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Multirate-Output-Feedback-Based LQ-Optimal
Discrete-Time Sliding Mode Control

S. Janardhanan and Vinay Kariwala

Abstract—The traditional approach for sliding mode control design has
been the design of a controller to achieve a predesigned sliding objec-
tive. However, not much research has been carried out on the design of
the sliding surface. This note presents a technique for designing a slid-
ing surface such that when confined to the surface, the closed-loop system
has optimality in the linear quadratic sense. The paper also proposes a
multirate-output-feedback-based controller that leads the system to the
aforementioned optimal sliding mode.

Index Terms—Optimal control, output feedback, sliding mode control,
uncertain systems.

I. INTRODUCTION

The concept of sliding mode control (SMC) has received much
attention in the past few decades. SMC is a technique in which an
appropriate input is provided so that the system states are confined to
a desired submanifold of the state space. The concept of SMC was
proposed by Emelyanov [1] and Utkin [2], who showed that sliding
mode can be achieved by changing the controller structure. The system
state trajectory is forced to move along a chosen manifold in the state
space, called the sliding manifold, by the use of an appropriate variable
structure control signal.The closed-loop behavior of the system is,
thus, governed by the dynamics of the surface [3], [4]. Researchers
have worked on the idea of robust optimal control in a system using the
concept of variable structure control [5]–[7]. Concepts such as model
following control [5] and integral sliding mode [7] have been used to
design control algorithms that give robust performance. Due to the use
of computers for control purpose, the concept of a digital sliding mode
(DSM) controller design has also been a topic of study during the past
few years [8], [9]. In the case of the DSM design, the control input
is applied only at certain sampling instants and the control effort is
constant over the entire sampling period.

In spite of the availability of a large volume of literature on the
SMC, much less research has been carried out on the design of the
sliding surface [10], [11]. Most of the existing literature suggests that
the sliding surface is designed so that the closed-loop system is stable
and has some desirable properties when confined to it. However, not
much literature is available for identifying and correlating these desired
properties with an appropriate sliding surface for discrete-time systems.
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In their paper on discrete-time variable structure control [9], Gao et al.
have detailed a method for sliding surface design based on eigenvalue
placement. Tang and Misawa [12] proposed a sliding surface design
method, which is based partially on the LQR optimization and partially
on the pole placement. These methods require a priori knowledge of
the best locations of the eigenvalues for the closed-loop system, which
is not realistic. Minimization of a linear quadratic performance index
is a more general property that is desired in many control systems.

This note aims at designing a sliding surface such that when confined
to the surface, the minimization of a specified linear quadratic cost
function [7] for discrete-time systems is guaranteed. It is shown that this
surface can be found by solving a matrix quadratic equation involving
the state and input matrices of the system. The note also proposes
a multirate-output-feedback-based controller that leads the system to
the aforementioned sliding mode. The organization of the rest of the
paper is as follows: Section II describes the problem statement and the
quadratic performance index under consideration. The proposed sliding
surface design is presented in Section III. A state feedback SMC based
on a disturbance estimator is discussed in Section IV. The multirate-
output-feedback-based controller is proposed in Section V. This is
followed by illustration through a numerical example in Section VI
and the conclusion in Section VII.

II. PROBLEM STATEMENT

Consider the discrete-time representation of a controllable and ob-
servable system sampled with a sampling period of τ sec

x(k + 1) = Φτ x(k) + Γτ u(k) + Dτ d(k)

y(k) = Cx(k). (1)

where x ∈ R
n , u ∈ R

m , d(k) ∈ R
n d , and y ∈ R

p . The following as-
sumptions are made regarding the structure of the system.

1) Assumption 1. It is assumed that the disturbance affecting the
system is a matched disturbance [13]. This implies Dτ = Γτ Tm

with Tm being a matrix with dimensions m × nd . In physical
terms, the assumption implies that the disturbance affecting the
system enters through the input channels.

2) Assumption 2. It is assumed, without loss of generality, that the
system (1) is in the normal form [14], [15]. It should be noted
that even if the original system is not in the normal form, there
always exists a similarity transformation z = Tx such that the
system is in normal form in the z-coordinate frame.

The aim is to design the sliding surface and its corresponding con-
troller, such that when the closed-loop system is confined to the sliding
surface, the quadratic performance index [7]

J =
∞∑

k=0

xT (k)Qx(k) + uT
eq (k)Rueq (k) (2)

is minimized. Here, ueq denotes the equivalent control that maintains
the nominal system obtained by ignoring the disturbance in (1)

x(k + 1) = Φτ x(k) + Γτ ueq (k) (3)

on the sliding hyperplane. In (2), Q and R are positive semidefinite
and positive definite weighing matrices, respectively.

III. SLIDING SURFACE DESIGN

Let us partition the state x of the system as x = [ xT
1 xT

2 ]T such
that x1 ∈ R

n−m and x2 ∈ R
m . Due to Assumption 2,

x1 (k + 1) = Φ11x1 (k) + Φ12x2 (k) (4)

x2 (k + 1) = Φ21x1 (k) + Φ22x2 (k) + Γ2ueq (k). (5)

0018-9286/$25.00 © 2008 IEEE
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Note that as the system is assumed to be controllable, Γ2 ∈ R
m×m is

invertible.
Comparing the systems (1) and (4) and (5), it can be seen that with

u(k) = ueq (k)− Γ−1
2 Tm d(k) (6)

both the systems are equivalent. As the disturbances are matched, the
design of the sliding surface for the nominal system is equivalent to the
sliding surface design for the system in (1).

Theorem 1: The optimal sliding function that leads to minimiza-
tion of the quadratic performance index in (2) is of the form s(k) =
[ K I ]x(k), where K is the solution of

KΦ12K + (Φ22 + Γ2F2 )K −KΦ11 − (Γ2F1 + Φ21 ) = 0

with ueq (k) = Fx(k) = [ F1 F2 ]x(k) being the LQR optimal state
feedback control for minimizing (2).

Proof: Consider the sliding function

s(k) = [ K I ]

[
x1 (k)

x2 (k)

]
. (7)

When the system states are on the sliding surface, s(k) = 0. Thus,
x2 (k) = −Kx1 (k). In order to maintain the sliding motion, s(k + 1)
should also be zero. A simple analysis of (4) and (5) reveals that the
control ueq (k) needed to guarantee s(k + 1) = 0, provided s(k) = 0,
is

usm c
eq (k) = −Γ−1

2 (KΦ11 −KΦ12K + Φ21 − Φ22K)x1 (k). (8)

The optimal control input that minimizes the cost function in (2) can
be derived to be [16]

uopt
eq (k) = −

(
R + ΓT

τ PΓτ

)−1(
ΓT

τ P
)
x(k), (9)

where P is the solution of the discrete algebraic Riccati equation [17]

P = Q + ΦT
τ PΦτ −ΦT

τ PΓτ

(
R + ΓT

τ PΓτ

)−1
ΓT

τ PΦτ . (10)

Let the optimal control in (9) be represented as

uopt
eq (k) = [ F1 F2 ]

[
x1 (k)

x2 (k)

]
.

Thus, confined to the sliding surface,

uopt
eq (k) = (F1 − F2K) x1 (k). (11)

For the sliding surface to be optimal, the equivalent control that
maintains the sliding mode should be equal to the linear quadratic
optimal control of the system when confined to the sliding surface.
Equating the control expressions in (11) and (8) and noting that the
equality needs to be satisfied for all x1 (k), the following bilateral
matrix quadratic equation is arrived at

KΦ12K + (Φ22 + Γ2F2 ) K −KΦ11 − (Γ2F1 + Φ21 ) = 0. (12)

The optimal sliding function can then be represented as s(k) =
[ K I ]x(k) = cT x(k), where K is the solution of (12).

A brief explanation for the procedure used to solve (12) has been
provided in the Appendix.

Remark 1: It is worth noting that even if the system (1) is not in the
normal form, the optimal sliding function can be designed as

s(k) = [ K I ] Tx(k)

where the transformation z = Tx renders the system to be in the nor-
mal form in the z-coordinate frame and the sliding function s(k) =
[ K I ]z(k) is optimal for the LQ weighing matrices T −T QT −1 and
R.

IV. DISTURBANCE-ESTIMATOR-BASED CONTROL

With the optimal sliding surface being determined, the sliding mode
control can be easily computed using an appropriate discrete-time SMC
algorithm, as proposed in [18].

To introduce the results in [18], let the bounded disturbance d(k) be
such that |ciDτ d(k)| ≤ δi for all d(k), with ci denoting the ith row of
the sliding parameter cT . It is known that using the control proposed
in [8], the system can be brought within the vicinity of the sliding
surface up to an accuracy of |si (k)| < δi .

In [18], the authors propose an adaptive SMC algorithm of the form

u(k) =

{
uk eq (k), if |uk eq (k)| ≤ u0

u0
u k e q (k )
|u k e q (k ) | , if |uk eq (k)| > u0

(13)

uk eq (k) = −
(
cT Γτ

)−1
(cT Φτ x(k) + cT Dτ d(k)) (14)

where u0 is the maximum allowable control magnitude. In order to
ensure that the system state moves toward the sliding surface, u0 needs
to satisfy the inequality

u0 ≥ |(cT Γτ )−1 | |(cT Φτ − cT )x(k) + cT Dτ d(k)|.

The adaptive algorithm ensures that the system always moves to-
ward the sliding surface whenever |uk eq (k)| > u0 and moves on to the
sliding surface once the condition |uk eq (k)| ≤ u0 is satisfied.

However, the exact implementation of this control is not possible as
d(k) is not a measurable quantity. Therefore, during the implementation
of the algorithm, the mean value of d(k) is generally used in place of
d(k) in the control expression. This leads to a sliding mode band of
width δi in the case of adaptive discrete-time sliding mode.

The resultant system response is still sensitive to the disturbances
present in the system and the ultimate deviation of the closed-loop
system response from the sliding surface is proportional to δi . We pro-
pose an SMC algorithm based on the adaptive sliding mode algorithm
in [18], wherein the aforementioned sensitivity is greatly reduced.

A. Modified Algorithm

The proposed algorithm is based on the concept of a disturbance
estimator [19]. This algorithm reduces the width of the sliding mode
band from being proportional to the magnitude of the disturbance to
a smaller band proportional to the rate of change of the disturbance.
The control algorithm is most efficient in cases where the disturbance
is slowly varying.

Consider the system in (1). It can be seen that

s(k) = cT Φτ x(k − 1) + cT Γτ u(k − 1) + cT Dτ d(k − 1). (15)

From (15),

cT Dτ d(k − 1) = s(k)− cT (Φτ x(k − 1) + Γτ u(k − 1)).

If the disturbance is slowly varying, it can be said that |d(k)−
d(k − 1)| is not significant. Hence, d(k − 1) would be a good estimate
of d(k). Thus, substituting d(k − 1) in place of d(k) in the equivalent
control expression (14), the modified control law is

u(k) = −(cT Γτ )−1 (cT Φτ x(k) + cT Dτ d(k − 1)). (16)

When the bound u0 is taken into consideration, (16) can be expressed
as

ui (k) = u0 , i sat

(
ūi (k)
u0 , i

)
(17)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 13, 2009 at 22:52 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008 369

where ui and u0 , i denote the ith element of u and u0 , respectively. The
disturbance estimated control ū(k) can be derived to be

ū(k) = − (cT Γτ )−1 (cT (Φτ + I)x(k)

− cT Φτ x(k − 1)) + u(k − 1) (18)

and the vectorized saturation function is defined as [20]

sat(φi ) =

{
φi , if |φi | ≤ 1

sgn(φi ), if |φi | > 1.

Remark 2: At k = 0, there is no prior system information available.
Hence, at this stage, the control expression in (14), with d(0) assumed
to be zero, is used to compute u(0). The modified algorithm (17) may
be used to compute u(k) for k ≥ 1.

V. MULTIRATE OUTPUT FEEDBACK APPROACH

The aforementioned control strategies are based on full-state feed-
back. However, entire state information may not be measured in prac-
tice. Since the output is available, output feedback can be used for con-
troller design. Contrary to state feedback, however, complete system
stabilization using static output feedback is still an open problem [21].
Using the concept of multirate output feedback [22], wherein the sys-
tem output is sampled at a faster rate compared to the control input, it
is possible to realize the effect of state feedback without incurring the
added complexity of a dynamic controller [23].

In the case of multirate output feedback, the system states are rep-
resented in terms of past outputs and control inputs. The multirate
sampling based disturbance estimator [22] estimates the disturbance
affecting the system in addition to the system state.

Consider the system sampled with a sampling time of ∆ = τ /N sec,
where N is an integer greater than the observability index [22] of the
system. Let the presentation be

x(k + 1) = Φx(k) + Γu(k) + D∆ d(k)

y(k) = Cx(k) (19)

where

Φ = (Φτ )1/N , Γ =

(
N −1∑
i=0

Φ

)−1

Γτ

D∆ =

(
N −1∑
i=0

Φ

)−1

Dτ .

Consider the system with the control input being sampled with a
sampling period of τ sec and the system output being sampled every
∆ sec. This multirate sampled system can be described as [24]

x(k + 1) = Φτ x(k) + Γτ u(k) + Dτ d(k) (20)

yk+1 = C0x(k) + D0u(k) + Cdd(k) (21)

where yk is the lifted output given as

yk = [ yT ((k− 1)τ) yT ((k− 1)τ + ∆) · · · yT (kτ −∆)]T ,

and the matrices C0 , D0 , and Cd are defined as

C0 =


C

CΦ

CΦ2

...

CΦN −1

 , D0 =


0

CΓ

CΦΓ
...

C
∑N −2

i=0 ΦiΓ

 ,

Cd =



0

CD∆

CΦD∆

...

C
∑N −2

i=0 ΦiD∆

 .

From the above system description, a relationship between the avail-
able information i.e., past output samples and control input samples,
and the system states and disturbance vector, can be derived in the
following manner.

Due to the system being observable and N being greater than the
observability index of the system, the matrix [ C0 Cd ] would be of
full rank. Thus, it can be said from (21) that[

x(k)

d(k)

]
=

[
M1

M2

]
(yk+1 −D0u(k)) (22)

where [
M1

M2

]
= M = [ C0 Cd ]†

represents the Moore-Penrose generalized inverse of [ C0 Cd ].
The discrete-time system (1) can be represented as[

x(k + 1)

d(k)

]
=

[
Φτ Dτ

0 I

][
x(k)

d(k)

]
+

[
Γτ

0

]
u(k). (23)

Substituting (22) in (23) and shifting the time instant,[
x(k)

d(k − 1)

]
=

[
Φτ M1 + Dτ M2 Γτ − (Φτ M1 + Dτ M2 )D0

M2 −M2D0

]
×
[

yk

u(k − 1)

]
. (24)

Substituting the result from (24) in the adaptive sliding mode control
expression (16), the multirate sampled realization of the equivalent
control would be

ueq (k) = −(cT Γτ )T (cT Φτ x(k) + cT Dτ d(k − 1))

= Fy yk + Fu u(k − 1).

where

Fy = −(cT Γτ )−1cT
(
Φ2

τ M1 + (Φτ + I)Dτ M2

)
,

Fu = −(cT Γτ )−1cT
(
Φτ Γτ −Φ2

τ M1D0 − (Φτ + I)Dτ M2D0

)
.

The multirate output feedback controller in (25) emulates the state
feedback controller in (16) exactly. Thus, the closed loop response of
the system using the multirate output feedback controller would be
almost equal to that obtained by the state feedback controller in (16).

VI. ILLUSTRATIVE EXAMPLE

To illustrate the proposed results, we consider the continuous-time
system representation of a three cart system [25] given in Fig. 1 for the
system parameters m = 1, k = 2, and b = 3 as

ẋ = Ax + Bu + Dc d,

y = Cx
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Fig. 1. Three-cart system.

Fig. 2. Comparison of the evolution of sliding function s1 using adaptive SMC (solid), disturbance estimator (dash–dot), and multirate output feedback (dash).

where,

A =


0 1 0 0 0 0
−2 0 2 0 0 0
0 0 0 1 0 0
2 0 −4 −3 2 3
0 0 0 0 0 1
0 0 2 3 −2 −3

 , B =


0 0
1 0
0 0
0 0
0 0
0 1

 ,

Dc =


0
1
0
0
0
0

 , C =

[ 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

and where the state vector x = [ q1 q̇1 q2 q̇2 q3 q̇3 ]T is com-
posed of the cart positions and velocities, the input vector u =
[ u1 u2 ]T represents the force applied on the system, d = f rep-
resents the disturbance and the output vector composed of the cart
positions is y = [ q1 q2 q3 ]T .

The system is sampled with τ = 0.3 sec and ∆ = 0.1 sec. The con-
trol is required to optimize the quadratic performance index with
Q = diag (60, 60, 60, 60, 60, 60) and R = diag (70, 70). Using the
procedure described in Section III, the optimal sliding function pa-
rameter can be determined to be

cT =

[
9.3723 2.0382 −8.1185 −0.7194 −0.5966 0.7101

11.6105 −1.8242 −10.8459 2.2365 1.3770 4.0308

]
.

For the simulation purpose, an initial system state of X0 =
[1 2 2 3 15 0.5]T and a slowly varying disturbance signal of
d(k) = 5 sin(k/20)exp(−k/500) is used. The maximum allowable con-
trol magnitude is taken as u0 = (10, 10). However, since no informa-
tion is available for the multirate controller, an estimated initial state of
Xe = [ 1 0 2 0 15 0 ]T is used to generate the multirate output
feedback control signal for k = 0.

Figs. 2–5 provide a comparison of the system responses using adap-
tive sliding mode [18] and the proposed state- and multirate-output-
feedback-based control techniques. Figs. 2 and 3 show the evolution of
the sliding functions with the application of the control laws discussed
in Sections IV and Sections V. It can be seen from Fig. 2 that the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 13, 2009 at 22:52 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008 371

Fig. 3. Comparison of the evolution of sliding function s2 using adaptive SMC (solid), disturbance estimator (dash–dot), and multirate output feedback (dash).

Fig. 4. Comparative plots of control input u1 using adaptive SMC (solid), disturbance estimator (dash–dot), and multirate output feedback (dash).
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Fig. 5. Comparative plots of control input u2 using adaptive SMC (solid), disturbance estimator (dash–dot), and multirate output feedback (dash).

adaptive SMC is not able to nullify the disturbance as efficiently as the
proposed state- or multirate output feedback control laws. The plots
also show that the responses for the modified-state feedback and the
multirate output feedback laws are almost identical, indicating that the
output feedback control is able to emulate the state feedback control.
It is clear from Fig. 3 that the initial response of the multirate con-
trol is different from that of the other state-feedback-based controls.
However, the output feedback control quickly recovers and ultimately
gives a response that is almost equal to the state feedback case. The
plots of the control inputs are given in Figs. 4 and 5. It can be observed
that the control signals for the modified state feedback control and the
multirate control are similar. A sinusoidal component can be clearly
seen in the proposed control input in Fig. 4. This component helps in
counteracting the disturbance and prevents the disturbance from affect-
ing other parts of the system. The control input u2 in Fig. 5 is affected
indirectly by the disturbance in case of the adaptive controller. On the
other hand, there is no effect of the disturbance on u2 while using the
proposed controller. This is because u1 is effectively used to counteract
the disturbance.

VII. CONCLUSIONS

A procedure for designing an optimal sliding surface for discrete-
time systems has been proposed in this paper. The designed sliding sur-
face leads to the minimization of a linear quadratic performance index,
when the system is in sliding mode. The paper also proposes a modified
state feedback technique to achieve the aforementioned sliding mode
in discrete-time systems with matched disturbances. A disturbance-
estimator-based output feedback controller is also presented in the
paper. The proposed control laws are validated through a example of

a three cart mechanical system. The simulation results satisfactorily
confirm the validity of the proposed control strategies.

The numerical example shows that the multirate output feedback
control emulates the behavior of the state feedback control in spite of
the unavailability of full state information of the system. It may be
noted here that the proposed algorithm would be effective against any
matched and bounded uncertainty present in the system, irrespective
of its source being an external disturbance or uncertainty in system
dynamics.

APPENDIX

SOLVING MATRIX QUADRATIC EQUATIONS

Equation (12) is a matrix quadratic equation which has the following
general representation

Ω(X) = Ψ00 + Ψ01X + XΨ10 + XΨ11X = 0 (25)

where X is the unknown matrix-valued variable.
Let E be a perturbation matrix with the same dimension as X . Now,

Ω(X + E) = Ω(X) + ((Ψ01 + XΨ11 )E + E(Ψ10 + Ψ11X))

+ EΨ11E

= Ω(X) + DX (E) + EΨ11E. (26)

Here DX (E) is the Fréchet derivative of Ω at X in the direction E .
A modified Newton’s method [26] can be used to solve (25). In

Newton’s method, the second-order term of E in (26) is dropped and
the equation is solved iteratively. Ei is defined as the solution of

(Ψ01 + Ψ11Xi )Ei + Ei (Ψ10 + XiΨ11 ) = −Ω(Xi ) (27)
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in each step and Xi+1 is set as Xi+1 = Xi + Ei until ‖Ω(Xi )‖ be-
comes less than a specified tolerance value. It may be noted that (27)
is a Sylvester equation for Ei .
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Unknown Input Observers for Switched Nonlinear
Discrete Time Descriptor Systems

D. Koenig, B. Marx, and D. Jacquet

Abstract—In this paper, a linear matrix inequality technique for the
state estimation of discrete-time, nonlinear switched descriptor systems is
developed. The considered systems are composed of linear and nonlinear
parts. An observer giving a perfect unknown input decoupled state estima-
tion is proposed. Sufficient conditions of global convergence of observers
are proposed. Numerical examples are given to illustrate this method.

Index Terms—Hybrid systems, polyquadratic stability, switched de-
scriptor systems, unknown input (UI) observers.

I. INTRODUCTION

Switched control and/or observer systems have recently received
much attention. Switched systems belong to a special class of hybrid
systems. They are defined by a collection of dynamical (linear and/or
nonlinear) subsystems together with a switching rule that specifies
the switching between these subsystems. A survey on basic problems
in switched system stability and design is available in [26] (see the
references therein). Many such problems occur in practice: power con-
verter systems where the switching signal is determined by pulse with
pulsewidth modulation (PWM) and gain scheduling control systems
are examples among many others. One can study the existence of a
switching rule that ensures the stability of the switched system. One
can assume that the switching sequence is not known a priori, and
look for stability results under arbitrary switching sequences. On the
one hand, most of the contributions in this field deal with stability
analysis and control synthesis [7], [18]. On the other hand, unknown
input observers (UIOs) have been widely studied for nonsingular sys-
tems [9], [29], singular systems [6], [10], [16], nonlinear descriptor
systems [17], and recently, for switched nonsingular systems [20]. Nev-
ertheless, there is no result extending the method mentioned in [20] to
the general representation of switched nonlinear descriptor systems,
although many practical systems can be described by them [2], and
their fault diagnosis may be based on UIO design [21].

As mentioned in [32], there are generally two broad approaches for
a nonlinear observer design. In the first approach, the objective is to
find a coordinate transformation so that the state-estimation error dy-
namics are linear in the new coordinates, and then, linear techniques
can be performed [13], [14], [30]. Necessary and sufficient conditions
have been established [19], [30] for the existence of such a coordinate
transformation. The second approach does not need the transforma-
tion, and the observer design is directly based on the original sys-
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