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ABSTRACT

Multirate methods have often been considered for integrating systems
in whiéh one part changes much more rapidly than another,'but, td my knowledge,
little theoretical study has been made on the accuracy and stability of such
methods. These few romments are intended LU suggest some df the problems that

might be involvéd, and some ways in which the methods can be analyzed.




1. INTRODUCTION

Suppose we have the system of differential.equations

y' = f(y,z,t)

z' = g(y,z,t)
vherc y and z ure Ttwo tunctions of time (they could be vectors, but we will
comsider scalara for nutational convenience). Suppose, also, that y is a

rapidly varying function in the sense that if we knew the values of z for

any t, we would need a small step size to integrate y' = f(y,z(t),t) by any
of the methods under consideration, whéreas, if we knew y(t) we could use a
much larger step to integrate z' = g(y(t),z,t). In that case, a multirate
method may be reasonable.

Té simplify the discussion, let us consider a constant step size h
for integrating y' and aAconstant step size kh for integrating z', where k
is an integer.' (It is not clear whether a non-integral k materially affects
either the analysis or the implemeﬁtation.) For this case, a multirate
method can be defined in terms of a standard method as follows. Let the

standard method for y' = f(y,t) be given by

Loeg = M55 0) (2)

Here, zﬁ represents - the set of information saved about y(t) at t = t  Where

tn = to + nh. For a one-step method, NN is simply Y the computed approxi-

mation to y(tn), but for a multistep method, xnimay include Vo1t Y pk+1
and hyﬂ,...,hyg_k+l.
Now, let
£(y,t) = £(y,z(t),t) (2)
glz,t) = g(y(¢),z,) (3)

where E(t) is any function approximating z(t) (the solution of the original



problem) that we can compute from the saved information z g t.

Sk for tO <

by

Similarly, y(t) is an approximation to y(t). Then one type of multirate

method is given by .

Lpriel = M(th+i,tnk+i,h;f) i=0,...,k-1

=Mz ,t_ kh;g) | (L)

En+l)x 2ok ok

‘ ‘ Thls means that we integrate for y using a step size h, and evaluate f(y,z,t)

‘ wherever needed by inte?polating for z. This 1s reasonable if z is slowly
varying as, by definition of slowly Qarying in this case, the interpolation
using the saved values in g_is reasonably accurate in order that an integra-
tion formula based on the same values is reasonably accufaté. The integration
for z may need to interpolate for y values when g is td be evaluated at off-
step poiﬁts (if, for example, a Runge-Kutta method is used). There are also
an adequate number of y values available for this.

Although we have indicated that the same method should be used for

both equations, this is obviously not necessary.

Example

If Euler's method is used, we could perform the following sequence of

operations

h f(yril«:+i’znk+i’tnk+i) (5)

Ynk+i+l ~ Ynk+i T

Y

=z + (i+l)h g(y

Zok+i+l © “nk t )

nk’znk’ nk

1=0,1,... k-1

“nk+k ~ Znk+k
This would save time if the evaluation of g is very expensive as it is
evaluated only 1/k the number of times as would be used in a regular Euler

method.




2. ANALYSIS

The traditional error analjsis is straightforward, although more
messy than in a standard method. The most direct approach is to define the

local tfuncation error [gy,gZ] in terms of the actual solution [y(t),z(t)]

as follows.

Let the correct values of y and z be denoted by Xﬂtnk) and z(t

k nk)'

Starting from these values, compute
Yo = £ty (6)

-~

Enk - E-(tnk)

Yorivr = MTprs o topag P5T)
i=0,... k-1

where

~

£(y,t) = £(y,z(t),t)
and z(t) is the approximation to z(t) using the exact rather than computed
values of z. Similarly, compute

= M(z . ,t_, ,kh;g)

Znk+k Znx  tnk?
and define
\ () = Toerre ~ Llbppennd) ()
() 0k = Zngax ~ 2 take)

Thus, is the error introduced in a set of k steps of length h (that

[a,.a,]
is, in one cycle). As long as k is independent of h, it is possible to use

standard Taylor series expansions to show that the local truncation error

is of the form

bTLg (6),8, ()] + O(nF*?)
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provided that the solution is sufficiently smooth (in vp+2). iy and ¢
will be combinations of derivatives of the solution, and hence bounds of
the form

Il

a.a,1l| <pn*

can be obtained, where D is a combination of bounds on the derivatives.

Example

Consider the previous example in equations (5), and let k=2. For
conveniehce, let n=0 and let y,, yé; etc., be the true values of y(to),
y'(to), etc. Then,

= '
Y. =¥y ¢ hyo

Yy = yb + hyé +h f(yo+hy6, zo+hzé,to+h)
Z, = Z + 2h zé
Hence,
& =¥ ~ V¥ - 2hyé - 2h2y8 + o(n3)
_gi =z, - 2, - 2hz} - 2n°z) + O(h°)
or
= - h2y3 + 6(h3)

- on’z) 4 0(n3)

(In fact, for general k, we will get

-k h2y8/2 + o(h3)

[oh)
1]

- (kh)2z8/2 + o(h3)

for Euler's method.)

The‘ordér of a multirate method can be determined easily from the




order of the underlying method(s) and the interpolation formula(s) used.
If the order of the integrat n method M is Py in the sense that, for
y' = f(y) with y sufficiently smooth

' hif) = o(nPML
y(t ) = My(L ), hse) = o(nPM™),

and -if the order of the interpolation formula used is Pr in the sense that

2(t) - 2(t) = 0(nPI)
when ; intérpo1af§s g over an interval kh, then order of the multirate
method is |
p = min(py, Py)
Note that the interpolation method can have a local error one power of h
less than that of thé integration method. This is permissible because
interpolation is used to compute ; (and ;) which are used in terms of the
form hf(y,;,t)‘énd hg(;,z,t) so that another power of h is included. (At
least, this is true in all methods to my knowledge. To prove the above
result, we must place some formal restrictions on M, for example, M must be
Lipschitz continuous with respect to its argumehts and must be "h-Lipschitz
continuous" with respect to f, that is, there must exist an L such that
| [M(y,t,058) - M(y,t,038) || < [n] T [|£ - £]].
Such coﬁditions are trivially bbtainable for all préctical methods. )

~

In'the example above, Py = 1 but PI-: 2. We could have used z) = ZO

to evaluate
= + ' % 1
in which case the truncation error in y would have been
2 2

= = "o_ '
gy h yo h fz z0

If the multirate method is consistent (p2l) and stable (a condition



thaﬁ hésn'tvbeén defined yetl), it will converge as ﬁ*O for fixed k (or even
for‘boundéd k) - but thax'wili be iéft‘as'an exeréise for.the inéuiéitive
readér, as the concern of multiraté ﬁethodéﬂis to‘take-large rather than
small éteps. Inétéad, we waﬁt to look at stabi;it& for non-zero h, tﬁat ié;
absplﬁte.sfability end associated ;oncepts.

Stability -

| Absolute stability is usually discuésed‘by'considering the test -
equation y' = Ay. To look at multiréte methods,Awe must study a system of'

—~

equations, -for example
. r .
v 81 8 vy [ o)
: = + :
. : } .
\J : .
Z .o a21 8'22_,] LZ Lg(t)

Since our assumption is that y is rapidly changing while z is not, it seems

(1)

reasonable to aésume that y is nbt-strongly coupled into ﬁhe‘equation for z,

or, in other words, that 821 =0. Hénce, let us first restrict ourselves

to thé problem

A A U y—].

_ y l o (8)
. z! : 0 Az‘_; z_J :

-Ay and XZ are the eigen values of the system, and are characteristic valués

: assdciatéd with the two compdnents.

Example

Consider the multirate Euler method again. A little calculation shows

that
(142 ¥ -1 (1402 )% —xna -1
v o= (1 )%y o+ mu[—L + hA Y A (9)
nk+k Ly nk hA z (hA )2 pk
Y y
2 etk T (1+13kxz)znk o . . : (10)‘



This is'éﬁsolﬁiely stablé'if |1+ hk&l < ;'and |l'+ hkkzl <1. In other
wordg,'it is abéolﬁtely stable if the Euler‘method-is ébsqlutely stable for
the-tncoupled equations, usiﬁg a-stgp of h‘fér y and kh for z. If we had
gsed a backward Euler méthod fég i (as would make sense if the z compbnent'~
' were‘étifftbut no longér;in its transient region), then equation (10) would
be repiaced by'_ | | |

2 a = (1-HKA )7z

“nk+k (11)

nk
and the pair (9) and (11) would be Qbsolutéiy stable for any Re(kz) < 0 and
[1+na_ | < 1.

Yo

It is quite obvious that this is a general result, namély

Theorem

If a method Ml is used for y with step size h and M2

with step size'kh, then the region of absolute stability for .the multirate

is used for 2z

method applied to equation (8) includes the intersections of the strict

regions of absolute stability* for M. and M2 provided that bounded values

1
~of z lead to bounded values of Q(t).
Proof

‘The equation for.z in (8) is not coupled to that for y, hence, inside
,the‘dbsdlutg stébility region for M,, thé solution for z decays (after s
finite nuﬁber of starting steps). The numerical solution for y is obtaiﬁed

by applying the method M1 to

¥yt =y +oa(t
y v (t)

. Since z is bounded, an absolutely stable method will yield a bounded solution.

¥By strict absclute stability, we mean that the numerical solution decays

for the test equation y' = Ay.



(Some'adait;onél hypotheses on M1 a;é needgd at this iOint to make this
statement; but are.not Stéted"to,avéid going into ﬁeedless‘dgtail. The
" statement is true for all commop'methods ; or one could simply make this
the .definition of ébsqluﬁe sfdbility siﬁce we haven't defined it for ofher
'methoas!)

In practice, 3g is likely to be small rather than zero, and this
. oy ' : , .

conld have serious affects 6n stability of multirate methods. Suppose we

use the Euler methpd of earlier examples on

Yl AW |
y Ny | y
z' € A z J
i t |
we get
r r, 0
Ynk+k €11 €15 ;{ Ink
2 ktk eh 1+ khAz l_znk
_ g w
where
- k '
(L + b2 ) - knx_ - 1,
e =1+ m ¥ + jen® R
y (hA )
Y
and
(1+h;\)k-1 (l’+h>‘)k-kh>\-l
Cam = L ¢ 1 L - ]
12 . : Z 2
hA (ha_)
Yy y

If either 1 + hky or 1 + khAZ are close to one in magnitude, 1arge'values
of eu could place the eigenvalues outside the wnit circle and cause insta-
bility. It is difficult to estimate how serious this might be in cases of

‘real interest. In this example, problems do not arise when hA& and khké
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.are near zero, and for large values of these numbers; we should probably
consider methods for stiff éQuatioﬁs. For'examplé3 suppose we used'the

backﬁard Euwler method as

)

, (Y410 Pnkeiel Pnkeisl

Ynk+i+l.” Ynk+i

i = 0,000k=2

~

For very negative values of hly and hkkz and modest values of hu and khe

. = 14
Zoicriel = P T (TLINE(y s 2, )
and -
Ynk+k ~ Ynk+k-1 +‘hf(yﬂk+k’ Znicsk® Pnkek)
Zoek = Pk P8 nc e B
we find that _
| : , fﬂmﬂ{W fﬁmw }
! N z =B
nk+k @w nk ;
where - - . o _ L A
r .
-1 r
[ 1-my —uh | a, 4,
| - 1-h 1
| | -ekh KA, . 0 1 ]
where
1-k
~ (1 -h)) + (1k)hr_ -1 -
. =K+ b
a.. = (1 -m )T 4 e Y N
11 CY o (b2 )2
Ty
and
1o (1 -mx)tE (1 - ma )™+ (1c)na -1
d), = unl f——+ a 2 .
hi_ (1 - hX ) ' (hA_)
y Ty Ty

the eigeﬁvalues of B are clearly less than one, so that we can hope that

methods for stiff equations will be satisfactory. However, present knowl-



n

.edge leads.uslto be wary'of'mnltirafe methéds‘unless'the coupliﬁg from y
to z thréugh gAis either extremely small, or is small compared to terms
such as Ay when methods for stiff éQuatioﬁs are used. Note that one qf
the big‘savings'ih multiraté stiff methods is that the inevitable system
of n6n~linear equationé only has the dimensionality of y for (k-1) out of

k steps.



