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Abstract. Chung and Ross [SIAM J. Comput., 20 (1991), pp. 726–736] conjectured that
the minimum number m(n, r) of middle-stage switches for the symmetric 3-stage Clos network
C(n,m(n, r), r) to be rearrangeable in the multirate environment is at most 2n − 1. This problem
is equivalent to a generalized version of the bipartite graph edge-coloring problem. The best bounds
known so far on this function m(n, r) are 11n/9 ≤ m(n, r) ≤ 41n/16+O(1), for n, r ≥ 2, derived by
Du et al. [SIAM J. Comput., 28 (1999), pp. 464–471]. In this paper, we make several contributions.
First, we give evidence to show that even a stronger result might hold. In particular, we give a color-
ing algorithm to show that m(n, r) ≤ �(r + 1)n/2�, which implies m(n, 2) ≤ �3n/2�—stronger than
the conjectured value of 2n−1. Second, we derive that m(2, r) = 3 by an elegant argument. Last, we
improve both the best upper and lower bounds given above: �5n/4� ≤ m(n, r) ≤ 2n−1+�(r−1)/2�,
where the upper bound is an improvement over 41n/16 when r is relatively small compared to n.
We also conjecture that m(n, r) ≤ �2n(1− 1/2r)�.
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1. Introduction. The Clos network has been widely used for data communica-
tions and parallel computing systems. Quite a lot of research efforts [1, 2, 3, 5, 6, 9, 10,
11, 13, 14, 15, 16, 17, 22] have been put into investigating the nonblocking properties
and rearrangeability of the Clos network. The 3-stage Clos network was paid special
attention to since it can be expanded in a “straightforward” way to the multistage
Clos network. Recently, Ngo and Pan [18] observed that the 3-stage Clos network
is “equivalent” to the wavelength division multiplexed (WDM) split cross-connects
[20, 21], giving new applications to the classic Clos networks. Let us first formally
introduce some related concepts.

The Clos network C(n1, r1,m, n2, r2) is a 3-stage interconnection network, where
the first stage consists of r1 crossbars of size n1 × m, the last stage has r2 crossbars
of dimension m× n2, and the middle stage has m crossbars of dimension r1 × r2 (see
Figure 1). Each input switch Ii (i = 1, . . . , r1) is connected to each middle switch
Mj (j = 1, . . . ,m). Similarly, the middle stage and the last stage are fully connected.
When n1 = n2 = n and r1 = r2 = r, the network is called the symmetric 3-stage
Clos network, denoted by C(n,m, r). Any switch is assumed to be nonblocking; i.e.,
any inlet can be connected to any outlet as long as there is no conflict on the outlet.
A switch of dimension p × q could be thought of as a crossbar of size p × q with pq
cross-points. Having too many cross-points is expensive, and we would like to design
a huge switch using smaller switches with fewer cross-points than when a brute-force
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MULTIRATE REARRANGEABLE CLOS NETWORKS 1041
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Fig. 1. The 3-stage Clos network C(n1, r1,m, n2, r2).

design is used. The inlets (outlets) of the input (output) switches are the inputs
(outputs) of the network. Inputs and outputs are referred to as external links, while
links between switches are referred to as internal links.

In the multirate environment, a connection request is a triple (i, j, w), where i is
an inlet, j an outlet, and w the weight. A request frame is a collection of requests
such that the total weight of all requests in the frame involving a fixed inlet or outlet
does not exceed unity. To discuss routing it is convenient to assume that all links are
directed from left to right. Thus a path from an inlet to any outlet always consists of
the following sequence: an inlet link → an input switch → a link → a center switch
→ a link → an output switch → an outlet link. Furthermore, since the crossbars are
assumed to be nonblocking, a request (i, j, w) is routable if and only if there exists a
path from i to j such that every link on this path has unused capacity at least 1−w
before carrying out this request. A request frame is routable if there exists a set of
paths, one for each request, such that for every link the sum of weights of all requests
going through it does not exceed unity. The Clos network C(n,m, r) is said to be
multirate rearrangeable (or just rearrangeable, as in this paper we consider only the
multirate environment) if every request frame is routable.

Let m(n, r) denote the minimum value of m such that C(n,m, r) is multirate
rearrangeable for n, r ≥ 2. (The cases where either n or r are 1 are trivial; hence we
consider only n, r ≥ 2 from here on.) Our problem is to find m(n, r) or at least some
good bounds for this function.

The problem appears to be difficult. Let us preview some previous works on
this problem. Melen and Turner [16] initiated the research on multirate switching
networks. In 1991, Chung and Ross [3] conjectured that m(n, r) ≤ 2n − 1 and until
now no one has been able to prove or disprove the conjecture. The best bounds known
so far on this function m(n, r) were obtained by Du et al. [5]:

11n/9 ≤ m(n, r) ≤ 41n/16 +O(1).

Lin et al. [14] confirmed Chung–Ross conjecture for a restricted discrete bandwidth
case where each connection has a weight chosen from a set {1 ≥ w1 > · · · > wh >
1/2 ≥ wh+1 > · · · > wk} which satisfies the condition that wi is an integer multiple
of wi+1 for i = h+1, . . . , k− 1. Hu et al. [10] studied the monotone routing strategy

D
ow

nl
oa

de
d 

01
/2

7/
15

 to
 1

28
.2

05
.1

14
.9

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1042 HUNG Q. NGO AND VAN H. VU

and showed that under this strategy

m(n, r) ≤ 2n+ 1 for n = 2, 3, 4,(1)

m(n, r) ≤ 2n+ 3 for n = 5, 6.(2)

Ngo [17] proposed the grouping algorithm which shows that m(n, r) ≤ 2n− 1+ r and
that m(n, r) ≤ 2n+ n−1

2k whenever r ≤ n
2k−1

.
In this paper, we give evidence to show that a stronger version of Chung-Ross

conjecture might hold. In particular, we show that m(n, r) ≤ 	 (r+1)n
2 
, which implies

m(n, 2) ≤ ⌈
3n
2

⌉
. This is stronger than the conjectured value of 2n− 1. We conjecture

that

m(n, r) ≤
⌊
2n

(
1− 1

2r

)⌋
, n, r ≥ 2.

We believe that the new conjectured upper bound is also the correct value for m(n, r).
Second, we verify that Chung and Ross were right on target when n = 2, i.e., m(2, r) =
3, by a new elegant argument. Last, we give better upper and lower bounds for the
general case: ⌈

5n

4

⌉
≤ m(n, r) ≤ 2n− 1 +

⌈
r − 1

2

⌉
.

All these are done in the context of a generalized version of the edge-coloring problem
on weighted bipartite graphs to be introduced in the next section. These weighted
graphs have maximum degree n in the weighted sense.

As a side note, Ngo and Pan [18] showed that the 3-stage Clos network is equiv-
alent to the WDM split cross-connects [20, 21] under this multirate environment;
hence the results in this paper also apply to the split cross-connects. Each rate can
be thought of as the bandwidth fraction of a wavelength obtained from time division
multiplexing.

2. A generalized bipartite graph edge-coloring problem. Given a request
frame F , define a weighted bipartite multigraphGF = (I,O;E), where I (respectively,
O) contains all the input (respectively, output) switches. There is an edge with weight
w between vertices X, Y of G for each request (x, y, w), where x (respectively, y) is
an inlet (respectively, outlet) of X (respectively, Y ). C(n,m, r) is rearrangeable if
and only if for all F the edges of GF can be m-colored such that at every vertex the
total weight of edges of the same color incident to this vertex is at most unity. To see
this, just associate each color with a center switch.

We now formally define the equivalent bipartite graph edge-coloring problem.
Throughout this paper we assume n, r ≥ 2 are integers. Let Bn

r be the collection of
edge-weighted r × r bipartite multigraphs G = (A,B;E) (|A| = |B| = r) with weight
function w : E → (0, 1] satisfying the condition that for every v ∈ V (G) = A ∪ B,
the set I(v) of edges incident to v can be partitioned into n groups g(v, i), 1 ≤ i ≤ n,
such that ∑

e∈g(v,i)

w(e) ≤ 1 ∀i = 1, . . . , n.(3)

We shall refer to condition (3) as the grouping condition. The grouping condition
simply refers to the fact that the total weight of all requests from an inlet or to an
outlet is at most unity.
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MULTIRATE REARRANGEABLE CLOS NETWORKS 1043

A k-edge-coloring of G ∈ Bn
r is a coloring l : E(G) → C, where C is a set of k

colors, such that for every v ∈ V (G) and every color c ∈ C

∑
e∈I(v)
l(e)=c

w(e) ≤ 1.(4)

Let m(n, r) be the minimum integer k such that every G ∈ Bn
r is k-edge-colorable.

Our job is to find good bounds for m(n, r) or the exact value if possible. Notice that
when all the weights are 1, this problem reduces to the edge-coloring of a bipartite
graph with maximum degree at most n. Thus, m(n, r) = n when the weights are all
unity. This can be shown as a trivial consequence of P. Hall’s matching condition or
of König’s line coloring theorem [12].

3. A new lower bound. The main result of this section is the following theo-
rem.

Theorem 3.1. For integers n, r ≥ 2, we have

m(n, r) ≥ m(n, 2) ≥
⌈
5n

4

⌉
when n is even

and

m(n, r) ≥ m(n, 2) ≥
⌈
5n− 1

4

⌉
when n is odd.

Proof. The natural approach to find a lower bound k for m(n, r) is to find a
particular graph G ∈ Bn

r which requires at least k colors. The fact that m(n, r) ≥
m(n, 2) is trivial. To show the inequality for even n, consider the following graph
G ∈ B2

r :
• G = ({1, 2}, {1′, 2′};E).
• There are n edges from 1 to 1′ with weight 0.6.
• There are n edges from 1 to 2′ with weight 0.4.
• There are n/2 edges from 2 to 2′ with weight 1.

The grouping condition is easily seen to be satisfiable. The 0.6-edges in I(1) require
n colors. Let k be the number of colors shared by the 0.6-edges and 0.4-edges of I(1).
Then, looking from vertex 1 we need at least n + n−k

2 colors. On the other hand,

looking from vertex 2′ we need at least n
2 + k + n−k

2 colors. Consequently, the total
number of colors needed is at least

max

{
n+

n− k

2
,

n

2
+ k +

n− k

2

}
≥ (n+ n−k

2 ) + (n2 + k + n−k
2 )

2

=
5n

4
.

The case when n is odd can be shown similarly.

4. The exact value of m(2, r). The main result of this section is an algorithm
to color all graphs in B2

r using at most three colors.
Theorem 4.1. When r ≥ 2, we have

m(2, r) = 3.D
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1044 HUNG Q. NGO AND VAN H. VU

Proof. Theorem 3.1 implies m(2, r) ≥ 3. We are left to show that every graph
G ∈ B2

r is 3-colorable. For G = (A,B;E) ∈ B2
r , let A = B = {1, 2, . . . , r}. The

grouping condition indicates that edges incident to each vertex v could be partitioned
into two groups g(v, 1) and g(v, 2) with total weight at each group at most 1. For
i, j ∈ {1, 2} and a ∈ A, b ∈ B, let

wij(a, b) =
∑

e=(a,b)∈E
e∈g(a,i)∩g(b,j)

w(e).(5)

In other words, wij(a, b) is the total weight of all edges e from a ∈ A to b ∈ B, where
e belongs to group i of vertex a and group j of vertex b. The grouping condition
implies that for a fixed i0 ∈ {1, 2} and a0 ∈ A, we have

∑
b∈B

(wi01(a0, b) + wi02(a0, b)) ≤ 1.(6)

Similarly, for a fixed j0 ∈ {1, 2} and b0 ∈ B, we get

∑
a∈A

(w1j0(a, b0) + w2j0(a, b0)) ≤ 1.(7)

Clearly, the number of colors needed to color G does not change if at any vertex
v ∈ V we relabel the groups g(v, 1) and g(v, 2). (Namely, group 1 becomes group 2
and vice versa.) This relabelling does change the values wij(v, b) or wij(a, v), though.
Now, relabel the groups at all vertices of G to maximize the following sum:

∑
a∈A,
b∈B

(w11(a, b) + w22(a, b)) .(8)

To this end, we use three colors to color all edges of G as follows:
• One color is for all edges in

⋃
a∈A,
b∈B

(g(a, 1) ∩ g(b, 1)) .(9)

• Another color is for all edges in
⋃

a∈A,
b∈B

(g(a, 2) ∩ g(b, 2)) .(10)

• The last color is for all edges in
⋃

a∈A,
b∈B

(g(a, 1) ∩ g(b, 2))
⋃ ⋃

a∈A,
b∈B

(g(a, 2) ∩ g(b, 1)) .(11)

It is straightforward to verify that all edges belong to one of the three color classes.
To show that this is a valid coloring, we shall verify that the total weight of edges at
each color class which are incident to the same vertex is at most 1. The total weight
of edges of color class (9) which are incident to vertex a ∈ A is

∑
b∈B

w11(a, b) ≤
∑
b∈B

(w11(a, b) + w12(a, b)) ≤ 1.
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MULTIRATE REARRANGEABLE CLOS NETWORKS 1045

The cases of color class (9) with a vertex b ∈ B and of color class (10) are done
similarly.

Last, the total weight of edges of color class (11) which are incident to vertex
a ∈ A is

∑
b∈B

(w12(a, b) + w21(a, b)) .(12)

If this sum is > 1, then

∑
b∈B

(w11(a, b) + w22(a, b)) < 1,(13)

since
∑
b∈B

(w12(a, b) + w21(a, b)) +
∑
b∈B

(w11(a, b) + w22(a, b))

=
∑
b∈B

(w11(a, b) + w12(a, b)) +
∑
b∈B

(w21(a, b) + w22(a, b))

≤ 2.

However, (13) and the fact that the sum (12) is > 1 imply that relabelling the two
groups g(a, 1) and g(a, 2) would increase the sum (8), contradicting the maximality
of (8).

The above result can be extended in a “straightforward” way to show the following
corollary.

Corollary 4.2.
(i) m(2k, r) ≤ 3k for any positive integer k ≥ 1.
(ii) m(n, r) ≤ 3�log2 n	.
Basically, for part (i) we can induct on k, and part (ii) follows from (i). This

extended result gives good bounds when n is small. In fact, we can also show results
such as m(3, r) ≤ 6 by the same idea, with more tedious analysis. Since these results
are not generally good and the arguments, though intuitively simple, are too tedious
to present, we omit their proofs here.

5. The new upper bounds. Next, we give a coloring algorithm yielding a
general upper bound which is good for small values of r. The new upper bound
implies a stronger value than the conjectured value of 2n− 1 when r = 2.

Theorem 5.1. When n, r ≥ 2, we have

m(n, r) ≤
⌈(

r + 1

2

)
n

⌉
.

Proof. Consider G = (A,B;E) ∈ Bn
r . Recall that for each v ∈ V = A ∪ B, we

use I(v) to denote the set of edges incident to v and g(v, i) to denote the set of edges
in group i of v. Now, for each vertex u ∈ A (respectively, B) and each vertex v ∈ B
(respectively, A), define n sets of edges Su(v, i) as follows:

Su(v, i) = g(u, i) ∩ I(v), i = 1, . . . , n.(14)

In other words, Su(v, i) is the set of edges in group i of u which are incident to v. Let
wu(v, i) be the total weight of edges in Su(v, i). (We set wu(v, i) = 0 if Su(v, i) = ∅.)
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1046 HUNG Q. NGO AND VAN H. VU

Then the grouping condition on G implies that

∑
b∈B

wa(b, i) ≤ 1 ∀a ∈ A, i = 1, . . . , n,(15)

∑
a∈A

wb(a, i) ≤ 1 ∀b ∈ B, i = 1, . . . , n.(16)

To this end, for each u ∈ A (respectively, B) and each v ∈ B (respectively, A),
let Lu(v) be the set of group names i, 1 ≤ i ≤ n, for which wu(v, i) > 1/2, and let
L̄u(v) be the set of the rest of the indices. More formally,

Lu(v) = {i | wu(v, i) > 1/2, i = 1, . . . , n},(17)

L̄u(v) = {1, . . . , n} − Lu(v).(18)

Due to (15), for each index i and a particular vertex a ∈ A, there can be at most
one b ∈ B where wa(b, i) > 1/2. Hence, for each a ∈ A we must have

∑
b∈B

|La(b)| ≤ n.(19)

Similarly, due to (16), for each b ∈ B the following holds:

∑
a∈A

|Lb(a)| ≤ n.(20)

Now, define a weighted bipartite multigraph G′ = (A,B;E′) as follows.
• For each a ∈ A and b ∈ B, there are n edges between a and b in G′, denoted
by e(a, b, i), 1 ≤ i ≤ n. The weight of e(a, b, i), denoted by w′(a, b, i), is
defined below. Note that G′ is rn-regular.

• For each a ∈ A and b ∈ B, if |La(b)| ≤ |Lb(a)|, then

w′(a, b, i) = wa(b, i), i = 1, . . . , n.

Otherwise, when |La(b)| > |Lb(a)| define

w′(a, b, i) = wb(a, i), i = 1, . . . , n.

First, we claim that any valid coloring of G′ induces a valid coloring of G. The
term “valid coloring” here means that the total weight of same color edges which are
incident to a particular vertex of G′ is at most 1. To see this, suppose we are given
a valid coloring of G′ where the edge e(a, b, i) is colored c(a, b, i), say. Then when
|La(b)| ≤ |Lb(a)| we color all edges in the set Sa(b, i) with color c(a, b, i). On the
other hand, when |La(b)| > |Lb(a)| the set Sb(a, i) gets the color instead.

To this end, let H be the spanning bipartite subgraph of G′ obtained from G′ by
taking only edges whose weights are > 1/2. We claim that H has maximum degree
at most n. To see this, consider any vertex a ∈ A of H. We have

degH(a) =
∑
b∈B

min{|La(b)|, |Lb(a)|} ≤
∑
b∈B

La(b) ≤ n,(21)

by (19). Similarly, degH(b) ≤ n for all b ∈ B. Add more edges of G′ into H so
that H is n-regular. This is possible since G′ has n parallel edges between any pair
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MULTIRATE REARRANGEABLE CLOS NETWORKS 1047

(a, b) ∈ A×B. König’s line coloring theorem [12] implies that H is n-edge-colorable.
(The actual coloring algorithms can be found in [4, 7, 8], for instance.) The graph
G′−E(H) is (r−1)n-regular; hence it is (r−1)n-edge-colorable. However, each edge
of G′ − E(H) has weight at most 1/2; hence every two colors can be combined into
one without violating the condition that the total weight of same color edges at each
vertex is at most 1. Consequently, we can color edges of G′ with

n+

⌈(
r − 1

2

)
n

⌉
=

⌈(
r + 1

2

)
n

⌉

colors.
Note that this theorem gives the best upper bounds so far for m(n, r) when r is

small, as formally put in the following corollary.
Corollary 5.2. When n ≥ 2, we have
(i) m(n, 2) ≤ 	 3n

2 
,
(ii) m(n, 3) ≤ 2n,
(iii) m(n, 4) ≤ 	 5n

2 
.
The argument given in Theorem 5.1 can be extended easily to show the following

corollary, whose proof we omit.
Corollary 5.3. The general 3-stage Clos network C(n1, r1,m, n2, r2) is multi-

rate rearrangeable when

m ≥ (r + 1)n

2
,

where n = max{n1, n2}, and r = max{r1, r2}.
Theorem 3.1 and part (i) of Corollary 5.2 imply 5n/4 ≤ m(n, 2) ≤ 6n/4. Given

that the number 5/4 is somewhat “ugly,” we make the following conjecture.
Conjecture 5.4.

m(n, 2) =

⌊
3n

2

⌋
, n ≥ 2.

In fact, recalling m(2, r) = 3, it is very tempting to also make the following conjecture.
Conjecture 5.5. The symmetric 3-stage Clos network C(n,m, r) is multirate

rearrangeable if there are at least
⌊(

1 +
1

2
+ · · ·+ 1

2r−1

)
n

⌋
=

⌊
2n

(
1− 1

2r

)⌋

middle-stage switches. In other words,

m(n, r) ≤
⌊
2n

(
1− 1

2r

)⌋
.

We believe that the upper bound is also the exact value for m(n, r). However, as
there is no rigorous evidence yet, we have conjectured a weaker result. Next, we
give another upper bound which beats all existing bounds when r is relatively small
compared to n.

Theorem 5.6. When n, r ≥ 2, we have

m(n, r) ≤ 2n− 1 +

⌈
r − 1

2

⌉
.(22)
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Proof. Consider G = (A,B;E) ∈ Bn
r . Suppose e and e′ are two edges connecting

two vertices a ∈ A and b ∈ B, with w(e) +w(e′) ≤ 1. Create a new graph G′ from G
by collapsing e and e′ into one edge with weight w(e) + w(e′). Then a valid coloring
of G′ induces a valid coloring of G.

Now, for every pair (a, b) ∈ A×B, as long as there are two edges e and e′ between
a and b for which w(e)+w(e′) ≤ 1, collapse e and e′ into one as described. After this
procedure is finished, between any pair a and b there is at most one edge with weight
≤ 1/2, and the rest have weights > 1/2. Let H be the resulting graph. Call the edges
of H with weight > 1/2 heavy and the rest of the edges light. Since the total weight
of edges incident to each vertex of G is at most n, every vertex of H is incident to at
most 2n − 1 heavy edges. In other words, the heavy degree of any vertex of H is at
most 2n− 1.

We claim that the light degree of any vertex of H is at most r − 1. To see this,
consider a ∈ A. If the heavy degree of A is 2n−1, then no light edge incident to a can
share the same neighbor as a heavy edge of a. Suppose, on the contrary, that there
is a heavy edge e and a light edge e′, both of which connect a and b. Then the total
weight of the other 2n−2 heavy edges of a except e is > n−1; hence w(e)+w(e′) < 1,
as the total weight associated with a is at most n. Consequently, e and e′ must have
been collapsed by our procedure. Thus, the light degree of a is at most r− 1. Now, if
the heavy degree of a is at most 2n− 2, then there is also a vertex b ∈ B with heavy
degree at most 2n − 2. If there was no light edge between a and b, then the light
degree of a is at most r − 1. If there was one light edge between a and b, relabel this
light edge “heavy,” which does not change the fact that the maximum heavy degree
of H is at most 2n− 1. Again, the light degree of a is now at most r − 1.

König’s line coloring theorem [12] implies that we can use at most 2n−1 colors to
color the heavy edges of H and at most r− 1 colors to color the light edges of H. As
the light edges have weights ≤ 1/2, every two colors of r − 1 colors can be combined
into one, for a total of at most 2n − 1 + 	(r − 1)/2
 colors as desired. (Again, the
actual coloring algorithms can be found in [4, 7, 8].)

As we have mentioned, the new bound is good when r is relatively small. This is
formally put in the following corollary.

Corollary 5.7. When r ≤ n
2k−1 + 1, we have

m(n, r) ≤ 2n− 1 +
⌈ n

2k

⌉
.

For example, if r ≤ n+ 1, the Clos network C(n,m, r) is multirate rearrangeable
with at most 	5n/2
−1 middle-stage switches; when r ≤ n/4+1, we need only about
17n/8 − 1 middle-stage switches, and so on . . . . The argument given in Theorem
5.6 generalizes straightforwardly to the general Clos network case. Hence, we get the
following result.

Corollary 5.8. The general 3-stage Clos network C(n1, r1,m, n2, r2) is multi-
rate rearrangeable when

m ≥ 2n− 1 +

⌈
r − 1

2

⌉
,

where n = max{n1, n2}, and r = max{r1, r2}.
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