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ABSTRACT

Multirate metho ds   have   oft en been considered for integrating systems

in which one part changes much more rapidly than another, but, to my knowledge,

little theoretical study has been made on the accuracy and stability of such

methods. These few r·nmments are intended LO suggest some of the problems that

might be involved, and some ways in which the methods can be analyzed.
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1.  INTRODUCTION

Suppose we have the system of differential equations

y' = f(y,z,t)

Z' = g(Y,Z,t)

where y and z are tWo functions of time (they could be vectors, but we will

consider scalars.for notational convenience). Suppose, also, that y is a

rapidly varying function in the sense that if we knew the values of z for

any t, we would need a small step size to integrate y' = f(y,z(t),t) by any

of the methods under consideration, whereas, if we knew y(t) we could use a

much larger step to integrate z' = g(y(t),z,t).  In that case, a multirate

method may be reasonable.

To simplify the discussion, let us consider a constant step size h

for integrating y' and a constant step size kh for integrating z', where k

is an integer.  (It is not clear whether a non-integral k materially affects

either the analysis or the implementation.)  For this case, a multirate

method can be defined in terms  of a standard method as follows. Let the

standard method for y' = f(y,t) be given by

Zn+1 = M(In'tn'hif)                       (1)

Here, In represents'the set of information saved about y(t) at t=t wheren

tn = t  + nh.  For a one-step method, In is simply yn' the computed approxi-

mation to y(tn)' but for a multistep method, In may include yn-1' '''yn-k+1

and  hyn'... '113rn-k+1 '

Now, let

f(y,t) = f(y,z(t),t)                       (2)

g(z,t) = g(y(t),z,t)                       (3)

where &(t) is any function approximating z(t) (the solution of the original
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problem) that we can compute from the saved information z for t C t 5 t.
-j k 0 -  jk

A

Similarly, y(t) is an approximation to y(t).  Then one type of multirate

method is given by -

/nk+i+1 = M(Znk+i'tnk+i'h;f) i=0,...,k-1

 {n+1)k  =  M(  nk'tnk'kh;g)                                                                                 (4)

Thls means.that we integrate for y using a step size h, and evaluate f(y,z,t)

wherever needed by interpolating for z. This is reasonable if z is slowly

varying as, by definition of slowly varying in this case, the interpolation

using the saved values in z is reasonably accurate in order that an integra-

tion formula based  on  the same values is reasonably accurate. The integration

for z may need to interpolate for y values when g is to be evaluated at off-

step points (if, for example, a Runge-Kutta method is used).  There are also

an adequate number of Y values available for this.

Although we have indicated that the same method should be used for

both   equations,   this is obviously not necessary.

Example

If  Euler' s method  is   used, we could perform the following sequence  of

operations

Y =Y . + h f(y · z t )  (5)nk+i+1 nk+1 nk+i' nk+i' nk+i

znk+i+1 = Znk + (i+1)h g(ynk'znk'tnk)

i=0,1,...,k-1

znk+k = znk+k

This would save time if the evaluation of g is very expensive as it is

evaluated only 1/k the number of times as would be used in a regular Euler

method.
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2.  ANALYSIS

The traditional error analysis is straightforward, although more

messy than in a standard method.  The most direct approach is to define the

local truncation error [d ,d. ] in terms of the actual solution [y(t),z(t)J-Y -Z
as follows.

Let the corre ct vM.lues   of  Znk   and   nk be denoted  by  z(tnk)    and  £(tnk)'

Starting from these values, compute
-

Znk  = 2.(tnk) (6)

-

ink  -   3( tnk)
-

Ank+i+1 = M(Alk+i'tnk+i'h; )

i=0,...,k-1

where

P(y,t) = f(y,z(t),t)

and z(t) is the approximation to z(t) using the exact rather than computed

values of z. Similarly, compute

-     = M(-2 t     .kh:2)znk+k -nk'  nk

and define

( y)nk = ink+k - Z(tnk+k)                   .(7)

( Elz )nk   =  Alk+k   -  E.(tnk+k )

Thus, [d ,d ] is the error introduced in a set of k steps of length h (that-Y -Z
is, in one cycle).  As long as k is independent of h, it is possible to use

standard Taylor series expans ions  to  show  that the local truncation error

is of the form

hP+1 I* (t),4(t) 1   +  0(hP+2)



5

provi ded  that the solution is sufficiently smooth   (in   r         ) .
vp+2 4   and  4

will be combinations of derivatives of the solution, and hence bounds Of

the form

P+1
" I4'L] 1| 5 D h

can be obtained, where  D  is a combination of bounds  on the derivatives.

Example

Consider the previous example in equations (5), and let k=2.  For

convenience, let n=0 and let y , y.8, etc., be the true values of y(tl),

y'(tl), etc.  Then,

 1 =YO + hy6

y2 = YO + hy6 + h f(YO+hy8, z +hz6't +h)

z  =z  +2 h z'200

Hence,

9y = Y2 - yo - 2hy6 - 2h2yO + 0(h3)

Qz   =   z2   -   zo   -   2hz(;   -   2h2 zg   +   0(h 3)

or

d  = - h2yl + 0(h3)
-Y

dz = - 2h2zg + 0(h3)

(In fact, for general k, we will get

Ar = -k h2yg/2 + 0(h3)

dz = - (kh)2zg/2 + 0(h3)

for Euler's method.)

The order of a multirate method can be determined easily fr6m the
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order of the underlying method( s ) and the interpolation formula(s ) used.

If the order of the integrat  n method M is PM in the sense that, for

y' = f(Y) with y sufficiently smooth

y(tn+1)  -  M(y(ln)'tn'h;f) = 0(hpM+1),

and·if the 6rder of the interpolation formula used is PI in the sense that

z(t) - z(t) = 0(hpI)

when z interpolatez z over an interval kh, then order of the multirate

method is

p = min(PM' PI 

Note that the interpolation method can have a local error one power of h

less than that of the integration method.  This is permissible because
- A

interpolation is used to compute z (and y) which are used in terms of the
A

form hf(y,z,t) and hg(y,z,t) so that another power of h is included.  (At

least,  this  is  true  in all methods  to my knowledge. To prove the above

result, we must place some formal restrictions on M, for example, M must be

Lipschitz continuous with respect to its arguments and must be "h-Lipschitz

continuous" with respect to f, that is, there must exist an L such that
-                              -

||M(y,t,h;f) - M(y,t,h;f)|| S |h| L |   f - f |.

Such  conditions are trivially obtainable  for all practical methods. )
A

In the example above, PM = 1 but PI = 2. We could have used zl = EO
to evaluate

Y2 = Y  + hy6 + hf(yO + hy8,zl't  + h)

in which case the truncation error in y would have been

d      =   -h2yo"   -   h2   f      z'
-Y Z 0

If the multirate method is consistent (pal) and stable (a condition
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that hasn't been defined yett), it will converge as h® for fixedk (or even

for bounded k) - but that will be left as an exercise for .the inquisitive

reader, as the concern of multirate methods is to take large rather than

small steps.  Instead, we want to look at stability for non-zero h, that is,

absolute stability and associated concepts.

Stability

Absolute stability is usually discussed by considering the test

equation y' = Ay.  To look at multirate methods, we must study a system of

equations, for example
- r-

51 a l y f(t)
12   1      +                   (7)

z             _ %1        a22_    1
z -g(t)

Since   our as sunption   is   that   y i s rapidly changing while   z   is   not, it seems·

reasonable to assume that y is not strongly coupled into the equation for z,

or, in other words, that a = 0.  Hence, let us first restrict ourselves21 .

to the problem
-       -

y'       A    U     yY
(8)

Z'       0     Az    Z-    -              -

A  and Az are the eigen values of the system, and are characteristic values

associated with the two components.

Example

Consider the multirate Euler method again.  A little calculation shows

that

y     = (1+hA )kv ·+ hu[(1  Ay)k -1+h A (1+hAY)k -   X Y- l]znk    (9)
nk+k y  vnk                       z

hA                  (hA )
Y                    Y

znk+k p (1+hkAz)znk (10)
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This is absolutely stable if |1 + hA | < 1 and |1 + hkA | < 1. In other
Z

words, it is absolutely stable if the Euler method is absolutely stable for

the uncoupled equations, using  a step  of h  f6r y  and kh  for  z.    If we had

used  a backward Euler method  for  z  ( as would make sense  if  the z component

were stiff but no longer in its transient region), then equation (10) would

be replaced by

Z     = (1-hkA )-lz (11)nk+k z         nk

and the pair (9) and (11) would be absolutely stable for any Re(A ) <0 andZ

|1+hA | < 1.

It  is quite obvious  that  this  is a general result, namely

Theorem

If a method M  is used for y with step size h and M2 is used for z
with  step  size  kh,  then the region of absolute stability  for the multirate

method applied to equation (8) includes the intersections of the strict

regions of absolute stability*   for  'Ml   and M2
provi ded that bounded values

of z lead to bounded values of z(t).

Proof

The equation for z in (8) is not coupled to that for y, hence, inside

' the.absolute stability region for M ' the solution for z decays (after a

finite number of starting steps).  The numerical solution for y is obtained

by applying the method M  to

y'=A  Y+ 2(t)
Y

Since z is bounded, an absolutely stable method will yield a bounded solution.

*By strict absolute stability, we mean that the numerical solution decays

for the test equation y' = Ay.
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(Some additional hypotheses on M  are needed at this point to make this

statement, but are not stated to, avoid going into needless detail.  The

statement is true for all common methods - or one could simply make this

the definition of absolute stability since we haven't defined it for other

methods!)

In  practice,  1& is  likely' to be small rather  than  zero,  and  thi s
3Y

coiild have serious   affe cts on stability of multirate methods. Suppose  we

use the Euler method of earlier examples on
-        .r -

y,       Xy   M     y

Z'       EX      Z
t

we get
.-

Ynk+k all        Clg      .  nk

z Eh 1 + khA      znk+k                 z     nk

where

2 (1 + hly)k - khA  - 1.
Cll = (1 + hly)k + Ush

(hA )2
Y

and

(1 + hAv)k -
1 (1 + hA )k -khA  - 1

(12
= + hA  2 ]ZhA (hX )y                     y

If either 1 + hA  or 1 + khA  are close to one in magnitude, large values
Y           Z

Of EM could place the eigenvalues outside the unit circle and cause insta-

bility.  It is difficult to estimate how serious this might be in cases of

real interest.  In this example, problems do not arise when hA  and khA
Y        Z
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are near zero, and for large values of these numbers, we should probably

consider metho ds for stiff equations. For example, suppose   we   used  the

backward Euler method as

Y =Y + hf(Ynk+i+1, znk+i+1' tnk+i+1 nk+i+1 nk+i

i = 0,...,k-2

z   .   =z   + (i+1)hg(y z t)
nk+1+1 nk nk'  nk'  nk

and

y =y +    hf(ynk+k '     znk+k'     tnk+k  nk+k nk+k-1

Znk+k = Znk + khg(Vnk+k' znk+k' tnk+k)

we find that

-           -

Ynk+k
;

Ynk
=B

Znk+k L  znk _

where

1-hA -Wh -1   d
Y                      11      d12

B=
-Ekh 1 -hkA          0        1

Z

where

I-k
-k+1 2 (1 - hly)    + (1-k)hA  - 1

d   = (1 -hA ) + E#h
11                           Y                                                                (hA ) 2

and

1 - (1 - hA )1-k (1 -.hX ) + (1-k)h X  - 1
1-k

Y                                        Y                               Yd  = 1111[ +A h
12 Z

(hA )2hA (1  -  hA )

For very negat ive values of h A  and hk A z and modest value s of h# and kh€

the eigenvalues of B are clearly less than one, so that we can hope that

methods for stiff equations will be satisfactory. However, present knowl-

'
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edge leads us to be wary of multirate methods unless' the coupling from y

to z through g is either extremely small, or is small compared to terms

such as A  when methods for stiff equations are used.  Note that one ofy

the big savings in multirate stiff methods is that the inevitable system

' of non linear equations only has the dimensionality of y for (k-1) out of

k steps.

--


