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ABSTRACT
The main aim of this paper is to design a co-ranking scheme
for objects and relations in multi-relational data. It has
many important applications in data mining and informa-
tion retrieval. However, in the literature, there is a lack
of a general framework to deal with multi-relational data
for co-ranking. The main contribution of this paper is to
(i) propose a framework (MultiRank) to determine the im-
portance of both objects and relations simultaneously based
on a probability distribution computed from multi-relational
data; (ii) show the existence and uniqueness of such proba-
bility distribution so that it can be used for co-ranking for
objects and relations very effectively; and (iii) develop an
efficient iterative algorithm to solve a set of tensor (multi-
variate polynomial) equations to obtain such probability dis-
tribution. Extensive experiments on real-world data suggest
that the proposed framework is able to provide a co-ranking
scheme for objects and relations successfully. Experimental
results have also shown that our algorithm is computation-
ally efficient, and effective for identification of interesting
and explainable co-ranking results.

Categories and Subject Descriptors
[Algorithms/Models;Data]: Ranking;Sparse data

Keywords
Ranking, multi-relational data, transition probability ten-
sors, rectangular tensors, stationary probability distribution

1. INTRODUCTION
Evaluation of object importance or popularity is an im-

portant research problem in information retrieval that can
assist in many data mining tasks, e.g., ranking query results
of search engines, extracting communities in social networks
and studying evolution of communities in dynamic networks.
In the literature, there are many approaches to evaluating
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object importance [8, 3, 14, 11, 17, 7]. In these relation anal-
ysis methods, a single relation type is focused and studied.
For example, both PageRank [17] and HITS [11] consider
the structure of web, decompose and study the adjacency
matrix that representing the hyperlink structure.

In this paper, we are interested in data with multiple re-
lation types. There are many data mining and information
retrieval applications in multi-relational data which objects
have interactions with the others based on different rela-
tions. For example, researchers cite the other researchers in
different conferences, and based on different concepts/topics,
papers cite the other papers based on text analysis such as
title, abstract, keyword and authorship [13], webpages link
to the other webpages through different semantic meanings
[12]. A social network [2, 15] where objects are connected via
multiple relations, by their organizational structure, commu-
nication protocols, etc. This additional link structure can
provide a way of incorporating multiple relations among ob-
jects into the calculation of object importance or popularity.
In Figure 1, we show an example of a multi-relational data
set. There are five objects and three relations (R1: green,
R2: blue, R3: red) among them. We can also represent
such multi-relational data set in a tensor format. A tensor
is a multidimensional array. In the figure, a three-way ar-
ray is used, where each two dimensional slice represents an
adjacency matrix for a single relation. The data can be rep-
resented as a tensor of size 5 × 5× 3 where (i, j, k) entry is
nonzero if the ith object is connected to the jth object by
using the kth relation.
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Figure 1: (a) An example of a multi-relational data
in a graph representation (left) and (b) the corre-
sponding tensor representation.

In the literature, there is a lack of a general framework to
deal with multi-relational data or the corresponding tensor
representation for co-ranking purpose. The main aim of this
paper is to propose an algorithm, MultiRank, to determine
the importance of both objects and relations simultaneously



in multi-relational data. The MultiRank values indicate an
importance of a particular object and an importance of a
particular relation. In our proposal, the MultiRank of an
object depends on the number and MultiRank metric of all
objects that have multiple relations to this object, and also
the MultiRank values of these multiple relations. An object
that is linked via high MultiRank relations by objects with
high MultiRanks, receives a high MultiRank itself. Simi-
larly, the MultiRank of a relation depends on which objects
to be linked and their MultiRank values. A relation that is
linked objects with high MultiRanks, receives a high Multi-
Rank itself.
Similar to PageRank [17], our idea is to imagine infinite

random surfers in a multi-relational data/tensor, and con-
sider an equilibrium/stationary probability distribution of
objects and relations as evaluation scores for objects and re-
lations respectively. Thus we can consider that MultiRank is
a stationary probability distribution that is used to represent
the likelihood that we randomly visiting objects and using
relations will arrive at any particular object and use any
particular relation. However, instead of finding an eigenvec-
tor corresponding to the largest eigenvalue of the PageRank
matrix [17] under a single relation type, our approach is to
solve a set of tensor (multivariate polynomial) equations to
determine a stationary probability distribution arising from
a tensor that represents multiple relation types among ob-
jects.
The main contribution of this paper can be summarized as

follows. (i) We propose a framework (MultiRank) to deter-
mine the importance of both objects and relations simulta-
neously based on a stationary probability distribution com-
puted from multi-relational data. (ii) We show the existence
and uniqueness of such stationary probability distribution so
that it can be used in co-ranking for objects and relations
very effectively. (iii) We develop an efficient iterative al-
gorithm to solve a set of tensor equations to obtain such
stationary probability distribution. Extensive experiments
on real-world data suggest that the proposed framework is
able to provide a co-ranking scheme for objects and rela-
tions based on stationary probability distribution success-
fully. Experimental results have also shown that our algo-
rithm is computationally efficient, and effective for identifi-
cation of interesting and explainable co-ranking results.
The rest of the paper is organized as follows. In Section

2, we review some work in multi-relational data. In Section
3, we describe notations in this paper and some preliminary
knowledge. In Section 4, we present the proposed frame-
work. In Section 5, we analyze the proposed methodology.
In Section 6, we show and discuss the experimental results
for real-world data sets. In Section 7, we give some conclud-
ing remarks and mention some future work.

2. RELATED WORK
To the best of our knowledge, our work is the first attempt

to formulate a general framework of co-ranking for objects
and relations though tensor analysis.
Recently, co-ranking has been studied in [6, 25]. In [6], a

co-HITS algorithm is proposed to incorporate the bipartite
graph with the content information from both sides as well as
the constraints of relevance. In [25], a method for co-ranking
authors and their publications using several networks is pro-
posed and based on coupling two random walks that sepa-
rately rank authors and documents following the PageRank

paradigm. PopRank [16] uses the PageRank framework by
adding popularity to each link pointing to an object.

In the literature, tensor factorization is a generalized ap-
proach for analyzing multi-way interactions among entities.
Zhu et al. [26] proposed a joint matrix factorization combin-
ing both linkage and document-term matrices to improve the
hypertext classification. Sun et al. [19] proposed an analytic
data model for content-based networks using tensors and an
efficient high-order clustering framework for analyzing the
data. Lin et al. [15] proposed a metagraph, a novel relational
hypergraph representation for modeling multi-relational and
multi-dimensional social data and studied an efficient factor-
ization method for community extraction on a given meta-
graph. Sun et al. proposed a general and efficient framework
for analyzing high-order and high-dimensional stream data
[20, 21].

Recently, the use of multidimensional models in web and
data mining has received much attention. For instance, Sun
et al. [22] applied a 3-way Tucker decomposition [23] to the
analysis of user, query-term and webpage data in order to
personalize web search. Acar et al. [1] used various tensor
decompositions of user, keyword and time data to separate
different streams of conservations in chatroom data. Kolda
et al. [13, 12] proposed TOPHITS by adding a third di-
mension to form an adjacency tensor that incorporates an-
chor text information, and then to increase the likelihood
that the principal singular vectors relate to the query. They
also employed a Three-way Parallel Factors (PARAFAC) de-
composition [4, 9] to compute the singular vectors for query
processing.

As a remark, the proposed framework is different from the
above mentioned methods.

3. PRELIMINARY
In this section, we describe notations and present some

preliminary knowledge on tensors. As we analyze objects
under multiple relations and also consider interaction be-
tween relations based on objects, we make use of rectangular
tensors to represent them.

Let R be the real field. We call A = (ai1,i2,j1) where
ai1,i2,j1 ∈ R, for ik = 1, · · · ,m, k = 1, 2 and j1 = 1, · · · , n,
a real (2, 1)th order (m×n)-dimensional rectangular tensor.
In this setting, we refer (i1, i2) to be the indices for objects
and j1 to be the index for relations. For instance, five objects
(m = 5) and three relations (n = 3) are used in the example
in Figure 1. Let x and x′ be vectors of length m, and y be
a vector of length n. Let Axy be a vector in Rm such that

(Axy)i1 =
m∑

i2=1

n∑
j1=1

ai1,i2,j1xi2yj1 , i1 = 1, 2, · · · ,m.

Similarly, Axx′ is a vector in Rn such that

(Axx′)j1 =
m∑

i1=1

m∑
i2=1

ai1,i2,j1xi1x
′
i2 , j1 = 1, 2, · · · , n.

In addition, A is called non-negative if ai1,i2,j1 ≥ 0.
As we consider infinite random surfers in a nonnegative

rectangular tensor arising from multi-relational data, and
study the likelihood that we will arrive at any particular
object and use at any particular relation, we can construct
two transition probability tensors O = (oi1,i2,j1) and R =
(ri1,i2,j1) with respect to objects and relations by normaliz-



ing the entries of A as follows:

oi1,i2,j1 =
ai1,i2,j1

m∑
i1=1

ai1,i2,j1

, i1 = 1, 2, · · · ,m,

ri1,i2,j1 =
ai1,i2,j1
n∑

j1=1

ai1,i2,j1

, j1 = 1, 2, · · · , n.

These numbers gives the estimates of the following condi-
tional probabilities:

oi1,i2,j1 = Prob[Xt = i1|Xt−1 = i2, Yt = j1]

ri1,i2,j1 = Prob[Yt = j1|Xt = i1,Xt−1 = i2]

where Xt and Yt are random variables referring to visit at
any particular object and to use at any particular relation
respectively at the time t. oi1,i2,j1 can be interpreted as the
probability of visiting the i1th object by given that the i2th
object is currently visited and the j1th relation is used, and
ri1,i2,j1 can be interpreted as the probability of using the
j1th relation given that the i1th object is visited from the
i2th object.
We note that if ai1,i2,j1 is equal to 0 for all 1 ≤ i1 ≤ m, this

is called the dangling node [17], and the values of oi1,i2,j1
can be set to 1/m (an equal chance to visit any object).
Similarly, if ai1,i2,j1 is equal to 0 for all 1 ≤ j1 ≤ n, then the
values of ri1,i2,j1 can be set to 1/n (an equal chance to use
any relation). With the above construction, we have

0 ≤ oi1,i2,j1 ≤ 1,
m∑

i1=1

oi1,i2,j1 = 1,

0 ≤ ri1,i2,j1 ≤ 1,

n∑
j1=1

ri1,i2,j1 = 1.

Both O and R are nonnegative tensors. We call them tran-
sition probability tensors which are high-dimensional analog
of transition probability matrices in Markov chains [18].
In addition, it is necessary for us to know the connectivity

among the objects and the relations within a tensor. We
remark that the concept of irreducibility has been used in
the PageRank matrix in order to compute the PageRank
vector [17].

Definition 1. A (2, 1)th order nonnegative rectangular
tensor A is called irreducible if (ai1,i2,j1) (m-by-m matrices)
for fixed j1 (j1 = 1, 2, · · · , n) are irreducible. If A is not
irreducible, then we call A reducible.

When A is irreducible, any two objects in multi-relational
data can be connected via some relations. As we would like
to determine the importance of both objects and relations si-
multaneously in multi-relational data, irreducibility is a rea-
sonable assumption that we will use in the following analysis
and discussion. It is clear that when A is irreducible, the
two corresponding tensors O and R are also irreducible.

4. THE PROPOSED FRAMEWORK
The PageRank matrix can be regarded as a transition

probability matrix of a Markov chain in a random walk.

Given two transition probability tensors O and R, we study
the following probabilities:

Prob[Xt = i1] =

m∑
i2=1

n∑
j1

oi1,i2,j1 × Prob[Xt−1 = i2, Yt = j1]

(1)

Prob[Yt = j1] =

m∑
i1=1

m∑
i2=1

ri1,i2,j1×Prob[Xt = i1, Xt−1 = i2],

(2)
where Prob[Xt−1 = i2, Yt = j1] is the joint probability dis-
tribution of Xt−1 and Yt, and Prob[Xt = i1,Xt−1 = i2] is
the joint probability distribution of Xt and Xt−1. In our ap-
proach, we consider an equilibrium/stationary distribution
of objects and relations, i.e., we are interested in MultiRank
values of objects and relations given by

x̄ = [x̄1, x̄2, · · · , x̄m]T and ȳ = [ȳ1, ȳ2, · · · , ȳn]T

respectively, with

x̄i1 = lim
t→∞

Prob[Xt = i1] and ȳj1 = lim
t→∞

Prob[Yt = j1].

for 1 ≤ i1 ≤ m and 1 ≤ j1 ≤ n.
In general, it may be difficult to obtain x̄i1 and ȳj1 as

(1) and (2) are coupled together and they involves two joint
probability distributions. Here we employ a product form
of individual probability distributions for joint probability
distributions in (1) and (2). More precisely, we assume that

Prob[Xt−1 = i2, Yt = j1] = Prob[Xt−1 = i2]Prob[Yt = j1]
(3)

Prob[Xt = i1, Xt−1 = i2] = Prob[Xt = i1]Prob[Xt−1 = i2].
(4)

Therefore, by using the above assumptions and considering
t goes to infinity, (1) and (2) becomes

x̄i1 =

m∑
i2=1

n∑
j1=1

oi1,i2,j1 x̄i2 ȳj1 , i1 = 1, 2, · · · ,m, (5)

ȳj1 =

m∑
i1=1

m∑
i2=1

ri1,i2,j1 x̄i1 x̄i2 ; j1 = 1, 2, · · · , n. (6)

We see from (5) and (6) that the MultiRank of an object
depends on the number and MultiRank metric of all ob-
jects that have multiple relations to this object, and also
the MultiRank values of these multiple relations. Similarly,
the MultiRank of a relation depends on which the objects to
be linked and their MultiRank values of these objects. It is
clear that an object that is linked via high MultiRank rela-
tions by objects with high MultiRank, receives a high Mul-
tiRank itself. Also a relation that is linked objects with high
MultiRank values, receives a high MultiRank itself. Under
the tensor operation for (5) and (6), we solve the following
tensor (multivariate polynomial) equations:

Ox̄ȳ = x̄ and Rx̄2 = ȳ, (7)

with
m∑

i1=1

x̄i1 = 1 and

n∑
j1=1

ȳj1 = 1 (8)

to obtain the MultiRank values of objects and relations.



We remark that the normalized eigenvector (correspond-
ing to the largest eigenvalue 1) in the PageRank computa-
tion can be interpreted as the stationary probability distri-
bution vector of the associated Markov chain [17]. When we
consider a single relation type, we can set ȳ to be a vector
1
n
l (equal chance of all relations) in (7), and thus we obtain a

matrix equation Ox̄ 1
n
l = x̄. This is exactly the same as that

we solve for the normalized eigenvector to get the PageRank
vector. As a summary, the proposed framework MultiRank
is a generalization of PageRank to deal with multi-relational
data.

4.1 The Algorithm
In this subsection, we present an efficient iterative algo-

rithm to solve the tensor equations in (7) to obtain x̄ and ȳ
for the MultiRank values of objects and relations. The Mul-
tiRank algorithm is summarized in the following algorithm.

Algorithm 1 The MultiRank Algorithm

Input: Two tensors O and R, two initial probability distri-
butions x0 and y0 (

∑m
i1=1[x0]i1 = 1 and

∑n
j1=1[y0]j1 = 1)

and the tolerance ϵ
Output: Two stationary probability distributions x̄ and ȳ
Procedure:

1: Set k = 1;
2: Compute xk = Oxk−1yk−1;
3: Compute yk = Rx2

k;
4: If ||xk − xk−1||+ ||yk − yk−1|| < ϵ, then stop, otherwise

set k = k + 1 and goto Step 2.

In Algorithm 1, the MultiRank computations require sev-
eral iterations, through the collection to adjust approximate
MultiRank values of objects and relations to more closely
reflect their theoretical true values (underlying stationary
probability distributions). The iterative method is similar
to the power method for computing the eigenvector corre-
sponding to the largest value of a matrix [17]. The main
computational cost of the MultiRank algorithm depends on
the cost of performing tensor operations in Steps 2 and 3.
Assume that there are O(N) nonzero entries (sparse data) in
O and R, the cost of these tensor calculations are of O(N)
arithmetic operations (see the results of Experiment 4 in
Section 6).

5. THEORETICAL ANALYSIS
In this section, we show the existence and uniqueness of

stationary probability distributions x̄ and ȳ so that it can be
used in co-ranking for objects and relations very effectively.
Based on these results, the convergence of MultiRank algo-
rithm can be shown.
We let Ωm = {x = (x1, x2, · · · , xm) ∈ Rm|xi ≥ 0, 1 ≤

i ≤ m,
∑m

i=1 xi = 1} and Ωn = {y = (y1, y2, · · · , yn) ∈
Rn|yj ≥ 0, 1 ≤ j ≤ n,

∑n
j=1 yj = 1}. We also set Ω =

{[x,y] ∈ Rm+n|x ∈ Ωm,y ∈ Ωn}. We note that Ωm, Ωn

and Ω are closed convex sets. We call x and y to be positive
(denoted by x > 0 and y > 0) if all their entries are positive.
It is easy to check that if both x and y are probability

distributions, then the output Oxy and Rx2 are also prob-
ability distributions (the correctness of Steps 2 and 3 in the
MultiRank Algorithm).

Theorem 1. Suppose O and R are constructed in Sec-
tion 3. For any x ∈ Ωm and y ∈ Ωn, then Oxy ∈ Ωm and
Rx2 ∈ Ωn.

By using Theorem 1, we show the existence of positive
solutions for the set of tensor equations in (7) and (8).

Theorem 2. Suppose O and R are constructed in Sec-
tion 3. If O and R are irreducible, then there exist x̄ ∈ Ωm

and ȳ ∈ Ωn such that Ox̄ȳ = x̄ and Rx̄2 = ȳ, and both x̄
and ȳ are positive.

Proof. The problem can be reduced to a fixed point
problem as follows. We define the following mapping T :
Ω → Ω as follows

T ([x,y]) = [Oxy,Rx2]. (9)

It is clear that T is well-defined (i.e., when [x,y] ∈ Ω,
T ([x,y]) ∈ Ω) and continuous. According to the Brouwer
Fixed Point Theorem, there exists [x̄, ȳ] ∈ Ω such that
T ([x̄, ȳ]) = [x̄, ȳ], i.e., Ox̄ȳ = x̄ and Rx̄2 = ȳ.

Next we show that x̄ and ȳ are positive. Suppose x̄ and
ȳ are not positive, i.e., there exist some entries of x̄ are zero
and some entries of ȳ are zero. Let I = {i1|x̄i1 = 0} and
J = {j1|ȳj1 = 0}. It is obvious that I is a proper subset of
{1, 2, · · · ,m} and J is a proper subset of {1, 2, · · · , n}. Let
δ = min{min{x̄i1 |i1 /∈ I},min{ȳj1 |j1 /∈ J}}. We must have
δ > 0. Since x̄ and ȳ satisfies Ox̄ȳ = x̄, we have

m∑
i2=1

n∑
j1=1

oi1,i2,j1 x̄i2 ȳj1 = x̄i1 = 0, ∀i1 ∈ I.

Let us consider the following quantity:

δ2
∑
i2 /∈I

∑
j1 /∈J

oi1,i2,j1 ≤
∑
i2 /∈I

∑
j1 /∈J

oi1,i2,j1 x̄i2 ȳj1

≤
m∑

i2=1

n∑
j1=1

oi1,i2,j1 x̄i2 ȳj1 = 0,

for all i1 ∈ I. Hence we have oi1,i2,j1 = 0 for all i1 ∈ I
and for all i2 /∈ I for any fixed j1 /∈ J . Thus the matrices
(oi1,i2,j1) (for j1 /∈ J) are reducible. It implies that O is
reducible. By using the similar argument and considering
the equation Rx2 = y, we can find that R is also reducible.
According to these results, we obtain a contradiction. Hence
both x̄ and ȳ must be positive.

In [10], it has been given a general condition which guar-
antees the uniqueness of the fixed point in the Brouwer Fixed
Point Theorem, namely, (i) 1 is not an eigenvalue of the Ja-
cobian matrix of the mapping, and (ii) for each point in the
boundary of the domain of the mapping, it is not a fixed
point. In our case, we have shown in Theorem 2 that all the
fixed points of T are positive when O and R are irreducible,
i.e., they do not lie on the boundary ∂Ω of Ω. The Jacobian
matrix of T is an (m+ n)-by-(m+ n) matrix:

DT ([x,y]) =

(
DT11([x,y]) DT12([x,y])
DT21([x,y]) 0

)
, [x,y] ∈ Ω,

where DT11([x,y]) = (
∑n

j1=1 oi1,i2,j1yj1)i1,i2 is an m-by-
m matrix corresponding to the derivative of Oxy with re-
spect to x, DT12([x,y]) = (

∑m
i2=1 oi1,i2,j1xi2)i1,j1 is an m-

by-n matrix corresponding to the derivative of Oxy with
respect to y, and DT21([x,y]) = (

∑m
i1=1 ri1,i2,j1xi1)j1,i2 +



(
∑m

i2=1 ri1,i2,j1xi2)j1,i1 is an n-by-m matrix corresponding

to the derivative of Rx2 with respect to x. To conclude, we
have the following theorem:

Theorem 3. Suppose O and R are constructed in Sec-
tion 3, and they are irreducible. If 1 is not the eigenvalue
of DT ([x,y]) for all [x,y] ∈ Ω/∂Ω, then then the solution
vectors x̄ and ȳ in Theorem 2 are unique.

According to Theorem 3, when xk = xk−1 and yk = yk−1

in the MultiRank algorithm, then we obtain the unique
solution vectors x̄ and ȳ for Oxy = x and Rx2 = y.
When xk ̸= xk−1 and yk ̸= yk−1, there exist a subsequence
[xks ,yks ] converges to [x̄,ȳ] by using the fact that Ω is com-
pact in Rm+n. As we have shown that the solution vectors
are unique, it implies that [xk,yk] converges to [x̄,ȳ] which
are the stationary probability vectors giving MultiRank val-
ues of objects and relations respectively for co-ranking pur-
pose effectively.

6. EXPERIMENTAL RESULTS
In this section, we report three experiments to show the

effectiveness of the proposed model for co-ranking objects
and relations from real-world data sets, and an experiment
to show the scalability of the MultiRank algorithm. We
crawled publication information of five conferences (SIGKDD,
WWW, SIGIR, SIGMOD, CIKM) from DBLP1. Their pub-
lication periods are as follows: SIGKDD (1999-2010), WWW
(2001-2010), SIGIR (2000-2010), SIGMOD (2000-2010) and
CIKM (2000 and 2002-2009). Publication information in-
cludes title, authors, reference list, and classification cate-
gories associated with this publication2. There are in to-
tal 6848 publications, 10305 authors and 617 different cate-
gories in the data set. Based on this multi-relational data,
we construct different types of tensors in the following three
experiments.

6.1 Experiment 1
Tensor construction. In this experiment, we construct

a tensor A based on citations of authors (objects) through
different category concepts (relations). In this case there are
10305 objects and 617 relations. The tensor is constructed
as follows: If a publication written by the i2th author cites a
publication written by the i1th author, and the two publica-
tions have the same j1th category concept, then we can add
one to the entry ai1,i2,j1 of A. By considering all the publi-
cations, ai1,i2,j1 refers to the number of citations of publica-
tions written by the i2th author to publications written by
the i1th author where these publications have the same j1th
category concept. Here we do not consider any self-citation,
i.e., ai1,i1,j1 = 0 for all 1 ≤ i1 ≤ 10305 and 1 ≤ j1 ≤ 617.
The purpose is to avoid an ambiguous high self-citations in
A. The size of A is 10305×10305×617 and there are 39851
nonzeros entries in A. The percentage of nonzero entries is

1http://www.informatik.uni-trier.de/ ley/db/
2For each publication, there are several strings indicating
the classification categories of this publication, where each
string provides the information from the most general con-
cept to the most specific concept. For example, a string
may be “H. information systems—>H.3 information storage
and retrieval—>H.3.3 information search and retrieval”. For
each string, we choose the most specific concept as the clas-
sification category it indicates for the publication.

6.08× 10−5%, and thus A is sparse. After we construct A,
we can generate both transition probability tensors O and
R. The only nonzero entries and their locations are stored
in the computational process. It is not necessary to store
values 1/m or 1/n for the dangling nodes in O and R.
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Experiment 1

Figure 2: The difference between two successive cal-
culated probability vectors against iterations.
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Figure 3: The stationary probability vectors (a) au-
thors; (b) category concepts in Experiment 1.

Results and discussion. Figure 2 shows the conver-
gence of the MultiRank algorithm. We see from the figure
that the changes of stationary probabilities for objects and
relations, ||xk − xk−1||1 + ||yk − yk−1||1, decreases when it-
eration number increases, and the successive difference after
12 iterations, is less than 10−20 which is small enough for
convergence criterion. The computational time is about 114
seconds under the MATLAB implementation. In Figures
3(a)-(b), we show the two resulting stationary probability
vectors corresponding to the authors and the category con-
cepts respectively. It is clear in the figures that some authors
(relations) have higher stationary probabilities (MultiRank
values). These results indicate that some authors (category
concepts) are more important (popular) than the others.

In Table 1, we show the top ten authors and category
concepts based on their MultiRank values. As there are
two types of conferences in the data set, one is based on
data mining like SIGKDD and SIGMOD, and the other
is based on information retrieval like WWW, SIGIR and
CIKM. Therefore, these two concepts are ranked numbers
one and two respectively. In Table 2, we show the numbers
that the top ten authors are cited by the others via the top
ten category concepts. We find that there are many cita-
tions for the cited authors (ranked numbers 1 to 5) via the
data mining concept (ranked number 1), and there are many
citations for the cited authors (ranked numbers 6 to 10)
via the information search and retrieval and retrieval model
concepts (ranked numbers 2 and 3). This observation can



ranking author name

1 Bing Liu
2 Pedro Domingos
3 Wei-Ying Ma
4 Jiawei Han
5 Philip S. Yu
6 ChengXiang Zhai
7 Thorsten Joachims
8 W. Bruce Croft
9 Matthew Richardson
10 Susan T. Dumais

ranking category concept

1 data mining
2 information search and retrieval
3 retrieval models
4 search process
5 query processing
6 clustering
7 miscellaneous
8 query formulation
9 information filtering
10 performance evaluation

Table 1: The top ten authors (left) and category
concepts (right) in Experiment 1.

ranked author/concept 1 2 3 4 5 6 7 8 9 10

1 122 0 0 4 0 2 20 0 14 0
2 180 0 0 0 0 0 0 0 0 0
3 41 111 57 36 0 34 15 0 12 0
4 377 0 0 0 9 0 2 0 0 0
5 138 5 0 10 21 51 0 0 8 0
6 0 151 149 21 0 25 0 0 7 0
7 0 29 65 60 0 0 0 0 0 0
8 0 80 128 2 0 0 0 64 0 4
9 75 39 0 2 0 0 0 0 3 0
10 0 46 0 34 0 0 0 5 13 0

Table 2: The numbers that the top ten authors are
cited by the others via the top ten category con-
cepts.

explain why the first five authors have higher MultiRank val-
ues than the last five authors. Also there are more citations
based on the first concept for the cited authors (ranked num-
bers 2, 4 and 5) than for the ranked number one author in
Table 2, we find in (7) that his MultiRank value by summing
the scores of his linked objects and used relations together,
is higher than those of the other cited authors.
Next we compare the MultiRank and PageRank results.

In the PageRank algorithm, we aggregate all the citations
of different concepts together to construct relations among
the authors. In the PageRank results, Philip Yu, Thorsten
Joachims and Susan T. Dumais do not appear in the list of
the top ten cited authors, and the others still appear. Now
they are ranked numbers 14, 29, and 13 respectively. How-
ever, there are three new persons: D. R. Mani (rank #8),
James Drew (ranked #9) and Andrew Betz (rank #10), who
are co-authors of papers cited by Pedro Domingos (rank #1)
in the PageRank results. Because Pedro Domingos has the
highest PageRank score and cites less papers in the data set,
these three persons also receive high PageRank scores even
their citations are not many. Because the MultiRank algo-
rithm gives the scores for concepts, it differentiates authors
and concepts, and provides a more accurate and comparable
ranking results than those by the PageRank algorithm.

6.2 Experiment 2
Tensor construction. In this experiment, we construct

a (2, 1)th order tensor A based on author-author collabo-
rations through different category concepts. When the i1th
and i2th authors publish a paper together under the j1th cat-
egory concept, we add one to the entries ai1,i2,j1 and ai2,i1,j1

of A. In this case, A is symmetric with respect to the index
j1. By considering all the publications, ai1,i2,j1 (or ai2,i1,j1)
refers to the number of collaborations by the i1th and the
i2th authors under the j1th category concept. Again, we
do not consider any self-collaboration, i.e., ai1,i1,j1 = 0 for
all 1 ≤ i1 ≤ 10305 and 1 ≤ j1 ≤ 617. The size of A is
10305× 10305× 617 and there are 95722 nonzeros entries in
A. The percentage of nonzero entries is 1.46× 10−4%.
Results and discussion. We apply the MultiRank al-

gorithm to the constructed tensors, and the algorithm con-
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Figure 4: The stationary probability vectors (a) au-
thors; (b) category concepts in Experiment 2.

ranking author name

1 C. Lee Giles
2 Philip S. Yu
3 Wei-Ying Ma
4 Zheng Chen
5 Jiawei Han
6 Christos Faloutsos
7 Bing Liu
8 Johannes Gehrke
9 Gerhard Weikum
10 Elke A. Rundensteiner

ranking category concept

1 information search and retrieval
2 data mining
3 miscellaneous
4 search process
5 retrieval models
6 general
7 query processing
8 web-based services
9 information filtering
10 clustering

Table 3: The top ten authors (left) and category
concepts (right) in Experiment 2.

ranked author/concept 1 2 3 4 5 6 7 8 9 10

1 31 5 25 20 17 6 0 5 12 18
2 6 71 3 5 0 8 14 4 7 17
3 38 29 11 54 34 0 0 7 24 27
4 93 11 22 44 22 5 0 8 14 8
5 10 126 7 0 7 18 7 4 2 0
6 0 80 5 11 11 3 4 0 0 2
7 0 38 11 4 9 0 0 4 9 6
8 0 13 6 0 0 6 22 0 0 2
9 8 0 26 19 12 8 1 5 2 0
10 0 5 12 0 0 4 26 0 0 0

Table 4: The numbers that the top ten authors col-
laborate with the others via the top ten category
concepts.

verges in 10 iterations. In Figures 4(a) and 4(b), we show the
resulting stationary probabilities for the authors and cate-
gory concepts. Based on the MultiRank values, we show in
Table 3 the top ten authors and category concepts. When
we compare the results in Experiments 1 and 2, we find
that the top ten category concepts changes slightly, i.e., the
concepts of query formulation and performance evaluation
disappear in Experiment 2 while the concept of general and
web-based services appear. This phenomena may suggest
the former two concepts are more likely to be used when
authors cite the others, while the latter concept are more
likely to be used when authors collaborate together. The
top ten authors also changes significantly, e.g., Philip S. Yu,
Wei-Ying Ma, Jiawei Han and Bing Liu remain in the list
of the top ten collaborated authors. This phenomena sug-
gests these four authors not only have high citations via the
mostly used concepts, but also have more collaborations via
the mostly used concepts in the five conferences. It is clear
that the other top cited authors in Table 3(a) have less col-
laborations in the five conferences. In Table 4, we show the
numbers that the top ten authors collaborate with the oth-
ers via the top ten category concepts. We see from the table
that there are many collaborations for the authors (ranked
numbers 1 to 5) via the top ten concepts, and there are less
collaborations for the authors (ranked numbers 6 to 10) via
the top ten concepts.



Experiment 3(a)

ranking author name papers

1 Thorsten Joachims 1
2 Jon M. Kleinberg 7
3 Wei-Ying Ma 3, 6, 8
4 Susan T. Dumais 5, 9
5 Zheng Chen 3, 6
6 Ji-Rong Wen 2, 8
7 Jiawei Han 4
8 W. Bruce Croft none
9 Pedro Domingos none
10 Andrew Tomkins 10

Experiment 3(b)

ranking author name papers

1 Pedro Domingos 5
2 Philip S. Yu 1, 2, 9
3 Jiawei Han 3, 9
4 David J. DeWitt 5, 8
5 Johannes Gehrke 4
6 Mohammed Javeed Zaki none
7 Jian Pei 3
8 Joseph M. Hellerstein 7
9 Rajeev Rastogi 4
10 Jeffrey F. Naughton 8

Experiment 3(c)

ranking author name papers

1 W. Bruce Croft 6
2 Susan T. Dumais 1, 8
3 Rosie Jones 5
4 Zheng Chen 2, 3
5 ChengXiang Zhai none
6 Wei-Ying Ma 2, 3, 10
7 Andrew Tomkins 9
8 James P. Callan none
9 Tie-Yan Liu 2, 7
10 Eugene Agichtein 1, 8

Experiment 3(a)

ranking paper title authors

1 Optimizing search engines using clickthrough data. 1
2 Clustering user queries of a search engine. 6
3 Optimizing web search using web click-through data. 3, 5
4 Mining frequent patterns without candidate generation. 7
5 Improving web search ranking by incorporating user behavior information. 4
6 A study of relevance propagation for web search. 3, 5
7 Bursty and hierarchical structure in streams. 2
8 Probabilistic query expansion using query logs. 3, 6
9 Learning user interaction models for predicting web search result preferences. 4
10 On the bursty evolution of blogspace. 10

Experiment 3(b)

ranking paper title authors

1 Clustering by pattern similarity in large data sets. 2
2 Mining asynchronous periodic patterns in time series data. 2
3 Mining frequent patterns without candidate generation. 3, 7
4 Processing complex aggregate queries over data streams. 5, 9
5 Mining high-speed data streams. 1
6 NiagaraCQ: A scalable continuous query system for internet databases. 4
7 Continuously adaptive continuous queries over streams. 8
8 On supporting containment queries in relational database management systems. 4, 10
9 Graph indexing: A frequent structure-based approach. 2, 3
10 Mining association rules with multiple minimum supports. none

Experiment 3(c)

ranking paper title authors

1 Improving web search ranking by incorporating user behavior information. 2, 10
2 A study of relevance propagation for web search. 4, 6, 9
3 Optimizing web search using web click-through data. 4, 6
4 Clustering user queries of a search engine. none
5 Generating query substitutions. 3
6 Predicting query performance. 1
7 Adapting ranking SVM to document retrieval. 9
8 Learning user interaction models for predicting web search result preferences. 2, 10
9 Propagation of trust and distrust. 7
10 Learning block importance models for web pages. 6

Table 5: The top ten authors (left) and the top ten papers (right) in Experiment 3(a), 3(b) and 3(c). The
column of papers in the left hand side table indicates associated top ten papers. The column of authors in
the right hand side table indicates associated top ten authors. The authors who (or papers which) appear in
the top ten of both Experiments 3(a) and 3(b) or Experiments 3(a) and 3(c), are indicated with green color
(or blue color).

6.3 Experiment 3
Tensor construction. In this experiment, we co-rank

both authors and their papers. We need to construct a
(2, 2)th order tensor for calculating MultiRanks of both au-
thors and papers. Our idea is that if a paper or an author
has a high MultiRank value, then the publications or the
authors cited by this paper/author have a high chance to
obtain high MultiRank values (see the tensor equations in
(10)). There are four indices of the entry of A: ai1,i2,j1,j2 .
The first two indices (for objects) refer to the authors and
the last two indices (for relations) refer to the papers. Here
the role of objects and relations can be swapped. We set
ai1,i2,j1,j2 to be 1 (or 0) when the j2th paper written by the
i2th author cite (do not cite) the j1th paper written by the
i1th author.
The five conferences may have different topics or tasks,

e.g., WWW, SIGIR, and CIKM mainly focus on tasks re-
lated to information retrieval, while SIGKDD and SIGMOD
mainly focus on tasks related data mining or databases.
Here we construct three different tensors A based on the
data from (a) all the five conferences; (b) SIGKDD and SIG-
MOD conferences; and (c) WWW, SIGIR and CIKM con-
ferences. For each case, we construct the tensor as follows.
Firstly, we select the top thirty cited authors in Experiment
1, who have at least ten papers in the conferences. For each
selected author, we select his/her ten most cited papers by
the other papers in the same set of conferences. Again we
do not consider any self-citation, i.e., we set ai1,i1,j1,j2 = 0
for all i1, j1 and j2. The sizes of A are 30× 30× 261× 261,
30×30×252×252 and 30×30×258×258 for the cases (a),
(b) and (c) respectively. They have different sizes as there
are some overlapped papers in the construction. There are
504, 458, 493 nonzeros entries in A for the case (a), (b) and
(c) respectively. The corresponding percentages of nonzero

entries are 8.22× 10−4%, 8.01× 10−4% and 8.23× 10−4%.
In this experiment, we determine the MultiRanks of au-

thors x̄ and papers ȳ by solving the following tensor equa-
tions:

Ox̄ȳ2 = x̄ and Rx̄2ȳ = ȳ, (10)

with
∑m

i1=1 x̄i1 = 1 and
∑n

j1=1 ȳj1 = 1. Based on the

idea in (7), we can interpret the first equation in (10) by
viewing paper-paper citations ȳ2 as relations to give au-
thors’ scores x̄ as objects, and the second equation in by
viewing author-author citations x̄2 as relations to give pa-
pers’ scores ȳ as objects. We can employ the same Multi-
Rank algorithm in Section 4.1 to solve the equations, except
we compute xk = Oxk−1y

2
k−1 and yk = Rx2

kyk−1 in the
iterative process. By using the similar arguments in Section
5, we can show existence and uniqueness of the solution in
(10) and the algorithm can converge to the unique solution.

Results and discussion. We apply the MultiRank al-
gorithm to three different cases, and obtain the stationary
probabilities (MultiRanks) of the authors and their papers.
The resulting top ten authors and top ten papers for the
three cases are shown as in Table 5. We see from the table
that there are five top cited authors appearing in both Ex-
periments 3(a) and 3(c), and there are only two top cited
authors appearing in both Experiments 3(a) and 3(b). Also
there are five top cited papers appearing in both Experi-
ments 3(a) and 3(c), and there is only one top cited paper
appearing in both Experiments 3(a) and 3(b). These results
suggest that the data set may be imbalanced in the areas of
data mining and information retrieval, and it is reasonable
to perform co-ranking for two separated cases (b) and (c).

Moreover, we see from the Table 5 that the top ten cited
authors and the top ten cited papers are strongly related
in the three experiments, i.e., most of the top ten cited au-
thors have papers in the top ten cited papers, and most of



the top ten cited papers are written by the top ten cited
authors. This phenomena implies that our co-ranking re-
sults are reasonable as an author (or a paper) cited by other
papers/authors with high MultiRanks, receives a high Mul-
tiRank value. To further verify the co-ranking results, we
show in Table 6 the numbers that the top ten cited authors
(or the top ten cited papers) are cited by the others of dif-
ferent rankings in Experiment 3(a). We see that the authors
who are ranked higher usually have either more citations by
highly-ranked authors and more citations in total. Similar
findings are observed for the top ten cited papers. These
observations reflect the design of the MultiRank paradigm
by setting equations in (10). Similar observations can also
be found in Experiment 3(b) and 3(c).

Experiment 3(a) author

ranking (1-10) (11-20) (21-30)

1 18 24 17
2 12 13 2
3 13 8 14
4 8 13 5
5 11 6 13
6 18 6 8
7 0 19 8
8 3 7 9
9 8 4 6
10 6 12 4

Experiment 3(a) paper

ranking (1-100) (101-200) (others)

1 16 8 4
2 12 8 2
3 11 3 6
4 9 2 9
5 4 6 6
6 0 12 0
7 6 5 0
8 8 8 0
9 6 3 2
10 3 6 2

Table 6: The numbers that the top ten cited authors
(papers) are cited by the other authors (papers) of
different rankings in Experiments 3(a).

It is interesting to note that Thorsten Joachims and Jon
M. Kleinberg who are ranked number one and number two
in Experiment 3(a), disappear in both Experiments 3(b) and
3(c). They are the top cited authors for all five conferences,
however, they are not the top cited authors either in data
mining conferences or in information retrieval conferences.
For Thorsten Joachims, this is because he does not have
ten publications either in data mining conferences (Experi-
ment 3(b)) or information retrieval conferences (Experiment
3(c)). When we intentionally add him in Experiment 3(c)
and re-run the MultiRank algorithm, he appears in the list
of the top ten cited authors, and he is ranked the number
three. For Jon M. Kleinberg, even though he has enough
publications in Experiment 3(b), he disappears in the list
of the top ten cited authors. The main reason is that his
high cited paper titled “Bursty and hierarchical structure in
streams” published in SIGKDD conference, is more related
to information retrieval conferences. Therefore, he does not
have many citations from data mining conferences in Exper-
iment 3(b).

6.4 Experiment 4
In the last experiment, we show the scalability of the

MultiRank algorithm. We have mentioned that the com-
putational cost of the algorithm depends on the number
of nonzero entries in a tensor. Here we generate randomly
(2, 1)th order (m×n)-dimensional nonnegative tensors with
different percentages of nonzero entries (i.e., sparse transi-
tion probability tensors are randomly generated). In Figure
5, we show computational time under MATLAB platform
for computing stationary probability vectors with respect
to the percentage of nonzero entries. We observe from two
figures that the MultiRank algorithm scales linearly with re-
spect to the percentage of nonzero entries in a tensor. These
results show that the MultiRank algorithm is quite efficient
when transition probability tensors are sparse.
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Figure 5: The scalability demonstration of the Mul-
tiRank algorithm for sparse data (a) different values
of m when n is fixed; and (b) different values of n
when m is fixed.

7. CONCLUDING REMARKS
In this paper, we have proposed a framework (MultiRank)

to determine the importance of both objects and relations si-
multaneously based on a probability distribution computed
from multi-relational data. Both theoretical and experimen-
tal results have demonstrated that the proposed algorithm
is efficient and effective. Here we give several future research
work based on the proposed framework.

(i) In the framework, we assume probability distributions
satisfying (3) and (4). It is interesting to employ the other
possible forms to set up other tensor equations, compute
and analyze stationary probability distributions.

(ii) We consider the (2,1)th and (2,2)th order rectangular
transition probability tensors theoretically and numerically
in this paper. We can further study and extend to the other
types of rectangular transition probability tensors. For in-
stance, (p, q)th order rectangular transition probability ten-
sors can be studied. In this setting, we employ the pth
order links among the objects and qth order links among
the relations. Such higher-order links have been studied in
higher-order Markov chains, see for instance [5]. Based on
the proposed framework, we expect to solve the following
set of tensor equations:

Oxp−1yq = x and Rxpyq−1 = y.

In the MultiRank algorithm, we compute xt = Oxp−1
t−1y

q
t−1

and yt = Rxp
ty

q−1
t−1 in Steps 2 and 3 respectively. By using a

similar argument, we expect to show existence and unique-
ness of x and y in these higher-order links among the objects
and relations.

(iii) On the other hand, we can study (p1, p2, · · · , ps)th
order rectangular tensors where there are s different kinds
of objects/relations to be analyzed. For instance, there are
s networks and each network are related to each other based
on their objects and relations. In the literature, there are
many multiple networks applications and analysis, see for
instance [15, 24, 25]. In this setting, we expect to set up a
set of tensor equations similar to (7) and (8), and solve it
for MultiRank values of objects/relations in these multiple
networks.

(iv) We give a generalization of PageRank in this paper.
We can study and extend HITS algorithm for computing
the scores of hub and authority in multi-relational data. By
using the graph structure of hub and authority, we expect
to solve a new set of tensor equations to obtain such scores.

(v) Theoretically, we need the assumption in Theorem 3 in



order to show that x̄ and ȳ are unique. We have tested many
different initial probability distributions in the examples in
Section 6, the same resulting probability vector is obtained.
We conjecture that the assumption in the theorem may be
true for irreducible transition probability tensors with some
additional properties. We do not have a proof yet, so we
leave it as an open problem for future analysis.
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