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Multirate Digital Control for Fuzzy Systems: 

LMI-Based Design and Stability Analysis 
 

Do Wan Kim, Jin Bae Park*, Young Hoon Joo, and Sung Ho Kim 
 

Abstract: This paper studies an intelligent digital control for nonlinear systems with multirate 

sampling. It is worth noting that the multirate control design is addressed for a given nonlinear 

system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed 

method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time 

T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the 

linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the 

digital control system can be deduced from that of the solution of its discretized versions. An 

example is provided for showing the feasibility of the proposed method.  

 

Keywords: Linear matrix inequality, multirate digital control, stability analysis, Takagi-Sugeno 

fuzzy system. 

 

1. INTRODUCTION 
 

Many industrial control systems consist of an 

analog plant and a digital controller interconnected via 

A/D and D/A converters. Owing to the recent 

development of the microprocessor and its interfacing 

hardware, the digital controller has played an 

important role in controlling robot manipulator, 

chemical process, and aircraft attitude. However, such 

applications have often severe nonlinearities, which 

thus post additional difficulties to the digital control 

design. So far, various digital control techniques have 

been consistently pursued with tremendous effort by 

many researchers in the field. One of them is to 

synergetically merge the linear digital control scheme 

[1-3] and the Takagi-Sugeno (T-S) fuzzy-model-based 

control technology [4-12] which provides a way to 

achieve digital control [4-7,12] for nonlinear control 

systems.  

Drawing upon recent progress in the T-S fuzzy-

model-based digital control, it is observed that a 

number of important works have used a singlerate 

controller [4-7,12] to meet the stability requirements. 

The digital control problem was conducted as a 

stabilizing the discretized model of continuous-time 

T-S fuzzy plant in [4-6] and a stabilizing the jumped 

fuzzy system in [12]. However, strictly speaking, the 

problem reformulation is incorrect because their 

discretized model has the approximation error, which 

is directly proportional to the sampling time. One gets 

better exactly discretized model if one can make A/D 

and D/A conversions faster. But faster A/D and D/A 

conversions mean higher cost in implementation. In 

addition, the digital control system is hybrid system 

involving continuous-time and discrete-time, but their 

discussion in [4-6] only contained the stability of the 

digital control system in the discrete-time domain. 

A multirate control approach [13-16] can be an 

alternative. Interestingly, advantages of applying 

faster A/D and D/A conversions are obtained by using 

A/D and D/A at different rates. Furthermore, in [15], 

stability analysis between the multirate digital control 

system and the discrete-time control system was well 

tackled. At this point, we attempt the multirate control 

for T-S fuzzy system that has not yet been fully 

tackled under this framework. 

Motivated by the above observations, we develop 

an intelligent multirate control for a class of nonlinear 

systems under the high speed D/A converter. The 

main contribution of this paper is two-fold. First, we 

derive some sufficient conditions in terms of the linear 

matrix inequalities (LMIs), such that the equilibrium 

point is a globally asymptotically stable equilibrium 

point of the discrete-time fuzzy model derived by the 

fast discretization in the sense of Lyapunov stability 

criterion. Second, we show that if the discrete-time 

control system is globally asymptotically stable, so is 

__________  
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the resulting digital control system.  

This paper is organized as follows: In Section 2, we 

formulates the digital control problem of the fuzzy 

system with multirate-sampling. In Section 3, 

synthesis and analysis of multirate digital control 

system are provided. In Section 4, the chaotic Lorenz 

system is used to demonstrate the effectiveness of the 

proposed method. This paper is concluded in Section 5. 

 

2. PROBLEM STATEMENT 
 

In the following, let T  and 'T  be the sampling 

period and the control update period, respectively. For 

convenience, we take ' /T T N=  for a positive 

integer N , where N  is an input multiplicity. Then, 

't kT lT= +  for 0k ≥∈  and [0, -1]Nl∈ , where 

the indexes k  and l  indicate sampling and control 

update instants, respectively. 

Consider a nonlinear digital control system 

described by 

( ) = ( ( ), ( ))dx t f x t u t                      (1) 

for 0 [0, 1][ , ), ( , ) Nt kT lT kT lT T k l ≥ −′ ′ ′∈ + + + ∈ × , 

where ( ) n
x t ∈  is the state vector, and ( ) =du t  

( , ) m
du kT lT ′ ∈  is the multirate digital control input. 

The control actions are switched with T ′  and .N  

Moreover, the digital control signals are fed into the 

plant with the ideal zero-order hold.  

To facilitate the control design, we will develop a 

simplified model, which can represent the local linear 

input-output relations of the nonlinear system. This 

type of models is referred as T-S fuzzy models. The 

fuzzy dynamical model corresponding to (1) is 

described by the following IF-THEN rules [4-11]:  

1 1:  IF ( ) is about  and  and ( ) is about ,

  THEN ( ) ( ) ( ),

i i p ip

i i d

R z t z t

x t A x t B u t

Γ Γ

= +
(2) 

where , = {1,2, , }i qR i I q∈ … , is the i th fuzzy rule, 

( ), = {1,2, , },h pz t h I p∈ … is the thh  premise 

variable, and , ( , ) ,ih q pi h I IΓ ∈ ×  is the fuzzy set. Then, 

given a pair ( ( ), ( )),dx t u t  using the center-average 

defuzzification, product inference, and singleton 

fuzzifier, the overall dynamics of (2) has the form 

( ) = ( ( )) ( ) ( ( )) ( )dx t A t x t B t u tθ θ+ ,           (3) 

where
=1=1

( ( )) = ( ( ))( ( )) = ( ( )) , ,
q

i ii

q
i ii

B t z t BA t z t A θ θθ θ ∑∑

=1

=1

( ( ))
( ( )) = , ( ( )) = ( ( ))

( ( ))

pi
i i ih hq h

ii

w z t
z t w z t z t

w z t
θ Γ∏

∑
and 

( ( ))ih hz tΓ  is the grade of membership of ( )hz t  in 

.ihΓ  The possibly time-varying parameter vector 

qθ ∈  belongs to a convex polytope ,Θ  where  

=1

:= = 1, 0 1
q

i i

i

θ θ
⎧ ⎫⎪ ⎪Θ ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭
∑ . 

It is clear that as θ  varies inside ,Θ  ( ( ))A tθ  and 

( ( ))B tθ  range over a matrix polytope  

[ ( ( )), ( ( ))] {( , ), },i i qA t B t A B i Iθ θ ∈ ∈Co  

where Co  denotes the convex hull. In this note, the 

stabilization of the polytopic model (3) is equivalent 

to the simultaneous stabilization of its vertices 

( , ),i i qA B i I∈ . 

The main problem in this paper is to design the 

multirate feedback controller such that the equilibrium 

point of (3) is a globally asymptotically stable in the 

sense of Lyapunov stability criterion. The system (3) 

is a hybrid system involving both continuous-time and 

discrete-time. This makes the traditional synthesis and 

analysis methodologies using purely discrete-time and 

continuous-time formulations difficult to apply. 

Because of these difficulties, we first derive the 

sufficient conditions to globally asymptotically 

stabilize the equilibrium point of the discritized 

version of (3), and then we show that the stability of 

the trivial solution of (3) with the multirate feedback 

controller.  
 

3. MAIN RESULTS 
 

3.1. Fast discretization of fuzzy system 

To develop the discretized version of (3), we apply 

the fast discretization technique [14] to (3). In specific, 

we first derive a multirate discretized version of (3), 

and then we apply a discrete-time lifting technique to 

the multirate discrete-time model.  

Connecting the fast-sampling operator and the fast-

hold operator with [ ,kT lT ′+ ),kT lT T′ ′+ +  ( , )k l  

0 [0, 1]N≥ −∈ × , to (3) leads the multirate discrete-

time plant model. 

Assumption 1: Suppose that the firing strength 

( ( ))i z tθ for [ , )t kT lT kT lT T′ ′ ′∈ + + + is ( (i z kTθ

))lT ′+ . Then, the nonlinear matrices 
=1

( ( ))
q

i ii
z t Aθ∑  

and 
=1

( ( ))
q

i ii
z t Bθ∑  of (3) can be approximated as 

the piecewise constant matrices ( )( )A kT lTθ ′+  and 

( ( ))B kT lTθ ′+ , respectively. Obviously, we assume 

that ( ( )) = ( ( ))i iz t z kT lTθ θ ′+  if T ′  is sufficiently 

small. 
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The next result presents the multirate discretized 

version of (3). 

Proposition 1: The multirate discrete-time model 

of (3) can be approximate by  

( ) ( ( )) ( )

                         ( ( )) ( )d

x kT lT T G kT lT x kT lT

H kT lT u kT lT

θ
θ

′ ′ ′ ′+ + ≈ + +
′ ′+ + +

 (4) 

for [ ),t kT lT kT lT T′ ′ ′∈ + + + , 0 [0, 1]( , ) Nk l ≥ −∈ × , 

where
=1

( ( )) = ( ( )) , ( (
q

i ii
G kT lT z kT lT G H kTθ θ θ′ ′+ +∑  

=1
)) = ( ( ))

q
i ii

lT z kT lT Hθ′ ′+ +∑ , ( )= exp ,i iG AT ′  and 

1= ( )i i i iH G I A B
−− .  

Proof: The exact solution to (3) at =t kT lT T′ ′+ +  

is  

( )

 = ( , ) ( )

 ( , ) ( ( )) ( ) .
kT lT T

dkT lT

x kT lT T

kT lT T kT lT x kT lT

kT lT T B u dτ θ τ τ τ
′ ′+ +

′+

′ ′+ +
′ ′ ′ ′Φ + + + +

′ ′+ Φ + +∫

 

 

Under the Assumption 1, the state transition matrix 

( , )Φ ⋅ ⋅  satisfies 0 0 =1
( , ) = ( ( ))

q
i ii

t t z kT A
t

θ∂
Φ

∂ ∑  and 

0 1 1 0( , ) = ( , ) ( , ).t t t t t tΦ Φ Φ  Then, we get  

( )

( )

( )
( )( )
1

exp ( ( ))( )

( )

 = exp ( ( )) ( )

 

( ( )) ( )

 = exp ( ( )) ( )

     exp ( ( ))

( ( )) ( ( )) (

kT lT T

kT lT

d

d

A kT lT kT lT T

x kT lT T

A kT lT T x kT lT

B kT lT u kT lT d

A kT lT T x kT lT

A kT lT T I

A kT lT B kT lT u kT lT

θ τ

θ

θ τ
θ

θ

θ θ

′ ′+ +

′+

−

′ ′ ′+ + + −

′ ′+ +
′ ′ ′+ +

+

′ ′× + +

′ ′ ′+ +

′ ′+ + −

′ ′ ′× + + +

∫

).

(5) 

However, (5) is not represented in the polytopic 

structure unlike the general fuzzy system. For this 

reason, (5) is approximated as follows:  

( )

=1

=1

1

=1 =1

=1

( )

= exp ( ( )) ( )

exp ( ( ))

( ( )) ( ( )) ( )

( ( ))exp ( )

q

i i

i

q

i i

i

q q

i i i i d

i i

q

i i

i

x kT lT T

z kT lT AT x kT lT

z kT lT AT I

z kT lT A z kT lT B u kT lT

z kT lT AT x kT lT

θ

θ

θ θ

θ

−

′ ′+ +

⎛ ⎞
′ ′ ′+ +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞

′ ′⎜ ⎟+ + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
′ ′ ′× + + +⎜ ⎟⎜ ⎟

⎝ ⎠

′ ′ ′≈ + +

∑

∑

∑ ∑

∑

( )( ) 1

=1

( ( )) exp ( ).
q

i i i i d

i

z kT lT AT I A B u kT lTθ −′ ′ ′+ + − +∑  

(6) 

Therefore, we obtain (4), the approximately discretized 

version of (3).                                

In the proposed discretization method, two 

approximations are performed as follows:  

( )exp ( ( )) ( ( )),A kT lT T G kT lTθ θ′ ′ ′+ ≈ +        (7) 

( ) 1( ( )) ( ( )) ( ( ))

( ( )).

G kT lT I A kT lT B kT lT

H kT lT

θ θ θ
θ

−′ ′ ′+ − + +

′≈ +
(8) 

To analyze these, introduce approximation error 

defined by  

( )1 2
= exp ( ( )) ( ( )) .e A kT lT T G kT lTθ θ′ ′ ′+ − +  

Applying Taylor series expansion from the right-

hand side gives  

( )

2
2

1 2
=1

2

=1 2

2

1
= ( ( ))

2!

1
             ( ( ))

2!

  = .

q

i i

i

q

i i

i

T
e z kT lT A

n

z kT lT A

T

θ

θ

⎛ ⎛ ⎞⎜ ′+⎜ ⎟⎜ ⎟⎜⎜ ⎝ ⎠⎝

⎞
′− + +⎟⎟

⎠

′Ο

∑

∑    
(10) 

In the same manner, approximation error in (8) is  

( )

( )

1
2

2

= ( ( )) ( ( ))

       ( ( )) ( ( ))

  = .

e G kT lT I A kT lT

B kT lT H kT lT

T

θ θ

θ θ

−′ ′+ − +

′ ′× + − +

′Ο

  (11) 

From (10) and (11), approximation error clearly goes 

to zero as T ′  approaches zero. 

To transform the system (4) into the singlerate one, 

we invoke the discrete-time lifting. 

Assumption 2: Suppose that the firing strength 

( ( )),i z tθ  for [ , )t kT kT T∈ +  is ( ( )).i z kTθ  It is 

reasonable that ( ( )) = ( ( ))i iz t z kTθ θ  if T  is sufficiently 

small.  

Proposition 2: Given the system (3) for [0, 1]Nl −∈ , 

a lifted sampled input  

( )

( )
( ) =

( )

d

d mN
d

d

u kT

u kT T
u kT

u kT NT T

⎡ ⎤
⎢ ⎥′+⎢ ⎥∈
⎢ ⎥
⎢ ⎥′ ′+ −⎢ ⎥⎣ ⎦

     (12) 

leads a lifted system  
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( ) ( ( )) ( ) ( ( )) ( )x kT T G kT x kT H kT u kTθ θ+ ≈ + (13) 

for [ ) 0, ,t kT kT T k ≥∈ + ∈ , where  

1

2

( ( )) = ( ( )) ,

( ( )) [ ( ( )) ( ( )),

( ( )) ( ( )),

                , ( ( ))] .

N n n

N

N

n mN

G kT G kT

H kT G kT H kT

G kT H kT

H kT

θ θ

θ θ θ

θ θ

θ

×

−

−

×

∈

=

∈

 

Proof: Under Assumption 2, the exact solution to 

(3) evaluated at =t kT T+  is  

( ) = ( , ) ( )

                  ( , ) ( ( )) ( ) .
kT T

dkT

x kT T kT T kT x kT

kT T B kT u dτ θ τ τ
+

+ Φ +

+ Φ +∫
(14) 

Applying the discrete-time lifting, ( , )kT T kTΦ +  

and ( , ) ( ( )) ( )
kT T

dkT
kT T B u dτ θ τ τ τ

+
Φ +∫  of (14) can 

be represented by  

( , ) = ( , )

                     ( , 2 )

                     ( , )

kT T kT kT NT kT NT T

kT NT T kT NT T

kT T kT

′ ′ ′Φ + Φ + + −
′ ′ ′ ′×Φ + − + −
′× Φ +

 

= ( )N
T ′Φ                    (15) 

and  

( )

2

1

0

2

, ( ( )) ( )

= ( , ) ( ( )) ( )

( , ) ( ( )) ( , )

( , ) ( ( ))

( , )

= ( ) ( ) ( ( )) ( )

(

kT T

dkT

kT T

dkT

kT T

dkT T

kT NT

kT NT T

d

TN
d

N

kT T B u d

kT NT d B kT u kT

kT NT d B kT u kT T

kT NT d B kT

u kT NT T

T d B kT u kT

τ θ τ τ τ

τ τ θ

τ τ θ

τ τ θ

α α θ

+

′+

′+

′+
′+

′ ′+ −

′−

−

Φ +

′Φ +

′ ′+ Φ +

′+ + Φ +

′ ′× −

′Φ Φ

+Φ

∫

∫

∫

∫

∫

0

0

) ( ) ( ( )) ( )

( ) ( ( )) ( )

T

d

T

d

T d B kT u kT T

d B kT u kT NT T

α α θ

α α θ

′

′

′ ′Φ +

′ ′+ + Φ + −

∫

∫

 

(16) 

respectively. From Proposition 1, we know that  

 ( ) ( ( ))T G kTθ′Φ ≈ ,                     (17) 

0
( ) ( ( )) ( ( ))

T
d B kT H kTα α θ θ

′
Φ ≈∫ .         (18) 

Therefore, substituting (17) and (18) to (15) and (16), 

respectively, we can obtain the lifted system (13).   
 

3.2. An LMI approach to multirate digital control 

design 

In this subsection, we convert the multirate digital 

control problem to the solvability of LMIs. For the 

system (13), we consider the following multirate 

feedback controller 

( ) = ( ( )) ( )lu kT K kT x kTθ                  (19) 

and have the lifted control input represented as  

( ) = ( ( )) ( )u kT K kT x kTθ ,                 (20) 

where 0 1 1( ( )) = [ ( ( )), ( ( )) , ,T T T
NK kT K kT K kT Kθ θ θ −  

( ( ))]kTθ ,mN n×∈  0 0=1
( ( )) = ( ( )) ,

q
i ii

K kT z kT Kθ θ∑  

and (0 0( ( )) = ( ( )) ( ( )) ( ( ))lK kT K kT G kT H kT Kθ θ θ θ+

)( ( )) .
l

kTθ  The closed-loop system with (13) and (20) 

is 
 

( )( ,0) ( ( )) ( ( )) ( ( )) ( )

            = ( ( )) ( ),N
c

x kT T G kT H kT K kT x kT

G kT x kT

θ θ θ

θ

+ ≈ +

 

where 0= ( ( )) ( ( )) ( ( ))cG G kT H kT K kTθ θ θ+ . 

The next theorem provides the sufficient conditions 

for the stabilization in the sense of the Lyapunov 

asymptotic stability for (13). 

Theorem 1: The given system (13) under (20) is 

globally asymptotically stable in the sense of 

Lyapunov stability criterion if there exist =Q  

0T
Q >  and constant matrices iF  such that  

*
0, [1, ],

i i i

Q
i q

G Q H F Q

−⎡ ⎤
< ∈⎢ ⎥+ −⎣ ⎦

 

*

0, < [1, ],

2

i i j j j i

Q

i j qG Q H F G Q H F
Q

−⎡ ⎤
⎢ ⎥ < ∈+ + +⎢ ⎥−⎢ ⎥⎣ ⎦

 

where *  denotes the transposed element in symmetric 

position.  

Proof: For the system (13), choose the Lyapunov 

function as  

( ( )) ( ) ( )T
V x kT x kT Px kT= .               (24) 

Then, the rate of increases of ( ( ))V x kT  is  

( )

( ( ))

 ( ( ,0)) ( ( ))

( ,0) ( ,0) ( ) ( )

( ) ( ( )) ( ( )) ( ).

T T

T NT N
c c

V x kT

V x kT T V x kT

x kT T Px kT T x kT Px kT

x kT G kT PG kT P x kTθ θ

Δ
= + −

= + + −

= −

(25) 

Supposed that ( ( )) ( ( )) 0,T
c cG kT PG kT Pθ θ − <  then 

(25) is obviously negative definite. Note that  

( ( )) ( ( ))T
c cG kT PG kT Pθ θ −  
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( )

( ) )
( ) ( )( )

0 0

=1 =1

0 0

2
0 0

=1

0 0

<

1
( ( )) ( ( ))

4

4

= ( ( ))

2 ( ( )) ( ( ))
2

q q
T

i j i i j j j i

i j

i i j j j i

q
T

i i i i i i i

i

Tq
i i j j j i

i j

i j

z kT z kT G H K G H K

P G H K G H K P

z kT G H K P G H K P

G H K G H K
z kT z kT P

θ θ

θ

θ θ

⎛≤ + + +⎜
⎝

× + + + −

+ + −

⎛ + + +⎛ ⎞⎜+ ⎜ ⎟⎜⎝ ⎠⎝

∑∑

∑

∑

0 0

2

i i j j j iG H K G H K
P

+ + + ⎞⎛ ⎞
× − ⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

.           (26) 

Thus, if the following two inequalities are negative 

definite, then the controlled system (21) is globally 

asymptotically stable.  

( ) ( )0 0 0
T

i i i i i iG H K P G H K P+ + − < ,     (27) 

0 0

0 0

2

 0.
2

T
i i j j j i

i i j j j i

G H K G H K
P

G H K G H K
P

+ + +⎛ ⎞
⎜ ⎟
⎝ ⎠

+ + +⎛ ⎞
× − <⎜ ⎟
⎝ ⎠

    (28) 

Applying Schur complement and the congruence 

transformation with diag 1,P I
−⎡ ⎤

⎣ ⎦  to (27) and (28), 

and letting 1=Q P
−  and 1

0=i iF K P
−  yields the 

LMIs (22) and (23). Therefore, (21) is globally 

asymptotically stable.                          

Remark 1: In Theorem 1, the singlerate control 

problem is a special case of the multirate one with N = 1. 

 

3.3. Stability analysis 

The stability of (3) controlled by (19) can be 

determined solely by the information at the sampling 

and control instants. From that reason, we will analyze 

the global asymptotic stability of the closed-loop 

system of (3) and (19) at the control instants from 

stability at the sampling instants. Then, we will 

conclude that (3) controlled by (19) is globally 

asymptotically stable based on the stable properties at 

the sampling and control instants. 

In a preparatory stage to analyze the stability, we 

need to show that (13) and (4) are locally controllable 

of which definition is as follows:  

Definition 2: For the controller synthesis, it is 

assumed that the fuzzy system is locally controllable, 

that is, ( , )i iA B  are controllable.  

The following modified results are extensions of 

Lemma 6 and Lemma 8 in [15].  

Lemma 1: Assume that Gi satisfies that for every 

eigenvalue of Gi, none of 1N −  points expiλ  

2 k
j

N

π⎛ ⎞
⎜ ⎟
⎝ ⎠

, = 1,2, , 1,k N −…  is an eigenvalue of iG . 

If the system (4) is locally controllable, so is (13).  

Based on Lemma 1 and Lemma 2, the next theorem 

concludes global asymptotical stability for (4) 

controlled by (20) from global asymptotical stability 

of the closed-loop system with (13) and (20). 

Theorem 2: If the lifted system (13) controlled by 

(20) is globally asymptotically stable, so is the 

multirate discrete-time system (4) with (20).  

Proof: Equation (4) at = 0l  is  

( ) = ( ( )) ( ) ( ( )) ( ).x kT T G kT x kT H kT u kTθ θ′+ +  

Then, we compute (4) at = 1l  as  

( 2 ) = ( ( )) ( ( )) ( )

          ( ( )) ( ( )) ( )

                   ( ( )) ( ).

x kT T G kT T G kT x kT

G kT T H kT u kT

H kT T u kT T

θ θ
θ θ
θ

′ ′+ +
′+ +
′ ′+ + +

 

Proceeding forward, we can readily obtain (29) at the 

bottom of this page, for = 1 > 2l N − . Therefore, for 

all [0, 1]Nl −∈ , it follows that  

( ) = ( ) ( ) ( ) ( )x kT G x kT H u kTθ θ+ ,          (30) 

where  

( )

( 2 )
( ) =

( )

x kT T

x kT T
x kT

x kT NT

′+⎡ ⎤
⎢ ⎥′+⎢ ⎥
⎢ ⎥
⎢ ⎥′+⎢ ⎥⎣ ⎦

, 

1

1 2

( ) = ( ( ))  
=1 =1 =1

i

i i iN

q q q

G z kT NT Tθ θ ′ ′+ −∑ ∑ ∑  

1

( )

= ( ( )) ( ( 2 )) ( ( )) ( )

( ( )) ( ( 2 )) ( ( )) ( ( )) ( )

( ( ))

N

N

x kT NT

G kT NT T G kT NT T G kT x kT

G kT NT T G kT NT T G kT T H kT u kT

G kT NT T

θ θ θ

θ θ θ θ

θ
−

′+
′ ′ ′ ′+ − + −

′ ′ ′ ′ ′+ + − + − +

′ ′+ + −
2

( ( 2 )) ( ( 2 )) ( ( )) ( )

( ( )) ( )

N

G kT NT T G kT T H kT T u kT T

H kT NT T u kT NT T

θ θ θ

θ
−

′ ′ ′ ′ ′+ − + + +

′ ′ ′ ′+ + + − + −

            (29)
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1 22

1

1 2

1 22

1

1 2

1 2

           ( ( 2 )) ( ( )) ,

( ) = ( ( ))
=1 =1 =1

           ( ( 2 )) ( ( )) ,

=

ii i nN

i

i i iN

ii i nN

iN

i iN N

i n

i i iN

N

z kT NT T z kT G i i

q q q

H z kT NT T

z kT NT T z kT H i i

G

G G

G i i

G G G

θ θ

θ θ

θ θ

−

′ ′× + −

′ ′+ −

′ ′× + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑

…

…

… ,

1 2

1 1

1 2 1 1 2 2 1 1

1 2

=

0 0 0

0 0

0

i n

iN

i i iN N N

i i i i i i i i iN N N N

N N

H i i

H

G H H

G G G H G G G H H

− −

− − −
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

(31) 

in which 1 2( , , , )N q q

N

i i i I I∈ × × . Then, it follows 

from (30) and (20) that  

( )
(

)

1 2
=11 2

1 2

( ) ( ) ( ) ( ( )) ( )

          
=1 =1 =1

            ( ) .

q

i n
i i i jN

N

i jn

x kT G H K kT x kT

q q q

G i i

H K x kTi i

θ θ θ≤ +

≤

+

∑ ∑ ∑ ∑ …

…

 (32) 

Note that 
1 21 2 i ji nn

G H Ki ii i + ……  is independent 

of k . Therefore, ( , )x kT lT ′ is globally asymptotically 

convergent at a control instant l  in [ ,kT T kT′+  

]NT ′+ .                                     

This result shows that (3) controlled by (19) is 

globally asymptotically stable at every intersample 

points from stability of the closed-loop system of (13) 

and (20). 

The next theorem deals with the stability of (3) 

controlled by (19) based on Lemma 2 and Theorem 2.  

Theorem 3: If (13) controlled by (19) is globally 

asymptotically stable, so is the closed-loop system of 

(3) and (19). 

Proof: It follows from (4) and (20), for t∈  

[ , )kT lT kT lT T′ ′ ′+ + +  that  

( ) exp( ( ( ))( )) ( )

 exp( ( ( ))( ))
t

kT lT

x t A kT lT t kT lT x kT lT

A kT lT t

θ

θ τ
′+

′ ′ ′≤ + − − +

′+ + −∫
 

( )

=1

=1 =1 =1

 ( ( )) ( ( )) ( )

   exp ( ( )) ( )

 exp( ( ( )) )

 ( ( )) ( ( )) ( )

   exp ( )

exp ( ) .

l

l

q

i

i

q q q

i i lj

i i j

B kT lT K kT x kT d

A kT lT T x kT lT

T A kT lT T

B kT lT K kT x kT

A T x kT lT

T A T B K x kT

θ θ τ

θ

θ

θ θ

′× +

′ ′ ′≤ + +

′ ′ ′+ +

′× +

⎛ ⎞
′ ′≤ +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

′ ′+ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ ∑∑

 

(33) 

Note that ( )=1
exp

q
ii

A T ′∑  and ( )=1
exp

q
ii

T A T′ ′∑  

are independent of k  and l . Therefore, we conclude 

that the closed-loop system of (3) and (19) is globally 

asymptotically stable.                          

 

4. COMPUTER SIMULATIONS 
 

Consider the Lorenz equation  

1 1 2

2 1 2 1 3

3 1 2 3

( ) ( ) ( )

( ) = ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t x t x t

x t rx t x t x t x t

x t x t x t bx t

σ σ− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

,       (34) 

where ( , , ) = (10,28,8/3).r bσ  The fuzzy system 

corresponding to (34) is given by  

( ) = ( ( )) ( )x t A t x tθ ,                      (35) 

where the membership functions for all 1[ ,minx x∈  

1 ] = [ 20,30]maxx −  are  
 

1 21 1 1 1
1 1 1 2

1 1 1 1

( ) ( )
( ( )) = , ( ( )) = ,max min

max min max min

x t x x t x
x t x t

x x x x

− + −
Γ Γ

− −
 

and the local system matrices are  

1 1 2 1

1 1

0 0

= 1 , = 1 .

0 0

min max

min max

A r x A r x

x b x b

σ σ σ σ− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Fig. 1 shows the trajectory of the fuzzy system (35). 

 

Fig. 1. Trajectory of the chaotic lorenz system. 
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Suppose ( , ) = ( ( ))d lu kT lT K x kT′  is the multirate 

digital control law that globally asymptotically 

stabilizes the equilibrium 1= [0]nx ×  of the closed-

loop system  

( ) = ( ( )) ( ) ( ( )) ( ( )) ( )lx t A t x t B t K kT x kTθ θ θ+ , (36) 

where the input matrices preserving the local 

controllability of the system are arbitrarily chosen as  

1 2

1

= = 0 .

0

B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

To get a feel for the time response of the singlerate 

digital control system in the long sampling time, let us 

simulate the system (36) with = 1.N  Applying 

Theorem 1 yields the digital gain matrices 0iK , as 

[ ]01 = 50.6247 22.7771 6.5463K − − −  

[ ]02 = 50.4996 21.6944 9.1387K − −  

for T = 0.02s, 

[ ]
[ ]

01

02

= 28.9605 17.9937 10.0935

= 28.2316 14.7501 13.5721

K

K

− − −

− −
 

for = 0.04s,T  and  

[ ]
[ ]

01

02

= 17.0271 8.0979 9.9826

= 14.1617 1.8699 10.0034

K

K

− − −

− −
 

for = 0.08s.T  Note that we cannot obtain the 

feasible digital gains in the case of = 1N  when 

> 0.09sT . Figs. 2 and 3 show the trajectory of the 

singlerate digital control system under state feedback. 

The initial conditions are [ ]0 = 10 10 10x − − . In 

fact, the singlerate digital control system cannot cover 

the intersample behavior and the discretization error. 

These two factors may destroy the stability of the 

system as T  increases. Figs. 2 and 3 report the 

behavior of the singlerate digital control system, 

where the response under state feedback deviates from 

the equilibrium point as T  increases. This is the 

impact of the both intersample behavior and 

discretization error. 

We can overcome the both intersample response 

and discretization error by increasing N. When 

= 2,N  the multirate digital control gains are taken as  

[ ]
[ ]

01

02

= 97.9703 24.0258 3.4621

= 97.9534 23.7372 4.8823

K

K

− − −

− −
 

for = 0.02s,T  

[ ]
[ ]

01

02

= 50.6247 22.7771 6.5463

= 50.4996 21.6944 9.1387

K

K

− − −

− −
 

for = 0.04s,T  and  

[ ]
[ ]

01

02

= 28.9605 17.9937 10.0935

= 28.2316 14.7501 13.5721

K

K

− − −

− −
 

for = 0.08s.T  Figs. 4 and 5 show the trajectories of 

the multirate digital control system under state 

feedback. The control ( )du t  is shown on a shorter 

sampling period / 2.T  The same figures report that 

all trajectories for three different values of T  are 

guided to the equilibrium points at origin. Note that 

we increase T  to 0.12  where infeasibility is 

Fig. 2. Time responses of the closed-loop system 

under the singlerate digital controller for T = 

0.02s (solid), T = 0.04s (solid with circle), 

and T = 0.08s (solid with bullet). 

 

Fig. 3. Trajectories of the closed-loop system under 

the singlerate digital controller for T = 0.02s

(solid), T = 0.04s (solid with circle), and T =

0.08s (solid with bullet). 
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detected in the singlerate digital control. When 

= 10,N  the multirate digital control gains are taken 

as 

[ ]
[ ]

01

02

= 81.8731 23.8708 4.1274

= 81.8442 23.4583 5.8115

K

K

− − −

− −
 

for = 0.12s.T  Figs. 6 and 7 show the time responses 

and the trajectories of the multirate controlled systems. 

The stabilizability of the given system can be well 

guaranteed. It is noted that the proposed method 

guarantees the stability of the controlled system in 

much wider range of sampling period than the 

singlerate digital method in which may fail to stabilize 

the system especially for relatively longer sampling 

period, which is major advantage of the proposed 

method. This is because the proposed multirate 

control can reduce the impact of the both intersample 

behavior and discretization error as N  increases. 

 
5. CLOSING REMARKS 

 
This paper proposed the multirate control design 

using the LMI approach for the fuzzy system. Some 

sufficient conditions were derived for stabilization of 

the discretized model via the fast discretization. The 

stability of the digital control system was also 

guaranteed. The numerical example concretely 

demonstrated the advantage of the proposed multirate 

control method over the singlerate control method, 

which implies the potential of the proposed method 

for reliable digital industrial applications. 
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