threshold from below with quark content cs c̄s̄ and JPC = 1++ would be J/ψ φ, which is

located just 20 MeV below 4140 MeV (about 40 MeV higher than D∗−s D+s ). In both cases, Ψm = D∗−s D+s , ψ × φ, would

have a non-zero overlap with Ψd. This forbids the mechanism we presented here and it could be that this resonance

needs some other explanation. Indeed there are other aspects making of the X(4140) a special case.

Recent results by the LHCb collaboration confirm it, but with a total width of about (83±21) MeV, much larger than

what reported before. Quantum numbers are confirmed to be 1++. Most importantly, three more states are observed

(with slightly less significance)

X(4274; 1++), X(4500; 0++), X(4700; 0++) (6.34)

and similar decay modes. A second 1++ state (heavier by 130 MeV) is not expected in the diquark-antidiquark picture

as can be seen from Fig. 8.

Heavier states might be easily considered to be radial excitations35: X(4500; 0++), X(4700; 0++), could be the radial

excitations of the two scalar states 0++ and 0++′ expected by the diquarkonium model, see Eqs. (4.57) — the lowest of

them cannot kinematically decay into J/ψ φ [141].

But the second 1++ state remains a problem. We might suspect that the second 1++ state, X(4274; 1++), has not

been identified correctly: its quantum numbers are not 1++ but either 0++ or 2++ — see Fig. 8. Another possibility is

that two almost unresolved peaks, one with 0++ and the other with 2++ quantum numbers, are observed at ∼ 4270 MeV.

Angular information would be washed out for the sum of the two states to make it appear as one with averaged spin-

parity, see [140].

Another, even stronger hypothesis, is that (anti)quark-(anti)quark systems might, less likely, be produced also in

the color symmetric configuration 6 (6̄). We would not talk of diquarks in that case. Overall 6 × 6̄ contains the color

singlet and we would haveΨs stationary states, in some other potential V3 in Fig. 24. The spectrum of Ψs states should

be different from that of Ψd ones, as computed in (6.30) – with an unknown mass gap. Yet we could assume

X(4140) = {cs}0{c̄s̄}1 + {cs}1{c̄s̄}0 (6.35)

where curly brackets denote color 6 quark-quark pairs. The Ψs state associated would be

Ψs ∼ ψ × φ + D∗+s × D∗−s (6.36)

to be compared with the meson-meson threshold

Ψm = D∗−s D+s (6.37)

This would have the interesting consequence to make the mechanism here described possible, and force to use the

detuning δ to the D∗−s D+s threshold. This predicts Γ̄ ∼ 10 ×
√

60 ∼ 77 MeV, to be compared with the LHCb value

Γexp = (83± 21) MeV. On the other hand this would not solve the problem of having two observed 1++ states — a spin

misedintification is still the favored option. In the diquarkonium tetraquark picture [142], this gets solved doubling the

spectrum with 3̄ diquarks and 6 quark-quark pairs.

6.5. Summary

In Table 7, for each of the known multiquark resonances, we report whether or not they fulfill the criteria to be

produced with the mechanism described in this Section.

35Although all these states appear to decay into J/ψ rather that ψ(2S ) (in contrast to the Z(4430), which decays prominently into ψ(2S ) π), and

the mass gap looks too small with respect to the M(Z(4430)) − M(Zc(3900)) one.
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Resonance Ψm Ψd M(Ψd) ≥ M(Ψm) Ψd ⊥ Ψm Exp.

X0
u D̄0D∗0

(D̄∗0D0 − D∗0D̄0)
yes no ✪

−iψ × (ρ0 + ω0)

X0
d

D̄0D∗0
(D∗−D+ − D∗+D−)

yes yes ✦
+iψ × (ρ0 − ω0)

X+ D+D̄∗0 ∨ D̄0D∗+ (D+D̄∗0 − D̄0D∗+) − iψ × ρ+ no no ✪

Z0
c D̄0D∗0

ηc ρ
0 − ψπ0

yes yes ✦
+i D̄∗0 × D∗0 − i D̄∗− × D∗+

Z+c D̄0D∗+ ηc ρ
+ − ψπ+ + i D̄∗0 × D∗+ yes yes ✦

Z′0c D̄∗0D∗0
ηc ρ

0 + ψπ0 + (D̄0D∗0 + D0D̄∗0)
yes yes ✦

−(D−D∗+ + D+D∗−)

Z′+c D̄∗0D∗+ (ηc ρ
+ + ψπ+) − (D̄0D∗+ + D+D̄∗0) yes yes ✦

(X0
b
)u B̄0B∗0

(B̄∗0B0 − B∗0B̄0)
no no ✪

−iΥ × (ρ0 + ω0)

(X0
b
)d B̄0B∗0

(B∗−B+ − B∗+B−)
no yes ✪

+iΥ × (ρ0 − ω0)

X+
b

B+B̄∗0 ∨ B̄0B∗+ (B+B̄∗0 − B̄0B∗+) − iΥ × ρ+ no no ✪

Z
(′)0
b
, Z

(′)+
b

like Zcs like Zcs yes yes ✦

Table 7: We resume here the mechanism described. In the last column to the right the final evaluation: is the resonance expected in data

(checkmark) or not (cross)? Some relevant features: i) there is only one neutral X which decays violating isospin — this is not the case for neutral

Zcs or Zbs ii) there are no neutral Xs in the beauty sector — one of the two states is subject to the approximate evaluation of the diquarkonium mass

though iii) there are no charged X in the charm nor in the beauty sector.

The starting point of our discussion is that the all the observed XZ states appear to be above threshold. We are not

considering this as an accidental pattern. Being the detunings fairly small, different parametrizations of the lineshapes

might move the states below threshold [143, 144]. Forthcoming data will be able to resolve the proper lineshapes and

give a definitive answer to this question. For the time being, we decide to trust the results currently provided by the

experiments, and take δ > 0.

If on the other hand the X+(∼ 3872) will eventually be discovered, suppose with a larger width than X0 for example,

or Xb in the beauty, or any other among the states predicted by the diquarkonium model, that would challenge or simply

invalidate the given description in favor of the diquarkonium tetraquark model, or, depending on the results, in terms

of other approaches.

Secondly, it is extremely plausible that compact tetraquarks are indeed part of the QCD spectrum, as understood

also on the basis of large-N QCD considerations. Therefore, one might expect to observe them even in absence of close

by meson-meson thresholds. Our assumption is that, unless enhanced by the mechanism described, the probability of

producing a diquarkonium tetraquark on his own is very small. Exception made for large-N QCD, we do not have a

more rigorous explanation, from first principles, of this point, but we rather consider it mostly motivated, a posteriori,
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by the persisting experimental lack of several diquarkonium states 36.

It is not clear yet how to treat those resonances that could be formed in correspondence of radial excitations of

diquarkonia because we are not sure about how the mechanism works, and if it does, in the case in which transitions are

possible within the closed channel (in the potential V2 of Figure 24). Also neutral JPC = 1−− Y resonances, identified

as orbital excitations of diquarkonia (Section 4.6), have not been included in this discussion for the same reason.

7. Other models and approaches

In this Section we illustrate other options for the description of XYZ phenomenology. These were proposed

since the early days after the discovery of the X(3872) and the Y(4260) and might have a somewhat more restricted

application since they do not apply ‘systematically’ to all of the observed states. The fact that XYZ observed resonances

should all be of the same nature contains admittedly some prejudice, which motivated many of the arguments made in

this review. Until a widely accepted picture is not reached, we have to consider the possibility that not all of them can

be understood with the same scheme.

7.1. Hadroquarkonium

The peculiar property of the vector Y states and of the Z(4430) motivated their interpretation in terms of another

possible hadron configuration, the so-called hadroquarkonium [145–148]. These states decay predominantly into a

particular charmonium + light mesons, J/ψ for the Y(4260) and the Zc(3900) and ψ(2S ) for the others. In particular,

they are not observed decaying into open charm final states, despite these modes are expected to dominate the width

in all ordinary charmonium models. Therefore, one of their possible interpretations is that of a ‘core’ composed

by a compact QQ̄ state, surrounded by a “cloud” of light hadronic matter. While meson molecules (Section 3) and

diquarkonia (Section 4) are discriminated by the overlapping of their constituents — largely separated mesons for the

former and compact diquarkonia for the latter — hadroquarkonia would be characterized by the relative sizes of the

core and the cloud. The light matter cloud is thought to have a typical radius much larger than that of the central

quarkonium.

The hadroquarkonium model shares several qualitative features with ordinary atomic physics. The potential be-

tween its two components would be a QCD analogous of the van der Waals force. The key assumption is that such

interaction is strong enough to allow for a bound state but not enough to substantially modify the nature of the com-

pact QQ̄ core. If this is verified, then the decay pattern of the above mentioned resonances would be simply explained.

However, as we will see shortly, it is difficult to reach a full assessment of these hypotheses.

An analysis to look for hadroquarkonia on the Lattice has been presented in [149].

7.1.1. The Hamiltonian

Since the QQ̄ core is a color neutral object, its interaction with the gluonic field generated by the light degrees of

freedom can be treated using a QCD multipole expansion [150]. The effective Hamiltonian for such an interaction can

be written as [150–153]

Heff = −
1

2
α(ψ1ψ2)Ea

i Ea
i (7.1)

36On the other hand, the absence of meson molecules from the ensemble of observed states is clearly explained by the production issues reported

in Sections 3.3 and Appendix A.
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We adopt the Wilsonian normalization of the gluonic fields 37. The previous equation is simple to understand in

analogy with the electromagnetic case. The leading interaction between an overall neutral composite object and an

external electric field is proportional to −d · E, with d the dipole moment of the object. At the same time, the induced

dipole must be proportional to the external field itself, d ∝ αE, with α being the polarizability. Therefore, the chromo-

polarizability α(ψ1ψ2) is essentially a measure of the deformability of the central QQ̄. A less heuristic derivation can be

found in Appendix D.

Very little is know ab initio about the chromo-polarizability 38. The only two quantities that have been estimated

are the off-diagonal elements α(J/ψ ψ(2S )) and α(ΥΥ(2S )), which have been measured from the ψ(2S ) → J/ψ π+π− and

Υ(2S )→ Υ π+π− decays obtaining [154]
∣∣∣α(J/ψ ψ(2S ))

∣∣∣ ≃ 2.00 GeV−3 and
∣∣∣α(ΥΥ(2S ))

∣∣∣ ≃ 0.66 GeV−3 (7.2)

However, in light of the definition (D.9), the chromo-polarizability should also satisfy the Schwartz inequality

α(ψψ)α(ψ′ψ′) ≥
∣∣∣α(ψψ′)

∣∣∣2 (7.3)

with ψ = (J/ψ, Υ) and ψ′ = (ψ(2S ), Υ(2S )). It is also generally expected for each diagonal term to be larger than the

off-diagonal one [145]. It is natural to expect for the QCD Van der Waals force to deform the core rather than change

its nature.

A first challenge to this picture comes from the Y(4260) → Zc(3900) π → (J/ψ π) π decay observed both at

Belle [155] and BES III [156]. According to the description above, the Y(4260) would be a hadrocharmonium with

a J/ψ core surrounded by an isoscalar pion cloud. In this context, it is hard to understand why a decay into its

constituents should happen via an intermediate isovector state as the Zc [148]. This issue could be overcome if the

Zc(3900) itself has a hadrocharmium structure, with the same heavy quark core. This interpretation might be motivated

by the suppression of the Zc → hcπ decay, which was unexpected both in the molecular and in the tetraquark models.

Nevertheless, as we will see shortly, it is seriously put in jeopardy by the observation of the Zc → DD∗ decay.

Even though suppressed, the chromoelectric field generated by the hadronic cloud might also induce a transition

from the core quarkonium to another, ψ1 → ψ2, with rate mostly determined by the off-diagonal chromo-polarizability

α(ψ1ψ2). Consequently, small but detectable decay rates into quarkonia different from the original core are expected.

Decays into open flavor mesons should be suppressed as well, since they require the splitting of the QQ̄ by means

of the soft gluons generated by the surrounding cloud. Indeed, using the holographic soft wall model for QCD [157],

it has been argued that the decay of the hadroquarkonium into open flavor mesons is exponentially suppressed by the

mass of the heavy quark, exp
(
−b
√

MQ/ΛQCD

)
, with b being a constant.

Although in good agreement with the Y states and with the Z(4430), this result challenges the interpretation of the

Zc(3900) in terms of hadrocharmonium [158], since a prominent decay into DD∗ has been observed [159].

7.1.2. To bind, or not to bind...

Let us now determine under which conditions the interaction (7.1) can allow bound states. It is easy to show that

the potential is indeed attractive. Neglecting light quark masses, the trace of the Yang-Mills stress-energy tensor can

be written as

T
μ
μ =

β(g)

2g3
Fa
μνF

aμν = − 9

32π2
Fa
μνF

aμν =
9

16π2

(
Ea

i Ea
i − Ba

i Ba
i

)
(7.4)

37This means that the lagrangian is normalized as L = −1/4g2Fa
μνF

aμν.
38It has been shown in [154] that the diagonal element α(ψψ) for ψ = J/ψ, Υ can be measured directly through the ψ→ ππℓ+ℓ− process.
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where we used the one-loop expression for the beta function β =
(
− 11

3
N + 2

3
n f

)
g3/(4π)2 for 3 light flavors. and Ba is

the chromo-magnetic field. At q = 0, its average over a state |X〉 of light hadronic matter is

〈X|T μμ (q = 0)|X〉 = MX (7.5)

assuming a normalization 〈X|X〉 = 1. The potential acting on the light matter by the static pair is obtained considering

the diagonal interaction H
ψψ

eff
:

V〈X|Heff|X〉 = −
V
2
α(ψψ)〈X|Ea

i Ea
i |X〉 = −

8π2

9
α(ψψ)MX −

V
2
α(ψψ)〈X|Ba

i Ba
i |X〉 ≤ −

8π2

9
α(ψψ)MX (7.6)

where V is a volume factor. Now, just like we did in Section 3.6.1, the matrix element of Heff provides the potential

in momentum space, here also in the static limit. Therefore

V〈X|Heff|X〉 = V(q = 0) =

∫
d3x V(x) ≤ −8π2

9
α(ψψ)MX (7.7)

This shows that the interaction is of attractive nature. It is now a matter of understanding under which conditions it

also allows for bound states. This will turn out to be a much more subtle issue.

The kinetic energy of the system can be written in a non-relativistic fashion as T ∼ p2/2μ ∼ 1/(R2
Xμ), where

RX is the characteristic size of the light cloud and μ = MXMψ/(MX + Mψ) is the reduced mass of the quarkonium +

light matter system. Its integral will therefore be ∼ RX/μ. We also used the fact that the momentum will typically be

p ∼ 1/RX. It then follows that the total energy will be

E = T + V ∼ RX
μ
+

∫
d3x V(x) ≤ RX

μ
− 8π2

9
α(ψψ)MX (7.8)

Requiring this to be negative gives the following constraint for the presence of bound states

α(ψψ) MX μ

RX
≥ C (7.9)

where C is some constant of order one, which will eventually depend on the details of the system and on the actual

definition of the characteristic size.

The previous inequality is more easily satisfied for larger values of the chromo-polarizability. Being excited

quarkonia more extended than the ground state, it is extremely reasonable to expect their diagonal chromo-polarizability

to be larger than that of the ground state, α(ψ(nS )ψ(nS )) > α(ψψ). This could explain why most of the resonances men-

tioned at the beginning of the section decay into ψ(2S ) rather than J/ψ .

One might also argue [145] that if RX grows slower than MX then a bound state will necessarily appear for mas-

sive enough light excitations. However, the models which accurately reproduce the linear Regge trajectories — see

e.g. [157] — usually find RX ∝ MX. The conclusions about the possible existence of bound states are therefore sub-

stantially weakened since they crucially depend on the precise knowledge of C and α(ψψ), which are hardly accessible

quantities.

Nevertheless, if one assumes the existence of such state, then a full zoology of them is expected. Not only they

could contain different central QQ̄ cores, e.g. χcJ , ηc, ηc(2S ) and hc in the charm sector39, but the light excitation |X〉
could even be baryonic, giving rise to a so-called baryo-quarkonium. The Pc pentaquarks might be good candidates

for these [160].

39HQSS also implies that hadroquarkonia having cores belonging to the same spin multiplet should be almost degenerate [66].
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7.1.3. A case for heavy HQSS violation

So far there is no evidence for possible states containing ηc and ηc(2S ) 40. However, BES III has observed a

large cross section for e+e− → hc ππ, comparable with the→ Y(4260) → J/ψ ππ one [112, 113, 161]. Although the

resonant content is not clear (see Section 8.4), a relevant component for Y(4260) and Y(4260) → hc ππ is allowed. If

these decays were confirmed, they would imply a strong violation of the HQSS (the hc is a heavy spin singlet) and

challenge the interpretation of the Y(4260) and Y(4360) as hadrocharmonia made of a J/ψ and ψ(2S ) core, respectively.

A possible solution has been proposed in [147]. The two states are considered as a mixture of both S cc̄ = 0 and

S cc̄ = 1 hadrocharmonia

|Y(4260)〉 = cos θ|Ψ1〉 − sin θ|Ψ0〉 and |Y(4360)〉 = sin θ|Ψ1〉 + cos θ|Ψ0〉 (7.10)

where |ΨS cc̄
〉 is the hadrocharmonium state41 and θ is the mixing angle.

This hypothesis allows for interesting predictions for the pattern of e+e− annihilation into J/ψ ππ, ψ(2S ) ππ and

hc ππ final states [147]. The electromagnetic current can only create the |Ψ1〉 state and hence while the J/ψ ππ and

ψ(2S ) ππ channels can be produced directly, the hc ππ one needs to happen through the Ψ1 − Ψ0 mixing. The authors

also estimate the mixing angle to be large, θ ≃ 40◦.

Note, however, that such a large mixing implies that the two states |Ψ1〉 and |Ψ0〉 are almost degenerate. Their

masses are in fact given by

M1 = 〈Ψ1|H|Ψ1〉 = cos2 θM(Y(4260)) + sin2 θM(Y(4360)) ≃ 4293 MeV (7.11a)

M2 = 〈Ψ0|H|Ψ0〉 = cos2 θM(Y(4360)) + sin2 θM(Y(4260)) ≃ 4311 MeV (7.11b)

where H is the unknown Hamiltonian determining the energy of the system. The closeness of these values prevents

from interpreting Ψ1 and Ψ0 as hadrocharmonia having a J/ψ and hc core respectively, since their masses are more

than 400 MeV apart. Their QQ̄ centers might instead correspond to ψ(2S ) and hc respectively. The decay into J/ψ

would happen via the ψ(2S ) → J/ψ transition [66]. This is in contrast with the first picture proposed in [145], where

the Y(4260) was thought of as having a J/ψ core. As explained at the beginning of the section, the QCD van der

Waals force should induce the decay into a charmonium different from the core with a suppressed rate. Indeed, for the

Y(4360) we have B(Y(4360)→ J/ψπ+π−)/B(Y(4360)→ ψ(2S )π+π−) < 3.4×10−3 — see Sec. 8.4. Since in Eq. (7.10)

the weights for the Ψ1 component are comparable in the two states, one would expect a similar ratio for the Y(4260)

as well. This is not supported by data since its decay into ψ(2S ) has never been observed. One might argue that this

is because the process has a fairly low Q-value. Nevertheless, this should imply the Y(4260) to be narrower than the

Y(4360).

7.2. Hybrids

The constituent quark model allows to consider static gluons as additional degrees of freedom belonging to the

adjoint representation 8c of the color group. The first consequence is the presence in the QCD spectrum of the so-

called glueballs, i.e. bound states of gluons only. Indeed a product of an arbitrary number of adjoint fields always

contains a color singlet, 8c ⊗ · · · ⊗ 8c = 1c ⊕ . . . 42. The presence of glueballs has been confirmed by several Lattice

QCD analyses — see e.g. [163–166].

40But the Z1(4050) and Z2(4250) seen by Belle in χc1 π might be good candidate for hadrocharmonia.
41The JPC = 1++ quantum numbers can arise from an S cc̄ = 0 hadrocharmonium only thanks to the light degrees of freedom.
42One expects massive glueballs also in pure Yang-Mills theory without matter fields. This make them particularly interesting from a more

fundamental point of view. For a review, see [162].
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Another intriguing possibility is that of joining together a qq̄ in the octet representation and a constituent gluon

3c ⊗ 3̄c ⊗ 8c = (8c ⊕ 1c) ⊗ 8c = 27c ⊕ 10c ⊕ 10c ⊕ 8c ⊕ 8c ⊕ 8c ⊕ 1c (7.12)

These particles are generally referred to as hybrid mesons. They were studied in the context of a constituent quark

model [167–172], of the MIT bag model, both for the light [173] and heavy sector [174], or within an effective field

theory approach [175]. In the constituent models, if the angular momentum of the gluon around the qq̄ pair is Lg, the

orbital angular momentum of the qq̄ pair Lqq̄ and its spin is S qq̄, then the parity and charge conjugation of the hybrid

are

P = (−1)Lg+Lqq̄ and C = (−1)Lqq̄+S qq̄+1 (7.13)

The lightest of these particles has Lg = 0. For example, we can achieve exotic quantum numbers such as JPC = 1−+

through a qq̄ pair with Lqq̄ = 1 and S qq̄ = 0.

7.2.1. Modeling the hybrids: flux tube

The constituent quark model is just one of several ways of describing hybrid mesons. The interaction between the

quark, the antiquark and the gluon can be most easily understood via the phenomenological flux tube picture. It is

well-known that at large separations, the qq̄ pair is confined in an approximately thin cylindrical region of color fields.

One can attempt to describe this configuration of the QCD gauge fields using an effective string theory approach. In

particular, assuming a Nambu-Goto action,43 the potential at large relative distances, r, is found to be [176, 177] (see

also [178] for a textbook treatment).

Vn(r) =

√
σ2r2 +

πσ

6
(12n − 1) (7.15)

Here σ is the string tension and n is the radial quantum number of the string modes.

For the n = 0 string ground state and for large r one obtains the well known V0(r) = σr 44, typical of a confining

theory, and used in different phenomenological parametrizations for describing the quarkonia spectrum (see e.g. the

Cornell potential [181]). Higher values of n correspond to quantized excitations of the string between the quarks and

hence to hybrid mesons.

It should be stressed that, despite being easily visualized, the description of the color flux tube in terms of effective

string theory is problematic. Not only its quantization in four dimensions presents issues, but the energies of the

gluonic excitations are not in agreement with the non-perturbative results obtained from Lattice QCD.

An approximation often used to determine the QQ̄ potential for the case of heavy quarks is that of the time-

honored Born-Oppenheimer (BO) approximation. It is allowed since, in the large mQ limit, the typical time scale of

the dynamics of the light degrees of freedom is much smaller than that of the heavy ones. The QQ̄ pair is treated as

static at some fixed distance r (now considered as a parameter) and the Schrödinger equation is solved for the gluonic

43The Nambu-Goto (NG) action for a relativistic string is proportional to the area of the string itself. If τ and λ are the proper time and the

intrinsic coordinate along the string, and Xμ(τ, λ) the spacetime position of its line element, then the NG action is given by

S NG ∝
∫

dλ dτ

√
−det

(
∂αXμ∂βXμ

)
(7.14)

44Still for n = 0, the first 1/r correction is π/12r, the so-called Lüscher term [179]. This behavior has been confirmed by lattice calculations with

remarkable precision [180].
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degrees of freedom with energy Eα(r), α being the set of quantum numbers describing the gluon state. Alternatively,

the nonperturbative static potential can be directly measured on the lattice. Eα(r) = Vα(r) is then used as the effective

potential for the heavy quark pair. Once the potential has been determined it is possible to look for bound states. If

the static quark pair is in a color singlet configuration, one gets the usual quarkonium spectrum, while if the pair is in

a color octet, one gets the hybrid spectrum.

This approach has been applied together with the previous flux tube model for the gluonic degrees of freedom in

several papers, see e.g. [182–184]. Some preliminary studies performed in order to relax the BO approximation were

done in [185], while the analysis of energy levels fully beyond it has been done in [186]. The authors found that the

spectrum of the lowest hybrid mesons is robust. Some searches in this direction has been performed in Lattice QCD

— see Section 7.5. Note that in this model the first excitation of the flux tube has quantum numbers 1+− or 1−+, in

contrast with the usual 1−− of the gluons. Therefore, a meson with exotic signature 1−+ is obtained when the quark

pair has S qq̄ = 1. This suggest that photoproduction can be the best production modes for these states.

7.2.2. Modeling the hybrids: constituent gluons in Coulomb gauge

Another possibility is to describe the hybrid mesons using the Hamiltonian QCD approach in Coulomb gauge,

and treating the gluonic modes as quasi-particles moving in a non-perturbative QCD vacuum [187–190]. The main

idea is to work in Coulomb gauge, ∇ · Aa = 0, so that the dynamical gluons can be separated from the instantaneous

Coulomb-type forces that act between color charges. A rigorous derivation of the Coulomb gauge QCD Hamiltonian

can be found in [191]. The QCD spectrum is formally found by solving the Schrödinger equation

HQCD[Aa,Πa]ψn[Aa] = En ψn[Aa] (7.16)

with Πa(x) = −i∂/∂Aa(x).

The peculiar feature of this model is that the constituent gluon mass is generated dynamically. To solve Eq. (7.16)

one typically makes an ansatz for the BCS vacuum wave functional as [189]

ψ0[Aa] = 〈Aa|Ω〉 = exp

[
−
∫

d3q

(2π)3
Aa(q)ω(q) Aa(−q)

]
(7.17)

This represents the non-trivial gluon field distribution in the vacuum. The parameter ω(q) can be determined variation-

ally by minimizing the vacuum expectation value (VEV) of the Hamiltonian, ∂〈ψ0|HQCD|ψ0〉/∂ω(q) = 0. The solution

is typically well approximated by ω(q) = mg for q ≤ mg and by ω(q) = q for q > mg, with the constituent gluon mass

given by mg ≃ 600 MeV [192].

As usual, the gauge field is expressed as a superposition of plane wave modes with creation and annihilation

operators α
a†
λ

(q) and αa
λ
(q), with λ = ±1 the polarization of the gluon. A hybrid QQ̄g state is then obtained from the

BCS vacuum as

|r, q, λ〉 ∝ Q
†
r
2

ez
α

a†
λ

(q)T aQ̄
†
− r

2
ez
|Ω〉 (7.18)

where r is the separation between the heavy quark and the heavy antiquark (lying along the z-axis), and we introduced

the corresponding creation operators. The energies En are then obtained from Eq. (7.16).

This framework has been employed in [189] to compute the spectrum for the lowest lying hybrids as a function of

the QQ̄ separation, and compare it with Lattice QCD data. It nicely fits the data for the ground state but it consistently

overestimates them for excited gluonic fields. However, it correctly reproduces the ordering of the levels with quantum

numbers. It was shown in [187] that this is a non-trivial result since many phenomenological models based on the flux

tube description or on the Nambu-Goto action fail at this task.
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The analysis has been improved in [188]. In particular, it is argued that the solution of the ∂〈ψ0|HQCD|ψ0〉/∂ω(q) = 0

equation presents some ambiguities and it is therefore more sound to compute ω(q) phenomenologically from the

spectrum of single gluon excitations, the so-called gluelumps [193]. Despite the improvement, the predictions are

still systematically higher than the Lattice results. This might be due to intrinsic limitations of the gaussian, mean

field, vacuum functional in Eq. (7.17). These techniques have also been used in [190] to study the radiative decays of

hybrids to charmonia.

7.2.3. The hybrid meson description of the XYZ states

The hybrid meson model described so far has been mostly employed to explain the nature of the Y(4260) [194–

196], but some proposal has also been made for the Y(4360) [197], the X(3872) [198] and the X(4140) [199].

In [194] arguments in favor of a hybrid interpretation of the Y(4260) are made. In particular, it would be constituted

of a JPC = 0−+ cc̄ pair together with a JPC = 1+− gluonic excitation. Estimates obtained from the previously explained

flux tube model [186] as well as lattice QCD simulations [200] give the mass of the lowest hybrid to be around

M ≃ 4.0 − 4.2 GeV, in agreement with that of the Y(4260). The fact that the decay width Γ(Y(4260) → e+e−) is a

factor of 4 smaller than that for the ψ(3770) is explained with a general suppression of the lepton-lepton coupling

for hybrid mesons [201]. This is mostly due to the smallness of the cc̄ wave function at r = 0. Also, the decay of

hybrids into pairs of 1S ordinary mesons (e.g. DD̄, D+s D−s , etc.) is expected to be largely suppressed [202, 203], hence

explaining the missing observation of such channels. Lastly, it is noted that a mixing of the cc̄g component of the

Y(4260) with the ordinary cc̄ would not be allowed. In the BO approximation, in fact, the QQ̄ state and the gluon one

decouple and states with different gluon occupation numbers are orthogonal.

One issue with the cc̄g interpretation of the Y(4260) is that the decay into charmonium + light hadrons was also

expected to be fairly small. This is in contrast with the observation of the J/ψ ππ final state with large branching ratio.

7.2.4. An alternative kind of hybrid?

A possible solution to this problem has been proposed in [196]. The Zc(3900) is tentatively interpreted as a different

kind of hybrid, where the excited gluon is replaced by a light quark pair in the 8c representation. We will refer to this

kind of particle as a BO tetraquarks.45 In this framework the large branching fraction for the decay of the Y(4260) into

J/ψ ππ would simply be explained by the Y(4260) → Zc π process, followed by the copious Zc → J/ψ π decay. The

first reaction simply happens via a conversion of the gluon into a pion and an adjoint [qq̄]8c
pair.

It is important to note that the BO tetraquarks presented in [196] are nothing but an alternative model for the

description of the compact tetraquarks. For small objects of typical size around 1 fm, the distinction between different

color arrangements of the internal quarks is artificial, since they all mix with each other. The separation between the

diquarkonium presented in Section 4 and the present BO tetraquarks is made just for the sake of model building.

In any case, assuming the previously explained structures for the Y(4260) and Zc(3900), the BO approximation has

been used in [196, 204] to compute the spectrum of hybrids and BO tetraquarks.

The first thing to do is to find a set of quantum numbers of the gluonic excitation which are conserved in presence

of the static QQ̄ pair. The first one is the eigenvalue, Λ, of |er · Jℓ |, where er is the unit vector pointing along the

separation between the Q and the Q̄ and Jℓ is the angular momentum of the light degree of freedom, i.e. either g or

[qq̄]8c
. We then consider the product of the parity and charge conjugation of the light excitation, η = (CP)light, and,

45Note that the ordinary cc̄g hybrid cannot accommodate charged states.
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Figure 26: Lowest energy levels obtained from the solutions to Eq. (7.20) for the charm (left panel) and bottom (right panel) sectors. The notation

is explained in the text. The analogous levels for the ground state of the gluon field, Σ+g , are just the ordinary quarkonia. Taken from [204].

when Λ = 0, the eigenvalue, ε = ±, of the reflection of the light fields with respect to a plane containing the QQ̄

system.

The notation adopted in [196] is that of molecular physics. In particular, the Λ = 0, 1, 2, . . . states are represented

as Σ, Π, Δ, . . . , and η = +1 and −1 are called respectively gerade (g) and ungerade (u). The quantum numbers of the

light degrees of freedom are therefore indicated as α = Σ+η , Σ
−
η , Πη, Δη, . . . .

The strategy to compute the spectrum is the one already anticipated. In particular, the hybrid potential at some

fixed separation r of the QQ̄ pair is given by Vα ≡ Vnα as in Eq. (7.15) for large r, and by the following color-Coulomb

potential for small r

Vα(r)→ αs(μ)

6r
+ Eα (7.19)

Here the typical scale is μ = 1/r and Eα is an additive term depending on the quantum numbers α and usually called

gluelump (see e.g. [205]). It can be thought as a massive quasi-particle excitation of the gauge field, a sort of constituent

gluon. The different parameters of the potential can be obtained from Lattice QCD (see again Section 7.5).

Given the potential, the energy levels of the ordinary hybrid mesons are found by solving the following Schrödinger

equations for the heavy pair

⎡⎢⎢⎢⎢⎢⎢⎢⎣−
1

mQ

(
d

dr

)2
+

〈
LQQ̄

〉
α,r

mQr2
+ Vα(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ψn(r) = Enψn(r) (7.20)

where
〈
LQQ̄

〉
α,r

is the angular momentum of the heavy quark pair computed at a certain separation r and for a given

set of quantum numbers α of the gluonic degrees of freedom, and mQ is the reduced mass of the QQ̄ system.

The QQ̄g energy levels resulting from this calculation are reported in Figure 26. For the cc̄g case the lowest state

is expected at M ≃ 4246 MeV, while for the bb̄g one at M ≃ 10559 MeV. While the first one is in agreement with the

Y(4260), no known resonance compatible with the hybrid interpretation has been found around the second mass.

To extract the spectrum of BO tetraquarks it is assumed in [196, 204] that their potential has the same qualitative

behavior as that of QQ̄g hybrids. This is a strong assumption since, except for the asymptotic behavior at small and
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larger r, very little is know about such potential. This makes the predictions substantially model-dependent. Moreover,

it is also assumed that the BO tetraquarks potential for the [qq̄]8c
pair in the ground state, Σ+g , is completely unstable

with respect to the transition into ordinary hybrid plus a light meson. It is therefore ignored. Again, this statement

finds no rigorous ground but the practicality of the computation.

In Table 8 we reported the spectrum predicted in [196] for the BO tetraquarks in the charm sector. In particular, for

each ordinary hybrid with quantum number JPC there will be a BO tetraquarks with the same JP, with I = 1 and hence

G = C(−1)I = −C. Because of HQSS — see Section 3.4 — they will also organize themselves in quasi-degenerate

spin multiples Tn. While the Zc is used as an input, the Z′c would correspond to the JP = 1+ member of either T3 or

T4.

T1 T2 T3 T4

IG(JP) Mass (MeV) IG(JP) Mass (MeV) IG(JP) Mass (MeV) IG(JP) Mass (MeV)

1+(1−) 3839 1−(1+) 3952 1−(0+) 4025 1−(2+) 4045

1−(0−) 3748 1+(0+) 3939 1+(1+) 4030 1+(1+) 4050

1−(1−) 3770 1+(1+) 3897 1+(2+) 4065

1−(2−) 3887 1+(2+) 3948 1+(3+) 4101

Table 8: Predicted masses for the BO tetraquarks in the charm sector as reported in [196]. The bold mass corresponds to the Zc(3900) and is used

as input.

As one can see, the BO tetraquarks model also suffers from the same drawbacks as for the diquarkonium. The

zoology of predicted states is copious and largely unobserved.

7.2.5. X(3872) and X(4140) are not hybrids

Lastly, it is worth mentioning that the interpretation of the X(3872) in terms of a cc̄g proposed soon after its

discovery [198] has been ruled out by the confirmation of the X → J/ψ ρ decay. The hybrid model cannot account for

isospin violation since QQ̄g is always an I = 0 state.

The interpretation of the X(4140) as an hybrid [199] relies, instead, on its quantum numbers being JPC = 1−+. This

possibility has been ruled out by the recent LHCb analysis, which assign 1++ to the state, see Section 8.6. Moreover,

the decay of the gluon should be dominated by the creation of u and d quarks rather than s, as for the X(4140)→ J/ψ φ

decay.
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Figure 27: Left panel: One-loop diagram for the scattering Y(4260) π→ J/ψπ. Right panel: Unitarization of the one-loop diagram.
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7.3. Nothing: kinematical effects

Another option that has been widely discussed in the literature arises from the properties of the scattering ampli-

tudes. Imposing unitarity and analyticity can indeed give rise to singularities in the complex plane, that are not related

to resonances, but might mimic their behavior creating peaks and rapid motion of the phase shift. The idea and the

formalism is known since long time [206]. Work has been done in the context of XYZ physics in [207–210]. To

simplify the discussion, in the following we will neglect all the spins, and we will take the D and D∗ to be degenerate

in mass.

Consider, for example, the process Y(4260) → J/ψππ. We discuss the kinematic effects that can give origin to a

peak in the J/ψπ invariant mass compatible with the Zc(3900) (see Section 8.2) but without the presence of any real

resonance. More precisely, consider the scattering process Yπ → J/ψ π, which is described by the same amplitude

as the decay process (as a consequence of crossing symmetry). One can assume for the process to be dominated by

the diagram in the left panel of Figure 27. The amplitude can thus be calculated with the usual Feynman rules, but

the analytical structure emerges more transparently by using the Cutkosky rules, which give the imaginary part of the

diagram, and the dispersion relations to calculate the real part. The former is

ImΠ(s) =
ki(s)

4π
√

s
gin(s)gout(s) θ

(
s − 4m2

D

)
(7.21)

where ki =
1
2

√
s − 4m2

D
is the 3-momentum of the D̄ and D∗ in the center-of-mass frame, and gin,out are form factors.

The dispersive integral relating the full amplitude to its imaginary part is

Π(s) =
1

π

∫ ∞

4m2
D

ds′
ImΠ(s′)

s′ − s − iǫ
(7.22)

The integral can be solved, even explicitly for the case of constant g’s, in which case the solution is given by

√
s − 4m2

D

times a logarithm. Because of the square root, this function has a cusp exactly at threshold, as shown in the left panel

of Figure 28. Form factors suggested by the quark model, like g ∝ exp
(
−s/β2

)
have often been used, even though

they are not consistent with the analytical behavior of the amplitude (which cannot grow faster than a polynomial at

infinity in the complex plane).

However, this simple model does not take into account the unitarization. The simplest way to achieve a unitary

amplitude is to resum the 1-loop diagrams (Figure 27, right panel), the one-loop expression goes to the denominator

of the amplitude, A(s) =
∑

n [Π(s)]n = 1/ (1 − Π(s)), which develops a pole when Π(s) = 1, i.e. a proper QCD state.

The right panel of Figure 28 shows that, if one still wants to stick to the one-loop diagram only, the restriction to a

coupling small enough to give meaning to the perturbative expansion does not allow to fit data correctly [211]. If the

coupling is instead nonpertubative, each order of the expansion gives a drastically different result (dotted and dashed

curves in Figure 28) and one cannot avoid unitarization.

In the previous discussion, the Yπ→ D̄D∗ vertex was parametrized with a smooth function gin(s). However, this is

just an approximation for an actual exchange of particles, if their mass are heavy enough to contract their propagator.

One can investigate instead if an appropriate model for the particle exchange produces any singularity close to the

physical region. Triangle diagrams develop a logarithmic branch point 46. Consider again the Y → J/ψππ process, but

now described by the diagram in the left panel of Figure 29. We consider the mesons in the loop to be the D, the D∗,
and a generic charmed meson of mass λ. We want to study the behavior of the amplitude as a function of the mass λ,

46Landau classified the leading singularities that a n-point amplitude can have in perturbation theory. The diagrams in Figure 27 are basically

two-points function (the four momenta enter only through the s Mandelstam variable), and they exhibit a square root singularities. The triangle

diagrams exhibit a logarithmic singularities, and so on.
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Figure 28: Left panel: Plot of the Π amplitude, showing the square root behavior of the imaginary part (dotted), the real part obtained via dispersion

relation (dashed), and the modulus (solid), from [210]. Right Panel: The invariant D̄D∗ mass distribution in Y(4260) → πD̄D∗ fitted in [211]. The

results from the tree level, one-loop and two-loop calculations are shown by the dotted, solid and dashed curves, respectively. The dot-dashed line

shows the one-loop result with the strength of the rescattering requested to be small to justify a perturbative treatment.
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Figure 29: Left panel: Triangle diagram occurring in Y(4260) → J/ψ ππ process. Right panel: values of the amplitude for different values of λ. If

an actual state happen to fall in the small window which fulfills the Coleman-Norton conditions, a cusp appear. From [212].

and see if any peak in the J/ψπ invariant mass can occur. Again, we focus on the crossed process Yπ → J/ψπ. Since

the centrifugal barriers will suppress any amplitude close to threshold, we consider only the S -wave projection. The λ

meson is exchanged in the t channel, so the projection of the propagator gives

C(s) =
1

2

∫ 1

−1

d cosθ
C

t(s, cos θ) − λ2 + iǫ
P0(cos θ) (7.23)

where C is a coupling constant, P0(cos θ) = 1 is the L = 0 Legendre polynomial. In the center of mass frame,

t = 2m2
π − 2Ein

π Eout
π + 2pin pout cos θ, which is linear in cos θ. The integral thus gives a logarithm,

C(s) = − C

2pin pout
Q0

⎛⎜⎜⎜⎜⎝
Ein
π Eout
π − m2

π − 1
2
λ2 − iǫ

pin pfin

⎞⎟⎟⎟⎟⎠ (7.24)

where Q0(x) = 1
2

log x+1
x−1

is the Legendre function of the second kind. The unitarity of the S -matrix can be rewritten

as an equation for the discontinuity of the analytic continuation of the amplitude across the physical axis

disc A(s) =
1

2i
[A (s + iǫ) − A (s − iǫ)] = C(s)ρ(s)B∗(s) θ

(
s − 4m2

D

)
(7.25)
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where ρ(s) =

√
1 − 4m2

D
/s is the 2-body phase space, and B the scattering amplitude D̄D∗ → J/ψπ, which we

approximate as a constant. The dispersion relation on A reads

A(s) =
1

π

∫ ∞

4M2
D

ds′
C(s′)ρ(s′)B

s′ − s
(7.26)

The analytical structure of C(s′) is rather complicated, and can contain up to four different branch points. In general

they do not produce sizable effect in A(s): even though one of the s′ branch points is close to the real axis, one can

deform the integration contour to distance it. However, Coleman and Norton show that when all the particles in the

loop are simultaneously on-shell, and their velocities are such that the the rescattering can occur in real time, two

branch points in s′ pinch the s contour of integration, preventing the deformation of the contour. This produces cusps

in A(s) close to the real axis [213]. This happens for a very small window of λ, see for example the effects in the right

panel of Figure 29. In particular, the D1(2420) mass happens to be in this interval, and might produce an enhancement

in correspondence of the Zc.

Now, let us consider the Y → D̄D∗π process. If no actual Zc(3900) exists, the Dalitz plot will exhibit a band

in the D∗π channel corresponding to the D1(2420), and a band in the D̄D∗ channel due to the triangle singularity.

Longtime ago, Schmid proved that the interference between the two bands cancels the contribution of the D̄D∗ band:

the projection on the D̄D∗ invariant mass does not produce any peaks [214]. The situation is more complicated when

multiple channel are involved. In this case, the compensation happens among the various channel, and if one focuses

only on a given channel, the peak can happen to be still be evident [215]. If this is the mechanism behind the peak,

the complete coupled channel analysis will show a rather peculiar behavior: one expects a depletion of events in

the channel where the triangle singularity occurs, and an enhancement in the other channels. Present data in the

Y → D̄D∗π channel do not seem to favor this hypothesis, but his can be verified in future high statistics experiments.

The role of triangle singularities for XYZP states has been discussed in [212, 215–220].

7.4. QCD sum rules

A technique often used to compute the mass, width and coupling constants of the exotic states is the QCD Sum

Rules (QCDSR) — see [221] for a review. The method was first appeared in [222], and was later developed in [223,

224]. It was used to study the properties of mesons. The focus is on the evaluation of a two-point correlation function

as

Π(q) ≡ i

∫
d4x eiqx〈0|T

(
j(x) j†(0)

)
|0〉 (7.27)

where j(x) is a current with the quantum numbers of the hadron we want to study. The choice of the current j(x) is

only dictated by the (IG)JPC quantum numbers of the hadron and by assumptions on its nature. In general, it can be

a linear superposition of currents corresponding to different structures (quarkonium, diquarkonium, meson molecule,

etc.).

The important assumption is that this correlator can be evaluated both from the fundamental degrees of freedom

of QCD (the so-called OPE side) and from an effective meson theory (the so-called phenomenological side). This

means that, one starts from the asymptotically free theory of quarks and gluons towards non-perturbative scales. The

assumption is that, in a certain range of scales, the two theories will give the same result for the correlator (7.27).

On the OPE side, one expands the function as a series of local operators

ΠOPE(q2) =
∑

n

Cn(Q2)On (7.28)
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with Q2 = −q2 and where the set {On} includes all the local, gauge-invariant operators that can be written in terms of the

gluon and quark fields. They are also ordered by mass dimension. The information about the short-range, perturbative

part of the correlator is (by construction) contained in the Wilson coefficients Cn(Q2). The matrix elements for the

operators On are nonpertubative and must be evaluated through Lattice QCD or using some phenomenological model.

They are universal, i.e. once they are fixed using a certain observable like the mass of a particle they cannot be

changed. The same thing is true for the quark masses.

On the phenomenological side, instead, one writes the two-point function in terms of a spectral density ρ(s)

Πphen(q2) = −
∫

ds
ρ(s)

(q2 − s + iǫ)
+ · · · (7.29)

with the dots representing subtraction terms. In order for the previous equation to be of practical use, the spectral

density has to be parametrized in terms of a small number of parameters. One usually assumes that it has a pole

corresponding to the mass of the ground-state hadron, while higher mass states are contained in a smooth, continuous

part

ρ(s) = λ2δ(s − m2) + ρcont(s) (7.30)

λ being the coupling of the current to the lowest mass hadron, H, 〈0| j |H〉 = λ. Moreover, the continuum contribution

is taken to be zero below a certain threshold s0, and to it coincide with the result obtained from the OPE side above it,

i.e. one makes the ansatz

ρcont(s) = ρOPE(s) θ(s − s0) (7.31)

where π ρOPE(s) = ImΠOPE(s). The threshold parameter s0 is again universal. Combining Eqs. (7.29), (7.30) and (7.31)

allows to extract the mass of the resonance.

The decay widths, i.e. the coupling constants, can be estimated with similar procedures but starting from the

three-point correlator.

The previous formalism has been applied to study the properties of the X(3872) [225], of the Z
(′)
c [226–228], of

the Z
(′)
b

[229, 230] and of the Y states [231]. The literature on the topic is impressively vast. We will report here just a

limited number of results. The interested reader should refer to other reviews [221].

It should be stressed that QCD sum rules are supposed to be the result of first principle, field theoretic QCD, and as

such they should provide reliable, univocal nonpertubative results. Unfortunately, there is some freedom in choosing

the rules to compute the different observables. Moreover, some quantities can often be reproduced by suitably tuning

the different compositions of the state under consideration. In this respects, the technique is often able to reproduce

existing data, but its predictive power is somehow limited. In general, QCD sum rules are applicable to the lowest

states in a channel with fixed quantum numbers. This is not the case for the exotic states discussed in this work. The

truncated OPE expansion should lack of the theoretical precision necessary to extract informations relative to excited

states. The following results should therefore always be taken with a grain of salt, as it will soon be clear from some

of the following conclusions.

In [225] the mass of the X(3872) and its Γ(X → J/ψπ+π−) decay width are analyzed. They assumed the state to be

a mixture of ordinary charmonium and meson molecule. The current in Eq. (7.27) is taken to be

Ju
μ(x) = sin θ j (4u)

μ (x) + cos θ j (2u)
μ (x) (7.32)

where θ is a mixing angle and j
(2u)
μ and j

(4u)
μ are current with the quantum numbers of charmonium and meson
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molecules respectively. They are given by

j (2u)
μ (x) =

1

6
√

2
〈ūu〉 c̄α(x)γμγ5cα(x) (7.33a)

j (4u) = μ(x) =
1
√

2

[
ūα(x)γ5cα(x) c̄β(x)γμu

β(x) − ūα(x)γμc
α(x) c̄β(x)γ5uβ(x)

]
(7.33b)

Using the previous currents and the techniques explained above they estimated the mass and decay width of the X

to be MX = (3.77 ± 0.18) GeV and Γ(X → J/ψπ+π−) = (9.3 ± 6.9) MeV, with a small mixing angle, θ ∈ [5◦, 13◦].
They also managed to estimate the weights of the different components of the X wave function. They found that it is

composed for the ∼ 97% by ordinary charmonium and for the remaining ∼ 3% by a molecule. Of the latter one ∼ 88%

is D0D̄0∗ and ∼ 12% is D+D∗−. Of course, today we know that these results are not compatible with experimental data.

The X(3872) is not a charmonium. The same authors studied the X under the assumption of a diquarkonium internal

structure [232] and found a mass in agreement with the observation.

In [226] the decays of Zc(3900) where studied assuming a diquarkonium structure. The authors found a total

width Γ = (63.0 ± 18.1) MeV, and the following partial widths: Γ(Zc → J/ψπ) = (29.1 ± 8.2) MeV, Γ(Zc → ηcρ) =

(27.5 ± 8.5 MeV) and Γ(Zc → DD∗) = (3.2 ± 0.7 MeV. The width is indeed compatible with the experimental one

within 2σ, but the ration of the decay rates into DD∗ and into J/ψ π is much smaller than the one reported in Eq. (8.12).

A similar analysis was performed in [228] with analogous results.

The Zb is instead studied in [229] using a variety of molecular interpolating currents. The extracted masses are

nicely compatible with experiment. On the other hand, the properties of the Zb and Z′
b

are analyzed in [230] assuming

a diquarkonium nature. The masses are very much in agreement with the observation and the predictions for the decay

widths of the Zb give Γ(Zb → Υπ) = (4.77+3.27
−2.46

) MeV and Γ(Zb → ηcρ
+) = (13.52+8.89

−6.93
) MeV. While the first one agrees

with the the experiment, no data on the second decay channel are available yet.

Lastly, the application of QCD sum rules to the Y states has been throughly done in [231]. The authors find

support for the diquarkonium nature of the Y(4660) and for the mixed charmonium-diquarkonium for the Y(4260) and

Y(4360).

7.5. Lattice QCD

Some efforts in trying to confirm the existence and understand the nature of the exotic states have been made using

Lattice QCD techiniques — see [233, 234] for an extensive treatment. Let us briefly recall the underlying strategy.

For a given set of quantum numbers one usually considers an ensemble of interpolating operators, Oi(t), compatible

with those quantum numbers. Once they are identified, it is possible to study their two-point correlators, which can be

written as

〈0|O†
i
(t)O j(0)|0〉 =

∑∫

n

〈0|eiHtO
†
i
(0)e−iHt |n〉〈n|O j(0)|0〉 =

∑∫

n

Zn∗
i Zn

j e
−iEnt (7.34)

where we defined the overlaps Zn
i
≡ 〈n|Oi(0)|0〉. The |n〉 are the multiparticle eigenstates with given quantum numbers.

We remark that in the infinite volume their spectrum is obviously continuous.

To make the previous oscillating sum suitable to numerical studies, one performs an analytic continuation to

Euclidean time (t → −iτ). Spacetime is then discretized, with a lattice spacing a, and the analysis is restricted to a

finite box with size L, in which case the correlator becomes

Ci j(Nτ) = 〈O†i (τ)O j(0)〉 =
∞∑

n=1

Zn∗
i Zn

j e
−Enaτ, (7.35)
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with τ integer, 0 ≤ τ ≤ L/a. Since the allowed momenta are now discretized, the physical states are now a discrete

set. To extract the mass of the lowest lying level, the so-called effective mass method can be used. One defines

Meff
(i j)(τ) = log

Ci j(τ − 1)

Ci j(τ)
(7.36)

For large τ, the previous expression converges to the mass of the lowest energy state. For a realistic simulation with

a finite range in the Euclidean time τ, it will exhibit a plateau, from which the spectrum can be fitted. To improve the

reliability of the results one usually combines data obtained from different interpolating operators.

Other ways to determine the presence of a resonance and the value of its mass are to solve the generalized eigen-

value problem (GEP) [235], or to employ the so-called Lüscher’s method [236, 237], which uses the dependence of

the correlators from the size of the box to extract information about the scattering phase shift in the infinite volume

limit.

It should be stressed that the impact that Lattice QCD analyses can have on the study of the XYZ states is limited

by some technical issues, which can hardly be overcome with the present resources. Some of these problems are

• Any operator Oi able to resolve an exotic state is also able to resolve other states with the same quantum

numbers. For example, if Oi interpolates the charged Zc(3900)+ with JPC = 1+− then it will also give access to

the b+
1

and all its excitations. In principle, one should extract the full spectrum of the b1 up to the mass of the

Zc, which is not feasible. In practice, one neglects the charm quark annihilation diagrams, which are expected

to give a small contribution because of the OZI rule. This also prevents the mixing with hadrons made of light

quarks only (like the b1). However, the relevance of these diagrams for such fine-tuned systems like the XYZ

states is presently unknown.

• It should be clear by now that the problem at hand is made even more non-trivial by the presence of several

close by meson-meson threshold. To be able to distinguish between one of the XYZ resonances and a simple

threshold requires a resolution that is right now far from achievable. For example, to have a precision of, say,

ΔE ∼ 10 MeV one would need a lattice spacing of at least a ∼ 1/ΔE ∼ 20 fm. Realistic lattices have typically

a of the order of a few tens of a fm, with a total box size of a few fm itself.

• If these exotic resonances are indeed molecular states, as proposed in part of the literature, the smallness of their

binding energy would also imply a large size in real space — see Sections 3.2 and 3.3. In this case, the total size

of the box would be even smaller than the total extension of the state.

Despite the previous limitations, some attempts to look for four-quark resonances have been made.

The simplest lattice calculations involve infinitely heavy quarks (static limit). Although in this limit it is not

possible to have reliable predictions on the spectrum and decay properties of the states, it is a clean environment to

study the interquark potential (which in this limit is a well defined quantity), and to provide a ground basis for the

different models and phenomenology. We already cited the work by Lucini et al. [115], which observed some evidence

for the formation of a scalar diquark, and the work by Cardoso et al. [77], where there is evidence that the qqq̄q̄ system

indeed arranges itself in the expected H shaped configuration. A new method to study this setup has been proposed

in [238], and might give new information about the diquark formations. Also system with two static quarks and two

light dynamical antiquarks have been explored [239–242].

The only positive result for the existence of tetraquark resonances has been obtained in [243] for the X(3872).

The authors performed an analysis with valence and dynamical u and d quarks, with mu = md and a pion mass

mπ = 266 MeV. Charm annihilation diagrams were also neglected. The authors did not consider the mixing of

different partial waves due to the nonzero spin, nor the proper identification of the spin in terms of representations of
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the cubic group. They studied both the isospin I = 0 and I = 1 cases. Among the obtained levels they observe one

very close to the DD∗ threshold, and which they interpret as the X(3872). It should be stressed that, for the reasons

explained above, there is also the possibility for such level to correspond to the ordinary χc1(2P) charmonium, which

carries that same quantum numbers as the X.

All the other searches for XYZ states on the lattice (including manifestly exotic states with non-zero flavor

charge [244–246]) have returned inconclusive results.

Some analyses have also been done to study hybrid mesons. In this case, the results are more reliable since one

can employ the Born-Oppenheimer approximation to describe a system with a heavy QQ̄ pair and a light degree of

freedom (see Section 7.2). In particular, although the phenomenological application of these states to the study of

XYZ resonances is problematic, their existence in the QCD spectrum has now been well assessed. In the bottom

sector, the hybrid potential and the corresponding energy levels have been found in [247, 248]. The state of the art

for the cc̄ spectroscopy, including hybrid states, has instead been set by [249], albeit in the one-particle (zero width)

approximation.

8. A travel guide to experimental results

We present here a short summary of the most important experimental results in the exotic XYZP sector. This

chapter does not aim to cover entirely the large number of papers published on this topic, but rather to give a synthetic

review of the aspects which appear more relevant from the theoretical point of view. In doing so, we will not follow the

chronological order. Whenever available, we will calculate averages using the new published measurement, to update

the results shown in the PDG 2014. For the X(3872), we show the result of a global fit to all available data, to provide

an estimate of the absolute branching fractions.

The landscape of exotic resonances is summarized in Figure 30, and in Tables 9 and 10. Some states, like the

X(3872) or the X(3915), have more or less the correct mass and quantum numbers of some missing ordinary charmo-

nia; on the other hand, in the vector sector we have much more levels than expected. In any case, the decay pattern

of all these states is not compatible with charmonia predictions, and so it calls for exotic interpretations. No ordinary

assignment is possible for the charged charmoniumlike and bottomoniumlike states, nor for the new hidden-charm

pentaquarks.

Depending on the available energies and colliding particles, the various experiments can exploit different produc-

tion modes of the exotic states. Some of these can constrain the quantum numbers assignments. A generic state X can

be produced

• Directly with e+e− → X, or in association with Initial State Radiation (ISR) which lowers the center of mass

energy, e+e− → e+e−γISR → XγISR. The quantum numbers must be the same as the photon, JPC = 1−−. The

Y states discovered with this technique are discussed in Section 8.4. The τ-c and the B-factories can directly

explore the charmonium and bottomonium vectors, respectively. This is what BES III did, collecting a large

data sample at the Y(4260) peak. The B-factories (BABAR and Belle) can also perform ISR analyses on the

charmonium sector.

• In the fusion of two quasi-real photons, e+e− → e+e−γγ → e+e−X, where e+ and e− are scattered at a small

angle and are lost in the beampipe; the signal events have no tracks and neutral particles but the daughters of

X. If the photons are quasi-real, Landau-Yang theorem holds [287], and J � 1; moreover C = + is constrained.

The B-factories discovered the χc0(3915) and the X(4350) with this technique (Section 8.8).
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Figure 30: Charmonium sector. In the upper panel, we show ordinary charmonia and neutral exotic states, in the lower panel charged exotic states.

Black lines represent observed charmonium levels, blue lines represent predicted levels according to Radford and Repko [250], red line are exotic

states. The open charm thresholds are reported on the right.
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State M ( MeV) Γ ( MeV) JPC Process (mode) Experiment (#σ)

X(3872) 3871.69 ± 0.17 < 1.2 1++ See Table 11, 12 See Table 11, 12

Zc(3900)+ 3888.4 ± 1.6 27.9 ± 2.7 1+− Y(4260)→ π−(DD̄∗)+ BES III [159, 251] (> 10)

Y(4260)→ π−(π+J/ψ ) BES III [156] (8), Belle [155] (5.2)

NU group [252] (3.5)

Zc(3900)0 3893.6 ± 3.7 31 ± 10 1+− Y(4260)→ π0(DD̄∗)0 BES III [253] (10)

Y(4260)→ π0(π0 J/ψ ) BES III [156] (10.4)

NU group [252] (5.7)

Z′c(4020)+ 4023.9 ± 2.4 10 ± 6 1+− e+e− → π−(π+hc) BES III [161] (8.9)

e+e− → π−(D∗D̄∗)+ BES III [254] (10)

Z′c(4020)0 4024.5 ± 3.1 23 ± 6 ± 1 1+− e+e− → π0(π0hc) BES III [255] (5)

e+e− → π0(D∗D̄∗)0 BES III [256] (5.9)

χc0(3915) 3918.4 ± 1.9 20 ± 5 0++ B→ K(ωJ/ψ ) Belle [257] (8), BABAR [258, 259] (19)

e+e− → e+e−(ωJ/ψ ) Belle [260] (7.7), BABAR [261] (7.6)

X(3940) 3942+9
−8

37+27
−17

(0−+) e+e− → J/ψ (DD̄∗) Belle [262, 263] (6)

(Y(4008)?)
3891 ± 42 255 ± 42

1−− e+e− → (π+π−J/ψ )
Belle [155, 264] (7.4)

3813+62
−97

477+78
−65

BES III [108] (np)

Z(4050)+ 4051+24
−43

82+51
−55

??+ B̄0 → K−(π+χc1) Belle [265] (5.0), BABAR [266] (1.1)

(Z(4050)+?) 4054 ± 3 45 ± 13 ??− e+e− → (ψ(2S ) π+) π− Belle [267] (3.5)

X(4140) 4146.5+6.4
−5.3

83+30
−25

1++ B+ → (J/ψφ)K+ LHCb [135, 136] (8.4), see Table 16

X(4160) 4156+29
−25

139+113
−65

(0−+) e+e− → J/ψ (D∗D̄∗) Belle [263] (5.5)

Z(4200)+ 4196+35
−30

370+99
−110

1+− B̄0 → K−(π+J/ψ ) Belle [268] (7.2)

Y(4220) 4218.4 ± 4.1 66.0 ± 9.0 1−− e+e− → (π+π−hc) BES III [108] (np)

Y(4230) 4230 ± 8 38 ± 12 1−− e+e− → (χc0ω) BES III [269] (> 9)

Z(4250)+ 4248+185
−45

177+321
−72

??+ B̄0 → K−(π+χc1) Belle [265] (5.0), BABAR [266] (2.0)

Y(4260) 4251 ± 9 120 ± 12 1−− e+e− → (ππJ/ψ ) BABAR [270, 271] (8), CLEO [272, 273] (11)

Belle [155, 264] (15), BES III [156] (np)

e+e− → ( f0(980)J/ψ ) BABAR [271] (np), Belle [155] (np)

e+e− → (π−Zc(3900)+) BES III [156] (8), Belle [155] (5.2)

e+e− → (γ X(3872)) BES III [110] (5.3)

X(4274) 4273+19
−9

56+13
−16

1++ B+ → (J/ψφ)K+ LHCb [135, 136] (6.0), see Table 16

(X(4350)?) 4350.6+4.6
−5.1

13+18
−10

0/2?+ e+e− → e+e−(φJ/ψ ) Belle [274] (3.2)

Y(4360) 4346.2 ± 6.3 102.3 ± 9.9 1−− e+e− → (π+π−ψ(2S )) Belle [267, 275] (8), BABAR [276] (np)

Pc(4380)+ 4380 ± 30 205 ± 88 3/2− Λ0
b
→ K−(J/ψ p) LHCb [114] (9)

Y(4390) 4391.6 ± 6.4 139.5 ± 16.1 1−− e+e− → (π+π−hc) BES III [108] (10)

Table 9: Summary of quarkoniumlike mesons and pentaquarks. For charged states, the C-parity is given for the neutral members of the corre-

sponding isotriplets. The states in parentheses are mere evidence of states, with low significance. The controversy on the Y(4008) will be discussed

in Section 8.4. Also, new data about the Y(4260) by BES III [108] are not included in the average. The signature assignments in parentheses are

just tentative, or deduced by the measurement of the charged partners.

84



State M ( MeV) Γ ( MeV) JPC Process (mode) Experiment (#σ)

Z(4430)+ 4478 ± 17 180 ± 31 1+− B̄0 → K−(π+ψ(2S )) Belle [277, 278] (6.4), BABAR [279] (2.4)

LHCb [280] (13.9)

B̄0 → K−(π+J/ψ ) Belle [268] (4.0)

Pc(4450)+ 4449.8 ± 3.0 39 ± 20 5/2+ Λ0
b
→ K−(J/ψ p) LHCb [114] (12)

X(4500) 4506+16
−19

92+30
−29

0++ B+ → (J/ψφ)K+ LHCb [135, 136] (6.1), see Table 16

Y(4630) 4634+9
−11

92+41
−32

1−− e+e− → (Λ+c Λ̄
−
c ) Belle [281] (8.2)

Y(4660) 4657 ± 11 70 ± 11 1−− e+e− → (π+π−ψ(2S )) Belle [267, 275] (5.8), BABAR [276] (5)

X(4700) 4704+17
−26

120+52
−45

0++ B+ → (J/ψφ)K+ LHCb [135, 136] (5.6), see Table 16

(X(5568)?) 5567.8+3.0
−3.4

21.9+8.1
−6.9

?? pp̄→ (B0
sπ
±) + All D∅ [133] (3.9), LHCb [282] (not seen)

Zb(10610)+ 10607.2 ± 2.0 18.4 ± 2.4 1+− Υ(5S )→ π(πΥ(nS )) Belle [283] (> 10)

Υ(5S )→ π−(π+hb(nP)) Belle [283] (16)

Υ(5S )→ π−(BB̄∗)+ Belle [284, 285] (9.3)

Zb(10610)0 10609 ± 4 ± 4 18.4 (fixed) (1+−) Υ(5S )→ π(πΥ(nS )) Belle [286] (6.1)

Zb(10650)+ 10652.2 ± 1.5 11.5 ± 2.2 1+− Υ(5S )→ π−(π+Υ(nS )) Belle [283] (> 10)

Υ(5S )→ π−(π+hb(nP)) Belle [283] (16)

Υ(5S )→ π−(B∗B̄∗)+ Belle [284, 285] (8.1)

Table 10: (continued) Summary of quarkoniumlike mesons and pentaquarks. For charged states, the C-parity is given for the neutral members of

the corresponding isotriplets. The states in parentheses are mere evidence of states, with low significance. The signature assignments in parentheses

are just tentative, or deduced by the measurement of the charged partners.

• In double charmonium production, usually e+e− → J/ψX, which constrains X to have C = +. This allows for a

partial reconstruction of the X state. The B-factories discovered the X(3940) and the X(4160) with this technique

(Section 8.8).

• In B decays, which allow X to have any JPC , albeit low values of the spin are preferred. Both exclusive and

inclusive analyses can be performed. The B-factories provide a clean environment, but the huge amount of data

collected at LHCb allow for very-high statistics, multidimensional analyses, in particular if no neutral particles

are involved. The X(3872) (Section 8.1), the Z(4430) (Section 8.5) and the [cs][c̄s̄] (Section 8.6) states have

been discovered in B decays.

• In Bc and bottom baryon decays. LHCb is the main performer in these channels. The general-purpose detectors

CMS and ATLAS can in principle look for these channels, but they suffer from the lack of particle identification,

and a much larger background. These channel has lead to the discovery of the pentaquarks, see Section 8.7.

• In ψ(nS ), Y(4260) and Υ(nS ) decays. The Zcs and Zbs states have been discovered in this way by BES III and

Belle, respectively (see Section 8.2 and 8.3).

• In inclusive analyses at hadron colliders. Until now, only the X(3872) and the X(4140) has been observed

inclusively. It is usually possible to separate the non-prompt (due to the decay of some long-lived meson or

baryon) and prompt fractions. These analyses have been performed by CDF, D∅, LHCb, CMS and ATLAS,

which testifies for the growing interest the exotic charmonium physics has raised in the high energy physics

community.

Although the CLEO collaboration officially no longer exists, a group based in Northwestern University still publishes

analyses based on CLEO-c data. We will quote their results as the NU group.
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Figure 31: Averaged mass of the X(3872), according to the measurements taken into account in the PDG [137].

The readers more interested in experimental details are invited to look at [2, 4, 6, 288, 289]. Prospects for future

searches have been recently exposed in [290, 291].

8.1. The X(3872)

The discovery of an unexpected charmonium state in 2003 gave birth to the long saga of exotic quarkonia. The

Belle collaboration announced the observation of a narrow resonance in the B → K(J/ψ π+π−) channel, dubbed

X(3872) to stress its mysterious nature. 47 In this decade, this state has been confirmed in many different production

channels: in B decays [293], in inclusive pp̄ [46, 294] and pp collisions [45, 47], and more recently in the radiative

decay of the Y(4260) [110]. The measured mass is M = 3871.69 ± 0.17 MeV [137], while the best available upper

bound on the width is given by Γ < 1.2 MeV at 90% C.L. [295]. The mass of the state is some 100 MeV lighter

than expected for a χc1(2P) states, although this discrepancy is reduced in some calculations with unquenched light

quarks [97]. The π+π− invariant mass distribution [27, 296] and angular analyses [297] showed that the π+π− amplitude

is dominated by the ρ meson. If this state were an ordinary charmonium, the transition via an isovector light meson

should be highly suppressed. The size of the isospin breaking is indeed signaled by the ratio between the radiative

decay width [137, 298–301], with respect to the isospin violating mode,

Γ (X(3872)→ J/ψγ)

Γ (X(3872)→ J/ψρ(→ π+π−))
= 0.24 ± 0.05, (8.1)

47It is worth noticing that the Belle paper on the X(3872) discovery [27] has 50% more citations than the one on the CP violation in the B0

system [292], for which the B-factories were designed and financed. This should give an idea of the broad interest this new field piqued in the high

energy physics community.
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Figure 32: Left panel: Likelihood ratio test for the spin of the X(3872), favoring the 1++ assignment, by LHCb [308]. Right panel: mass projection

of the ψ(2S ) γ invariant mass, where the X(3872) is evident, by LHCb [316].

to compare, for example, to an expected ratio of O(10) if the X(3872) were the χc1(2P) [302]. Finally, the ratio [259]

Γ
(
X(3872)→ J/ψω(→ π+π−π0)

)

Γ (X(3872)→ J/ψρ(→ π+π−))
= 0.8 ± 0.3, (8.2)

manifestly shows an isospin violation of O(1).

The observation of the radiative decay, and the non-observation of X(3872) → χc1γ [27], established the C = +

assignment. For JP, the first angular analyses of the J/ψ π+π− decay by Belle [303] and CDF [297] were able to rule

out all but the 1++ and 2−+ assignments. The latter could not be excluded because of the two independent helicity

amplitudes for X(2−+) → J/ψρ, which turn out in an additional complex parameter, hard to constrain in inclusive

X(3872) production. On the other hand, the axial assignment was preferred by theoretical models. The analysis of

the J/ψω invariant mass distribution by BABAR [259] favored the 2−+ hypothesis, and stimulated a discussion on its

theoretical feasibility [289, 304–307]. The negative search of X(3872) in γγ fusion at CLEO made the pseudotensor

hypothesis unlikely. Later, Belle updated the angular analysis with the final dataset [295], still not being able to rule

out 2−+. Finally, LHCb published two analyses of a large B+ → K+X(3872) sample [308, 309], respectively restricting

or not to the lowest available partial wave. These studies are based on an event-by-event likelihood ratio test of the

two hypotheses on the full 5D angular distribution, and favor the 1++ over 2−+ at 8σ level (Figure 32, left panel).

In Figure 31 we report the list of the mass measurements used for the PDG average. The current world average

takes into account the X(3872)→ J/ψρ, ω decays. The mass coincides with the D0D∗0 threshold within errors, which

gave birth to all the speculations about the molecular nature of this state — see Section 3. The most accurate estimate

of the ‘binding energy’ is [29]

B = MD + MD∗ − MX = (3 ± 192) keV. (8.3)

A precise determination of the mass, together with the precise determination of the width, will be able to constrain the

loosely bound molecule hypothesis [17]. The mass observed in the X(3872)→ D∗0D̄0 decay [310–312] is significantly

higher, M = (3873.8 ± 0.5) MeV. The possibility that X(3875) → D∗0D̄0 and X(3872) → J/ψ π+π− are distinct

particles, for example the two almost-degenerate [cu][c̄ū] and [cd][c̄d̄] tetraquarks, was discussed in [86]. Some

papers [313–315] argued instead that, since the D∗0 is in general off-shell, only the detailed study of the π0D0D̄0 and

γD0D̄0 lineshapes can distinguish between a below- and above-threshold X(3872). Moreover, in order to improve the

resolution, the experimental analyses constrain the D∗ mass, and this yields to a reconstructed X(3872) mass which is

above threshold by construction. Because of these biases, this channel has been dropped from the mass averages in

the PDG.

The measurement of radiative decays can be useful to constrain some of the available models. BABAR [300] and

LHCb [316] observed a X(3872) signal in the ψ(2S )γ final state (Figure 32, right panel), giving a relative branching

87



fraction of
Γ (X(3872)→ ψ(2S )γ)

Γ (X(3872)→ J/ψγ)
= 2.6 ± 0.6. (8.4)

On the other hand, Belle saw no significant signal in this channel, and put a < 2.1 90% C.L. upper limit on the ratio. In

the original molecular model proposed by Swanson, the radiative transition to ψ(2S ) was predicted to be suppressed [1,

317]. In an analysis based on NREFT (see Section 3.5), Hanhart et al. claim that the radiative decays depend on the

short-range structure of the molecule, and give up on predicting the ratio, thus ‘reconciling’ the molecular hypothesis

with experimental data. A calculation by Braaten [318] based on universal low energy scattering theory (see Section

3.2), predicted

Γ (X(3872)→ pp̄) =

(
Λ

mπ

)2 √
B

600 keV
× 28 eV (8.5)

where Λ is the scale up to which one can neglect the effective range of the interaction (say ∼ 3mπ), and B the molecule

binding energy. Using B = 190 keV (the available upper limit) and Γ � Γ(D∗0) ∼ 70 keV, one gets B (X → pp̄) �

2× 10−3, which coincides with the experimental bound by LHCb [319, 320]. Further improvement of the precision on

this branching ratio, together with a better determination of the binding energy and width of the X(3872) are needed

to constrain the molecular hypothesis. The decay Y(4260) → γX(3872) has been observed by BES III [110]. We will

discuss this channel in the Section 8.4.

Other production mechanisms like B0 → K+π−X(3872) have also been studied. Such decays are seen [321, 322],

but the non-resonant Kπ dominates. This is in contrast to ordinary charmonium states, where the B → K∗cc̄ and

B → Kcc̄ branching fractions are comparable, and K∗ dominates over non-resonant Kπ. Also, a preliminary analysis

by COMPASS shows the production of ψ(2S ) and X(3872) in the μ+N → μ+(J/ψ π+π−) π±N′ process [323]. The

ratio of events for the two states is N(X(3872))/N(ψ(2S )) = 0.9 ± 0.4. If the production mechanism is assumed to

be the same (a vector meson dominated virtual photon), this ratio equals Γ(X(3872) → J/ψ π+π−) × B(X(3872) →
J/ψ π+π−)/Γ(ψ(2S ) → J/ψ π+π−) × B(ψ(2S ) → J/ψ π+π−), and one might use this to constrain the total width of the

X(3872).

In a decade of experimental activity, the X(3872) has been searched in a plethora of different final states, some

of which allowed us to establish the correct quantum numbers. In most of these analyses, the X(3872) is produced

in B decays, so that it is not possible to disentangle the production branching fraction B(B → KX) from the final

B(X → f ). These factors cancels in the ratio, but some model have predictions for the absolute branching fraction.

An inclusive BABAR analysis of B+ → K+(cc̄) states provides an upper limit for the production branching fraction,

B(B→ KX(3872)) < 3.2 × 10−4 at 90% C.L. [324]. Combining the likelihood from the measurements of the product

branching fractions in the observed channels, the B → X(3872)K upper limit, the X(3872) width distribution [155],

we extract the likelihood for the absolute X(3872) branching fractions and the widths in each of the decay modes with

a bayesian procedure. We then use these distributions to set limits on the not observed channels. The full shape of

the experimental likelihoods was used whenever available, while gaussian errors and poissonian counting distributions

have been assumed elsewhere. We summarize the results in Table 11 and 12. The plot of the likelihoods and the code

are available at [325].

The searches for neutral and charged partner states of the X(3872) have been motivated by the predictions of the

tetraquark model. For example, Ref. [7] proposed that the X states produced in B+ and B0 decays were different.

If so, the masses of the two X should differ by a few MeVs. The analyses by BABAR [327, 328] and Belle [295, 321]

distinguish the two samples, and give for the mass difference M(X | B+ → K+X)−M(X | B0 → K0X) = (0.2±0.8) MeV,

and for the ratio of product branching fractions

B(B0 → K0X) × B(X → π+π−J/ψ )

B(B+ → K+X) × B(X → π+π−J/ψ )
= 0.47 ± 0.13. (8.6)

Similarly, the inclusive analysis by CDF [329], of the J/ψ π+π− spectrum, gave no evidence for a second neutral state,

setting an upper limit on the mass difference of 3.6 MeV at the 95% C.L.. The charged partners have been searched at
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Figure 33: Measured differential cross section for prompt X(3872) production times branching fraction B(X(3872) → J/ψ π+π−) as a function of

pT , from CMS [45] (left panel), and ATLAS [326] (right panel).

the B-factories [295, 330], but no evidence is seen. The strictest limits on the product branching fractions are

B(B̄0 → K−X+) × B(X+ → ρ+J/ψ ) < 4.2 × 10−6, (8.7a)

B(B+ → K0X+) × B(X+ → ρ+J/ψ ) < 6.1 × 10−6, (8.7b)

but they are not so severe with respect to the neutral channel [295, 328], B(B+ → K+X) × B(X → ρ0J/ψ ) = (8.6 ±
0.81) × 10−6. Recently, Voloshin proposed that these charged states could mix with the Zc(3900) because of isospin

breaking, suggesting to resolve two close peaks in the Y(4260)→ π+(DD∗)− process [331].

We conclude this section on the X(3872) with the inclusive production at hadron colliders, which has been exten-

sively studied in the literature (see Appendix A). The prompt production has been studied at CDF [332] and CMS [45],

giving

σprompt (pp̄→ X(3872) + all)

σ (pp̄→ X(3872) + all)
= (83.9 ± 4.9 ± 2.0)% at

√
s = 1.96 TeV, (8.8a)

σprompt (pp→ X(3872) + all)

σ (pp→ X(3872) + all)
= (73.7 ± 2.3 ± 1.6)% at

√
s = 7 TeV. (8.8b)

The same measurement is not explicitly presented in the CDF note, but Bignamini et al. estimated [31]:

σprompt (pp→ X(3872) + all) × B (X(3872)→ J/ψ π+π−
)
= (3.1 ± 0.7) nb at

√
s = 1.96 TeV. (8.9)

CMS published the value for the integrated prompt production cross section, σprompt (pp→ X(3872) + all) ×
B (X(3872)→ J/ψ π+π−) = (1.06 ± 0.11 ± 0.15) nb in the region 10 < p⊥ < 30 GeV and |y| < 1.2, at

√
s = 7 TeV.

The differential cross section as a function of p⊥ is shown in Figure 33, left panel. LHCb measured the inclusive
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B decay mode X decay mode product branching fraction (×105) Bfit (%) Rfit

K+X X → ππJ/ψ 0.86 ± 0.08 average 7.3+2.8
−2.3

1

0.84 ± 0.15 ± 0.07 BABAR [328]

0.86 ± 0.08 ± 0.05 Belle [295]

K0X X → ππJ/ψ 0.41 ± 0.11 average

0.35 ± 0.19 ± 0.04 BABAR [328]

0.43 ± 0.12 ± 0.04 Belle [295]

(K+π−)NRX X → ππJ/ψ 0.79 ± 0.13 ± 0.04 Belle [322]

K∗0X X → ππJ/ψ R′ = (34 ± 9 ± 2)% Belle [322]

(K0π+)NRX X → ππJ/ψ 1.06 ± 0.30 ± 0.09 Belle [322]

KX X → ωJ/ψ R = 0.8 ± 0.3 BABAR [259] 5.3 ± 2.8 0.65+0.41
−0.20

K+X 0.6 ± 0.2 ± 0.1 BABAR [259]

K0X 0.6 ± 0.3 ± 0.1 BABAR [259]

KX X → πππ0 J/ψ R = 1.0 ± 0.4 ± 0.3 Belle [298]

K+X X → D∗0D̄0 8.5 ± 2.6 average 66+13
−12

8.2+1.9
−1.8

16.7 ± 3.6 ± 4.7 BABAR [311]

7.7 ± 1.6 ± 1.0 Belle [312]

K0X X → D∗0D̄0 12 ± 4 average

22 ± 10 ± 4 BABAR [311]

9.7 ± 4.6 ± 1.3 Belle [312]

K+X X → γJ/ψ 0.202 ± 0.038 average 1.73 ± 0.68 0.24 ± 0.06

K+X 0.28 ± 0.08 ± 0.01 BABAR [300]

0.178+0.048
−0.044

± 0.012 Belle [301]

K0X 0.26 ± 0.18 ± 0.02 BABAR [300]

0.124+0.076
−0.061

± 0.011 Belle [301]

K+X X → γψ(2S ) 0.44 ± 0.12 BABAR [300] 3.8 ± 1.8 0.51 ± 0.15

K+X 0.95 ± 0.27 ± 0.06 BABAR [300] R′′
fit
= 2.25+0.55

−0.65

0.083+0.198
−0.183

± 0.044 Belle [301]

R′′ = 2.46 ± 0.64 ± 0.29 LHCb [316]

K0X 1.14 ± 0.55 ± 0.10 BABAR [300]

0.112+0.357
−0.290

± 0.057 Belle [301]

Table 11: Measured X(3872) product branching fractions, separated by production and decay channel. The last two columns report the results

in terms of absolute X(3872) branching fraction (Bfit) and in terms of the branching fraction normalized to J/ψ ππ (Rfit) as obtained from the

global likelihood fit described in the text. For non-zero measurements we report the mean value, and the 68% C.L. range in form of asymmetric

errors. The limits are provided at 90% C.L.. The details of the fit are discussed in the text, the code is available on [325]. The X(3872) →
πππ0 J/ψ is dominated by ωJ/ψ , but no limits on the non-resonant πππ0 J/ψ component have been set. The ratio R′ given by Belle [322] is

B
(
B0 → XK∗0(892)) × B(K∗0(892)→ K+π−)

)
/B
(
B0 → XK+π−)

)
. The ratio R′′ is B (X(3872)→ ψ(2S )γ) /B (X(3872)→ J/ψγ).
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B decay mode X decay mode product branching fraction (×105) B f it R f it

K+X X → pp̄ < 9.6 × 10−4 LHCb [319, 320] < 1.7 × 10−4 < 2.4 × 10−3

K+X X → γχc1
§ < 9.6 × 10−3 Belle [333] < 1.0 × 10−3 < 0.014

K+X X → γχc2
§ < 0.016 Belle [333] < 1.7 × 10−3 < 0.024

KX X → γγ § < 4.5 × 10−3 Belle [334] < 4.5 × 10−4 < 6.6 × 10−3

KX X → ηJ/ψ § < 1.05 BABAR [335] < 0.11 < 1.6

K+X X → D0D̄0 § < 6 × 10−5 Belle [336] < 0.29 < 4

K+X X → D+D− § < 4 × 10−5 Belle [336] < 0.25 < 3.6

Other modes Fraction/Width

γγ → X § X → J/ψ ππ Γγγ × Bψππ < 12.9 eV CLEO [337] −
e+e− → X X → J/ψ ππ Γee × Bψππ < 0.13 eV BES III [338] Γee < 2.34 eV

μN → μN′πX X → J/ψ ππ R′′′ = 0.9 ± 0.4 COMPASS [323] −

Table 12: Continuation of Table 11. Measured X(3872) product branching fractions, separated by production and decay channel. The last two

columns report the results in terms of absolute X(3872) branching fraction (B f it) and in terms of the branching fraction normalized to J/ψ ππ (R f it)

as obtained from the global likelihood fit described in the text. For non-zero measurements we report the mean value, and the 68% C.L. range in

form of asymmetric errors. The limits are provided at 90% C.L.. The details of the fit are discussed in the text, the code is available on [325]. Given

the preliminary nature of the result by COMPASS [323], the ratio R′′′ =
B(X → ψππ)2 ΓX

B(ψ(2S )→ ψππ)2 Γψ(2S )
is not used to constrain the fit. The channels

with § are forbidden by the signature JPC = 1++.

cross section (without separating the prompt contribution) to be σincl (pp→ Bc + all) × B (Bc → X(3872) + all) =

(5.4 ± 1.3 ± 0.8) nb in the region 5 < p⊥ < 20 GeV and 2.5 < y < 4.5, at
√

s = 7 TeV [47].

Very recently, ATLAS published a preliminary study on the prompt production of the X(3872). In the |y| < 0.75,

10 < p⊥ < 70 GeV region, they measured the prompt and non-prompt fractions with respect to the ψ(2S ), and

distinguished between long-lived (i.e. from B, Bs and Λb decays), and short-lived (i.e. from Bc decay) non-prompt

production

B (B, Bs,Λb → X(3872) + All) × B (X(3872)→ J/ψ π+π−)

B (B, Bs,Λb → ψ(2S ) + All) × B (ψ(2S )→ J/ψ π+π−)
= (3.57 ± 0.33 ± 0.11)% (8.10a)

σ (pp→ Bc + all) × B (Bc → X(3872) + all)

σ
(
pp→ X(3872) non-prompt + all

) = (25 ± 13 ± 2 ± 5)% (8.10b)

We report the differential cross section as a function of p⊥, in Figure 33, right panel.

8.2. The Zc(3900) and Z′c(4020)

The discovery of two charged axial states in the X(3872) region renewed the interest into the exotic hadron spec-

troscopy. We have discussed that the tetraquark model predicts two JPC = 1+− states. Similarly, molecule with the

same signature are expected to form at the DD∗ and D∗D∗ threshold. BES III [156] and Belle [155] observed an

intense peak in the J/ψ π+ invariant mass, while studying the Y(4260) → J/ψ π+π− channel 48 (Figure 34); BES III

48Some contamination from continuum events e+e− → γ∗ → Zc(3900)+π− can be present, and an energy dependent analysis is needed to

enlighten on this.
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Figure 34: Left panel: Distributions of Mmax(J/ψ π±), i.e. the larger one of the two M(J/ψ π±) in each event, according to BES III [156] (left) in

the Y(4260)→ J/ψ π+π− decay. The red solid curve is the result of the fit, the blue dotted curve is the background component, the green histogram

shows the normalized J/ψ sideband events. Right panel: fits to the M(hc π) distributions by BES III [161]; the inset shows the sum fits if allowing

for an additional Zc(3900) resonance.
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analysis by BES III [254].

by analyzing data at the Y(4260) peak, and Belle studying events associated with an undetected ISR photon (for more

details on the ISR physics, see Section 8.4).

The minimal quark content for such a state is cc̄ud̄, thus it is manifestly exotic. The averaged measured mass is

M = (3884.4±1.6) MeV, roughly 10 MeV above the DD∗ threshold, and the width is Γ = (27.9±2.7) MeV. This state

was dubbed Zc(3900). The average production branching fractions is

B (Y(4260)→ Zc(3900)+π−) × B (Zc(3900)+ → J/ψ π+)

B (Y(4260)→ J/ψ π+π−)
= (22.4 ± 3.1)%. (8.11)

Soon after, BES III observed a similar signal in Y(4260) → (DD̄∗)+π−, both with single [159] and double tag [251]

techniques (Figure 35). The signature JP = 1+ is favored by angular distributions, and the relative branching ratio is

B
(
Zc(3900)→ DD̄∗

)

B (Zc(3900)→ J/ψ π)
= 7.7 ± 1.3 ± 2.8. (8.12)

An analysis of CLEO-c data by the NU group [252] confirmed the Zc(3900) in the decay of the ψ(4160), and
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found a hint of a neutral Zc(3900)0 decaying to J/ψ π0. BES III confirmed this neutral state, in both J/ψ π0 and (D̄D∗)0

channels [253, 339], thus establishing the complete isospin triplet. This channel fixes the C = −, G = + assignment.

The Zc(3900) has been searched with no luck in the OZI-suppressed e+e− → (ωπ+π−) channel by BES III [340],

in the B→ (J/ψ π+)K channel by Belle [268], and in photoproduction μ+N → μ+(J/ψ π+)N′ at COMPASS [341].

A close sibling, dubbed Z′c(4020), has been found by BES III in e+e− → (D∗+D̄∗0) π− [254] and e+e− → (hc π
+) π−

[161], with mass M = (4023.9 ± 2.4) MeV, slightly above the D∗D∗ threshold, and width Γ = (10 ± 6) MeV 49. The

quantum numbers are JPC = 1+− as well. There is also evidence for the neutral partner Z′c(4020)0, in both closed and

open charm channels [255, 256].

The Zc(3900) is also searched in the hc π final state [161], and a bump occurs at 2.1σ level, thus not statistically

significant. Similarly, no Z′c(4020) peak is visible in the J/ψ π spectrum [87]. This has to be compared with the Z
(′)
b

system, where both states appear in the same final states (see Section 8.3). This fact is of particular interest to constrain

the NREFT molecular models (Section 3.5), which in general favor the decay into hc with respect to J/ψ [54, 55, 57]:

more statistics is needed to enlighten on this.

8.3. The bottomonium system: Zb(10610) and Z′
b
(10650), and search for Xb and Yb

Heavy quark flavor symmetry suggests that a heavy replica of the Zc(3900) and Z′c(4020) system has to occur in

the bottomonium sector. Indeed, Belle observed two narrow resonances in the Υ(5S ) → (Υ(nS ) π+) π− and Υ(5S ) →
(hb(nP) π+) π− channels [283]. A resonant intermediate structure explains both the anomalously high rate for Υ(5S )→
Υ(nS ) π+π− (the partial widths are about two orders of magnitude larger than typical width for dipion transitions among

the lower (nS ) states) [342], and the heavy quark spin symmetry violation in the decay into a hb [343].

We report the result of the Dalitz plot fits in Table 13. All the studied channels show the presence of two charged

resonances, dubbed Zb(10610) and Z′
b
(10650), with compatible masses and widths. The one-dimensional invariant

mass projections for events in each Υ(nS ) and hb(nP) signal region are shown in Figure 36. The averaged masses and

widths are M = (10607.2 ± 2.0) MeV, Γ = (18.4 ± 2.4) MeV, and M′ = (10652.2 ± 1.5) MeV, Γ′ = (11.5 ± 2.2) MeV,

respectively. The Zb(10610) production rate is similar to that of the Z′
b
(10650) for each of the five decay channels.

The fit shows that the relative phase between the two resonances is zero for the final states with the Υ(nS ), and 180◦

for the final states with hb(nP), as expected according to both the tetraquark [344], and the molecular model [48].

49Note the 2σ disagreement between the width measured in hc π
+, Γ = (7.9 ± 2.7 ± 2.6) MeV [161], with the one measured in D∗D̄∗, Γ =

(24.8 ± 5.6 ± 7.7) MeV [254].

Final state Υ(1S ) π+π− Υ(2S ) π+π− Υ(3S ) π+π− hb(1P) π+π− hb(2P) π+π−

M[Zb(10610)], MeV 10611 ± 4 ± 3 10609 ± 2 ± 3 10608 ± 2 ± 3 10605 ± 2+3
−1

10599+6+5
−3−4

Γ[Zb(10610)], MeV 22.3 ± 7.7+3.0
−4.0

24.2 ± 3.1+2.0
−3.0

17.6 ± 3.0 ± 3.0 11.4 +4.5+2.1
−3.9−1.2

13 +10+9
−8−7

M[Zb(10650)], MeV 10657 ± 6 ± 3 10651 ± 2 ± 3 10652 ± 1 ± 2 10654 ± 3 +1
−2

10651+2+3
−3−2

Γ[Zb(10650)], MeV 16.3 ± 9.8+6.0
−2.0

13.3 ± 3.3+4.0
−3.0

8.4 ± 2.0 ± 2.0 20.9 +5.4+2.1
−4.7−5.7

19 ± 7 +11
−7

Rel. normalization 0.57 ± 0.21+0.19
−0.04

0.86 ± 0.11+0.04
−0.10

0.96 ± 0.14+0.08
−0.05

1.39 ± 0.37+0.05
−0.15

1.6+0.6+0.4
−0.4−0.6

Rel. phase, degrees 58 ± 43+4
−9

−13 ± 13+17
−8

−9 ± 19+11
−26

187+44+3
−57−12

181+65+74
−105−109

Table 13: Comparison of results on Zb(10610) and Z′
b
(10650) parameters obtained from Υ(5S ) → Υ(nS ) π+π− and Υ(5S ) → hb(nP) π+π−

analyses [283].

93



0

20

40

60

80

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

M(Y(1S)π)max, (GeV/c
2)

(
E
v
e
n
t
s
/
1
0
 
M
e
V
/
c
2
) (a)

0

20

40

60

80

100

10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75

M(Y(2S)π)max, (GeV/c
2)

(
E
v
e
n
t
s
/
5
 
M
e
V
/
c
2
) (c)

0

20

40

60

80

100

120

10.58 10.62 10.66 10.70 10.74

M(Y(3S)π)max, (GeV/c
2)

(
E
v
e
n
t
s
/
4
 
M
e
V
/
c
2
) (e)

-2000

0

2000

4000

6000

8000

10000

12000

10.4 10.5 10.6 10.7

Mmiss(π), GeV/c
2

E
v
e

n
ts

 /
 1

0
 M

e
V

/c
2

(a)

0

2500

5000

7500

10000

12500

15000

17500

10.4 10.5 10.6 10.7

Mmiss(π), GeV/c
2

E
v
e

n
ts

 /
 1

0
 M

e
V

/c
2

(b)

Figure 36: Comparison of fit results (open histogram) with experimental data (points with error bars) for events in the Υ(nS ) (first 3 plots) and

hb(nP) (last 2 plots) regions. From Belle [283].

The production of the Zbs saturates the transitions to hb(nP) π+π−, which indicates for the Zbs to be superpositions of

different heavy quark spin eigenstates. The analyses of the dipion angular distributions favor the JP = 1+ spin-parity

assignment for both the states [283, 345]. The decay modes constrain C = −, G = +.

Recently, Belle has been able to find the neutral isospin partner Zb(10610)0 [286] in Υ(5S )→ Υ(nS ) π0π0 decays.

No significant signal of Z′
b
(10650)0 is seen.

The proximity of these two peaks to the BB∗ and B∗B∗ thresholds stimulated the search of the Zbs in pairs of open

bottom mesons [284, 285]. The Dalitz plots of Υ(5S )→ (BB∗)−π+ and Υ(5S )→ (B∗B∗)−π+ report a highly significant

signal of Z−
b

(10610)→ (BB∗)− and Z′−
b

(10650)→ (B∗B∗)−, respectively, with negligible continuum contribution. The

Z′−
b

(10650)→ (BB∗)− component, favored by phase space, is instead compatible with zero50. The plot of the invariant

masses recoiling off the pion is shown in Figure 37. The best estimate for the branching ratios are reported in Table

14, under the assumption the observed channels to saturate the resonance widths. This decay pattern is natural in the

molecular picture, whereas Ali et al. had predicted the decay Z′
b
(10650) → B̄∗B∗ to be forbidden in the tetraquark

model [346]. However, this conclusion was later overturned, considering that light spin flip can naturally occur in the

decay [344]. A more detailed discussion on this subject is in Section 4.

Before the discovery of the Zbs, the anomalously high rate of Υ(5S ) dipion transition lead to the speculation

that two vector states were actually contributing: the actual Υ(5S ), and an exotic vector tetraquark state, the so-

called Yb(10890) [347, 348]. A refit to the BABAR Rb = σ(e+e− → bb̄)/σ(e+e− → μ+μ−) data [349] allowed for the

presence of a narrow peak slightly heavier than the Υ(5S ). However the most recent analysis by Belle on the full

dataset excluded the existence of such a narrow peak [350]. The same analysis shows a 2σ discrepancy between the

resonance parameters of the Υ(5S ) measured in Rb, and in RΥππ. This also has suggested for the states seen in the

two channels to be different [351]. Still, the Belle analysis comments that, while the Υππ channel has basically no

continuum contribution, the presence of many different open bottom threshold is expected to affect the lineshapes

50Z−
b

(10610)→ (B∗B∗)− is phase-space forbidden.
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Figure 37: The Υ(5S )→ B̄(∗)B∗π channel measured by Belle [285]. The Zb(10610) and Z′
b
(10650) dominate the B̄B∗ and the B̄∗B∗, respectively.

Channel Fraction, %

Zb(10610) Z′
b
(10650)

Υ(1S) π+ 0.60 ± 0.17 ± 0.07 0.17 ± 0.06 ± 0.02

Υ(2S) π+ 4.05 ± 0.81 ± 0.58 1.38 ± 0.45 ± 0.21

Υ(3S) π+ 2.40 ± 0.58 ± 0.36 1.62 ± 0.50 ± 0.24

hb(1P) π+ 4.26 ± 1.28 ± 1.10 9.23 ± 2.88 ± 2.28

hb(2P) π+ 6.08 ± 2.15 ± 1.63 17.0 ± 3.74 ± 4.1

B+B̄∗0 + B̄0B∗+ 82.6 ± 2.9 ± 2.3 −
B∗+B̄∗0 − 70.6 ± 4.9 ± 4.4

Table 14: List of branching fractions for the Z+
b

(10610) and Z+
b

(10650) decays. From Belle [285].

in Rb, leading to slightly different resonance parameters (see for example the model in [352]). Also, if no peaking

background is included, the decay of the Υ(5S ) is saturated by the existing Z
(′)
b
π and Υππ final states, and no room

for B
(∗)
s B̄

(∗)
s is left, despite they represent the 20% of on-peak events. This inconsistency led Belle not to use Rb data

for the precise extraction of resonance parameters, thus resolving the discrepancy with RΥππ. We conclude that, in the

present condition, data do not support the existence of two different states close to the Υ(5S ). Instead, the possibility

for the Υ(5S ) to contain a sizable tetraquark component is still viable.

The existence of the Zbs states immediately calls for a Xb, a hidden-bottom partner of the X(3872), with JPC = 1++.

This is predicted by most of the models which fulfill heavy quark spin and flavor symmetry [344, 353], and it is

generally expected to lay close to the BB∗ threshold. This state has been searched at Belle in the isospin-conserving

e+e− → γXb(→ Υ(1S )ω) channel at the Υ(5S ) peak [354], and at ATLAS in the isospin-violating inclusive Xb →
Υ(1S ) π+π− channel [355] 51.

51This very channel has been searched in analogy to the X(3872) → J/ψ π+π− decay. It is worth noticing that, if the isospin violation happens
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8.4. Vector Y states

The e+e− collider can directly produce states with unambiguous signature JPC = 1−−. This happens if the center-

of-mass energy coincides with the position of a resonance, which requires the knowledge of the mass of the resonance

itself 52. Alternatively, a fraction of the events contains an additional energetic photon γISR emitted by the initial state,

that effectively decreases the center-of-mass energy. One can thus scan a large range of
√

s (which is function of the

energy of the γISR) without varying the energy of the beams. The γISR can be either detected (large angle ISR, good

for exploring low
√

s), or lost in the beampipe (small angle ISR, good for exploring higher
√

s). In the latter case,

the event is identified by requiring that the missing invariant mass is compatible with zero. This technique allowed the

B-factories to search and discover many unexpected vectors, usually called Y states. Their exotic assignment is mainly

due to two reasons: i) the ordinary ψ charmonia in that mass region are already well established, and there are no free

slots for these new Ys , and ii) they do not decay into open charm final states, which instead dominate the decay width

of the ordinary ψ above-threshold.

In Figure 38 we show the summary of the detected vectors, together with their main decay channel. The tetraquark

picture is able to frame most of these states in a comprehensive picture — see Section 4.6 — identifying all the Y states

either as the lightest L = 1 states, or as their radial excitations [8]. Other models provide different descriptions, on

a case-by-case basis. For example, the Y(4260) has been described in terms of a D̄D1(2420) molecule, which would

appear in the slightly displaced Y(4220) and Y(4230) peaks. However, it is important to stress that the resulting large

binding energy of ∼ 70 MeV pushes the state out of the range of applicability of the shallow states theory (Section 3).

The Y(4360) would be the Y(4260) heavy quark spin partner, D̄∗D1(2420) [55, 357]. The Y(4660)/Y(4630) would be

instead a ψ(2S ) f0(980) molecule [358]. Voloshin [147] proposed the hadrocharmonium model to describe the decay

pattern of the Y(4260) and Y(4360) (see Section 7.1). Lattice QCD and constituent models usually identify a cc̄g

hybrid vector state in the region of the Y(4260) — see Section 7.2.

The first in the list is the Y(4260), found at BABAR in 2005 decaying into J/ψ π+π−, and later confirmed by CLEO

at the hadron level, it will be sizable in the charm sector (since the difference in mass being M(D+D∗−) − M(D0D̄∗0) ∼ 8 MeV), but negligible in

the bottom sector (M(B+B∗−) ≃ M(B0 B̄∗0)). However, if the isospin violation is driven by the heavy scale at a more fundamental level [80], it can

occur in the Xb as well.
52But fortune favors the bold [356]...
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Figure 39: Belle analyses of e+e− → J/ψ π+π− (left) [155] and→ ψ(2S ) π+π− (right) [267].

and Belle [155, 264, 270, 273, 276]. Evidence for Y(4260) → J/ψ π0π0 was also reported by CLEO [272], whereas

no clear sign of Y(4260)→ J/ψK+K− or→ K0
S
K0

S
has been seen so far [272, 359, 360]. The averaged values for mass

and width are M = (4251 ± 9) MeV and Γ = (120 ± 12) MeV 53. A thorough search of Y(4260) in open charm final

states has been performed by BABAR, Belle and CLEO-c, with no success. We report the list of most of the channels

where the Y(4260) has been searched, and the 90% upper limits, in Table 15. Instead, for the discovery mode, we

have Γ (Y(4260)→ e+e−) × B (Y(4260)→ J/ψ π+π−) = (9.2 ± 1.0) eV. The electronic width can be constrained by

looking at the inclusive σ (e+e− → hadrons), giving Γ (Y(4260)→ e+e−) < 580 eV at 90% C.L. [361]. This estimate

will be improved with the forthcoming data on the inclusive hadron cross section by BES III. This turns out to a dipion

transition of Γ (Y(4260)→ J/ψ π+π−) ∼ 1 MeV, one order of magnitude larger than similar transitions of ordinary

charmonia (and somehow similar to the dipion abundance in the Υ(5S ) transitions, see Section 8.3).

To investigate the nature of this resonance, it is important to understand whether the pion pair is dominated by

any resonance. The updated BABAR analysis finds some evidence of Y(4260) → J/ψ f0(980), although a relevant

nonresonant component is still needed [271]. This might explain why the state does not decay into ψ(2S ) 54, since the

decay Y(4260) → ψ(2S ) f0(980) is phase-space forbidden (see also Section 3.4). In this case, a sizable Y(4260) →
J/ψKK̄ is expected, which calls for a new analysis in this channel. For the transition to the exotic Zcs states, see Section

8.2, but a proper energy scan is still due to understand whether the production of Zcs is dominated by the Y(4260) or

by continuum events.

The identification of the Y(4260) as D̄D1(2420) molecule calls for the search of the decay into these constituents.

The analysis of the Dalitz plot Y(4260)→ D̄D∗π allows to search the intermediate narrow D1(2420) as a D-wave D∗π
resonance. BES III performed the analysis on both the single and double tagged samples, finding no D1 component,

but limited statistics prevented to draw strong conclusions [159, 251].

The radiative decays of the Y(4260) can shed some light on the nature of this state. The production cross section

σ (e+e− → γX(3872)) × B (X(3872)→ J/ψ π+π−)) measured by BES III scales as a function of the center-of-mass

energy consistently with a Breit-Wigner with Y(4260) mass and width as parameters, consequently the observed events

come from the intermediate resonant state and not from the continuum [110]. The estimate for the relative branching

ratio is B (Y(4260)→ γX(3872)) /B (Y(4260)→ J/ψ π+π−) ∼ 0.1 55, which is relatively large. This radiative decay

53This average does not include the new results by BES III [108], which assume a different lineshape for the cross section, due to the interference

of two different states. This is commented later on.
54The significance of a Y(4260)→ ψ(2S ) π+π− is 2.4σ only [267].
55assuming for the branching ratio B (X(3872)→ J/ψ π+π−

)
= 5%.
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Final state Upper limit (90% C.L.) Experiment

Γee × B (Y(4260)→ f ) (eV)

J/ψK+K− 1.2 Belle [359]

J/ψη 14.2 Belle [362]

ψ(2S ) π+π− ∼ 12 Reanalysis [363]

φπ+π− 0.4 BABAR [364]

K0
S
K+π− 0.5 BABAR [365]

K+K−π0 0.6 BABAR [365]

B (Y(4260)→ f ) /B (Y(4260)→ J/ψ π+π−)

DD̄ 1.0 BABAR [366],

D∗D̄ 34 BABAR [367]

D∗D̄∗ 11 CLEO-c [368]

D+s D−s 0.7 BABAR [369]

D∗+s D−s 0.8 CLEO-c [368]

D∗+s D∗−s 9.5 CLEO-c [368]

D0D∗−π+ 9 Belle [370]

D∗D̄ π 15 CLEO-c [368]

D∗D̄∗π 8.2 CLEO-c [368]

hc π
+π− 1.0 † CLEO [371]

pp̄ 0.13 BABAR [372]

σ (e+e− → f ) (pb)

χc1ω 18 (
√

s = 4.31 GeV) BES III [269]

χc2ω 11 (
√

s = 4.36 GeV) BES III [269]

Table 15: Upper limits for Y(4260) into different final states. † This has to be updated with new BES III results [108, 109].

is naturally expected in the tetraquark model as an E1 transition of the orbitally excited tetraquark to its ground state,

with no spin change [8]. These predictions, as well as the ones under the molecular [56] and hybrid hypotheses [190],

can be tested by more precise measurements of these branching ratios.

In the same J/ψ π+π− final state, Belle reported also a broad structure named Y(4008) [155, 264], with M =

(3890.8±40.5±11.5) MeV and Γ = (254.5±39.5±13.6) MeV. This is at odds with BABAR [271], which does not observe

any structure in that region. Very recently, BES III published the results of a precise scan analysis [108] (see Figure 40),

which finds a much broader state, M = (3812.6+61.9
−96.6

) MeV and Γ = (476.9+78.4
−64.8

) MeV. Alternatively, it is substituted by

an exponential background, obtaining an equally good fit. In the same analysis, the asymmetric shape of the Y(4260)

turns out to be due to the interference of a narrower Y(4260), with mass and width M = (4222.0±3.1±1.4) MeV and Γ =

(44.1±4.3±2.0) MeV, with a slightly heavier one, with M = (4320.0±10.4±7.0) MeV and Γ = (101.4+25.3
−19.7
±10.2) MeV.

The latter is compatible with the state observed in e+e− → ψ(2S )ππ discussed below. More statistics will help in

solving the controversy about the Y(4008).

The analysis of the ψ(2S ) π+π− channel gave some surprises: instead of finding the Y(4260), BABAR and Belle
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Figure 40: Measured dressed cross section σdress(e+e− → π+π−J/ψ at BES III [108], and simultaneous fit to the high-statistics datasets (left) and to

the energy scan data (right) with the coherent sum of the Breit-Wigner functions for the Y(4008), the Y(4260), and the Y(4360) (red solid curves),

or substituting the Y(4008) with a coherent exponential continuum.

observed other two resonances: the Y(4360) and the Y(4660) [267, 275, 276, 373], with masses and widths M =

(4346.2 ± 6.3) MeV, Γ = (102 ± 10) MeV, and M = (4657 ± 11) MeV, Γ = (70 ± 11 ± 3) MeV, respectively. The

latter has not been seen in J/ψ ππ, despite the larger phase space. The decay Y(4360) → J/ψ π+π− has been recently

observed by BES III [108], which is at odds with the combined analysis of BABAR and Belle data [81]. In Figure 39

we report some distributions of J/ψ π+π− and ψ(2S ) π+π− by Belle.

The preference of tetraquark states to decay into baryons was understood since the origins of the model [7, 78, 79,

82]. Motivated by this, Belle searched for vector resonances decaying into Λ+cΛ
−
c [281]. A structure (the Y(4630))

has actually been found near the baryon threshold, with Breit-Wigner parameters M = (4634+8
−7
+5
−8

) MeV and Γ =

(92+40
−24
+10
−21

) MeV. A combined fit of the ψ(2S ) π+π− and Λ+cΛ
−
c spectra concluded that the two structures Y(4630)

and Y(4660) can indeed be the same state, with a strong preference for the baryonic decay mode: B(Y(4660) →
Λ+cΛ

−
c )/B(Y(4660)→ ψ(2S ) π+π−) = 25 ± 7 [81]. The possibility these two structures to be actually distinct has been

explored in [8].

BES III also measured the e+e− → hc π
+π− cross sections at center-of-mass energies varying from 3.896 to

4.600 GeV [109, 161]. The values of the cross sections are similar to the e+e− → J/ψ π+π− one, but the lineshape

looks different (see Figure 41). The hc π
+π− spectrum has been fitted first by Yuan [112, 113], which found a sig-

nificant signal for a Y(4220), while the higher mass region could be described either by a Y(4290) state, or by a

phase-space background. The very recent energy scan by BES III [109] has confirmed the former hypothesis, giv-

ing for the two resonances masses and widths M = (4218.4 ± 4.0 ± 0.9) MeV and Γ = (66.0 ± 9.0 ± 0.4) MeV,

M = (4391.6± 6.3± 1.0) MeV and Γ = (139.5± 16.1± 0.6) MeV. A somewhat similar signal has been seen by BES III

in e+e− → χc0ω [269, 374] at a mass of M = (4230± 8) MeV and a width of Γ = (38± 12) MeV, again not compatible

with Y(4260) parameters. The hypothesis that the Y(4220) and Y(4230) are indeed the same tetraquark state has been

studied in [111]. The possibility that, instead, the state in χc0ω is the ordinary ψ(4160) has been proposed in [375].

New BES III data suggest for this Y(4220) to coincide with the narrow one observed in J/ψ π+π−. It is clear that a

combined refit of all available data in this sector is needed to establish the existence of many of the unsettled Y states.

8.5. The Z(4430)

The childbirth of the Z(4430) was long and troubled. The state was claimed in 2007 by Belle, as a peak in the

B→ K(ψ(2S ) π+) channel [376], and it was the first observation of a charged charmoniumlike state. Such analyses can

suffer from the rich structure of Kπ resonances, which reflect into the ψ(2S ) π channel and might create fake peaks.

However, Belle considered that the events with M(ψ(2S ) π−) ∼ 4430 MeV correspond to events with cos θKπ ≃ 0.25,

i.e. an angular region where interfering L = 0, 1, 2 partial waves cannot produce a single peak without creating other
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larger structures elsewhere. The subsequent BABAR analysis parametrized the Kπ spectrum with a model-independent

technique, i.e. just projecting the Kπ spectrum over partial waves without assuming any specific K∗ content. The

reflection of this system could fit the ψ(2S ) π spectrum without needing any additional Z(4430) resonance. The final

dataset Belle’s Dalitz analysis confirmed the presence of a resonance [277, 278]. Finally, LHCb put beyond doubt

the existence of this state, first with a high-statistics 4D fit to the usual isobar model, and later applying the BABAR’s

model-independent analysis [280, 377]. This state is extremely interesting, because is far from any reasonable open-

charm threshold with the correct quantum numbers 56. The averaged mass and width are M = (4478 ± 17) MeV and

Γ = (180 ± 31) MeV, whereas the favored signature is JPC = 1+−. The LHCb analysis also stresses the resonant

nature of the Z(4430), by fitting six independent complex numbers in bins of M2(ψ(2S ) π), instead of forcing the

Breit-Wigner lineshape. The result is consistent with the Breit-Wigner expectation (see Figure 42), although other

mechanisms can mimic a similar resonant behavior — see Section 7.3.
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56unless one resorts to the radial excitations D(2S ) and D∗(2S ), but their broad width of ∼ 100 MeV challenges any proper definition of threshold.
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Figure 43: Invariant mass distributions of J/ψφ, from the B+ → K+J/ψφ data by CMS ([134], left panel) and LHCb ([135, 136], right panel).

Belle also searched for the same state in the B → K(J/ψ π+) channel [268]. A 4σ signal consistent with the

Z(4430) is found. We can thus compare

B
(
B̄0 → K−Z(4430)+

)
× B (Z(4430)+ → ψ(2S ) π+

)
=
(
6.0+1.7
−2.0
+2.5
−1.4

)
× 10−5. (8.13a)

with

B
(
B̄0 → K−Z(4430)+

)
× B (Z(4430)+ → J/ψ π+

)
=
(
5.4+4.0
−1.0
+1.1
−0.6

)
× 10−6, (8.13b)

i.e. the decay into ψ(2S ) is larger by one order of magnitude, despite the smaller phase space.

8.6. The [cs][c̄s̄] sector

The CDF experiment announced a resonance close to threshold in J/ψφ invariant mass, in the channel B+ →
J/ψφK+ [378, 379]. Since the creation of a ss̄ pair is OZI suppressed, the very existence of such states likely requires

exotic interpretations. This state was called X(4140), or sometimes Y(4140).

The first low-statistics analysis by LHCb [381], and the analyses by Belle and BABAR [380, 383] were not able to

see any significant signal in this channel. Belle searched this state in γγ fusion, driven by a molecular prediction [385],

but found no X(4140) [274]. Similarly, BES III saw no X(4140) signal in the e+e− → γ(J/ψφ) process [386]. Instead,

D∅ [382] and CMS [134] have confirmed the observation, with significances of ∼ 3σ and > 5σ, respectively, although

with slightly inconsistent values for the mass and width. D∅ found the state also in prompt production [384]. CDF,

CMS and D∅ also reported evidence for a second peak at a mass of M ∼ 4300 MeV and Γ ∼ 35 MeV.

Very recently, LHCb published the preliminary amplitude analysis of the full 6D Dalitz distributions [135, 136].

The results are impressive: they not only confirm both the X(4140) and the second peak, although with much larger

widths, but they also find other two heavier states. The situation is resumed in Table 16. The two lighter states,

X(4140) and X(4274), have JPC = 1++, and masses and widths M = (4146.5 ± 4.5+4.6
−2.8

) MeV, Γ = (83 ± 21+21
−14

) MeV,

and M = (4273.3 ± 8.3+17.2
−3.6

) MeV, Γ = (56 ± 11+8
−11

) MeV, respectively. The two heavier ones, X(4500) and X(4700),

are scalars JPC = 0++, and have resonance parameters M = (4506 ± 11+12
−15

) MeV, Γ = (92 ± 21+21
−20

) MeV, and M =

(4704 ± 10+14
−24

) MeV, Γ = (120 ± 31+42
−33

), respectively.

In Figure 43 we show the M(J/ψφ) distribution measured at CMS and LHCb. The discrepancy between the new

LHCb results and all the previous ones deserves some comments. The excellent particle ID, and the large statistics

101



Experiment Events Mass (MeV) Width (MeV) Sign. Fraction %

X(4140) peak

CDF (2008), 2.7 fb−1 [378] 58 ± 10 4143.0 ± 2.9 ± 1.2 11.7+8.3
−5.0
± 3.7 3.8σ

Belle (2009) [380] 325 ± 21 4143.0 fixed 11 fixed 1.9σ

CDF (2011) 6.0 fb−1 [379] 115 ± 12 4143.4+2.9
−3.0
± 0.6 15.3+10.4

−6.1
± 2.5 5.0σ 14.9 ± 3.9 ± 2.4

LHCb (2011) 0.37 fb−1 [381] 346 ± 20 4143.4 fixed 15.3 fixed 1.4σ < 7 @ 90% C.L.

CMS (2013) 5.2 fb−1 [134] 2480 ± 160 4148.0 ± 2.4 ± 6.3 28+15
−11
± 19 5.0σ 10 ± 3 (stat.)

D∅ (2013) 10.4 fb−1 [382] 215 ± 37 4159.0 ± 4.3 ± 6.6 19.9 ± 12.6+1.0
−8.0

3.1σ 21 ± 8 ± 4

BABAR (2014) [383] 189 ± 14 4143.4 fixed 15.3 fixed 1.6σ < 13.3 @ 90% C.L.

D∅ (2015) 10.4 fb−1 [384]

pp̄→ J/ψφ + All (prompt)
4152.5 ± 1.7+6.2

−5.4
16.3 ± 5.6 ± 11.4

4.7σ

pp̄→ J/ψφ + All (non-prompt) 5.7σ

Average 4145.5 ± 2.3 14.9 ± 4.4

Higher peaks

CDF 6.0 fb−1 [379] 115 ± 12 4274.4+8.4
−6.7
± 1.9 32.3+21.9

−15.3
± 7.6 3.1σ

LHCb 0.37 fb−1 [381] 346 ± 20 4274.4 fixed 32.3 fixed < 8 @ 90%C.L.

CMS 5.2 fb−1 [134] 2480 ± 160 4313.8 ± 5.3 ± 7.3 38+30
−15
± 16

D∅ 10.4 fb−1 [382] 215 ± 37 4328.5 ± 12.0 30 fixed

BABAR [383] 189 ± 14 4274.4 fixed 32.3 fixed 1.2σ < 18.1 @ 90% C.L.

Belle [274] γγ → J/ψφ 4350.6+4.6
−5.1
± 0.7 13+18

−9
± 4 3.2σ

New LHCb results [135, 136]

X(4140), JPC = 1++ 4289 ± 151 4146.5 ± 4.5+4.6
−2.8

83 ± 21+21
−14

8.4σ 13 ± 3.2+4.8
−2.0

X(4274), JPC = 1++ 4289 ± 151 4273.3 ± 8.3+17.2
−3.6

56 ± 11+8
−11

6.0σ 7.1 ± 2.5+3.5
−2.4

X(4500), JPC = 0++ 4289 ± 151 4506 ± 11+12
−15

92 ± 21+21
−20

6.1σ 6.6 ± 2.4+3.5
−2.3

X(4700), JPC = 0++ 4289 ± 151 4704 ± 10+14
−24

120 ± 31+42
−33

5.6σ 12 ± 5+9
−5

Table 16: Results related to the J/ψφ resonances. We show the results of the previous experiments, with measured masses, widths and fit fractions,

and compare with latest LHCb results. In the second column, we report the total number of B+ → J/ψφK+ events.
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allowed LHCb to have a very precise sample with low background, and to perform the full 6D fit. The fit included up

to 5 φK+ Breit-Wigners, consistent with known or predicted K∗ resonances. Still, a sizable nonresonant component is

needed for a good fit. All these are summed coherently to the four J/ψφ Breit-Wigners. On the other hand, the other

analyses just fitted the 1D J/ψφ projection because of limited statistics, adding incoherently one or two Breit-Wigners

to a phase-space background. The incoherent background in general tends to produce more narrow widths than the

(the same happened for the Z(4430), Section 8.5), and could justify the mismatch. However, the X(4140) is observed

by D∅ in inclusive production [384]. In this case, the coherent sum of signal and background is meaningless, and the

incoherent sum gives a width of Γ = 16.3±5.6±11.4, much narrower than the one observed at LHCb, and compatible

with the previous observation. An independent observation of this state in inclusive production might help resolving

this controversy.

8.7. Pentaquark states

In July 2015, LHCb reported the observation of two peaks, denoted Pc(4380)+ and Pc(4450)+, in the invariant

mass of J/ψ p in the Λ0
b
→ J/ψ p K− decay [114]. In the Dalitz plot in Figure 44 a band in the J/ψ p is indeed visible,

and clearly extends beyond the Λ∗ region (m2
K p
< 4 GeV2). The full amplitude fit cannot satisfactorily describe the

data without including these two Breit-Wigner shaped resonances (Figure 45). The lighter state has a mass M =

4380± 8± 29 MeV and a width Γ = 205± 18± 86 MeV, while the heavier one has a mass M = 4449.8± 1.7± 2.5 MeV

and a width Γ = 39 ± 5 ± 19 MeV. The interference pattern of the two resonances in different bins of the helicity

angle require them to have opposite parities, and the preferred JP are
(

3
2

−
, 5

2

+
)
, although

(
3
2

+
, 5

2

−)
and

(
5
2

+
, 3

2

−)
are not

excluded. The higher mass state has a fit fraction of (4.1± 0.5± 1.1)%, and the lower mass state of (8.4± 0.7± 4.2)%,

of the total sample. To study the resonant behavior of the two states, the amplitudes are represented as the combination

of independent complex numbers at six equidistant points in the range ±Γ0 = 39 MeV around the as determined in the

default fit. Real and imaginary parts of the amplitude are interpolated in mass between the fitted points. The resulting

Argand diagram, shown in Figure 46, is consistent with a rapid motion of the Pc(4450)+ phase when its magnitude

reaches the maximum, whereas no strong conclusion can be drawn for the wider Pc(4380)+.

A new analysis by LHCb has recently confirmed the existence of pentaquark-like structure with the same model-

independent used in the analysis of the Z(4430) (see Section 8.5), i.e. without assuming any Breit-Wigner lineshape

for the Λ∗, but just projecting the M(K p) invariant mass in partial waves, and studying the reflection in M(J/ψ p).

If no pentaquark is included, the M(J/ψ p) distribution cannot reproduce data [387]. Finally, LHCb studied also the

Cabibbo-suppressed Λ0
b
→ J/ψ p π+ channel. Also in this case, the N∗ reflections are not able to reproduce the

J/ψ π+ spectrum, but lack of statistics prevents the resolving of different structures (possibly Pc(4380), Pc(4450), or

Z(4200)) [388].

A diquark-diquark-quark description has been proposed in [117, 389, 390] (see also Section 4.7). The molecular

models can describe the narrow state, either as a D̄(∗)Σc molecule [391], or as a χc1 p molecule [218], but cannot at the

same time describe the broader state, nor with opposite parity to the narrow one. To confirm the LHCb discovery, a

search in another channel is needed. For example, Refs. [160, 392, 393] have proposed to search the pentaquark in

photoproduction, estimating sizable cross sections.
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8.8. Other states

χc0(3915) — A resonance decaying into J/ψω was observed by Belle and BABAR in the B → K(J/ψω) chan-

nel [257–259]. Both experiments found the same state in γγ fusion [260, 261]. The latter production mechanism

constrains C = +, J � 1, and the study of angular correlations favors a JPC = 0++ assignment. At the be-

ginning Belle named this state Y(3940), then renamed to Y(3915) after a more precise determination of the mass.

The averaged mass and width are M = (3918.4 ± 1.9) MeV and Γ = (20 ± 5) MeV. The PDG 2014 rebaptized to

χc0(2P), choosing for an ordinary charmonium assignment for the state. However, the χc0(2P) is expected to have

Γ(χc0(2P) → DD̄) ∼ 30 MeV, i.e. wider than the total width measured of the Y(3915). Even if no upper bound on

B(Y(3915)→ DD̄) has been reported, no signs of a signal for such a decay appear in the measured DD̄ invariant mass

distributions for B→ DD̄K decays [311, 394]. Moreover, the hyperfine splitting χc2(2P) − χc0(2P) would be only 6%

with respect to the χc2(1P)− χc0(1P) splitting, much smaller than the same ratio in the bottomonium system (r ∼ 0.7),

and than the potential model predictions [395] (0.6 < r < 0.9). These facts challenge the ordinary charmonium

interpretation [396, 397]. In the PDG 2015 online edition a compromise was reached, and it was called χc0(3915)

eventually. This state has been identified as the lightest [cs][c̄s̄] tetraquark [139], although this interpretation looks

at odds with the other states seen in J/ψφ (see Section 8.6). Alternatively, Voloshin and Li have proposed a D+s D−s
molecular assignment [398].

A X(5568)? — Recently D∅ claimed the discovery of a narrow state in the B0
sπ
± invariant mass, with mass and

width of M = (5567.8 ± 2.9+0.9
−1.9

) MeV and Γ = (21.9 ± 6.4+5.0
−2.5

) MeV, and a significance of 3.9σ, increased to 5.1σ

if an additional cut (ΔR < 0.3) is considered [133]. The ratio of the yield of resonant over background events in

the detector acceptance region and p⊥ > 10 GeV is ρ = (8.6 ± 1.9 ± 1.4)%. The use of this additional cut has been

criticized, even though the analysis was blind, and the cut was not optimized for this purpose. Right after, LHCb

explored the very same channel, finding no hints of any resonant structure, neither at the mass observed by D∅, nor

all the way to the BK threshold, and putting the 90% C.L. upper limit ρ < 1.6% in the detector acceptance region and

p⊥ > 10 GeV [282]. Even considering the differences between the two experiments in terms of acceptance, center-of-

mass energy, and initial state, this gap makes the observation by D∅ less plausible. In Figure 47 we show the B0
sπ
±

distributions measured by the two experiments. Neither the recent preliminary analysis by CMS is able to see the

state [399]. It is worth noticing that such a state was at odds with many exotic models [11, 400–402].

A X(4350)? — Triggered by the observation of a X(4140) resonance by CDF in B→ K(J/ψφ)), Belle explored the

γγ → J/ψφ channel. A peak with a 3.2σ significance was seen at M = (4350.6+4.6
−5.1
±0.7) MeV and Γ = (13+18

−9
±4) MeV,
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Figure 47: Left panel: The m(B0
sπ
±) distribution together with the background distribution and the fit results, with p⊥ > 10 GeV after applying the

ΔR < 0.3 cone cut at D∅ [133]. Right panel: the same, with p⊥ > 10 GeV with no cone cut, at LHCb [282]

and dubbed X(4350). The narrow width and the signature J � 1 constrained by the production mode prevent the

identification of this state with the other ones observed by LHCb in B→ K(J/ψφ)), see Section 8.6.

X(3940) and X(4160) — The X(3940) was observed by Belle in associated production with a J/ψ with M =

(3942+7
−6
±6) MeV and Γ = (37+26

−15
±8) MeV [262, 263]. A partial reconstruction technique showed that X(3940)→ D∗D̄

is the prominent decay mode , whereas X(3940) → DD̄ and → J/ψω show no signal. The production mechanism

e+e− → γ∗ → J/ψX(3940) constrains the state to have C = +, and favors low values of the spin. The absence of the

DD̄ decay suggests unnatural parity, so the tentative JPC assignment for this state is 0−+.

The same analysis also observed a state called X(4160) in the D∗D̄∗ invariant mass. The fitted mass and width are

M = (4156+25
−20
± 15) MeV and Γ = (139+111

−61
± 21) MeV. Also in this case, the favored signature is JPC = 0−+. These

two states are good candidate for the ηc(3S ) and ηc(4S ) respectively, although their masses deviate from the ordinary

predictions [403, 404].

Z1(4050) and Z2(4250) — In a Dalitz-plot analysis of B → χc1π
+K decays, Belle could get an acceptable fit

only by adding two resonances in the χc1π
+ channel, called Z1(4050) and Z2(4250) [265]. We report the Dalitz

projection in Figure 48. The fitted masses and widths are M1 = (4051 ± 14+20
−41

) MeV, Γ1 = (82+21+47
−17−22

) MeV, and

M2 = (4248+44+180
−29−35

) MeV, Γ2 = (177+54+316
−39−61

) MeV, respectively. The same decay was investigated by BABAR, which

carefully studied the effects of interference between resonances in the Kπ system [266]. Considering interfering

resonances in the Kπ channel only, BABAR obtained good fits to data without adding any χcπ resonance, but because of

limited statistics, no strong conclusion could be made against the existence of these resonances. Their interpretation

as D-wave tetraquarks has been suggested in a flux-tube model [405] Also, if one assumes a 0/2++ assignment for the

Z1(4050), the resonance can be identified as a member of the ground-state tetraquark multiplet — see Section 4.5.

Similarly, the Z2(4250) might be the radial excitation of the lightest 0++ tetraquark.

A Z(4050)? — Belle report a 3.5σ excess in the ψ(2S ) π+ invariant mass, in the e+e− → ψ(2S ) π+π− [267], with

best fit parameters M = (4054 ± 3 ± 1) MeV and Γ = (45 ± 11 ± 6) MeV.

Z(4200) — In the same analysis of the B → Kψ(2S ) π which confirmed the Z(4430) (see Section 8.5), LHCb

observed another significant broad structure, with mass and width M = (4239 ± 18+45
−10

) MeV, Γ = (220 ± 47+108
−74

) MeV,

and likely JPC = 0−+. Since the resonant nature in the Argand plot was unclear, LHCb prudently did not claim the
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discovery. Soon after, Belle claimed the discovery of a broad Z(4200) state with likely JPC = 1+−, mass and width

M = (4196+31
−29
+17
−13

) MeV, Γ = (370+70
−70
+70
−132

) MeV, with a significance of 6.2σ. The two observations might be related

to the same state, although such large widths cast some doubts on the actual resonant nature of these states. The

interpretation as a tetraquark state has been suggested in the context of a flux-tube model [405], or with QCD sum

rules [227].

9. Conclusions and outlook

A considerable part of the material presented in this review is selected from the vast literature on the XYZP

resonances, with the scope of preparing the discussion appearing in the core Sections in which we have much further

elaborated on some new ideas published recently by our group. The main drive of this paper is to present a clear

identification of the most striking conflicts of models with data and the indication of one (or more) possible ways

to the solution of them. In some few cases we have reported, and set in the context, even some textbook results and

derivations which we have used in diverse occasions. This was essentially done for the purpose of being self-contained.

The connection between the diquarkonium discrete spectrum and open meson thresholds might provide a set of

‘selection rules’ that fit the experimental data so far available. We presented some predictions and the rules for

formulating them. Elements of a unitary picture are provided, although in the form of work in progress. The discussion

about XYZP states is certainly not concluded here, and more efforts, and hopefully new forthcoming data, are needed.

Therefore, our hope is that the arguments formulated in this paper might attract and stimulate new research and fresh

ideas also from outside the community which has traditionally worked in the field.

Even though we believe that no ‘new physics’ in the usual sense will be needed to definitely understand multiquark

resonances, we cannot think that such a richness of experimental data and theoretical problems should pertain only to
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the practitioners of hadronic physics with a more or less high nuclear theory culture but could attract more attention in

the high energy physics experimental/theoretical communities.

Coping and solving this problem could shed new light on non-perturbative QCD and in general on strong interac-

tions, as documented in several valuable papers. We actually show here that, to some extent, this has already happened,

and one of our aims was that of reporting on the diversity of ideas which have been advanced to solve the problems

that data pose, and even to propose new directions of investigation which could arise exploiting methods proper of

other branches of physics.

Model builders and lattice gauge theorists could find a very stimulating ‘playground’ in seeking solutions to the

multiquark resonances problem, and this, in our opinion, is a concrete opportunity of progress in a field which is firmly

connected to data and experimental physics practice.

As shown in the Sections more closely related to experiments, the complexity and variety of performed analyses

is remarkable. Again this results from the work of a somewhat restricted community which we hope will benefit of

more support and collaboration in the coming years.

In a few concluding words, we observe that diquark-antidiquark states, hybrids and molecules, in various forms,

all catch important aspects of the problem, being understood that the observed multiquark resonances are not the mere

manifestation of kinematical effects, like cusps, as some authors claim.

There might be several ways to learn from what was understood with all these methods, not loosing the contact to

experimental evidence and preferring all those alternatives which appear to be formulated in a clearly falsifiable way.

In a sense, this is a privilege of the field: theoretical models can be checked against data on reasonable time scales.

Acknowledgements

Most of the work presented here derives from invaluable collaboration with Luciano Maiani, Fulvio Piccinini

and Veronica Riquer. They are all implicitly coauthoring this paper, exception made for what is imprecise or even

wrong, which is our full responsibility. Along the years we benefited of the collaboration of Riccardo Faccini, who

helped us to find the way in some experimental data analysis intricacies, and of a number of collaborators each of them

contributing with their insight and work to solve the problems offered by the changing experimental picture — we wish

to thank F. Brazzi, T. Burns, G. Cotugno, N. Drenska, G. Filaci, A. L. Guerrieri, M. Papinutto, V. Prosperi, C. Sabelli,

and N. Tantalo. ADP benefited from sporadic collaborations and discussions with A. Ali, I. Bigi, B. Grinstein, and

R. Lebed and recent exchanges with G. C. Rossi, G. Veneziano, and S. Peris. AP wishes to thank M. Bochicchio

and A. Szczepaniak for many fruitful discussions. The support and dialogue with experimentalists has been constant.

We wish to thank S. Stone for several decisive exchanges, together with A. A. Alves, M. Battaglieri, G. Cavoto,

M. Destefanis, R. Mussa, A. Palano, M. Pappagallo, A. Pompili, F. Renga, and U. Tamponi. The confrontation with

the ideas of E. Braaten and M. Voloshin has been very instructive to us. This material is based upon work supported

in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-

06OR23177, and DE-FG02-11ER41743.

108



Appendix A. X(3872) production at hadron colliders

It is possible to estimate an upper bound for the production cross section of the X(3872) as follows [31]

σ(pp̄→ X(3872)) � σmax(pp̄→ D0D̄∗0) ∼
∫

|k|∈R

∣∣∣〈D0D̄∗0(k)|pp̄〉
∣∣∣2 , (A.1)

where k is the relative momentum between the two D mesons in their center of mass and R is the domain where the

two-body wave function for the molecular X(3872) is significantly different from zero.

Such an upper bound can be estimated by counting the number of D0D̄∗0 produced with a relative momentum

lower than a certain k0 value. This has been done [31] using HERWIG [406] and PYTHIA [407], taking R to be a ball

or radius [0, 35] MeV, on the basis of a naı̈ve gaussian shape for the two-body wave function of the X.

Next we assume that all these pairs will convert into X(3872).

The result of the MC simulation (with a MC luminosity of ∼ 100 nb−1) was a maximum production cross section

of 0.071 nb for HERWIG and 0.11 nb for PYTHIA, which are both smaller than the experimental value (∼ 30 nb)

by more than two orders of magnitude. This seemed to be the definitive proof of the inconsistency of the molecular

interpretation with the experimental data.

However, the previous approach was later criticized in [36] and it was shown that the theoretical and experimental

cross sections might be matched resorting to Final State Interactions (FSI) [408]. The possible presence of FSI, in fact,

casts doubts on the applicability of the simple coalescence picture to the case of the X(3872), since the two components

of the molecule could be bound by final state rescattering even if their relative center of mass momentum is large. In

particular, the Migdal-Watson theory would change the previous results in two different ways

1. The cross section for the production of the X should be modified to

σ(pp̄→ X(3872)) ≃
[
σ(pp̄→ D0D̄∗0)

]
k0<kmax

0

×
6π
√
−2μEX

Λ
(A.2)

where
[
σ(pp̄→ D0D̄∗0)

]
k0<kmax

0

is the upper bound evaluated in (A.1) and Λ ∼ mπ is the typical range of the

interaction between the components;

2. Instead of being taken as the inverse of the spread of the spatial wave function, the maximum value for the

relative momentum should be given by the inverse of the range of the interaction, kmax
0
≃ cΛ, with c = O(1).

By setting k0 = 2.7Λ ≃ 360 MeV one can increase the theoretical cross section up to 32 nb, which is in agreement

with the experimental value.

This approach, left alone, has some flaws [32]: it can be shown that the use of Eq. (A.2) should enhance the

occurrence of a new hypothetical molecule, the D+s D∗−s , which otherwise would be suppressed, as one could infer by

looking at data on Ds production at Tevatron [409]. In fact, the theoretical production cross section for this Xs would be

σ ≃ 1÷ 3 nb and should be detected by the CDF experiment. No hint for such a particle has been found. Furthermore,

the applicability of the Migdal-Watson theorem requires that, i) the two final particles should be in an S -wave state

and ii) they should be free to interact with each other up to relative distances comparable to the interaction range.

The inclusion of relative momenta up to kmax
0
≃ 360 MeV means to include relative orbital angular momenta up

to ℓ ∼ kmax
0
/mπ ≃ 2 ÷ 3, thus violating the hypothesis i). Moreover, using again the MC softwares HERWIG and

PYTHIA, one can show [32] that in high energy collisions, such as those occurring at Tevatron and LHC, there are
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Figure A.49: Pictorial representation of the rescattering mechanism. After the main high-energy interaction has taken place, the final state particles

can be thought of as belonging to an expanding sphere. The hadronization time of a certain particle goes as thadr ∝ 1/m. Therefore the D mesons

hadronize at an earlier time tD whereas pions hadronize at a later time tπ (dotted and dashed spheres respectively). In figure (a) the D0D̄∗0 pair starts

with a large relative momentum k0. However, the D0 might interact with one of the comoving pions (red arrow). The π−D rescattering (figure (b))

can deviate the D0 and reduce the relative momentum k0 thus producing a possible X(3872) candidate.

on average 2 ÷ 3 more hadrons having a relative momentum with respect to one of the two components smaller that

100 MeV; this extra hadron ‘pollution’ challenges the hypothesis ii).

Even though the presence of other hadrons (mainly pions) surrounding the system might not allow the use of FSI,

it might have played an important role at explaining the unnaturally high prompt production of the X(3872).

It has been proposed [20] that the possible elastic scattering of “comoving” pions with one of the components of

the molecule might decrease their relative momentum, hence increasing the number of would-be molecules. The idea

is that the interaction might push the pair both to higher and to lower values of k0. However, since the majority of

would-be molecules are produced with high relative momenta, even if a small fraction of them would be pushed to

smaller momenta, that could cause a feed-down of pairs towards the lower bins of the distribution, where the X(3872)

candidates should be found. For a pictorial representation of the considered rescattering mechanism see Figure A.49.

It is worth noting that, if we assume the initial total energy E of the pair to be positive, the decrease in k0 due

to elastic scattering may even bring E to negative values, hence assuring the binding of the molecule in a deuteron-

like state (see Section 3.3). Therefore, in this model the X(3872) would be a genuine, negative energy D0D̄∗0 bound

state, whose lifetime would be entirely regulated by the lifetime of its shorter lived component, the D̄∗0. Hence, this

mechanism also predicts a narrow width, ΓX ∼ ΓD∗ ≃ 65 keV. Thus, when considering the interactions with comoving

pions there are two possibilities

1. The energy E in the center of mass is decreased so that to meet the condition E ∼ B, where B is the close-to-

threshold discrete level discussed in Section 2;

2. Because of the interaction with a third body (the pion) of one of the constituents of the would-be-molecule, E

becomes small and negative: a deuteron-like state is formed.

The interaction in the final state of the molecular constituents with pions has been studied in [20, 30] with MC
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Figure A.50: Integrated cross section of D0D̄∗0 + h.c. pairs at CDF obtained with HERWIG, without (blue, solid), with one (red, dashed) and with

three (green, dot-dashed) interactions with pions, from [30]. In the inset the same plot on a wider range of k0 values.

methods. The recipe used is as follows: the 10 most coplanar pions to the D0D̄∗0 plane are selected, then the pion

which will interact with (say the D0) is randomly chosen and lastly the most parallel pion to the non-interacting meson

(say the D̄∗0) is selected. One expects this configuration to be the most effective in physical events. Moreover, in order

to prevent that D mesons belonging to different jets (separated in coordinate space) would get closer by the scattering

with a hard pion, one also requires ΔRDD∗ ≡
√

(ΔyDD∗ )
2 + (ΔφDD∗ )

2 < 0.7.

It has been checked [30] that this mechanism does not spoil the high energy behavior of the relevant D meson dis-

tribution. It was actually showed that the inclusion of one elastic scattering improves the agreement of the simulation

with experimental data. This is a strong hint of the fact that this mechanism actually takes place in real physical events

and should hence be considered when studying final hadronic distributions.

As one can see from Figure A.50, the proposed mechanism is actually effective in feeding down the lower k0 <

50 MeV bin. It is also possible to estimate how many of these interactions may take place. In particular, considering

a model where all the produced hadrons are flying away from each other on the surface of a sphere and taking into

account the range of the interaction, one finds [20] that the simulations suggest an average of 3 scatterings per event.

These consecutive interactions can be reproduced by implementing a Markov chain [20].

If one trusts the coalescence model for the X(3872) and hence consider kmax
0
≃ 50 MeV, not even the elastic

scattering with three consecutive pions is able to enhance the production cross section up to the experimental one (σ ≃
30 nb). Moreover, if one considers the use of FSI [36, 37] as explained previously, then it should be kmax

0
≃ 360 MeV.

With this integration region, the simulations produce a cross section after the interaction with one pion — and after a

rescaling needed to take into account the different normalization factors between the two works [30, 37]– that is equal

to σ(1π) ≃ 52 nb, even larger than the experimental one!

In Table A.17 we report the values of the integrated cross section for the production of the X(3872) varying both

the number of interacting pions and the maximum k0 allowed for the pair.

To summarize, the experimental value of the prompt production cross section of the X(3872) casted serious doubts

on a simplified interpretation in terms of a D0D̄∗0 molecule. According to the expectations following from the phe-

nomenological coalescence model, the production of such a weakly bound state should be strongly suppressed in
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kmax
0

50 MeV 300 MeV 450 MeV

σ(0π) 0.06 nb 6 nb 16 nb

σ(1π) 0.06 nb 8 nb 22 nb

σ(3π) 0.9 nb 15 nb 37 nb

Table A.17: Effect of multiple scatterings in X(3872) production cross section. kmax
0

indicates the integration region 0 < k0 < kmax
0

].

high energy collisions. Even though many ideas and models have been proposed during the years none of them has

successfully reconciled the theoretical expectations with the experimental results.

It should also be emphasized that the inclusion of possible interactions between comoving pions and final state

mesons [20, 30] turned out to improve the accordance between the simulated MC distributions and the experimental

ones.

Appendix B. Diquarks in SU(N)

Consider two quarks interacting through the exchange of one virtual gluon in N = 3 QCD as in Figure B.51

I

i

J

j

T a
IJ

T a
ij

α = (i, I) β = (j, J)

Figure B.51: One-gluon exchange interaction.

The T a
i j

T a
IJ

tensor product can be mapped into a 9 × 9 matrix whose entries Aαβ correspond to the 81 possible

combinations of initial and final colors as in Figure B.51. The v eigenvectors of A identify 3 antisymmetric color con-

figurations and 6 symmetric ones. For each v the vT Av product is a superposition of the color diagrams in Figure B.51

defining amplitudes which are (anti-)symmetric under the simultaneous exchange of the colors i→ I, j→ J.

Each of these 9 color configurations is weighted by a coefficient h, the eigenvalue related to v. The h’s are found

to be negative in the antisymmetric cases and positive in the symmetric ones: h = −2/3 and h = 1/3 respectively

for SU(3). The value of h corresponds to the product of charges in a abelian theory — thus we get repulsion in the

symmetric eigenchannels 57 and attraction in the antisymmetric ones.

The eigenvalues h are more conveniently computed through the quadratic Casimirs of the irreducible representa-

tions Si obtained from the Kronecker decomposition of the product R1 ⊗ R2 = S1 ⊕ S2 ⊕ .... In the case of quark-quark

57To mean i = I, j = J.
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interaction in SU(3), R1 = R2 = 3 and S1 = 3̄, S2 = 6. The formula for the eigenvalues hi in the various eigenchannels

is in general

hi =
1

2
(CSi
−CR1

−CR2
) (B.1)

where CSi
,CR1
,CR2

are the quadratic Casimirs in the Si, R1, R2 representations respectively.

In the generic case of SU(N) we have that

N ⊗ N =
N(N − 1)

2
⊕

N(N + 1)

2
(B.2)

where N(N − 1)/2 is antisymmetric and N(N + 1)/2 is symmetric.

The Casimirs associated to these representations are given in the following table

Representation R CR h

N (N2 − 1)/(2N) −
N(N + 1)/2 (N − 1)(N + 2)/N (N − 1)/2N > 0

N(N − 1)/2 (N + 1)(N − 2)/N −(N + 1)/2N < 0

Table B.18: Quadratic Casimir operators for the fundamental, the two index symmetric and antisymmetric representations, in color SU(N),

N ≥ 2. In the third column, the coefficient of the potential energy for color symmetric and antisymmetric diquarks in the one-gluon exchange

approximation. Attraction in the antisymmetric channel persists at large N.

In the singlet channel of N ⊗ N, the attraction is weighted by h = −(N2 − 1)/2N. Therefore the singlet channel is

(N − 1) more attractive than the antisymmetric N(N− 1)/2 channel reported in Table B.18, in SU(3). In the one-gluon

exchange approximation, the singlet channel in qq̄ is (just) twice more attractive than the color antitriplet channel in

qq.

Values in Tables B.18 can be obtained starting from formula for the diagonalization of the tensor product in SU(N)

T a
R1
⊗ T a

R2
=
⊕

i

1

2
(CS i
−CR1

−CR2
)1S i

(B.3)

Take S 1 = N(N − 1)/2, S 2 = N(N + 1)/2 and C1 = CS 1
, C2 = CS 2

. The trace of (B.3) gives

1

2
x

N(N − 1)

2
+

1

2
y

N(N + 1)

2
= 0 (B.4)

where

x = (C1 − 2CN) (B.5a)

y = (C2 − 2CN) (B.5b)

and

CN =
N2 − 1

2N
(B.6)

For the N of SU(N) we have the trace result

T a
i jT

b
jkT a

krT
b
ri =

(
CN −

1

2
N

)
N2 − 1

2
= −1

4

(
N2 − 1

N

)
(B.7)
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which can be written as a product of tensor products

(T a
i jT

a
kr)(T

b
jkT b

ri) (B.8)

This can be mapped in the form

Aik, jrA jr,ki (B.9)

which in turn becomes a trace by inverting ki with ik.

Recalling the Fierz identity

T a
irT

a
k j −

N − 1

2N
δirδk j =

N − 1

2N
δi jδkr − T a

i jT
a
kr (B.10)

The term in (B.8) can be rewritten as

(T a
i jT

a
kr)

(
−T b

jiT
b
rk +

N − 1

2N
δ jkδri

)
(B.11)

where the term neglected in parentheses gives zero. The latter, containing a term in the form Aik, jrA jr,ik is a trace and

can be re-written as

− 1

4
x2 N(N − 1)

2
− 1

4
y2 N(N + 1)

2
+

N − 1

2N

N2 − 1

2
(B.12)

Plugging this in the lhs of (B.7) we get

− 1

4
x2 N(N − 1)

2
− 1

4
y2 N(N + 1)

2
= −1

4
(N2 − 1) (B.13)

From

y = −x
N − 1

N + 1
(B.14)

as obtained by (B.4), we finally get

x2

(
N(N − 1)

2
+

N(N − 1)2

2(N + 1)

)
= (N2 − 1) (B.15)

with solutions

x = ±N + 1

N
(B.16)

The negative sign solution gives

C1 =
(N + 1)(N − 2)

N
(B.17)

In the case of SU(3), R1 = 3̄ and

C1 = C3̄ =
4

3
(B.18)

Computing y from (B.14) we get

C2 =
(N − 1)(N + 2)

N
(B.19)

In the case of SU(3) R2 = 6 and

C2 = C6 =
10

3
(B.20)
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Appendix C. Interaction Hamiltonian between open and closed channels in strong interactions

We will now describe the formalism used to derive the interaction Hamiltonian between the open and closed

channels. It first appeared in cold atom physics in [410, 411] (see [22, 23] for a textbook treatment). Suppose that

Q is is the projection operator on the space of diquarkonia Ψd and P is the one on the space of open charm/beauty

meson-meson free states Ψm. Let Ψm be the molecular threshold closer, from below, to the mass of the Ψd state.

Assume the orthogonality of P and Q spaces

QP = PQ = 0 (C.1)

Let H be the strong interaction Hamiltonian which determines the dynamics of the hadronization state Ψ in (6.1),

which we can more shortly write as Ψ = ΨQ + ΨP = (P + Q)Ψ, since (P + Q) = 1. Then

HΨ = EΨ (C.2)

can be projected into [23, 411]

(E − HPP)ΨP = HPQΨQ (C.3a)

(E − HQQ)ΨQ = HQPΨP (C.3b)

with the notation of compact hadron ΨQ states (diquarkonia) and free meson-meson states ΨP.The HPQ and HQP

Hamiltonians represent the couplings between states in the P and Q sub-spaces

HPP = PHP HQQ = QHQ HPQ = PHQ HQP = H
†
PQ
= QHP (C.4)

Eq. (C.3b) has the formal solution (compare to (2.7))

ΨQ =
1

E − HQQ + iǫ
HQPΨP (C.5)

Despite the +iǫ prescription, we do not actually distinguish between in- and out- (Ψ±) scattering states as we assume to

be at very low wave numbers k where there are no e±ikr factors in the wave-mechanics description. The solution (C.5)

can be plugged back into (C.3a) giving

(E − HPP − H′PP)ΨP = 0 (C.6)

where

HPP = H0 + V1 (C.7)

H0 is the kinetic energy of the relative motion and V1 are interactions in the P space which are present also in absence

of Q levels. H′
PP

interactions are due instead to a spectrum of compact hadron states (diquarkonia) in the Q space. The

formal expression of VI is

VI ≡ H′PP = HPQ

1

E − HQQ + iǫ
HQP (C.8)

and represents an effective interaction in the P space which exist only because of discrete levels in the Q space (one

is enough!) being immersed in the continuum spectrum of P. It is the existence of such a discrete level which allows

P→ Q→ P transitions regulated by a non-local potential in the space of meson-meson states 58. HPQ and HQP might

58At a higher order of perturbation theory it is found

H′QQ = HQP
1

E − HPP + iǫ
HPQ (C.9)

which means that the interaction between the two channels shifts the levels in the closed channel.
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be very small, as can be inferred from the discussion of the large-N QCD expansion of Section 5.2.2. It is only the

tuning of E with the diquarkonium level which might abruptly enhance VI and produce the observed resonance effect.

Because of this, scattering in P space has a term in the T -matrix

Tαα ∼
|〈Ψn|HQPΨα〉|2

Eα − En

(C.10)

where

EnΨn = HQQΨn (C.11)

are the levels describing diquarkonia in Q space. Eq. (C.10) should be confronted to Eq. (2.18) noting that in the

case of Eq. (2.18) the discrete level is found in the negative energy spectrum of some potential V whereas in the

case of (C.10) the discrete level is on the same side of the continuum spectrum, but pertains to a different potential

with respect to that giving the onset of continuum levels. This strongly differentiates our metastable state from a true

resonance. The latter is above threshold but belongs to the same potential as for the two-meson state.

HQQ can be described in the constituent quark model picture by

HQQ = H0 + V2 (C.12)

where H0 is the kinetic term of diquarks — compare with (C.7).

Appendix D. The effective hadroquarkonium Hamiltonian

In this section we will give a more rigorous derivation of the effective Hamiltonian (7.1) for the interaction between

a compact quarkonium state and the gluonic field generated by the light matter around it. We will mostly follow the

procedure in [150, 151]. The full Hamiltonian of a system with an heavy quark pair QQ̄ and a gluonic field can be

written as

H = HQ + Hg + Hint ≡ H0 + Hint (D.1)

where HQ and Hg describe the QQ̄ and the gluonic system in absence of their mutual interaction. The QCD multipole

expansion for Hint produces the leading terms [150–153]

H1 = T aVa and H2 = −
1

2
ΔT ar · Ea (D.2)

with T a = T a
Q
+ T a

Q̄
, ΔT a = T a

Q
− T a

Q̄
and Ea is the chromoelectric field generated by the light matter. The exact form

of Va does not concern us as it will not give any contribution. H1 corresponds to the “charge” operator while H2 to the

dipole. It should also be noted that both Va and Ea only act on the light degrees of freedom.

Consider now two states, |n1〉 and |n2〉 composed by a quarkonium, |ψi〉, and a light state, |φi〉. In absence of

interaction the complete state is simply the tensor product |ni〉 = |ψi〉|φi〉. The amplitude n1 → n2 is then given by

A =
∞∑

k=0

〈n1|Hint

1

En1
− H0

(
Hint

1

En1
− H0

)k
Hint|n2〉 ≈ 〈n1|Hint

1

En1
− H0

Hint|n2〉 = 〈n1|H2

1

En1
− H0

H2|n2〉 (D.3)

where the first order transition is forbidden by color and in the last step we used the fact that H1 always vanishes on

color singlet states. We can now introduce a complete sum over the eigenstates of H0, |m〉 = |mQ〉|mg〉, where |mQ〉 is

116



a quarkonium eigenstate of HQ and |mg〉 is a gluonic excitation, eigenstate of Hg. We obtain

A =
∑

m

〈n1|
1

2
ΔT ariE

a
i

|m〉〈m|
En1
− H0

1

2
ΔT br jE

b
j |n2〉

=
∑

mQ,mg

〈φ1|Ea
i |mg〉〈mg|Eb

j |φ2〉〈ψ1|
1

2
ΔT ari

|mQ〉〈mQ|
En1
− EmQ

− Emg

1

2
ΔT br j|ψ2〉 (D.4)

Note that since ΔT a transforms a color singlet into an octet, the only states |mQ〉 surviving in the sum are color octet.

We will now make the approximation Emg
≪ En1

− EmQ
, i.e. very soft gluonic mode. This is not necessarily a good

approximation as shown in [151] but it considerably simplifies the computation. The most general result can be found

in [152, 153]. We then have

A ≈
∑

mQ,mg

〈φ1|Ea
i |mg〉〈mg|Eb

j |φ2〉〈ψ1|
1

2
ΔT ari

|mQ〉〈mQ|
En1
− EmQ

1

2
ΔT br j|ψ2〉

= 〈φ1|Ea
i Eb

j |φ2〉
∑

mQ

〈ψ1|
1

2
ΔT ari

|mQ〉〈mQ|
En1
− EmQ

1

2
ΔT br j|ψ2〉

= −〈φ1|Ea
i Eb

j |φ2〉〈ψ1|
1

2
ΔT ariG(8)

1

2
ΔT br j|ψ2〉 (D.5)

In the last step we used the fact that G(8) =
∑

mQ

|mQ〉〈mQ |
EmQ
−En1

is the Green’s function of a heavy quark pair in a color octet

configuration. Since the states |φi〉 are both color singlets, color and Lorentz invariance imply

〈φ1|Ea
i Eb

j |φ2〉 =
1

8
δab

1

3
δi j〈φ1|Ec · Ec|φ2〉 (D.6)

and therefore

A ≈ − 1

96
〈φ1|Eb

j E
b
j |φ2〉〈ψ1|ΔT ariG(8)ΔT ari|ψ2〉 (D.7)

Therefore, if we integrate out the quarkonium states and only leave the effective Hamiltonian for the light degrees of

freedom, we arrive again to Eq. (7.1)

Heff = −
1

2
α(ψ1ψ2)Ea

i Ea
i (D.8)

where we defined the chromo-polarizability as

α(ψ1ψ2) =
1

48
〈ψ1|ΔT ariG(8)riΔT a|ψ2〉 (D.9)

Note that, if ψ1 = ψ2 = ψ, α(ψψ) is positive.
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