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The coupled-cluster (CC) equations including single, double, triple and 

quadruple excitations (CCSDTQ) are qraphically derived using Feynman 

diagrams. These equations are programmed and an iterative reduced linear 

equation method is used to solve these equations. A few points on the po

tential curves for the dissociation of some model systems with a single bond 

(LiH and Li2 ) are calculated using CC doubles (CCD), singles and doubles 

(CCSD), singles, doubles and triples (CCSDT) and CCSDTQ. These cal

culations demonstrate the magnitude of the CC contributions arising from 

triple and quadruple excitation amplitudes to the stretching of a chemical 

bond. A multi-reference coupled-cluster singles and doubles (MRCCSD) 

method utilizing two reference deLerminants, which differ by a two elec

tron excitation, is then proposed. One of these determinants is selected as 

the formal reference determinant. The proposed method is based on the 

single-reference coupled-cluster equations truncated after quadruples with 

appropriate restrictions placed on the triple and quadruple amplitudes to 

allow only those amplitudes which correspond to single and double excita

tions from the second reference determinant. The computational expense 

of this method is no more than twice that of singles and doubles from a sin

gle reference (CCSD). These equations are programmed and the potential 

curves for the dissociation of a few model systems with single bonds (LiH, 

BH, and H20) are calculated to demonstrate the correct bond dissociation 

properties of this method. These calculations also demonstrate how much 

of the CC energy contribution arising from the triple and quadruple exci

tation amplitudes can be attributed to single and double excitations from 

the second reference determinant. 
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I INTRODUCTION 

The Hartree-Fock (HF) method1
,2 is easily the most popular indepen

dent electron model for calculating atomic and molecular electronic struc

ture. This method is responsible for the idea of electrons occupying or

bitals, or the molecular orbital picture of electrons in molecules, which 

most chemists refer to on a regular basis. The HF method makes the as

sumption that one electron moves in the average field of the other electrons 

and for most atoms and molecules the method provides a total electronic 

energy which is very close to the exact energy; a few examples for molecules 

at their equilibrium nuclear geometry, 96% for H2 , 98.9% for LiH, 99% for 

H20, and 99.5% for NH3.3 The exact energy is usually defined in quantum 

chemistry as the exact solution of the non-relativistic Schrodinger equation 

within a defined space or basis set; 

iI 1/; = E1/; (1) 

The HF method determines a set of N orthonormal orbitals such that 

a single determinant formed from these orbitals provides the best approxi

mation to the ground state of the 2N-electron problem; 

(2) 

The 'best' spin orbitals according to the variational principle will be those 

that minimize the electronic energy. The HF method does however have a 
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number of drawbacks. The biggest problem is the fact that most energies of 

chemical interest are of the same order as the 1 % error in the HF method, 

for example the binding energy of LiH is approximately 1.1 % of the total 

energy, while that of the N 2 molecule is 0.2% of the total energy. 3 An

other problem with the HF method is that it does not dissociate molecules 

into open shell fragments correctly. Let us consider the H2 molecule, this 

molecule dissociates into two neutral hydrogen atoms. The HF method re

stricts electrons to occupy molecular orbitals in pairs. If we use a minimal 

basis (one s orbital on each H atom), to form the molecular orbitals for H2 , 

the spatial part of the ground state wavefunction is given by; 

(3) 

or; 

¢H2(1,2) = NlsHI(1)lsHI(2)+NlsH2(1)lsH2(2)+ (4) 

NISHI (1)ls112 (2) + NlsH2(1)lsHI (2) 

where N is the normalization factor. The above wavefunction cannot be 

appropriate to describe the electronic state at all internuclear separations, 

because the ionic terms (the first and second terms) predicting that both 

electrons localize around one nuclei enter the expression with the same 

coefficient as the covalent terms (the last two terms), which describe an 

equal distribution of the electrons around both hydrogen nuclei. As the 

internuclear separation approaches infinity the first two terms in (4) should 
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dissappear, because the probability of finding both electrons on one atom 

in thc;l gJ,'Ql,md state ShPllld vanil?h. Th~1? J,'a~h~r tb~n di§~ocifiting to th~ 

energy of two neutral hydrogen atoms, the HF energy continues to rise as 

the atoms are separated. 

Correlation energy is defined as the difference between the Caiact solu

tion to the non-relativistic Schrodinger equation and the solution to the 

corresponding HF problem; 

Ecorr = Eexact - EHF (5) 

The term 'correlation' results from electron correlation effects or the instan

taneous interaction of electrons with each other. Since electrons are charged 

particles, the effect of electron correlation will be to keep the electrons apart 

and reduce their mutual repulsion, thus, including electron correlation will 

lead to a lowering of energy. 

In the process of forming the occupied or core orbitals for the best single 

determinant, the HF procedure also yields an orthonormal set of unoccupied 

or virtual orbitals orthogonal to the core orbitals. The simplest approach 

to the correlation energy problem is to consider allowing one or more of the 

electrons to spend 'time' in each of these previously unoccupied orbitals. 

This than allows the electrons to spatially avoid each other. This is an 

electron excitation in quantum chemical terms, and, rather then a physical 

process, this is simply a mathematical tool to generate excited determi

nants. If all possible electronically excited determinants are included in the 
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wave function along with the HF determinant, then placing coefficients in 

front of the determinants and determining them variationally with respect 

to the energy defines the full configuration interaction (FCI) method. 

I_I. } = G I O} + " Ct? I Of.'} + " Ct?b I Of.'~} + ... +" Ct?b ... n. I Of.'~ .. ·n.} (6) 'f/FOr 0 L.J 1 1 L.J I) I) L.J I) ... ne I) ... ne 
i i,j i,j,,,.,nc 
Q a,b a,b, ... n", 

This is the exact answer within the basis chosen, but is not practical for 

large basis sets required to represent a molecule adequately. If we again 

consider H2 with a minimal basis, the virtual orbital would be; 

(7) 

Including all excitations involves only the double excitation, as the single 

excitations are not allowed by symmetl'Y (the ground state and the doubly 

excited state are gerade, the singly excited states are ungerade). The FCI 

wavefunction is then; 

1/JFcr(1,2) = 

or rearranging; 

C1(lsHI + lSH2)(1)(lsHI + lSH2)(2) + 

C2(lsHI - lSH2)(1)(lsHI - lSH2)(2) 

(8) 

1/JFor(1,2) = CAlsHI (l)lsHI (2) + lSH2(1)lsH2(2) + (9) 

CBlsHI (1)lsH2(2) + lSH2(1)lsHI (2) 



where; 

OA = 01 + O2 

CB = C1 - C2 

15 

(10) 

This wavefunction yields the exact answer within the minimal basis set. 

As the internuclear separation goes to infinity, the coefficient CA, which 

precedes the ionic terms, becomes zero, using the variational procedure, 

and the molecule dissociates properly to two neutral hydrogen atoms. 

In order to study problems of chemical interest, correlation must be 

taken into account. The FOI procedure is not practical for large scale 

calculations, so the most straight-forward way to deal' with the problem 

is to truncate the FOI procedure at some point. 01 including only sin

gle and double excitations (OISD), and OI including single, double, triple 

and quadruple excitations (OISDTQ) have become well established and 

are widely used in quantum chemistry.4 The major problem with the trun

cated OI method is the fact that it is not size-extensive. Size-extensivity 

means that properties such as energy calculated by a method should scale 

properly with the size of the system. FOI has this property as one would 

expect from an exact method. Let us consider for example the energy of 

two non-interacting (infinitely separated) H2 molecules calculated using the 

HF method. This energy would be correctly reproduced by the HF method 

to be twice the HF energy of a single H2 molecule. However, the energy 

of the H2 molecule calculated with OI containing only double excitations 
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(CID) would not be twice the CID energy of a single H2 molecule. To 

obtain a correct result it would require simultaneously exciting both elec

trons on both molecules, which leads to a quadruple excitation. Including 

the product of double excitations would make CID size extensive for this 

example, but would not solve the problem in general. 

The single-reference coupled-cluster method (CC) has been established 

as an accurate method5- 29 for calculating the correlation energy of chemical 

systems. This method is based on an exponential ansatz for the wavefunc

tion (tPcc = eT I <Po}), where T is a cluster operator which is separated into 

one-electron, T I , two-electron, T2 ••• n-electron, Tn, clusters with n being 

the number of electrons in the system. 

The CC method is closely related to many-body pertubation theory 

(MBPT)5.11, and can be considered to be an infinite order MBPT in certain 

classes of perturbation corrections (diagrams). This relationship between 

CC theory and MBPT was demonstrated by Hubbard. I2 A correspondance 

between the CC method and the configuration interaction (CI) method can 

be established for each level of excitation in the CI wavefunction. It can be 

shown that each selected CI coefficient, pertaining to a certain excitation 

level, corresponds to a sum of CC terms including all possible products of 

CC amplitudes that yield that level of excitation. The inclusion of these 

products of amplitudes in the CC wavefunction makes the CC method, like 

MBPT, exactly size-extensive. 
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The conceptual origin of the coupled-cluster theory of electron corre-. . 

lation can be traced to the correlated electron pair theories of Nesbet13 

and Sinanoglu.14 The exponential ansatz, which defines the coupled-cluster 

approach, was introduced by Coester and Kummel,6 with Cizek presenting 

the first explicit equations for coupled-cluster doubles (CCD).7 Cizek also 

developed a diagrammatic approach to deriving algebraic expressions for 

general CC models. General purpose ab-iniiio programs for applying the 

CCD method were implemented by Bartlett et aIl5 and Pople et aP6 in 

1978. This was followed by the development and implementation of CC 

singles and doubles (CCSD) by Bartlett and Purvis.9 At present several 

CC methods which approximate the effect of triple excitation amplitudes 

have been developed17.18 as well as the full singles, doubles, and triples 

(CCSDT) method which has been implemented by Noga and Bartlett,19 

as well as Scuseria and Schaefer.30 A method, which approximates the ef

fect of quadruple excitation amplitudes, was also recently developed and 

implemented by Kucharski and Bartlett. 21 As well as the previously men-

tioned developments, several other quantum chemistry groups have devel

oped and implemented CC methods of their own, including the groups of 

Dykstra,22 Kaldor,23 Kutzelnigg,24 Monkhorst,25 Mukherjee,26 Nakatsuji,27 

Simons28and Lee and Rice.29 In chapter 2 the development and implementa

tion of the extension of the CC method to include the complete contribution 

of single, double, triple and quadruple excitation amplitudes (CCSDTQ) is 
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discussed.30 While large scale applications of the CCSDTQ method are not 

feasible at this time, the application to model systems helps to demonstrate 

the utility and limitations of the lower order methods (CCD, CCSD etc.). 

When the system beine; studied is well represented by a single determi-

nant wavefunction, which serves as the reference function, then the trunca-

tion scheme for CC is rather straight-forward. Including single and double 

CC amplitudes accounts for the majority of the correlation effects. The 

next most significant contribution comes from triple excitations and so 

on. When two or more determinants become necessary to describe the 

state of the molecule correctly, as in an open shell singlet state or in the 

chemical bond dissociation process, then a more complicated truncation 

scheme is required, the conceptually simplest of which is to systematically 

include higher order levels of excitations. Unfortunately this approach is 

not computationally tractable. An alternative to including complete levels 

of higher order excitations is to explicitly include those higher order excita

tions which are the most important. This should include single and double 

excitations from all determinants which are necessary to correctly describe 

the state being studied. This can be done either as a complicated trunca

tion scheme or by explicitly including all the important determinants in a 

multi-determinant reference function. 

Although single-reference CC has been well established for a number of 

years, the extension to multi-reference CC (MRCC) has been slow. This is 
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in spite of extensive activity in this area.3I - 3D The current approaches to 

MRCC usually involve the use of a complete active space (CAS) reference 

function and truncation of the Baker-Hausdorf expansion. While this solu

tion to the problem is mathematically elegant, it leads to some large prac

tical problems such as redundant amplitudes and the generation of a huge 

number of un-necessary (zero) amplitudes which require somewhat com

plicated procedures to eliminate.36 In chapters 4 and 5 the development 

and implementation of a multi-reference coupled-cluster method using a 

single-reference formalism is discussed.40 
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II THE COUPLED-CLUSTER EQUATIONS 

A. Introduction 

In order to generate the algebraic expressions corresponding to the equa

tions of the next sections, it is convenient to use diagrammatic methods. 

The origin of the diagrammatic techniques are attributed to Feynman and 

were formulated by him for use in quantum electrodynamics. Several mod

ifications of his conventions for time independent applications have since 

been made. 24 ,27,28,29,42-44 

As was mentioned in the introduction, several groups have developed 

their own coupled-methods. There also exist many different, albeit simi

lar, methods for generating diagrams, as well as several different ways of 

formulating the diagrams. The systematic procedure for unambiguously 

generating these diagrams developed by Bartlett et all was used in this 

work. 
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a. Second Quantization.41 

Second quantization is a change of representation from the common co

ordinate representation to the occupation number representation of states. 

The HF or self consistant field (SCF) method produces a set of orthonormal 

spin-orbitals which can be ordered and identified by a string of numbers, 

ni. The numbers, ni, identify whether a spin-orbital is occupied (ni = 1) 

or not occupied (ni = 0) in a Slater determinant. The zero order Slater 

determinantj 

(1) 

can now be written aSj 

(2) 

With no loss of generality, the zeros following the last occupied spin-orbital 

can be omitted so that the HF determinant for a ten electron case can be 

writtenj 

10) =111 1 1 111111 ) (3) 

An excitation from spin-orbital 9 to spin-orbital 11 produces the determi-

nantj 

I Or) = 11 1 1 1 1 1 1 1 0 1 1 ) (4) 

Since the quantum mechanical operators, which enter the electronic 

hamiltonian, act on the coordinates of electrons, in order for the new nota-

tion to be of use it must be accompanied by a redefinition of the operators. 
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The two fundamental operators of the second quantization formalism act 

on the spin-orbital to change its occupation, either from zero to one or 

one to zero. The annihilation operator changes the occupation of a given 

spin-orbital from one to zero; 

where; 

gk = L:ni (6) 
i>k 

The origin of the phase factor (-l)g results from the fact that the sign 

of a determinant depends on the sequence of spin-orbitals. This sequence 

must be written in a consist ant way for all possible determinants resulting 

from spin-orbital substitutions. The nk results from the the fact that if 

an annihilation operator acts upon a spin-orbital which has an occupation 

number of zero, there is nothing to annihilate so the result must be zero; 

(7) 

The creation operator changes the occupation of a given spin-orbital from 

zero to one; 

The (1- nk) results from the the fact that if an creation operator acts upon 

a spin-orbital, which has an occupation number of one, the spin-orbital 

cannot be filled again so the result must be zero; 

(9) 
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The creation operator is the complex conjugate of the annihilation oper

ator and vice-versa, thus when acting upon the bra-vector their roles are 

reversed. 

The basic algebraic properties of these operators expressed as anti

commutators follows from the definitions, (5) and (8); 

[at, aft = alai + afal = 0 

[ak, ad+ = akal + alak = 0 

(10) 

(11) 

(12) 

These three relations (10),(11) and (12) describe the conditions which must 

be met by a wavefunction describing a many-electron system. The wave

function must be anti-symmetric with respect to the interchange of the 

labels on any two electrons and the spin-orbital occupation is restricted to 

ei ther 0 or 1. 

One consequence of the algebraic properties is that any state vector is 

an eigenfunction of the operator; 

(13) 

with an eigenvalue equal to the one minus the occupation number of the 

k'th spin-orbital; 

Similarly any state vector is an eigenfunction of the operator; 
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(15) 

with an eigenvalue equal to the the occupation number of the k'th spin

orbital; 

The first operator (13), will then select only those state vectors with an 

occupation of zero in the k'th spin-orbital. The second operator (15), will 

select only those state vectors with an occupation of one in the k'th orbital. 

The final concept needed from second quantization in order to construct 

a graphical representation, which will be useful in coupled-cluster theory, is 

that of a contraction. A contraction is simply the replacement of the second 

quantized operators, (13) and (15), with their respective eigenvalues. Two 

operators need not be adjacent to each other in a string of second quantized 

operators in order to be contracted. 

The electronic non-relativistic hamiltonian, in coordinate representa

tion, written in terms of atomic units is; 

(17) 

where the indices i and j are over the N electrons, the index A is over 

the M nuclei, ZA is the charge on the A'th nucleus and rij is the radial 

distance between the i'th electron and the j'th electron. Combining the 
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first two terms into a one electron operator, f, this can be written in second 

quantized formalism as; 

II = E(AlfIB}a~aB + t E (ABIICD}a~akaDac (18) 
A~ A~P~ 

where now the summations are over the complete set of spin-orbitals. The 

second term is an anti-symmetric two-electron integral; 

(AB II CD} = (ABICD) - (ABIDC) (19) 

The hamiltonian, (18), is now an operator which acts on electronic states 

defined in the occupation number representation. 

A general n-electron excitation operator for generating excited state vec

tors, (determinants), is written in second quantized form, (using coupled

cluster theory conventions) as; 

(20) 

The i,j, k, ... ,nj refer to occupied spin-orbitals, and a, h, c, 

... ,na refer to unoccupied spin-orbitals. The tijk:::~~' are the constants 

which precede each state vector in a correlated wave function, (called am

plitudes in coupled-cluster theory). 
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C. Coupled-cluster Theory 

The single-reference coupled-cluster (CC) method has been described 

in m~ny pl~~~~. 6-30 Thi~ m~thgg iii! RJlJl<:1g gO fin ~xp.gmmtifil ~Xpfimlign of 

the wave operator acting on the reference determinant, 10), to produce the 

coupled-cluster wavefunctionj 

(21) 

Where the exponential operator is expanded as; 

(22) 

and the T operator is; 

(23) 

In the language of second quantization the cluster operators are; 

Tl = Etia!aj (24) 
a 
i 

(25) 

(26) 

(27) 

etc. 
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The second quantized operators produce the excited configuration determi

nants in the correlated wavefunction and the t's are the coefficients which 

determine the weight of the corresponding determinant in the wavefunction. 

The CC equations are derived, starting with the Schrodinger equation; 

(H - EGG) 1 ?/JGG) = 0 (28) 

The CC energy is determined by projecting the Schrodinger equation against 

the reference determinant and using the fact that the Hamiltonian operator 

contains at most two electron operators; 

(01 (H - EGG )[1 + Tl + t T; + T2] 10) = 0 (29) 

Solving equation 9 for the energy yields; 

(30) 

Since the first term in the energy equation represents the zero order energy, 

usually the HF energy, it can be eliminated and this yields an equation for 

the correlation; 

(31) 

The Schrodinger equation is then projected against the determinants 

representing all possible excited determinants for the system, beginning 

with single excitations, (Of I, double excitations, (Oijb I, triple excitations, 

(Oijte I, , quadruple excitations, (Oijtfd I, and so on. 
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(Oi] I H[l + TI + ! Tl + tr Tl3 + it Tl4 + T2 + l Ti + TIT2 

+ ! TlT2 + Ta + TIT3 + T4110) = tiJE (33) 

(OiJkIH[T2 + ! Ti + TIT2 + ! TlT2 + ~ TI
3
T2 + ! TITi 

+ T3 + TIT3 + ! TI2T3 + T2Ta + T4 + TIT411 0) = tiJkE (34) 

(Oijkt IH[ ! Ti + ! TITi + T3 + TIT3 + ! TI2T3 + T2T3 + T4 

+~~+!~~+~~+~~~+~~~ 

+ l TI2Ti + m Ti + ! Til 10) = tijkt E (35) 

This provides a set of non-linear equations for determining the CC ampli

tudes which then lead to determination of the CC energy with the use of 

equation 30. 



29 

D. Coupled-cluster Diagrams 

In order to transform to a diagrammatic representation of the second 

quantized operators, the second quantized operators are replaced by ori

ented lines. The annihilation operator is represented as an oriented line 

directed into a vertex; 

becomes 

(36) 

The creation operator is represented as an oriented line directed away 

from a vertex; 

becomes 
(37) 

As in section B of this chapter, the one and two electron parts of the 

hamiltonian can be separated as; 

H = H(p) + H(p,q) (38) 

These two parts of the hamiltonian then give rise to different diagrams. The 

one and two electron operators represented in second quantized formalism 

in equation 18 of section B are symbolized graphically as; 

pq 

jpqa!ap becomes V·X 
(39) 

(pq" rs)a!ara!as becomes 'V:.~ 
(40) 

The CC excitation operators are symbolized graphically as; 
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Let us consider a term from equation (30) of the last section, one of the 

terms from the equation is; 

(0 I E !p,qa!ap E tia!ai I 0) (45) 
p,q i,a 

Recalling that a contraction replaces the orbital counting operators with 

their eigenvalues, contracting the second quantized operators, amounts to 

connecting the lines of the graphical representation for these operators, (39) 

and (41) with the arrows pointing in the same direction. This yields the 

term; 

. ~···X 
l..l..!.a = (46) 

This is done to each of the terms in the CC expansion. The procedure 

involves making the contractions in all possible ways and leaving enough 
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open lines (unconnected lines) to generate the level of excitation of the de

terminant, which the Schrodinger equation is projected against for that par

ticular equation, (in other words, by convention the contractions with the 

bra vector are implied), The coupled-cluster diagrams in product terms are 

not contracted with each other, This procedure generates three diagrams 

for the energy equation; 

tl.E = 
, .£8\---X 
l.ll.a + 

The singles equation generates 19 diagrams; 

+ (47) 

'l..
i ~ ~ L \!._L, ~,,)' ~ ~ 
¥~UX + YE-X + .rs.z.!< + .M. + ""y_j fjb"X+ (48) 

\
' 1 t_~ { '7 { L ____ Y. 

/bJ-Oc + jjTU{}b + )Ljtjb"L(}c + ~mX+ 

t~ {'7 t~ 
::L. jfjb"iltc + ::L. ttIb"uc + ::L. (0 I Ii I 0) = tf E 

The last four terms on the left side of the equation involve 'disconnected' 

terms that exactly equal the term on the right side of the equation, An 
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similar analysis of the diagrams obtained by projecting the Schrodinger 

equation against a double excited determinant reveals that not only is the 

energy term on the right side of the equation cancelled by the disconnected 

terms but the remainder of the disconnected terms in the doubles equation 

are equal to tij times the singles equation which is now equal to zero. This 

cancellation of the disconnected terms continues thoughout the orders of the 

coupled-cluster equations and it is this 'connected' nature of the coupled

cluster wavefunction which is responsible for its size-extensivity. Therefore 

only the connected terms in the equations (32) - (35) need be considered 

and they become; 

(Oij 1 H[l + Tl + ! Tf + ~ T{ + :h T14 + T2 + ! Ti + Tl T2 

+ ! T12T2 + T3 + TIT3 + T4] 10)0 = 0 (50) 

(Oijk IH[T2 + ~ Ti + TIT2 + ~ TlT2 + ~ T1
3
T2 + ~ TITi 

+ T3 + TIT3 + ~ T{T3 + T2T3 + T4 + T1T4] 10)0 = 0 (51) 

(OiJkt IH[ ~ Ti + ~ TITi + T3 + TIT3 + ~ Tln + T2T3 + T4 

+~n+~~n+nn+~~n+~nn 

+ ~ T{Ti + ~ Ti + ~ Ti] 10)0 = 0 (52) 

The rules for generating the algebraic code for the CC equations are :5 
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1. Each up oriented line is labeled with an unoccupied spin-orbital label 

a,b,c,d ... and each down oriented line is labeled with an occupied spin

orbital label iJ,k,I, ... The open lines are labeled in sequence from left to 

right. 

2. Each one-particle vertex corresponds to a one-electron integral as, 

(left, out I right, in) or; 

~.x =fai 
(53) 

3. Each two-particle vertex corresponds to the anti symmetrized integral 

(left, out; right, out II left, in; right, in) or; 

~.~=(abllij} 
(54) 

4. Cluster vertices correspond to; 

{~ '\1\1 :::L = tf, = tf} 
(55) 

The t amplitudes are antisymmetric, tf} = -tjr = -t~i = t~f and similarly 

for higher order amplitudes. 

5. All orbital labels are summed over 'internal' lines, or lines that terminate 

below a vertex. 
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6. The sign of the diagram is obtained from (-1) raised to the power of the 

sum of the unoccupied spin-orbital labeled lines and loops. For the purpose 

of getting loops open lines are closed into loops. 

7. The weight factor for a diagram is specified by (~)m, where m is the 

number of pairs of 'equivalent' lines. A pair of equivalent lines is defined as 

being two lines which begin at the same amplitude, have the same direction 

and end in a vertex. 

8. To maintain full antisymmetry of an amplitude, the algebraic expression 

for a diagram should be preceded by a permutation operator permuting the 

open lines in all distinct ways, Ep( -1 t p. 

The complete complete set of diagrams and their corresponding alge

braic expressions for the coupled-cluster equations containing single, dou

ble, triple and quadruple excitations are contained in Tables 111-114. 
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Table 11.1 

A complete set of diagrams which generate the equations for energy and 

single excitations. 

1 

2 

3 

ENERGY EQUATION DIAGRAMS 

(01 projection 

. .fl--X 
1 a 

ifj;:jtjb 

i.cr~-jnb 

+ E(ij Ilab)tiJ 
o>b 
i>j 

+ E(ij II ab)(tit~ - tjt~) 
o>b 
i>j 

SINGLE EXCITATION DIAGRAMS 

(Ofl projection 

1 ~ ---X +fia 

\l 2 -X + Efabt~ 
b b 

~ 3 j - -X -Er·tO: 31 3 
j 

4 M - EUa II ib)t~ 
b 
j 
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Table ILl (continued) 

{~ 
5 :\Lj{ji;X 

~ ~ 
6 ~'IOc 

7 ~Z.j(h 
{~ 

8 :\LHjb'knc 

9 \»::{"""X 

10 \llilc 

11 'lSf"illb 
12 t j', .-... ~~ 

~bl£U..c 

{ h .. .t1. ...... 
13~ 

14 j{jb·~~l 

15 j.flb·~l 

+ Ehbtij 
b 
j 

+! E(aj II bc)t~i 
b,c 
j 

-! EUkllib)tJZ 
b 

j,Ie 

+~ EUk II bc)tiJk 
b,c 
j,Ie 

- Ehbt~tJ 
b 
j 

+ E(aj II bc)t~ti 
b,c 
j 

- EUk II ib)tJtt 
b 

j,Ie 

+ EUk II bc)t%tiJ 
b,c 
j,Ie 

-! E(jkllbc)t~tJk 
b,c 
j,Ie 

-! EU k II bC)tkt~i 
b,c 
j,Ie 

- E U k II bc)t~titk 
b,c 
j,I< 

36 



L. 

37 

Table II.2 

A complete set of diagrams which generate the equations for double 

excitations. 

DOUBLE EXCITATION DIAGRAMS 

(Oijl projection 

1 ~.~ +(ab II ij) 

2 \t .. ~ + 2)-llp(i/j)(cill ab}ti 
a 

3 ~t .. ~ - 2)-llP(a/b)(kb II ij}tk 
k 

4 2~X + L) -ll P(a/b)JbatiJ 
a 

5 viiX - L) -l)P P(i/j)Jkjtit 
k 

6 v}4 - 2) -ll P(i/j la/b)(kblljc}tit 
c 

" 

7 il~f +! E(kl II ij}tk~ 
k,t 

8 ~l~Z +! E(ab II cd}tif 
a,d 

9 ~Vka~X + Eikctijk 
c 

" 
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Table 11.2 (continued) 

10 \7'\titld +i~) -l)P P(a/b)(bk IIcd}tiJt 
c,d 
Ie 

11 \7~··i(}c -i 2:)-ll P(i/j)(killic}titf 
c 

le,' 

12 \7 \I kt}·~·ind +t E{k111 cd}tiJkt 
c,d ",, 

\ttl 13 - E(-llP(a/bli/j)(akllcj}titt 
c 
Ie 

14 ~Q + E{k111 ij}t%tt 
k,/ 

15 \t~ + E{abllcd}titj 
c,d 

~ 16 c'·· ·X - E(-l)P P(i/j)!kct%~ti 
c 
Ie 

illrlt 17 c .~ ... ~ - E( -l)P P(a/b)fkctiJtt 
c 

" 
18 ~~.~ + E( -ll P(a/bl i/j)(kbll cd}tiktj 

c,d 

" 

u··il 19 - E(-llP(a/bli/j)(klllcj}tikt~ 
k c 1 c ",, 

20 '\7~ - E(-llp(i/j){killic}titt, 
L"inc c ",, 
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Table II.2 (continued) 

21 \/\£ + L) -ll P(a/b)(bk II cd)tiJt~ 
c"~d c,d 

" 

WQ 22 +! ~)-ll P(i/j)(kl I/cj)tk~ti 
c 

"" 
23 V"\~ -! E( -ll P(a/b)(ak /I cd)tiJtt 

c,d 

" 

V'V~~'illd 24 + E(kl /I cd}tiJ;:t1 
c,d 

",' 

\1ka~--\-~ 25 -! E( -ll P(a/b)(kl I/cd}tikft~ 
c,d 

",' 

kt\o/v( 26 -! E( -ll P(i/j)(kl I/ cd)t%1Jti 
c,d 

",' 

\d lrL 27 -! E( -ll P(i/j)(kl /I cd)t,,1t;J k{j-~-"?{ 
c,d 
Ie,' 

V'\ b 28 -! E( -ll P(a/b)(kl /I cd}tiJtt1 r\l"ind c,d 

Ie,' 
i a . b 

29 ~---~ + E( -ll P(i/j)(kl /I cd)tikt1J 
k c 1 d c,d 

Ie,' 

~~ 30 +i E(kl /I cd)tiJt%~ 
c,d 

Ie,' 

W-M' 31 + E( -ll P(i/j)(kl" cj)titkt~ 
c 

Ie,' 
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Table II.2 (continued) 

~~ 32 c.. .s! k - 2)-ltP(a/b)(akllcd}titjt~ 
c,d 
k 

~V 33 - ~) -It P(a/bli/j)(klll cd}t1jtitk 
c k·

n 

""ind 
c,d 
k,1 

WQ 34 - '2J -It P(i/j)(klll cd}tjjtktt jl ...... 
k c 1 c,d 

~ 
",I 

35 c J ... illd - 2) -It P(a/b)(klll cd}tiJt~t1 
c,d 

",I 

~ 36 + E(k111 Cd}tk~titj c 1 
a k c,d 

",I 

~ 37 + E(k111 cd}tiftkt~ c 1 
a k c,d 

",I 
i a' b 

38 ~.~ + E(k111 cd}tit'ktjtt 
c,d 

",I 
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Table 11.3 

A complete set of diagrams which generate the equations for triple ex

citations. 

TRIPLE EXCITATION DIAGRAMS 

(Or}fl projection 

1 V\t··~ + ~) -ll P(k/ij I a/bc)(bc II dk)til 
d 

2 \ltv .. ~ -1) -ll P(i/ik I ab/c)(lclljk)til 
I 

3 i7Vvx - "I)-llp(ij/k)flktiJ{ 
I 

4 vV\Xx + 1) -ll P(ab/c)fcdtiJt 
d 

5 v\i~ - ~) -ll P(ab/c I ij /k)(lc II kd)tiJl 
d 
I 

6 vQ;if +! 1) -ll P(i/jk)(lm Iljk)ti/~ 
I,m 

7 V\t\l +! 1:( -ll P(a/bc)(bc II de)til: 
d,e 

8 V\i\Jlr¥d~ + 1: fldtiJkt 
d 
I 

9 V\i\X'i(}e +! 1:( -ll P(ab/c)(clll de)tiJtt 
d,e 
I 



41 

Table 11,3 (continued) 

10 \I\1~c -! E(lm II kd)tiJt~ LT"dJd d 
I,m 

W~ 11 - E( -1l P(abe I ij /k)(b/ll dk)ti/t, 
d 
I 

12 W~ + E( -1l P(a/be I ij /k)(be II de)ti/t% 
d,e 

13 ~~~ + E( -1l P( ab/ e I ifj k )(/m Iii k)tilbt~ 
I,m 

14 ~~~ - E( -1l P(ab/e I ijk)(/e llid)tilt% 
d 
I 

\IV'N 15 - E( -ll P(ab/e)!ldtiJft, ~l .. __ ~ 
d 
I 

~lx\f\1 16 - E(-llp(ifjk)!ldfi]kt1 
d 
I 

VV'\J°i!le 17 + E( -ll P(ab/e)(clll de)f;Jfti 
d,. 

I 

\1\/~f 18 - E( -l)P P(ij /k)(/m II kd)t;j{t~ L~";nd 
d 

I,m 

i[VILtd°:iL' 19 - E( -ll P(ab/e I ij /k)(/m Ildk)tiJlt~ 
d 

I,m 

v\l kc 20 + E( -ll P( ab/ e I ij / k )(/e II de)tiJldt% lttd-'ij 
d,. 

I 

\I\£\~ 21 -! E( -ll P(abe)(blll de)ti/:t, i"!l. 1 
d,. 

I 
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Table 11,3 (continued) 

22W~V 

\/

' a ~ h;~ y 
23:L:\L IOci;n.e 

V' a ~ 1>; k!L .. rn jI 
24v lcrd"\:~ 

25 Worm.VV 
26 V '\tr-\t~ \J 
'l
' ad h 

27 _!!l""~.:.:loo." ...L.:.d:!.-~-¥-

28 V \Jj"ne '\1 
{1~__ ike 

29 ~3X V 
\ '1~ ikC 30~tr-\--;V 

31V\~ 

32\~V 

V
' a ~_. l~ k C 

33 Ifjd"'?-\LV 

+! E(-l)P P(ijk)(lm II dj)tr!cktf 
d 

',
m 

+ E(lmllde)tUftt:n 
d,e 

',m 

-! E( -ll P(ab/e)(lm IIde)tij,iet~ 
d,. 
',m 

-! E( -ll P(i/ik)(lm II de)t,~7kt1 
d,. 
',m 

- E( -ll Pea/be I ij /k)fldtift~k 
d , 

- E( -ll P(ab/e I ijk)(lm IIjd)tilt~k 
d 

',
m 

+ E( -ll P(abe I ij /k)(blll de)tiftik 
d,. , 

-! E( -ll Pea/be I ij /k)(alll de)t1;t~k 
d,. , 

+! E( -ll Pea/be I ij /k)(lm II dk)tift~~ 
d 

',m 

+t E( -ll P(a/be)(lm II de)tifkt~~ 
d,e 

',m 

+t E( -ll P(ij /k)(lm II de)tI!Ckt1; 
d,. 
',m 

-! E( -ll Pea/be I ij /k)(lm II de)ti/~et~k 
d,. 
',m 
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Table II.3 (continued) 

34 \1'\ It \1 -!~) -l)P P(a/bcl ij /k)(lm I de)t~:::,lt/ ~"~rle d,e 
I,m 

\1\1\ c 35 -! :l) -ll P(ab/c)(lm II de)t'tJ;ti:n r\l~ne d,e 

~ 1\1\1 
I,m 

36 -! E( -ll P(ifjk)(lm II de)t:jktte 

ItId""~ d,. 

\1\1 ~ 
I,m 

37 + E( -ll P(ab/cl ij /k)(lm Ilde)t't~dt:k 
Icrd~ e d,. 

V~"W 
I,m 

38 + E( -ll P(ab/cl ijk)(lm Iljd)t'tlbt%t~ 
d 

I,m 

WW 39 d""" "~" I - E( -ll P(abc I ij /k)(bl" de)t't/tkti 
d,. 
I 

40 ~~ + E( -ll P(a/bc I ij /k)(lm "dk)t'tft~t~ 
d 

I,m 

\Z.~ 41 - E(-ll P(a/bc I ij /k)(al" de)t~kt1tj 
d,e 
I 

42 +! E( -ll P(a/bc)(/m" de)t't/ktrt~ 
d,. 
I,m 

43 +! E( -ll P( ij / k )(/m "de)ti!ckt1tj 
d,e 

\1\1\N 
I,m 

44 - E(-ll P(ab/c)(/m" de)t'tJb,t~ d L "~ne 
d,e 

~1\1\1 
I,m 

45 - E( -l)P P( i / j k)( 1m" de)t':!:jkt1ti l.l1d"" .~" :n 
d,e 
I,m 
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Table 11.3 (continued) 

46 \IV W - ~) -ll P(ab/e I ij /k)(lm IIde)tiJltkt~ lad"" .~. m 
d,. 
I,m 

47 +! ~)-ll Pea/be I ij /k)(lm I de)tift~~tk e 1 d,. 
I,m 

~~~ 48 +! L:( -l)P Pea/be I ij /k )(lm I de)t1Jt:kt/, 
d,. 
I,m 

~ '\1 49 - L:( -ll P(abe lij /k)(lm IIde)tift~kt~ d .... ~ne 
d,. 
I,m 

V~ 50 - E( -l)P Pea/be I ijk)(lm IIde)tilt:ktj lad" .~. m 
d,. 
I,m 

\1\ ikl 51 - L:( -l)P Pea/be I ij /k )(lm II de)tiJt:ktT l.ild .. : ... ·~·~ '\ 
d,. 
I,m 

W·WQ 52 + L:( -ll P(a/bel ij /k)(lm II de)t:kt1t/,tj 
d,. 
I,m 

~·W 53 + L:(-ll Pea/be I ij /k)(lm II de)tilt~tkt~ 
d,. 
I,m 
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Table 11.4 

A complete set of diagrams which generate the equations for quadruple 

excitations. 

QUADRUPLE EXCITATION DIAGRAMS 

(OrJftl projection 

1 vV\t··~ + 2) -ll P(1/ijk I ab/cd)(cdll el)tij: 
e 

2 'VVt:··~ - ~) -ll P(ij /kll abc/d)(mdll kl)tij~ 
m 

3 'Vv\1'\tX + 2) -ll.P(abc/d)/detijki 
e 

4 'VV~;itx - E( -ll P(ijk/l)fmltijk! 
m 

5 vv\1£i. - E( -ll P(ijk/ll abc/d)(mdll le)tijk~ 
e 
m 

6 'VV\J\t +!~] -ll P(ab/cd)(cdll ef)trJ:! 
e,f 

7 'Vv;v\i +! E( -ll P(ij /kl)(mn II kl)tij~dn 
m,n 

8 VV\J~ - E( -l)P P(ab/c/dl ijk/l)(cm ~ el)tij:t! 
e 
m 

9 VV;V~ - E( -ll P(abc/dl ij /k/l)(mdll ke)tij~ti 
e 
m 
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Table 11.4 (continued) 

10 V\7\l·\i 
+ :1:( -ll P(ab/cdl ijk/l)(cdllef)trJ:t{ 

e.J 

+ :1:( -ll P(abc/dl ij /kl)(mn I kl)trJ~t~ 
m,n 

- :1:( -ll P(abc/d)fmetiJkit~ 
• 
m 

- :1:( -ll P(i/ikl)fmet':/:jZ,ti 
• 
m 

+ :1:( -ll P(abc/d)(mdll ef)trJkit~ 
.,j 
m 

-!:1:( -ll P(ab/c/d)(cm II ef)t:Jk{t~ 
.,/ 
m 
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Table 11.4 (continued) 

- 2) -ll P( abel d I ij k /l)(mn I el)tijk:n t~ 
e 

m,n 

- 2) -ll P(ij k/l)(mn Ille)tijk~t~ 
e 

m,n 

+! 2) -ll P(i/j /kl)(mn II ej)t~~i,ti 
e 

m,n 

+ E( -ll P(abc/d I ijk/l)(md~ e!)tijk:nt{ 
eo! 
I 

- E( -ll P(a/b/cdl ij /k/l)(bm I ek)tiJt~, 
e 

m 

+ E( -ll P(bc/adlij /kl)(bc Ile!WtJt£t 
e,l 
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Table 11.4 (continued) 

+ E( -ll P(ab/cdl il/jk)(mn Iljk)ti!t~1 
m,n 

V
'a~~~ 1C;~~ 

23 v :\iI'\.T~ V 

26 V\lntjAi'V 

- E( -ll P(ab/cdl ijk/l)!meti):t~, 
e 
m 

- E(-llP(a/bcd I ij/kl)!met:%,tiJ 
e 
m 

+ E( -ll P(ab/c/dl ijk/l)(cm II eJ)ti):t!:, 
e,J 
m 

+ E( -ll P(ab/c/dl ij /kl)(md e!)ti):nt£t 

27 \l~IVV 

e,J 
m 

-! E( -ll P(a/bcdl ij /kl)(am II e!)t~%,tU 
e" m 
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Table 11.4 (continued) 

-!~) -ll P{a/b/cdl ijk/l)(bm" ef)t~Nt:, 
eoJ 
m 

- E{ -ll P(abc/d/ ij /k/l)(mn" ke}tiJ~t~1 
• 

m,n 

- E{ -ll P(ab/cdl ij /k/l)(mn" ek}tiJ!t~1 
• 

m,n 

+! L) -ll P(ab/cd I ijk/l)(mn" el}t'tJ:t:n 
• 

m,n 

+! E(-ll P(a/bcdl ij /k/l)(mn I ek}t:~,tiJ 
• 

m,n 

+ E( -ll P(abc/dl ijk/l){mn" ef)tiJk~t~1 
.,/ 
m,n 
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Table 11.4 (continued) 

34VV\~ 
+~ E(-llP(ab/cd)(mnllej)t;jk!t:n 

e,/ 
m,n 

35 \hsMVV 
+~ E( -ll P(ij /kl)(mn II ej)tC:::~i,tif 

V' a 'i "l \~. 7\1 ld 
36vrrO~·:S~ 

e,/ 
m,n 

-! E( -ll P(ab/cdl ijk/l)(mn ~ ej)tij~t~1 
eo! 
m,n 

eo! 
m,n 

V· a 'i "lVk 
c \1 1<1 

38v~T'~nf 

-! E( -ll P(abc/d)(mn II ej)t'tjkitcgn 

39 ntI~·\z.Jv\1v 

e,/ 
m,n 

-! E( -ll P(i/jkl)(mn II ej)t~%1t:ti 
eo! 
m,n 
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Table 11.4 (continued) 

40 \lVnLI;-~nf 'VV' 
+ E( -It P(a/cdl ij /kl){mnllef)tij!t~k1 

e,f 
m,n 

41 V\~lV' 
+t E( -It P(a/bcdl ijk/l)(mnllef)tiJ!t:~, 

e,J 
m,n 

V' a ~_.f lvk 
c VI d 

42ntI~·"\A 

-t E( -It P(a/bcdl ij /kl){mn ~ ef)ti:!;t~ct, 
eoJ 

,nln 

V' a ~ ~~ lCY VI d 

43Y:,\~T·~nf 

-t E( -It P(ab/cdl ijk/l)(mn I ef)tiJkt~:, 

45 \ZVV-\?\/ 

e,f 
m,n 

- E( -It P(a/bcdlij /kl)(am Ilef)t:%,titf 
e,J 
m 

- E( -l)P P(ab/c/dlijk/l)(cm I ef)tijkt{t~ 
e,J 
m 
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Table 11.4 (continued) 

46 \tV\d~ 
+ E( -It P(ab/cdl ijk/l)(mn I el)t'tJktc:nt~ 

• m,n 

47 \1V~·~ 
+ E( -It P(abc/dl ij /k/l)(mn I ke)t'tJ~tit~ 

• 
m,n 

48 ~'~nfVVV 
- E( -It P(a/bcdl i/jkl)(mn II ef)t~~~1tit~ 

c" m,n 

V' a ~ ~Vk c ~. p ... Jn~ 
49v~";nf 

- E( -It P(abc/d)(mn II ef)t;Jkit~t! 
c" m,n 

50 ~~'~7VVV 
- E( -It P(i/jkl)(mn II ef)t~~k~t~t{ 

·,1 
m,n 

51 

+! E( -It P(ij /kl)(mn II ef)t':!:~i,titf 
·,1 
m,n 
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Table 11.4 (continued) 

52 

+! ~) -1t P(ab/cd)(mn II ef)t~:f t~t~ 
',1 
m,n 

53 W~\ni 
- L) -1)P P{ ac/b/ d I ij / kl)(bm II ef)tift%{ t~ 

e.J 
m 

54 ~~t-~ 
+ ~) -1t P(ab/c/dl i/j /kl)(mn be)ti!tkit~ 

e 
m,n 

55 ~~t·~t~L~t 
+ L) -1t P(ab/cdl i/k/jl)(mn ~ ek}t~it~1ti 

e 
m,n 

56 \~YV\t\t 
- E( -1t P(ab/c/dl i/j /kl)(mcll ef)t~it£tti 

e.J 
m 

- E( -1)P P(ab/cd I ijk/l)(mn I ef}tfJ1t~1t:n 
e,l 
m,n 
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Table 11.4 (continued) 

58 ,l}/V-:{'-?JVV 
- ~] -It P(a/bedl ij /kl)(mn I ef)t~c:,tift~ 

ed 
m,n 

59 VV\~-~nfV 
- 2) -It P(ab/e/dl ijk/l)(mn I efWtjkt~1t':n 

e,/ 
m,n 

60 u;-~iVV 
- 2:( -It P(a/bcdl i/j /kl)(mn II ef)t~c:,ti~tf 

e,1 
m,n 

61 V\~LV 
+! 2:( -It P(a/b/edl ijk/l)(mn II ef)tf;!t~1t~ 

ed 
m,n 

62VV\~J 
+! 2:( -It P(ab/cdl ijk/l)(mn Ilef)tijkt~nt{ 

e,1 
m,n 

63 \WJVV 
+! 2:( -It P(a/bcdl ij /kl)(mn Ilef)t~k1t~ft~ 

ed 
m,n 
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Table 11.4 (continued) 

't ~ ~ " .... mJ. Vk 
c VI d 

64 ~"~nf 

55 

- E( -ll P(a/b/cdl ij /kl)(mn "ej)t~k1tiJt~ 
eo! 
m.n 

65 \~l-\;\nf Vv 
- E( -ll P(ab/cdl iii /kl)(mn II ej)t~k1t:jti 

eo! 

+~ E( -ll P(a/bcdl ij /k/l)(mn I ej)t~~,tiJt£ 
e,/ 
m,n 

67 uAt-~lV 
- E( -ll P(a/b/cdl i/jk/l)(mn II eJ)ti~t~£t~1 

e,/ 
m,n 

68V\~ 
+~ E( -ll P(ab/cdl ij /kl)(mn II ej)tiJtt{t:n 

e,/ 
m,n 

69\~lv 
+~ E( -ll P(ab/cdl ij /kl){mn II ej)tift:kt~1 

e,/ 
m,n 
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Table 11.4 (continued) 

70 W·~VV 
+ E( -It P(a/bcdl ij /kl)(mn II ef)t~~tit~tf 

·01 
mon 

+ L:( -It P(ab/cdl ijk/l)(mn" ef)ttjkt~t{ t~ 
.01 

mon 

72 w·\t·~?;l'V 
+ E( -It P(a/b/cdl i/jk/l)(mn" ef)t~£t~1tit~ 

·01 
mon 

73~·~ 
+ ~) -I)P P(ab/cdl ik/jl)(mn" ef)t:jt~1tit£ 

·01 
min 

74 ~·\t·\XI 
+ E( -I)P P(ac/bdl ij /kl)(mn" ef)tijtk{t~t~ 

·01 
mon 



57 

E. Solving the Ooupled-c1uster System of Equations 

The computational strategy for solving the CC equations, which is simi

lar to a previously proposed method,45 involves first separating the coupled

cluster equations into components which are linear and non-linear with 

respect to the CC amplitudes; 

(55) 

where A is the matrix of coefficients for the amplitudes involved in the 

linear terms, X is a vector of coupled-cluster amplitudes and B contains the 

negative of the non-linear terms. The first approximation to the coupled

cluster amplitudes is to approximate the inverse of the A matrix by the 

inverse of its diagonal elements, n-1, and multiply both sides of equation 

(55) by n-1
; 

(56) 

The first approximation to the non-linear terms can now be calculated as; 

(57) 

Next, the scaling factor, a, which correspondes to the minimum of the 

following expression; 

(58) 

is calculated using the following expression; 

(59) 
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Next the CC amplitudes are multiplied by the scaling factor; 

(60) 

and the correction vector, A2 is introduced, which satisfies the following 

equation; 

(61) 

Now, an equation similar to equation 16 is used to find the correction vector; 

AX2 = B - AX I = B - B~ = BD - - (62) 

and then; 

X 2 = n- l BD (63) 

Then A2 is orthogonalized to Xl and the following two equations are solved 

for the new scaling factors for the two vectors; 

where; 

(64) 

(65) 

(66) 

(67) 

A linear equation solver is used at each step to find the scaling factors 

and the procedure is iterated until the correction vector Xn approaches 

zero. 
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An example of the convergence properties of this method is presented in 

Table 11.5. The initial guess for the amplitudes is the result of an MBPT(2) 

calculation. The basis set for this example is the one described in Table 

11.7 of the next section. 

This procedure occasionally oscillates and diverges, a more stable, albeit 

slower, procedure is to move some or all of the non-linear terms in B to Bl. 

The computer program for solving the CCSDTQ equations has been 

written in the most transparant form, using the spin-orbital representation 

of the diagrams. This has allowed programing the algebraic expression cor

responding to each diagram in the form it appears in Table 111-11.4. Also 

all the quantities which require storage have been placed in the operational 

memory, this eliminated the need for a more complicated disk storage proce

dure. The Convex 240 internal memory of 1 GB made this option possible. 

As a result of this programming strategy the computer code is very explicit 

and easy to debug, an essential feature of a programming effort of this 

complexity. 
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Table 11.5 

Convergence behavior of the reduced linear equation method for solving 

the coupled-cluster equations. 

CCSD CCSDT CCSDTQ 

Iteration Energy Energy Energy 

0 -0.0115232 -0.0115232 -0.0115232 

1 -0.0157566 -0.0157689 -0.0157689 

2 ·0.0169441 ·0.0169457 ·0.0169456 
3 -0.0175423 -0.0175513 -0.0175513 

4 -0.0176170 -0.0176235 -0.0176235 

5 -0.0176372 -0.0176434 -0.0176432 

6 -0.0176430 -0.0176520 -0.0176519 

7 -0.0176496 -0.0176608 -0.0176607 

8 -0.0176498 -0.0176609 -0.0176608 

9 -0.0176497 -0.0176606 -0.0176605 

10 -0.0176496 -0.0176606 -0.0176606 

11 -0.0176496 -0.0176606 
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F. The Coupled-cluster Method Including Single, Double, Triple 

and Quadruple Excitations; Numerical Results. 

Test calculations were performed for LiH and Li2 at equilibrium and 

at a stretched geometry. The results are presented in Table 11.6. For LiH 

a molecular orbital basis of 4 occupied spin-orbitals and 8 virtual spin

orbitals, all of sigma symmetry were used, see Table 11.7. At equilibrium 

CCSD does a very good job, with triples contributing at the J.lhartree level 

and quadruples being negligible. At the extended geometry triples con

tributes much more significantly and even quadruples begin to contribute 

slightly. CCSDTQ for LiH is equivalent to full CI and the CCSDTQ en-

ergy is in complete agreement with the full CI energy. For Li2, a molecular 

orbital basis of 6 occupied spin-orbitals and 8 virtual spin-orbitals all with 

sigma symmetry were used, see Table 11.7. 

For Li2 at equilibrium the contribution of triples is again at the J.lhartree 

level but now even at equilibrium quadruples contributes sightly and while 

the contribution of triples at the stretched geometry increases significantly 

the contribution of quadruples changes sign but remained about the same 

magnitude. 

Examining the largest triple amplitudes for both cases, presented in 

Table 11.7, reveals that most of these also represent double excitations 

from a determinant that is doubly excited from the reference determinant40 

which has become quasi-degenerate with the reference determinant as the 

bond was stretched. The quadruple excitation amplitudes which represent 
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these type of excitations are capable of being represented as amplitudes 

of selected double excitations times this large double amplitude, however 

the triple excitations cannot be represented as a product of double ampli

tudes. For LiH this dominant double excitation is t~~ = -1.038780918 (for 

the convention used for spin-orbital labels see Table 11.6) and for Li2 it is 

t~~ = -0.998345227. 

Linked quadruples can be thought of in a CI sense as correcting the 

products of amplitudes which yield a quadruple excitation level. As an ex

ample consider the quadruple excitation amplitude for LiH, t~~~~, this same 

excitation is generated by several products of amplitudes the most signifi

cant being t~~t~r. The first double excitation produces the quasi-degenerate 

determinant and the second double excitation correlates the core for this 

determinant. Thus for a wave-function dominated by two determinants, 

like the one for the LiH and Li2 cases with stretched bonds, the dominant 

linked quadruple contribution provides a correction corresponding to the 

change in how the core correlates for the second determinant with respect 

to the first determinant and can be expected to be small as long as the core 

electrons correlate in a similar fashion for both determinants. Our results 

suggest that the latter is the case for both the LiH and Lh molecules at 

both the equilibrium and stretched geometries. 



Table 11.6 

Coupled-cluster correlation energies (hartrees) for different 

levels of truncation 

LiH Li2 

3.015 a.u. 9.045 a.u. 5.05 a.u. 40.4 a.u. 

CCD -0.0168873 -0.0724110 -0.0180015 -0.1019246 

CCSD -0.0176496 -0.1085920 -0.0181219 -0.1021333 

CCSDT -0.0176606 -0.1086567 -0.0181545 -0.1024180 

CCSDTQ -0.0176606 -0.1086573 -0.0181562 -0.1024169 

63 
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Table 11.7 

The largest triple and quadruple coupled-cluster amplitudes. For LiH, spin

orbitals 1234, (lua, 1u{i, 2ua, 2u{i), are occupied and 12345678 (3ua,3u{i, 

4ua, 4u{i, 5ua, 5u{i, 6ua, 6u{i), are unoccupied. For Li2 , spin-orbitals 123456 

(lua,lu{i, 2ua,2u{i, 3ua,3u{i), are occupied and 12345678 (4ua, 4u{i, 

5ua,5u{i, 6ua,6u{i, 7ua,7u{i), are unoccupied. 

LiH 

3.015 a.u. 9.045 a.u. 

IJK ABC T3 IJK ABC T3 

431 521 -0.001233208 432 432 0.006351317 

432 421 0.000505260 431 321 0.001103313 

432 641 0.000228419 421 621 -0.000789528 

432 632 -0.000213167 432 652 -0.000483347 

431 765 0.000195255 431 743 -0.000463687 

IJKL ABCD T4 IJKL ABCD T4 

4321 6321 0.000036062 4321 6431 -0.000135851 

4321 4321 -0.000027332 4321 4321 0.000067066 

4321 6521 -0.000013405 432 1 5421 0.000026120 

4321 8721 0.000009584 4321 7643 -0.000010013 

4321 7621 0.000008178 4321 8721 0.000004352 

4321 7542 0.000007500 4321 8431 -0.000003011 
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Table 11.7 (continued) 

Li2 

3.015 a.u. 9.045 a.u. 

IJK ABC T3 IJK ABC T3 

532 765 0.000607571 653 653 -0.003033974 

542 865 0.000607235 421 654 -0.003033885 

653 653 0.000599498 641 865 0.003026553 

321 653 0.000596313 631 765 0.003026538 

432 652 -0.000557496 543 543 -0.002000682 

IJKL ABCD T4 IJKL ABCD T4 

4321 652 1 0.000104560 6431 5421 0.000058998 

4321 7621 -0.000029608 5432 5421 -0.000057601 

6543 8521 0.000028668 432 1 852 1 -0.000056449 

5432 6321 -0.000025105 6543 8521 -0.000054882 

6431 6321 0.000024330 652 1 6543 0.000018442 

a) The basis set for LiH consisted of the following four contracted gaussian 

orbitals for the lithium atom and two for the hydrogen atom, (contraction 

coefficients in parenthesis). 

Li: s: 642.419 (0.00214261) 

6.20107 (0.245786) 

s: 2.32492 (-0.0350917) 

s: 0.0359620 (1.00000) 

96.7985 (0.0162089) 22.0911 (0.0773156) 

1.93512 (0.470189) 0.636736 (0.345471) 

0.632430 (-0.191233) 0.0790534 (1.08399) 

pz: 0.994203 (0.155916) 0.231031 (0.607684) 0.0751386 (0.391957) 

H: s: 18.7311 (0.0334946) 2.82539 (0.234727) 0.640122 (0.813757) 

s: 0.161278 (1.00000) 

b) In the calculation on Lh we used first-order correlation orbitals generated 

using a procedure described previously.28 The FOCO set consisted of four 

sigma orbitals and the same gaussian basis set as that for Li in the LiH 

calculation with the addition of a pz and a dz2 was used in the calculation. 
pz : 0.500000 (1.00000) 

dz2: 0.500000 (1.00000) 
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G. The Coupled-cluster Method Truncated at Quadruples, 

Conclusions 
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At this stage of the derivation and implementation of the coupled-cluster 

method the contribution of this study is, 

i) The complete CCSDTQ equations were diagrammatically derived and 

presented. 

ii) The first computational implementation of the complete CCSDTQ 

method has been accomplished. 

iii) Some numerical results on simple 'model' systems are presented. 
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III CONVERGING THE COUPLED-CLUSTER EQUATIONS 

A. Introduction 

In the next chapter a two-determinantal coupled-cluster theory which is 

based on a single-reference formalism. 40 will be presented. This method re

tains the advantages of the single-reference approach, but allows the study 

of inherently multi-reference cases. However, when one or more of the 

amplitudes becomes large, the conventional strategy for solving the single

reference coupled-cluster equations begins to show ocsillations or even di

verge. In order to effectively use this method for systems which require more 

then one reference determinant a stabilization technique which avoids this 

problem is required. 

In this chapter the development and implementation of a stabilization 

scheme is described, in which some of the terms in the single-reference 

coupled-cluster equation are 'quazi-linearized'. This then significantly sta

bilizes the reduced linear equation method which we use to solve the coupled

cluster system of equations. 
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B. Theory 

As described in chapter 1, the coupled-cluster method utilizes an ex

ponential expansion of the wave operator which acts on the reference de

terminant I O} to produce the coupled-cluster wavefunction i' I O}. Lower 

case t is now being used to signify the coupled cluster operator as upper 

case T will be used to indicate the fortran arrays in the next section. For 

coupled-cluster theory including single and double excitations (CCSD) this 

is; 

(1) 

The symbolic form of the CCSD equations and their derivation have were 

pl'esetlted 111 chapter 1. Al10ther way of representing the CCSD system or 

equations is; 

(2) 

The reduced linear equation procedure, used to solve the coupled-cluster 

system of equations was presented in chapter 1. In terms of the products 

of amplitudes, the coupled-cluster equation is divided into two parts, 

(3) 

Within each iteration of the procedure the terms on the right hand side 

of (2) are treated as a constant; 

(4) 
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where; 

(5) 

The reduced linear equation procedure determines the coupled-cluster am

plitudes as the initial guess for the amplitudes plus a series of correction 

vectors. Thus (4) is actaullYi 

(6) 

where t.(i) is the initial guess for the amplitude vector and the subsequent 

t.(n) are the correction vectors provided by each iteration of the procedure. 

As long as the amplitudes are small the products of the amplitudes in 

Q. are even smaller and thus the changes in these products are smaller yet. 

Thus, even though Q. is not constant, the changes in these terms between 

interations are small enough to allow the linear procedure to converge quite 

well. However, as an amplitude gets large, it's presence in the product terms 

of equation (5) causes the changes in the G vector to become large enough 

that it makes it difficult for the procedure to converge. It is in these cases 

that oscillation and possible divergence occur. 

A solution to the problem was to systematically 'quasi-linearize' some 

of the non-linear terms on the right hand side of the equation and move 

them to the left hand side of the equation. If we break the quadratic term 

of equation (2) into its components, showing explicitly the products of the 

amplitudes of single and double excitations, it becomes 

(7) 



This can be written as; 

Where; 

H~l -

~l -

11~2 -

~2 -

Hutl 

B2lt2 

B12tl 

B22t2 
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(8) 

(9) 

(10) 

(11) 

(12) 

The Jl! matrices can now be treated as constant for each iteration and 

independently moved to the left side of (3). This gives us the ability to 

systematically remove terms from the G.. vector as they become large. By 

doing this we prevent this vector from changing too much and thus remove 

the numerical instability from the procedure. As an example, moving the 

t2t2 terms to the left side yields; 

where; 

and; 

A't=Q' 

A' = A + B' = = ==22 

(13) 

(14) 

(15) 

Since the set of equations which determine each level of excitation in the 

coupled-cluster set of equations is independently equal to zero, different 
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terms can be moved to the left hand sides of the equations corresponding 

to differrent levels of excitations. For example one can consider movin~ the 

.8.~2 t2 and 112 t2 in the equations pertaining to the amplitudes of double 

excitations, (those are obtained by projecting the Schrodinger equation onto 

the doubly excited determinants), and the Jl~l tl terms in the equations 

pertaining to the single excitation amplitudes. 
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c. Procedure 

In the computational implementation of CCSD the corrections to the 

t2 vectors, t~iter) obtained from each iteration are contained in the five-

dimensional array UI2. Four of the indices represent the two occupied (i,j) 

and two unoccupied (a,b) indices of the amplitude and the fifth index repre-

sents the iteration number. As an example, let us consider the equation for 

determining t~j in the CCSD equation set which contains the linear term; 

+ ~ E(kl" ij)t,S (16) 
k,l 

In the reduced linear equation procedure the amplitude tr;,t is expanded in 

terms of the initial guess and subsequent correction vectors; 

t
ab _ ~ tab(iter) 
kl - L...J kl 

iter 

(17) 

Then term (17) is represented in the computational implementation as; 

+ ~ EEF2(K,L,I, J) * UI2(K,L,A,B,ITER) (18) 
iter k,l 

where F2(K,L,I,J) represents the two-electron integral and ITER counts 

the iterations. The t2 amplitudes (term 18) are contained in the four

dimensional array T2. This array is used to calculate the non-linear terms. 

As an example, let us consider the equation for determining tij in the CCSD 

equation set which contains the non-linear term; 

+ ~ E(k11l cd)tiftk~ 
c,d 
Ie,I 

(19) 
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This term is represented in the computational implementation as; 

+ ~ L: F2([(, L, C, D) * T2(I, J, C, D) * T2([(, L, A, B) (20) 
c,d 
/c,1 

In the quasi-linearization which was implemented, the above non-linear 

term was considered as a linear term, consisting of a constant, which is the 

integral times the T2(I,J,C,D) amplitude determined in the last iteration, 

times the UI2(K,L,A,B,ITER) amplitude correction which is being deter

mined in the current iteration. In order to be more precise, it should be 

mentioned that in the 'quasi-linearization' of term (21) both t2 amplitudes 

are treated in an equivalent way, by allowing each of them to become vari

able while the other one is assumed constant. This leads to the following 

contribution of the non-linear term (20); 

~ ~ ! [!2([(,L,C,D) :T2([(,L,A,B),*UI2(I,J, C,D, ITER) (21) 

/c,1 Ckf(AB) 

+ !,2([(, L, C, D) y* T2(I, J, C, D), *U 12([(, L, A, B, ITER)] 

Ckf(IJ) 

The ! is required because in order to treat both amplitudes symmetrically 

the term must be counted twice. The C's are constant within each iteration. 

In the above form term (22) can now be moved to the part of the equation 

linear with respect to the coupled-cluster amplitudes. For example the 
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second part of term (21) is combined with term (19); 

+! EE {[F2(K,L,I,J) + i EC~£(IJ)] * UI2(K,L,A,n,ITER)} 
iter k,/ cd 

(22) 

and the first part contributes to the following term; 

+! EE {[F2(A,n,C,D) + i EC~f(An)l * UI2(I,J,C,D,ITER)} 
iter c,d k,/ 

(23) 

The other terms in CCSD set of equations are treated in an identical 

fashion. The off-diagonal tlt2 terms could, of course, have either or both of 

the amplitudes linearized independently. 
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D. Results 

The test case used was LiH, at the internuclear distance of 9.045 a.u. 

At this separation which is three time the equilibrium internuclear distance 

of 3.015 a.u. the molecule is essentially dissociated. The basis set is given 

in Table 111.1. The different cases studied are given in Table 111.2 and the 

results of the convergence study are given in Table 111.3. The cases differ 

by the terms which are 'quasi-linearized' and moved from the right hand 

side of the coupled-cluster equation to the left hand side and included in 

the A matrix. The initial guess in all cases was the t2 amplitudes obtained 

from an MBPT(2) calculation. 

At the Internuclear separatIon or 9.045 a.u. the dominant t3 amplitude 

is the one which represents the excitation between the two orbitals which 

become quasi-degenerate as the molecular bond dissociates. The converged 

value of this amplitude is -1.038781. This is quite large, slightly larger than 

the unit amplitude of the reference determinant. 

One can see from Table 3, that in its original formulation with all the 

non-linear terms in the B vector, the method diverges rapidly. Quasi

linearizing the t~ terms in the CCSD equations for double excitation am

plitudes (case 2), provides enough stability for the method to converge 

in 37 iterations. A major improvement comes from simultaneously quasi

linearizing t~ in the equations for single excitation amplitudes as well as 

the t~ in the equation for double excitation amplitudes (case 4). This cuts 
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the number of iterations required almost in half. 

The obvious drawback to the quasi-linearization scheme is the increase 

in time per iteration. Since the linear terms contain an extra index to 

count the interation correction vectors, rather than being calculated only 

once per iteration, they are calculated n times per iteration, where n is the 

iteration number. Therefore, if the quasi-linearization of a term does not 

significantly improve the convergence of the calculation, then the increase in 

time per iteration must be considered against the reduction in the number 

of iterations required to achieve convergence. 
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Table 111.1 

a) The basis set for LiH consisted of the following four contracted gaussian 

orbitals for the lithium atom and two for the hydrogen atom, (contraction 

coefficients in parenthesis). 

Li: s: 642.419 (0.00214261) 

6.20107 (0.245786) 

s: 2.32492 (-0.0350917) 

s: 0.0359620 (1.00000) 

p: 0.994203 (0.155916) 

H: s: 18.7311 (0.0334946) 

s: 0.161278 (1.00000) 

96.7985 (0.0162089) 22.0911 (0.0773156) 

1.93512 (0.470189) 0.636736 (0.345471) 

0.632430 (-0.191233) 0.0790534 (1.08399) 

0.231031 (0.607684) 0.0751386 (0.391957) 

2.82539 (0.234727) 0.640122 (0.813757) 
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Table 111.2 

Placement of the non-linear terms of the singles and doubles coupled-cluster 

equations for the different cases in the convergence study. A zero indicates 

the term is in the G matrix as with the initial formalism, a one indicates 

the terms has been 'quasi-linearized' and moved to the A matrix. 

Case 

1 2 3 4 5 6 

tf equationsl!. 

t2 
1 0 0 1 1 1 1 

tlt2 0 0 0 0 0 1 

t~~ equationsb 
IJ 

t2 
1 0 0 0 0 1 0 

tlt2 0 0 0 0 0 1 

tlt2 0 0 0 0 0 1 

t2 
2 0 1 0 1 1 1 

a) Equations obtained by projecting the Schrodinger equation onto singly 

excited determinants (i I. 

a) Equations obtained by projecting the Schrodinger equation onto doubly 

excited determinants (if I· 
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Table 111.3 

Convergence of the coupled-cluster equations for the six different cases stud

ied. The initial guess for all cases was the MBPT(2) t2 amplitudes. 

Case 

1 2 3 

1 -0.0574435 -0.0574435 -0.0574435 

2 -0.0455130 -0.0489001 -0.0455130 

3 -0.0591427 -0.0649951 -0.0597130 

4 -0.0657546 -0.0771893 -0.0697452 

5 -0.0588695 -0.0931733 -0.0667662 

6 -0.0581183 -0.1006861 -0.0659064 

7 -0.0550702 -0.0999628 -0.0614255 

8 -0.0098079 -0.1005889 -0.0260525 

9 +0.0842952 -0.1028159 +0.1353015 

10 +0.1430188 -0.1059927 +0.1622724 

11 +0.0188158 -0.1066463 -0.0455580 

12 +0.0155439 -0.1080918 +0.0329883 

13 +0.0552485 -0.1079650 +0.1066548 

14 +0.0426726 -0.1080633 -0.0024183 

15 +0.0304231 -0.1082260 -0.0068874 

16 +0.0349017 -0.1083443 -0.0347169 

17 +0.0511223 -0.1085167 -0.0316792 

18 +0.0431904 -0.1085440 -0.0306369 

19 +0.0485439 -0.1085418 -0.0189129 

20 +0.0539394 -0.1085784 +0.0144982 

21 +0.0628030 -0.1086359 -0.0005136 

22 +0.0496519 -0.1087199 +0.0020676 

23 +0.0433010 -0.1087110 +0.0013948 

24 +0.0395649 -0.1087433 -0.0026264 

25 +0.0386146 -0.1087651 -0.0022216 

( continued) 
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Table 111.3 continued 

Case 

1 2 3 

26 diverges -0.1087857 diverges 

27 -0.1088199 

28 -0.1088362 

29 -0.1088544 

30 -0.1088591 

31 -0.1088609 

32 -0.1088620 

33 -0.1088629 

34 -0.1088647 

35 -0.1088662 

36 -0.1088660 

37 -0.1088660 

38 converged 
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Table 111.3 (continued) 

Case 

4 5 6 

1 -0.0574435 -0.0574435 -0.0574435 

2 -0.0489001 -0.0489001 -0.0504842 

3 -0.0655902 -0.0658173 -0.0765271 

4 -0.0838579 -0.0872831 -0.1187728 

5 -0.1053388 -0.1069673 -0.0803567 

6 -0.1159605 -0.1145760 -0.0866619 

7 -0.1105552 -0.1098882 -0.1075589 

8 -0.1084581 -0.1079838 -0.1080553 

9 -0.1082772 -0.1080267 -0.1090271 

10 -0.1086502 -0.1089769 -0.1090964 

11 -0.1088358 -0.1086870 -0.1089146 

12 -0.1088854 -0.1089218 -0.1087326 

13 -0.1088903 -0.1088166 -0.1088851 

14 -0.1087717 -0.1089024 -0.1088605 

15 -0.1088605 -0.1088303 -0.1089014 

16 -0.1088679 -0.1088899 -0.1088747 

17 -0.1088680 -0.1088481 -0.1088556 

18 -0.1088652 -0.1088828 -0.1088625 

19 -0.1088658 -0.1088486 -0.1088682 

20 -0.1088659 -0.1088850 -0.1088654 

21 converged -0.1088462 -0.1088665 

22 -0.1088903 -0.1088658 

23 -0.1087932 -0.1088662 

24 -0.1088562 -0.1088659 

25 -0.1088721 -0.1088662 

( continued) 

--'- --- ..•.. -' ._ .... 
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Table 3 continued 

Case 

5 6 

26 -0.1088357 -0.1088661 

27 -0.1088639 converged 

28 -0.1088705 

29 -0.1088551 

30 -0.1088655 

31 -0.1088687 

32 -0.1088656 

33 -0.1088658 

34 -0.1088665 

35 -0.1088656 

36 -0.1088666 

37 -0.1088653 

38 -0.1088669 

39 -0.1088635 

40 -0.1088657 

41 -0.1088664 

42 -0.1088646 

43 -0.1088659 

44 -0.1088663 

45 -0.1088653 

46 -0.1088660 

47 -0.1088662 

48 -0.1088657 

49 -0.1088660 

50 -0.1088661 

51 converged 

-_ ..... __ ._ .. --
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E. Conclusion 

This work demonstrates how a satisfactory convergence of the reduced 

linear equation procedure for solving the coupled-cluster equations can be 

accomplished for quasi-degenerate cases. This is an essential step towards 

using a coupled-cluster method based on a single-reference formalism to 

solve multi-reference chemical problems. 



--- --- -_ .... - .--

IV A Multi-reference Coupled-cluster Method Using a 

Single-reference Formalism 

A. Introduction 

84 

The method proposed in this chapter is based on selecting the most 

dominant determinant in a reference function which consists of two closed-

shell type configurations37
,38,4o as the 'formal' reference determinant. Single 

and double excitations from this reference function are included using the 

standard CCSD equations. The second reference determinant is included 

by a two electron excitation from the formal reference determinant. Sin

gle and double excitations from the second determinant are included by 

including only those triple and quadruple excitations from the formal ref

erence determinant which correspond to single and double excitations from 

the second reference determinant.14,15,40 This is accomplished by modify-

ing the triple and quadruple diagrams one at a time with the appropriate 

restrictions. While this procedure is somewhat tedious, it allows reten

tion of the simplicity of the single-reference CC method as well as avoiding 

the previously mentioned problems associated with the current MRCC ap

proaches. Thus this chapter presents a practical method for the important 

case of coupled-cluster singles and doubles (CCSD) in cases requiring two 

reference determinants that differ by a two electron excitation. 
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B. Theory 

In the truncated CCSDTQ approach presented in this chapter, the 

multi-reference character of the wavefunction is provided by extending the 

set of cluster operators to include triples and quadruples which are re

stricted to only those which correspond to single and double excitations 

from a second determinant that differs from the reference determinant by 

a two electron excitation. This will allow energy calculations which involve 

the stretching (dissociation) of a single chemical bond as well as certain 

ground and excited states which mandate a two-determinantal reference 

function. 

Representing the second determinant as; 

II} =Iot!} (1) 

In this presentation, the convention is that upper case letters represent 

the double excitation required to produce the second determinant from the 

formal reference determinant and lower case letters represent excitations 

to virtual spin-orbitals (virtual spin-orbitals are spin-orbitals which are un

occupied in both the reference determinant and the second determinant). 

The spin-orbitals represented by the upper case letters are special in the 

sense that they are not included in the sums involved in occupied or virtual 

spin-orbitals for triple and quadruple amplitudes, but are always specifically 

indicated as fixed labels. These spin-orbitals will be refered to as 'active' 

spin-orbitals. Since single and double amplitudes are not restricted the 
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sums involving single and double amplitudes include the active orbitals. 

The most optimal procedure to implement, is first to perform a multi

configuration self consistant field (MCSCF) calculation. The two most 

important determinants will be selected as 'reference' determinants for the 

subsequent MRCCSD calculation. One of these will be the 'formal' refer

ence determinant and the other will be the 'second' reference determinant. 

The MCSCF spin-orbitals generated by this initial calculation will also be 

used in the MRCCSD calculation. 

In terms of the formal reference determinant, single and double excita

tions from the second determinant are shown in Table IV. 1. Since the active 

spin-orbitals are not included in either the set of core spin-orbitals or the 

set of virtual spin-orbitals, they must be specifically indicated. This leads 

to four types of single excitations and nine types of double excitations from 

the second determinant. To see how to transform the representation from 

the second determinant to the formal reference determinant, first represent 

the second determinant as I o1!}. Include the appropriate excitation, for 

example the first one in Table 1. Since A in occupied and I is not occupied 

in the second determinant, the excitation from A to I must be included, 

lot!i}. Using second-quantized operators this can be represented as; 

a}aAataJa~al IO} = a}alaAa~ataJ IO} = ataJ IO} (2) 

This yields the determinant I O~}, which is singly excited with respect to the 

formal reference determinant. Those excitations which correspond to single 
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and double excitations from the formal reference determinant are automat-

ically included in the full singles and doubles from the formal reference. 

However those excitations which correspond to triple and quadruple exci

tations from the formal reference determinant must be considered term by 

term in order to include only the desired amplitudes. 

The extension to include excitations from two determinants does not 

change the energy expression due to the fact that the Hamiltonian operator 

contains at most two-electron operators. The equations which determine 

thtl gO 6mplitl1d~§ mu§t now b~ {l~tendeg to include th~ B~lcctcd Bet of 

triples and quadruples from 10} which arise from including all single and 

double amplitudes from II}. In the following equations all the appropriate 

restrictions on triple and quadruple amplitudes are included in parenthesis. 

These equations define this multi-reference CC (MRCC) method. 

(Oi] /H[l + Tl + ! Tl + ~ T13 + :h T14 + n + ! Ti + TIT2 + ! T1T2 + 

T3(1ft+1S
a
+1Jt) + T1T3(1Ra+1i1

a
+1Ji

b
) + T4(1.flr)] 10}0 = 0 (4) 

(01Ra /H[l + Tl + ! T12 + ~ T~ + :h Tl + T2 + ! Ti + TIT2 + ! T1T2 + 

1 1',31'. + 1 T T,2 + T (ABa+ABa+Aab) + rrt To (ABa+ABa+Aab) + 
3i 1 2 2' 1 2 3 IJi Iii IJi .L} 3 IJi Iii IJi 

1 1',2To (ABa+ABa+Aab) + rrt To (ABa+ABa+Aab) + 
2' 1 3 IJi Iii IJi -'2 3 IJi Iii IJi 

(5) 
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(oti7a IH[l + Tl + ! T12 + * Tl + :Ii T14 + T2 + ! Ti + TIT2 + ! T12T2 + 

~ m3m + 1 T T.2 + m (ABo+ABo+AOb) + T ']! (ABo+ABo+AOb) + 
31 .Ll .L2 2 1 2 .L3 IJi Iij IJi 1 3 IJi Iij IJi 

1 m2m (ABa+ABa+Aab) + m m (ABa+ABa+Aab) + 
2 .Ll .L3 IJi Iij IJi .L2.L3 IJi Iij IJi 

(6) 

(otJt IH[l + Tl + ! T{ + * Tl + :Ii T14 + T2 + ! Ti + TIT2 + ! T{T2 + 
1 T3T + 1 T T.2 + 7) (ABa+ABa+Aab) + 1', 7) (ABa+ABa+Aab) + 3f 1 2 2 1 2 3 IJi Iij IJi 1 3 IJi Iij IJi 

1 m2m (ABa+ABa+Aab) + m m (ABa+ABa+Aab) + 
2 .Ll.L3 IJi Iij IJi .L2.L3 IJi Iij IJi 

(7) 

(ot.flr IH[l + TI + i Tl + ~ T{ + :fr T14 + T2 + i Ti + ~ T; + TIT2 + 

! T1'JT2 + tt Tl
3
T2 + ! TIT; + i TI2T; + T3(tJ:a+ti7a+tJib ) + 

T 1'- (ABa+ABa+Aab) + 1 T2T (ABa+ABa+Aab) 1 1',31'- (ABa+ABa+Aab) + 
1 3 IJi Iij IJi 2 I 3 IJi Iij IJi 3i 1 3 IJi Iij IJi 

m m (ABo+ABa+Aab) + T ,." m (ABa+ABa+Aab) + T. (ABab) + 
.L2.L3 IJi Iij IJi }.L2.L3 IJi Iij IJi 4 IJij 

The MRCCSD wavefunction is given by the exponential expansion of 

the wave operator (eqns 1 and 2) where now; 

(9) 

Although a two determinantal reference function is never explicitly used in 

this approach, the correlated wavefunction is equivalent to; 

(8) 
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Where Cl provides the correct ratio between the two determinants in the 

correlated wavefunction and; 

(11) 

The cluster operators Tl and T2 are defined as in eqns 4 and 5 of chap

ter 2, and amplitudes which precede identical strings of second-quantized 

operators resulting from operating on both determinants are combined to 

yield a single amplitude. How this is done can be seen by using the MRCC 

wavefunction in the Schrodinger equation, projecting it against the formal 

reference determinant and solving for the energy. 

The sum involved in T2 when it acts on IO} includes the cluster operator; 

(13) 

Adding this to the first term generated when the truncated wave operator 

acts on the second determinant; 

(14) 

which can be written; 

(15) 

The prime indicates the multireference nature of the new amplitude. As a 

second example, when ! T~ acts on IO} it includes the cluster operator; 

(16) 
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when ! T~ acts on the second reference it includes; 

(17) 

Adding the two terms; 

(18) 

Which can be written; 

(19) 

This can be done in all of the MRCC equations for all the duplicate am

plitudes (or any number of constants preceding the same string of second 

quantized operators), thus reducing the multi-reference wavefunction to our 

truncated CCSDTQ wave operator acting on a single reference determinant. 

An alternate derivation of our equations which better demonstrates their 

relationship with other MRCC methods is to begin with the generalized 

Bloch equation;37,38,46,47 

HU=UHU (20) 

where; 

U = L eT(IJ) I fl}(fl I (21) 
IJ 

and the reference function is 

(22) 
IJ 

Multiply the Bloch equation from the right by the reference determinant; 

H L clJeT(IJ) I fl) = L e
T

(II) I v}(v I H L cAeT(A) I") (23) 
IJ II A 
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Represent all excitations after the hamiltonian operator in terms of the 

formal reference; 

H eT. j 0) = L:eT(II) j V)(V j H eT* j 0) (24) 
II 

where T* represents the extension to higher order excitations from the 

formal reference to include equivalent excitations from the secondary refer

ences. Project against all functions j G) orthogonal to the formal reference; 

(G j HeT*jO) = ~]G j eT
(II) jv){v j HeT*jO) (25) 

II 

or; 

(G j HeT*jO) = tG{O j HeT*j 0) + E{G j eT
(II) jv)(v j HeT*jO) (26) 

II¢O 

The first term on the right cancels with the disconnected terms on the left 

and keeping only the connected terms, the second term is zero by virtue 

of the fact that it is a coefficient times another of the CC equations. This 

yields the single reference formalism extended to include excitations from 

more then one reference; 

(27) 
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Table IV.1 

Single and double excitations from the second reference determinant in 

terms of the formal reference determinant. 

Second Formal Type of 

Determinant Reference Excitations 

1~) O~) Single 

l A) Off) Double 

If} 01[1) Double 

Ii) oABa) 
IJi Triple 

I~B) 0) None 

I1B) OJ) Single 

1~1) Of) Single 

I'1B) OI~) Double 

1 Y) 
I) 

O~B) 
I) 

Double 

l~i) O~r) Double 

lA~) OBab) 
IJi Triple 

1!~) 
I) 

oABa) 
Jij Triple 

1~~) 
I) 

oABab) 
IJij Quadruple 
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C. Procedure 

The terms from the coupled-cluster equations which determine single, 

double, triple and quadruple excitation amplitudes, along with the appro

priate restrictions on these amplitudes to include only those terms which 

correspond to single and double excitations from a second reference de

terminant have been diagrammatically derived. This procedure generates 

16 diagrams for 4 types of single projections, 161 diagrams for 9 types of 

double projections, 295 diagrams for 3 types of triple projections and 147 

diagrams for the 1 type of quadruple projections, see Tables IV.4-IV.7. 

As a specific example lets consider diagram 2 from the doubles projec

tion 6, DP6 (see Table IV.5) which contains A(B) and I(J). Since this is a 

triple amplitude, in order to represent a double excitation from the second 

determinant it must contain three upper case letters (three spin-orbitals 

from the excitation which generates the second reference from the first). In 

this case one of the labels involved in the integral which is usually summed 

over must be fixed. Also since active spin-orbitals are not included in the 

sum they must be specifically included. This gives rise to several terms, 

represented first in second quantized form and then followed by the corre

sponding diagram and term in the CC equation. 



--_ .. __ ...... . 

2B 

(otal H(p, q) E tt1ba~ala1aiataj 10) 
b 
j 

+ E(aj "Bb)t1i1
b 

b 
j 

(01tl H(p, q) E t1lJa~alataia!aJ 10) 
b>c 

+~ E(aJ" bc)t1i1 
b,c 

-(oifl H(p, q) E trfja!ara~aiataJ 10) 
b 

{7X ~ 
2D :v~IA·Jnb - E(AJ" Ab)tifj 

b 

2E 

-(Orfl H(p, q) E tMBa!ara~aiataj "0) 
j 

- E(Aj" AB)tM
B 

j 
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When the amplitude involved represents a single excitation from the 

second reference, two of the free labels must be fixed. This gives rise to two 

additional diagrams. 

(ota, H(p, q) E tt~ba~alataiataJ' 0) - (oifl H(p, q) E tif.la!arataialaJ 10) 
b b 

2C \Z'\lJOb + E( -It P(A/a)(aJ" Bb)t1i~b 
b 
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When deriving the terms containing triple and quadruple amplitudes in 

the equations generated by triple and quadruple projections, four additional 

conventions concerning permutations must be added to those of Kucharski 

and Bartlett. 

(i) A double vertical line means no two upper case labels involved in a 

triple or quadruple amplitude may simultaneously be exchanged with lower 

case labels. This would produce a term which doesn't correspond to a single 

or double excitation from the second reference. 

(ii) A permutation enclosed in parenthesis within the set of permuta

tions means make all the permutations as if the enclosed permutation were 

not present, then make this permutation and again make all permutations 

with this label in place of the one it was exchanged with. 

(iii) A permutation of upper case labels enclosed in parenthesis includes 

exchanging the label (labels) involved in the integral as well as the ampli-

tude when necessary. 

As an example of these three rules, consider diagram 25B from the 

quadruples projection QPl, (see Table IV.7), which contains I,J,A and B 

and represents a double excitation from the second reference. 
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V\t\~lV 
- E( -l)P P(l Ji/j II A/ B/ab(A/B))(Bk IIBc)tfflCtk~ 

c 
Ie 

The total number of terms generated by the permutations is 48 (see Table 

IV.2). Also the reader will notice that simultaneously exchanging B and 

another upper case letter with two lower case letters is allowed as B is 

involved in the integral as well as the amplitude (see diagram 11, Table 

IV.2). Also permutations will sometimes generate a zero amplitude by 

virtue of the fact that the amplitude will contain the same upper case label 

twice. This is necessary in order to insure that all needed permutations are 

included. As an example, in diagram 25B from quadruples projection QPl, 

in the initial diagram when A is exchanged with B the resulting amplitude 

is zero (trJ~C) but after B is exchanged with a, then a must be exchanged 

with A (see diagram 10 Table IV.3). This is of course only a notational 

problem arising from the desire to present the diagrams and equations in 

as compact a form as possible and will not present a problem in coding 

the program where the terms containing zero amplitudes will simply not 

be included. 

(iv) The notation (lJ/ij I * I Aa/Bb) means make only those permu-

tations which do not decrease the number of upper case labels on either 

amplitude. As an example see diagram 33A in the quadruples projection 

QPlj 
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+ ~(-lt P(a/bB(A/ B) I * I J/ij(I/ J))(klllcA)t1:ikt 1ifb 
c 

" 
The permutations involved in this diagram generates 16 terms (see Table 

IV.3). 

In this multi-reference scheme the CC energy should still be invariant 

to an internal unitary transformation among the occupied spin-orbitals, 

excluding however I and J. Similar invariance should hold with respect to 

a unitary transformation among virtual orbitals, excluding A and B. 
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Table IV.2 

An example of all unique diagrams generated by permuting labels. The 

first diagram is the identity permutation. 

1 V\JA\~lV - E(Bk II Bc)tf.flCtkJ 
c 
II 

2 
\/JBi alb + E(Bk II Bc)t1.flCtk~ '\4-\~lV c 

II 

3 
V'Bi aJb + E(Bk II Bc)tt~Ctk~ \l\~l'\l c 

II 

4 V\2\ 1\l + E(Bk II Bc)tf!/tk~ B·:-~ c 
II 

5 \/\2\ 1,\7 + E(Bk II Bc)tlfttt; rf··~ c 
II 

6 \/\l\xl\l - E(Bk II Bc)tlfJttl 
c 
II 

7 V\l\~lV + E(Bk II Bc)t~~itk1 
c 
II 

8 V\2\ 1\1 - E(Bk II Bc)t~~Jtkf 
B"'~ c 

II 

9 \L$l~lV + E(ak II Bc)t1!/tf; 
c 
II 

10 \/\h\ lV 
- E(Ak II Bc)t1fttf; B--X c 

k 

11 
\/Ja i lIb - E(ak II Bc)t1.flCt f: \k\~ V c 

II 

-- .... _ ..... --
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12 
V'ai ,Jb - E{ak II Bc)tA[!ctBb 

\k\~ V c IJI kJ 

k 

13 ,\i\l~ lib - 2:{ak" Bc)tAB,ctB,b B--~ \l c IJJ ka 
k 

14 
\1J~j lib + 2:{Ak "Bc)taB~tB,b \J3\7{\l c IJJ ka 

k 

15 ~SA\~lV + ~{bk II Bc)t1!/ticf 
Ie 

16 ,\7\~\Xl~ - ~{Ak" Bc)t~~ftkf 
k 

17 \i\~\ 1 I B - E{bk" Bc)t1B,
ctaB 

B--X V c JJI kI 
k 

18 V\~ i 1 J B - ~{bk" Bc)t1j~CtJS B\X ,,7 
k 

19 V\l\xl'v - 2:{bk" Bc)t1"Ctk'? 
c J I 
k 

20 V~\xtv + E{Ak" Bc)t~~~tk'? 
c J I 
k 

21 ,\7\h i lV - ~{ak" Bc)t~~ftf/ B\X 
k 

22 '\/\ b i lV + ~{bk" Bc)tIgttf/ k\~ 
k 

23 V\~ j 1 i i + E{ak" Bc)t~~~tf,A B\X \ c J I 
Ie 

24 \1\ b j 1 i i - E{bk" Bc)tIg~tf,A h\X \ c J Z 

k 

-- .... _ .... ---
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25 '\J\t\xliL + E(Ak II Ac)tBA;cta~ 
c 1J, k) 
k 

26 \i\l\ lIb - E(Ak II Ac)t.{JA;ctab 
i'~X ,\1 c )Ja k1 

i: 

27 \J\t\ 1 J b - E(Ak II Ac)tf~Ctk~ i--X \1 c )1 

k 

28 '\i\t~ lib - E(Ak II Ac)tf!Ctk~ i--X \l c ) I 

i: 

29 '\/\t i 1 j b - ~(Ak II Ac)tI1it fj i\X V 
i: 

30 '\/\t j lib + E(Ak II Ac)tI1~tf·b i\X \l c ) I 

k 

31 I b \l i l'V - ~(Ak II Ac)t~1itkf \Z~\X 
k 

32 IbJtj lif + E(Ak II Ac)t~1~tk~ \1,\~\x \ c ) I 

k 

33 \J\h i i j b - ~(ak II Ac)tfJ1
C
ttj i\XV 

k 

34 
,\/JBi ijb + E(Bk II Ac)taActAb '\4\X\Z c IJi kj 

k 

35 \i\l\ i I b + E(ak II Ac)t!ACttt i--X \l c 
k 

36 '\i\h i i J b + E(ak II Ac)tfilCttJ i\X V c 
k 

37 '\J\ a j i i b + E(ak II Ac)tf!Cttp l(\X \l c ) I 

k 

-- .- ---- --- ----
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38 \/\A j Jib - L(Bk II Ac)tI1~tt~ i\7{ V c J I 

k 

39 \i\t\ l'V - L(bk II Ac)tflCtklJ. i--7{ c I J 
k 

40 \/\A\ l'V + E(Bk II Ac)t~1~tklJ. i--7{ c ' J 
k 

41 V\i\7{IV + L(bk II Ac)tfJi
C
tk1 

c 
k 

42 \i\h\ l'V + L(bk II Ac)t~1Ctk1 i--7{ c 
k 

43 V \Z\7{1 V + L(bk II Ac)tf!Ctk~ 
c J I 

k 

44 V \l"\7{l V - E(Bk II Ac)t~1~tk~ 
c J , 

k 

45 V\h i Jj B + L(ak II Ac)t~1ittl i\7{ \1 c 
k 

46 \J\Z\7{JV - ~(bk II Ac)tI1ittl 
k 

47 \/'\h j JiB - L(ak II Ac)t~1~tt·B i\7{ V c J I 

k 

48 :\Z\f\7{JV + L(bk II Ac)tI1~tt·B 
c J I 

k 

-- ............. . 
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Table IV.3 

An example of all unique diagrams generated by the permutation of 
labels where the permutation does not decrease the number of upper-case 
labels on either amplitude, The first diagram is the identity permutation, 

1 li J \J'b + E(kI//cA)t1tf:t1;fb 
\ VIlt~·inA~\1 c 

Ie 

2 VJ b 'J' - E(klllcA)t1Jkt1ifa 
\1 Itf~·inA\ \1 c 

Ie 

3 
li'B J 'b + E(kI/lcA)t1;fCt1Jj 
\ \ltft~·inA\1\7 c 

Ie 

4 
V' B 'J b + E(klllcA)t1!1/t1;jb \1 kfj~·inAVV c 

Ie 

5 Ji l 'J' b - E(kJllcA)t1Ikt1eb 
\ VIlt~·JOA\ \7 c 

Ie 

6 Ji lb 'J' + E(kJllcA)t1Jkt1Ca 
\ Vkfj~·JOA\ \[ c 

Ie 

7 
Ji'B I 'b - E(kJllcA)t1~Ct1Ij 
\ \lItt~·JOAV\7 c 

Ie 

8 
Ji'B 'Ib - E(kJ/lcA)t1!{t1iJ 
\ \ltft~·JOA\1V c 

Ie 

9 \iJ V' b - E(klllcB)tfJkt f;j6 '\1 kij~·inB~ V c 
Ie 

10 IJJb 'i' + E(kI"cB)tfJ.~t~1a 
\ \lkfj~·inB\ V c 

Ie 

11 
\iV J' b - E(kI"cB)t~1CtfJj ~ kfj~-inBV \7 c 

Ie 

---.".---.'-.-". 
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12 \)\) VV - 2:(kI"cB)tB!1ct~ab 
Itt~·inB c 13k laJ 

k 

13 :1 Ia VO b + 2: (kJllcB)tBactB(!b \l Itt~·JOB~V c JIk Jt3 

k 

14 VI b V' - E(kJllcB)tBbctB(!a \7 kfj~·JOB~V c Jlk JtJ 

k 

15 
V\i I a . b + E(kJllcB)tBActBab Itt~·JOB\lV c Jik JIj 

k 

16 V\i VI b 
+ E(kJllcB)tBActBab kfj~·JOB V c Jjk Jil 

k 

-_.- .. __ ....... . 
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Table IV.4 

Coupled-cluster diagrams from the projection against a singly excited deter

minant, representing single and double excitations from a second reference 

determinant which is doubly excited with respect to the formal reference. 

(otl projection (SPl) 

I A 

IA \1 ~"~"iIlb +! E(Ji II ab)t1ji
b 

Qob 

i 

I A 

IB V iOiijIla +! E(ij II Ba)t1i~a 
Q 

i.j 

I A 

IC V JaB"iIla + E(Ji II Ba)t1~a 
Q 

i 

(011 projection (SP2) 

IA '\l.lrtAi(} b 
+ E(Ji II Ab)tl1t 

b 
i 

IB V + E(Ji II Bb)tl~ib _Jt1iii(}b b 
i 

IC V itjAHjB +! E{ij IIAB)tM
B 

i,j 

ID V + E{Ji" AB)tl1iB 
_J~Ai(}B i 
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Table IV.4 (continued) 

(otl projection (SP3) 

1A V djiii(}a + ~(Ij II Ba)tt!r 
a 
j 

V Jt")ii"il"h 1B + ~(Jj IIBa}tt,~a 
a 
j 

V Icr~"J{jb 1C +i L:(I J II ab)tjJ" 
a,b 

1D ~IcriiJ{ja + ~(IJIIBa)tj~a 
a 

(Oil projection (SP4) 

1A ~llcrA"jl"h + ~(I J II Ab)t'ttl 
b 

1B V + ~(I J II Bb)t'tf} djB-jtjb b 

lC V + '2;(Ij II AB)t'ttB If1"A-jnB 
3 

1D \7 Jfj-A-jn ~ + ~(Jj IIAB)tif/ 
3 

IE ~J I/"fA"in B 
+(1 J II AB)titl 

-- .... -.. -.- .. -. 
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Table IV.S 

Coupled-cluster diagrams from the projection against a doubly excited de

terminant, representing single and double excitations from a second refer

ence determinant which is doubly excited with respect to the formal refer

ence, 

(01!1 projection (DPl) 

lA \IV + l:fiat1!t jfj"t< G 
i 

2A \lV.""j"~b +~ l:( -ll P(AI B)(Bi II ab}t1jf 
G,b 
i 

2B \I'\laja + l:( -ll P(AI B)(Bi II Ba}t1Ra 
G 
i 

I A J B 

3A \l}iUjfja -~ l:( -ll P(IIJ)(ij II Ja}t~~a 
G 

i ,; 

I A J B 

3B \lVuj"Oa - l:( -llp(IIJ)(Ji II Ja}t1Ra 
G 
i 

I A J B 

4A VV jt}"~"j(}b +~ l:(ij IIab}t1Rr 
G,b 
id 

5A 
I A\J V _jr¥~"jnb + l:(ij II ab}t1Rat~ 

G,b 
ad 

6A 
IA J-d.. 

-~ l:( -ll P(AI B)(ij II ab}t~")tf V jr¥~"\~b j 
G,b 
i,i 

6B 
IA Jd 

- l:( -ll P(AI B)(ij II Ba}t1IJ
a
tf \l ifjB\~a j G 

i ,; 



~-. 

lA 

IB 

2A 

2B 

2C 

2D 

3A 

3B 

-- .- ._ ..... -
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Table IV.5 (continued) 

\J~ldj~ 
\/\1 ja~ 
\J\l""t}c 
V\l B""j"tJb 
'\Z\l""j"Ob 
\Z\l""j"OB 
\J'i!""j"Ob 
\JVTf"h 

-! 2) -ll P(I/ J)(ij II ab)ttbfti 
a,b 
i,j 

- '2:( -ll P(I/ J)(Ii II ab)ttbfti 
a,b 
i 

(01JI projection (DP2) 

+ '2: fibttJi
b 

b 
i 

+ '2: fiBttJP 
i 

+! '2:(ai II bc)ttJi 
b,c 
i 

+ '2:( -ll P(A/a)(ai II Bb)tt.W 
b 
i 

- '2: (Ai II Ab)tl1t 
b 
i 

- '2:(Ai II AB)t11iB 
i 

- '2:(-l)P P(I/ J)(Ji II Jb)ttJt 
b 
i 

-! '2:( -ll P(I/ J)(ij II JB)tttB 
. . 3 
1,3 
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Table IV.5 (continued) 

3C \L~z.t}u - E(-It P(l/J)(Ji II JB)ttJiB 

i 

4A \/'\7 +! E(ij II Bb)ttJi1b djjjHjb b 
i,j 

5A \/V dji,-jllc + E(ij II bc)t1Jibtj 
b,c 
i.j 

,\7 '\7 ifjjjjllb 5B + :E(ij II Bb)t1JiBt~ 
b 

i.; 

\Llfb"\'-n 6A -! E(ij II bC)tti~tj 
b,c 
iii 

\Licrii\~ 6B - E( -It P(A/a)(ij II Bb)t~~btj 
b 

iii 

\7 Jd 6C + :E(ij II Ab)t'itJtt djA\:-b j b 
i,; 

\) J~ 6D + ~(ij "AB)trfltt djA\mB j 'tJ 

7A kf " -! E( -It P(l/J)(ij" bB)tj~at~ 
b i:-~"JOB 1 

b 
i.i 

kf " 7B - E( -It P(l / J)(li "bC)ttijt~ 
b :-~"i·Oc7 

b,c 
i 

7C kl"inn'\Z - :E( -It P(I/J)(li" bB)t~~at~ 
b 
i 

--.... -~.~. -
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Table IV.S (continued) 

(O?iBI projection (DP3) 

lA \1\/j~[< + E!iat~fa 
° j 

IB ~L~Jfj?< + E/Jat1i~a 
a 

2A \L\l--JOa + E(-llp(AIB)(Bj II Ba)t?ifa 
° 

2B 
I /' B +! E( -ll P( AI B)(B J II ab)t~'t \ \l--jfjb a,b 

2C ~L~l'jfja + E( -l)P P(AI B)(BJ II Ba)t~~a 
a 

3A 
I A 'jJ: -! E(jkllia)t1j~a \7~--kna ° j,1e 

3B 
I A '; \7\~--JOa - E( -ll P{I li)(J ill ia)t1!a 

° 3 

3C 
' A\J + E(Ij II Ia)tfrfa V~·Tna 

° j 

, A I J 
3D + E(I J II Ia)t~~a \7~~--jfja 

a 

4A 
I A ' J 

+! E(J ill ab)t1i~r \7\ (f~·jnb o,b 
j 

-- .... -- .... - .. 
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Table IV.5 (continued) 

5A 
I AV + E(jk II ab)t1i~at~ \Z~ jcr~"lLb 

a,b 
i,I< 

I A . J 
5B + E(Jj lIab)t~~atj \7\(t~-~b a,b 

i 

I liB 
6A -! E( -l)P P( AI B)( J j II ab)t1Jjbtf \Jfj~.\.~ 

a,b 

i V . B 
6B - E(-ltP(A/B)(jkIIBa)t1J/at: jcrii\·d a 

i,I< 

I liB 
6C - E(-l)Pp(A/B)(Jj II Ba)t1,flatf \ Jfljj\·d a 

i 
I A . B 

7A ~lj"nb\l - E(-ltp(I/i)(Jjllab)tjJfti 
a,b 

I A . B 
i 

7B ~lj"ob\l - E(Ij II ab)t1j!ti 
a,b 

i 
I A . B 

7C ~l"jfjbV - E(IJ II ab)t1Jfti 
a,b 

i A I B 

7D ~-r;:l·kob\l +! EUkllab)t1tfti 
a,b 
i,Ie 

(Oi~1 projection (DP4) 

+ EfjAti~1 
j 
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Table IV.5 (continued) 

IB \7'\[icril< + EfiBti~~ 
i 

2A \7,\t"iOc + E( -l)P P( a/b)(bi II Ac)ti1f 
c 
i 

2B \7,\,t-t!c + E(-llP(a/b)(biIIBc)tiJ:c 
c 
i 

2C ~Z\t"ilB + ~(-llP(a/b)(bi II AB)ti1jB 
I 

3A \1~ b - E(-llp(I/J)(JiIIJA)ti~ 
Lli"(JA j 

3B ~tiL"iln - E( -llp(I/J)(Ji II JB)ti~~ 
j 

4A ,\/,\b +! ~(ij II AB)tl~1l 1 i([.\jIjB 
I" 

5A '\/\ b + E(ij II Ac)ti~1tj liLtARJ.c c 
"j 

\7V'icriinc 5B + E(ij II Bc)ti'ttj 
c 

i,j 

\1 Jd 6A - E(-llP(a/b)(ij IIAc)tlttt~ ifj"A\-=c j c 
i.i 

'\/ Jd 6B - E( -ll P(a/b)(ij IIBc)ti3Ct~ ifj"ii\U:c j c 
i,j 

-- ............. . 



lA 

IB 

2A 

2B 

3A 

3B 

3C 

-- .... __ .... - .. - ... , 
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Table IV.S (continued) 

\f'V'd"f£< 
\1 'V' Jfj"{< 

\t\t-if"h 
\1\l-jfj. 
· AjJ 
YL""kOa 
· AjJ 
\ZL""kfja 
· AjJ 
YL""jfja 

- L) -Il P(a/b)(ij II AB)t'it:ft~ . . ) 
I,) 

- E( -Il P(I / J)(Ii II cA}tittt[ 
c 
i 

- L:(-Il P(I / J)(Ji II cB)t'i3
b
tJ 

c 
i 

(OjBI projection (DP5) 

+ L:frattfa 
a 

+ E!Jatt~a 
a 

+ L:(-Il P(A/ B)(BI II Ba)ttfa 
a 

+ L:( -llp(A/B)(BJ IIBa)tj~a 
a 

- L:(-Il P(ifj)(Ik Ilja)tj~a 
G 

k 

- L:( -Il P(ifj)(Jk Ilja)t~~a 
a 
k 

- L:(-llp(i/j)(IJllja)tj~a 
a 
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Table IV.5 (continued) 

4A 'AV +! 2:(1 J II ab)tjfJb V~ dj·~·j·Ob a,b 

5A 'AV + 2:(lk II ab)tjfat~ V~Itj·~·nb 
a,b 

" 
VVJtj~·nb 5B + 2:(Jk II ab)tj~at~ 

a,b 

" V . B 
6A - 2:( -l)P P( AI B)(lk II Ba)tjfat: ~Icrii\·d a 

" 
6B 

. i . B 
- 2:( -ll P(AI B)(Jk II Ba)t~~at: \J(tii\·d a 

" 
7A kJukijb'\i - 2:( -ll P(i/j)(lk II ab)tttfti 

a,b 

" i A . B 

7B .mluhObV - 2:( -ll P(ijj)(Jk II ab)t1Z7ti 
a,b 

" 

kt-iiOhV 7C - 2:( -ll P(i/j)(1 J II ab)ttJ7ti 
a,b 

(01rl projection (DP6) 

lA \L\/jf"fil< + 2:!;Bttt/ 
j 

IB '\f\/Jtj?< + 2:!JbtttJ 
b 

---_. -.--- -.- .-
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Table IV.5 (continued) 

IC ~\1 JiIi?< 
+/JBttijB 

2A \/\t + E(aj II Bb)tti1b B"'Hjb b 
j 

~Zil·jfjc 2B +! E(aJ II bC)tti~ 
b,c 

2C \Z\{",(}b + E( -ll P(A/a)(aJ II Bb)tti~b 
b 

2D \/\t ilOb - E(AJ II Ab)t'ifl 
b 

2E \/\t - E(Aj II AB)t'ijB iTnB i 

2F \/\t __ --.ilOB -(AJ II AB)t'ifl 

3A \jV - E(Jjllib)ttJj :L"rOb b 
j 

\/iJ 3B -! E(jkII iB)tt)k
B 

L"kOB i,k 

3C \IV - E(-llp(I/i)(JjlliB)ttJ~ 
L-rOB . J 

J 

3D \ltv + 2;,(Ij IIIB)tM
B 

L-rOB J 

-_ ..... _ ...... -
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Table IV.5 (continued) 

3E \I~t L~"Jfjb + 2:(IJ II 1b)ttr1 
b 

3F \/~t __ L~""iOB +(1 J II 1B)t~c:l 

4A \/\1 + 2:(Jj IIBb)t~J1b JcrjjjIjb b 
i 

\/\1 5A + 2: (j k II Bb)t1t/tt jcrjj"ll.b b 
iole 

\/\1 5B + 2: (J j II bc)t1iJbtj Jij"b"j.!lc boc 
j 

\/'V 5C + 2:(Jj IIBb)t~JBt~ 
.(tjjHlb b 

i 

\1 jfj"ii\;:d 6A - 2:(jkIIBb)t1i~btk 
b 

iok 

~/.lIb"\d 6B -! 2:(J j II bc)t1J'tt'J 
boc 
j 

6C YJliii\Ml - 2:(-llP(A/a)(Jj II Bb)t1.WtJ 
b 

I a i A 

6D \ZJCtA\d + 2: (J j II Ab)tI1ltt 
b 

i 
I a . A 

6E VjfjA\"~ + 2: (j k II AB)t'i~Bt~ 
i,k 
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Table IV.5 (continued) 

I a i A 

6F VJfjA\~ + 2;(J j II AB)tj1j
Bt1 

J 

7A ki i. 
b :~OjOnB\Z - E( -ll P(1 /i)(.T j II bB)t1~at~ 

b 
i 

ki '\/ 7B - E(lj II bB}t1j~at~ 
b ::-TnB 

b 

i 

7C kf \1 b ::-°jnc - E (I J II bc}t1Jrt~ 
b,c 

7D ki '\/ + E (J j II bc}t1Jlt~ 
b ::)nc b,c 

i 

ki '\/ 7E +! EUk II bB}t1frat~ 
b j:~"knB 

b 
i,1e 

kt ia 7F - E(1 J II bB}t1J:at~ b ~o:-JfjB\7 
b 

(OI~I projection (DP7) 

lA VV'rt"t1< 
IB '\1 \/ Jfj~ 
2A V'\tR.lc + E( -ll P(a/b)(bJ II Ac}tjt.,c 

c 
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Table IV.5 (continued) 

2B \I\h + E(-llP(a/b)(bJIIBc)tl~C BU.iC}e 
C 

2C \IV! + ~(-l)PP(a/b){bj IIAB)tMB 

A"HjB 
J 

2D ~~t·Jrh +( -ll P(a/b)(bJ" AB)tl~l 

3A \I~t - 2;,(J j II iA)ti~1 L~"jnA 
J 

3B \I~t - E(Jj IIiB)ti~~ L~"HjB 
j 

3C \I~ _L"~A +(IJIIIA)tfP1 

3D \I~ _C"j(}B +(IJIIIB)tfP! 

4A \IV + ~(Jj IIAB}ti~1l JfjAIOB 
J 

5A \IV + E(Jj IIAc)tI~1ti Jfj"Anle c 
j 

\1\/ 5B + E(JjIIBc)tI~!ti .(tHUle c 
j 

YJf"fA;zll: 6A - E(-llP(a/b){JjIIAc)tijtt~ 
c 
j 

-- .- .. __ ... --
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Table IV.5 (continued) 

I a i b 

6B \ZJfljj\d - L:( -ll P( a/b)( J j II Bc)t/~tt~ 
c 
j 

I a . b 

6C \ZjfjA\~ - E( -ll P(a/b)(jk II AB)t/1Bt~ 
'k ' ,. 

6D ~lfjA\&L - ~(-ll P(a/b)(Jj IIAB)t/1iBt~ , 

7A 1:&1- ,\b - E(I J II cA)t/1ibtr 
c ~'~"jOA 7 

c 

7B kl~BV - ~JI J II cB)t'i~ltr 
c 

7C kt Ib + E (J j II cA}t:J1;ti 
c :~'roA\7 c 

j 

k1- I b 7D + E (J j II cB)t:J7Jti 
c ::-rOBV c 

j 

(ojal projection (DP8) 

lA \Z~Ifj~ 

IB \iVJfj~ 

2A \Z'\J"i!"h + E(aI II Bb)tjfb 
b 
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Table IV.5 (continued) 

2B V\l:ith + E(aJIIBb)tj~b 
b 

2C \1~i·nB -(Alii AB)t'/i1B 

2D \/\t"Jr}B -(AJ II AB)t't/} 

3A \L~lkfjB - E(-I)P P(i/j)(Ik IUB)tjtB 

k 

3B \L~·kfjB - E( -It P(i/j)(Jk IljB)t~kB 
k 

3C \LVJnb - E( -It P(i/j)(I J Iljb)tjtj 
b 

3D V~/"~B -( -It P(i/j)(I J IUB)tjjB 

4A \7\ a + E(I J II Bb)tji~b 1 IijiijJjb b 

5A \/\7 + E(IkIIBb)tjiBtt (fiillb b 
Ie 

\/'\7 5B + E(Jk II Bb)tjr:ltt 
Jfj"iiirl"b b 

Ie 

Vlcrii~~ 6A - E(Ik II Bb)tj1bt ic 
b 
Ie 

-_ ..... _ ..... _. 
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Table IV.5 (continued) 

6B VJi"Jii~ - E(Jk II Bb}tt!;btk 
b 

" 
\J~ 6C + E(Ik II AB}tMBtt IttA:m:B k 

k 

i a . A 

6D VJOA\;d + E(Jk II AB}tifltt 
k 

7A ki ja - E( -It P(i/j)(I J II bc}t1Jit~ b :-~::jfJ c V 
b,c 

7B ki \1 - E( -It P(i/j)(Ik II bB}t1~at~ b :~:kOB 
b 

" kf ja 7C - E(-ltp(i/j)(JkllbB}t1~at~ 
b :~:kOBV 

b 
Ie 

ki ja 7D - E(-ltp(i/j)(IJllbB}t1!;at~ b ::--JfjBV 
b 

(Oi}1 projection (DP9) 

-( -It P(i/j)(I J IljA}ti;1 

-_ .... _ ..... -
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Table IV.5 (continued) 

3B ~iJ·J(}B -( -ll P(i/j)(I J IljB)tiJY 

4A \7V ___ Ir+AJnB +(1 J II AB)tijt! 

6A \7 \~ - 2) -ll P(a/b)(Ik II AB)tinBt~ I(fA·_mB k 
k 

6B \l \~ .(fA~mB k - 2) -ll P(a/b)(Jk II AB)tif/t~ 
k 

7A k1 V - ~] -ll P(i/j)(I J II cA)tr1jti c :-~·JfjA 
c 

7B kt jb - E( -ll P(i/j)(IJ II cB)tr~jti c :~"jfjBV 
c 

-_.- .. _- -.. _-- .. _ ..... 



L 
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Table IV.6 

Coupled-cluster diagrams from the projection against a triply excited deter

minant, representing single and double excitations from a second reference 

determinant which is doubly excited with respect to the formal reference. 

(o1lial projection (TP1) 

lA ~VVX - r)-1)p P(i/IJ)f;ittf/ 
j 

IB \/'\/~X +(-ll P(I/J)!Ilt~~a 

2A ~7V\lx + ~)-ll P(AB/a)Jabttf/ 
b 

2B \1V\tx -( -ll P(A/ B)JAAtl~l 

3A \L\i~i' - ~) -ll P(IJ/i II ABla)(ja IIib)tt.W 
b 
j 

3B vV~i' + L:( -ll P(I / J I AB/a)(Ia II Ib)t~~b 
b 

3C \l,\iil + L:( -ll P(I J Ii I AI B)(jA II iA)tl~/ 
j 

3D \1V~t -( -ll P(I/ JI AI B)(IA II IA)tifIA 

4A \L~f·V +! L:( -ll P(II J)(jk II Ji)ttj~a 
j,k 
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Table IV.6 (continued) 

4B VvV + E( -ll P(I li(I I J»(J j II Ji)tt!a 
• 3 

3 

4C ~~·tt -(J III J I)t~~a 

5A V\l\l +! E(-l)Pp(AIB)(Ba II bc)ttJi 
b,e 

5B V\l\l + E(-l)P P(Ala(AI B»(Ba" Bb)ttltb 
b 

5C \7\l\l -(BAIIBA)t'i~/ 

6A \iV\7jfjbX + E!;bttJ:r 
b 

1 

\iV\l](}c 7A +! E(aj" bc)ttJ:je 
b,c 

1 

\7V~Jnb 7B - E(-llp(AIB)(Aj IIAb)ti~i1b 
b 

1 

VVW\rh 8A -! EUk II ib)tt!/i} 
b 

1,k 

VV~·jrh 8B + E(-llp(IIJ)(Ijl/lb)t~~r 
b 

i 

V\)\~ 9A - E(-llP(ABla)!;bttJ:
b
tj h L .~ 

b 

1 

-- .- .. -..... _. 
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Table IV.6 (continued) 

9B VV:\ril~ + E( -ll peAl B)f;AtI~lt1-
, J 

J 

IDA ~t~'\i:\7 - E(-llp(l/Ji)f;btfJ:at~ 
b 

~t~VV 
j 

lOB - E( -ll P(I / J)!Ibt1J:at~ 
b 

llA '\Z\lil O

jll, + E( -ll P(AB/a)(aj II bc}t1.Wtj 
bl,c 

lIB \7~:\ZOjllb - E(-llp(A/B)(Aj IIAb}tI~lt~ 
b 

l2A '\i'\i'W-°~b - E(-ll P(I J /i)(jk II ib}t1fat~ 
b 3 

,i,1e 

V\l1\t°jllb l2B + E( -ll P(l / J)(lj II lb}t-0~at~ 
b 

l3A '\Z\lif"fb)] - E( -ll P(I J /i II AB/a)(jk II bi}t1f.btk 
b J 

,i,1e 

:\i\lIi"fb1! l3B + E( -ll P(I/J IAB/a)(lj II bl}tfJibt'J 
b 

l3C \7~jilA'U + E( -ll P(IJ/i I A/ B)(jk II Ai}tl~~tt 
'k 3 

3. 

l3D :\1\1 IilAiJ. - ~(-llp(l/J IA/B)(lj II Al}tifIAtf 
J 

-- .......... - .. 
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Table IV.6 (continued) 

14A \/\[jab·~ + ~) -It P(IJ/i IIAB/a)(ja II bc}tt!/ti 
b,o 

\IV I a 

i 

14B - ~) -It P(l/ J I AB/a)(la II bc}ti)'btr Iflb"Xsl b,e 

14C VVjaA~ - L)-It P(l J/i I A/ B)(jA II Ab}tl~/t~ 
b 

V\iIfjA~ 
i 

14D + ~) -I)P P(l/ J I A/ B)(IA II Ab}ti!rAt~ 
b 

15A ~~\z-li -! E(-ltP(B/a(A/B»(Bj Ilbc}ttJitj 
bl,c 

15B V\l\~ - E( -I)P P(AB/a(A/B»(Bj IIBb}tt~btj 
b 

15C ~\l\~ + ~(-It peAl B)(Bj II BA}tl~iAt1 
J 

16A ~tVV + E( -It P(l/Ji(l/ J»(jJII bJ}t11at~ 
b 

ktV~Z 
j 

16B -! E( -It P(i/ J(l/ J»(jk II bJ}t1k,at~ 
b 

~t}1~Z 
j,k 

16C + E( -It P(l/ J)(l J II bJ}tt~at~ 
b 

17A \/\;\7 + E(jk II bc}ttlrt% Jtjb"jJlc b,o 
i,k 

-_ .... __ .... -



Table IV.6 (continued) 

-! E(jkllbc)ttJWtk 
hoe 
iole 

126 

+ E( -I)P peAl B)(jk II Ab)tifj1btt 
h 

iole 

- E( -It P(l( J)(Jj II bC)ttfJ:at~ 
hoe 

+t 'L,(jk II bC)t1kJtt~ 
hoe 
iole 

+~ E( -It peAl B)(jk II bc)ttjit~a 
hoe 
iole 

+t 'L,( -ltP(A/a(A/B))(jk IIBb)tt.Wt~a 
b J 

iol: 

-t 'L,(jk II AB)ti1Pt~A 
jok 

+t 'L,(-ltP(J/i(l/J))(lj Ilbc)t1j~at~J 
boe 

i 

+! E(l J II bc)t1J:at~J 
boc 

-~ E( -It P(l/ J)(jk II bc)t1k~at~J 
boe 
iol: 

-t E( -It peAl B)(jk II bc)t1jJt~a 
boe 
iole 



-_ ..... _ ........ . 
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Table IV.6 (continued) 

\
1 ~ ~.b IBV' a 

22B[jfjB5~ 

- 2) -ll P(IJ /i" A/a(A/ B»(jk IIBb)ttj~bt~a 
b 

i,1e 

22D V Ifjb·~~l \Z 

+ E(-llp(IJ/i){jk"AB)titJt~A 
j,k 

+! E( -Il P(A/B I (I/J»{Ij" bc)tj~tft 
b,. 
j 

~ ~ 'l.b IV 1 a 
22E V djii:S?{ 

+ E( -Il P(A/a(A/B) 1(1/ J»{Ij" Bb)tj~bt.fra 
b 
j 

- E( -Il P(I/ J){Ij" AB)titlt.frA 
j 



-_ ..... - .... -
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Table IV.6 (continued) 

,'1\1 , Py ~ ~ 
23AWL'iLtc V 

"
l~· I~ ~lB 

23B :\Y'\L"TO <;. \ 

-!~) -l)P P(I/ J)(jk" bc)tfk!ltr;p 
b,c 
i,le 

- ~) -It P(i/ J(I/ J) II a/AB)(IiII bc)t1J!ltiP 
b,c 

i 

~l~ 1 Py "lB 23C ~ :\Y'\T'jf} c 

+ ~] -It P(a/AB){I J" bc)t1jftj~ 
b,c 

" 
i\1 'I ~ ~ 23DW"'iOAV 

+! ~) -It P(A/ B) 11/ J)(jk" bA)tjtft~b 

~ Py~ 1 ~ ~ 
23E V :\~"'jnA V 

h 
i,le 

+ 'E(-lt P«A/B) li/ J(I/ J»){IiII bA)tltft~b 
b 

i 
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Table IV.6 (continued) 

~ ~~. hA-L1 V' B 
23F Y ~r'jJjA 

- E(-ltp(AIB)(IJ II bA)tijjBtjj 
b 

-! E( -It P(ABla)(jk" bc)ttRbtjk 
b,e 
i,k 

+! E( -It P(AI B)(jk II Ab)ti~jAttt 
b 

i,k 

-! E( -It P(il I J)(jk II bC)tkt!t~i 
b,e 
i,k 

+! E(-ltp(IIJ)(jlllbc)titlt~I 
b,e 

i 
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Table IV.6 (continued) 

~ ~VJ B ..... { i' 
26A :'LjOb·i£lUL 

+ 1) -ll P(AB/a IIIJ/i){jkli bc)tt!/tki 
b,e 
i,k 

~ ~vJ B VI a 
26B :'L IOb-rn c 

-1) -ll P(ABla I (1/ J))(Ij II bc)tt,~btii 
b,e 

i 

VIaVJB _ {~ 
26CjcrA~ 

- ~) -l)P P(AI B) II J/i){jk II Ab)ti~/t~t 
b 

i,k 

V'avJB 
-~-~ 

26DIOAj~ 

27A 

+ 1) -ll P( (AI B) I (1/ J))(Ij II Ab)ti!rAt~t 
b 

i 

+! E( -It P(AIB){jk II bc)ttJitftk 
b,e 
i,k 



f __ . 

27B 

27C 

28A 

28B 

28C 

--.. --- ._. --
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Table IV.6 (continued) 

+ E( -1l P(A/a(A/ B»){jk" Bb)tt!;bt7t'k 
b 

j,1e 

- EUk II AB)ti1iBt7tt 
i,k 

+! E( -ll P(l/ J)(jk II bc)tJt!t~tl 
h,c 
j,Ie 

+ E(-ll P(J/i(J/I»)(lj II bc)ti1!t~tl 
b,c 
j 

- E {I J II bc)ti1iBt~tl 
b,a 
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Table IV.6 (continued) 

~ fty ~lB \' h .}.L 
29A V:\~".itlc 

~1\i\i 30A to. boo .f. : 

~IVv 30B tflbOO s. ! 

~ ~VJ B {s .• Ir J 
31A V jfjbOO~ 

- ~) -ll P( AB / a)(j k II bc)ttJ:btjt'k 
b,c 
i,k 

+~) -ll P(AIB)(jk IIAb)ti~/ttt~ 
b 

i,k 

- E( -ll P(i/ I J)(jk II bc)t't:tft~ti 
b,c 
i,k 

+ E( -l)P P(ll J)(jIII bc)tit.lt~tl 
b,c 

i 

- E( -ll P(AB I a II I J /i)(j k II bc)ttf/tit't: 
b,c 
i,k 



--_._ .. __ .. _. ---
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Table IV.6 (continued) 

31B VV'dji;W 
+ E( -1)P P(AB/a I (1/ J»(Ij" bc)ttfrbtitj 

b,o 
i 

VIaVJB ~b_,~ 
31CjcrA·~ 

+ E( -1t P«A/ B) I I J/i)(jk" Ab)ti~/t~t: 
b 

i,k 

310 \ZV'It"fAW 
- E( -1t P«A/B) I (1/ J»(Ij" Ab)ti.fIAt~t1 

b 
i 
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Table IV.6 (continued) 

(01i~al projection (TP2) 

IA vV~X - 2) -It P(i/j)fkjttifa 

k 

IB VVt/.X -( -It P(Ii/j)/Jjtti~a 

IC ~Vt'-X +fl1ttf
a 

2A VV'\tX + Efabtti~b 
b 

2B \)V\tX -( -l)P P(A/ B)fAAt'i8A 

3A VV~ - E( -It P(i/j)(ka llib)ttifb 
b 
k 

VV1l 3B - E( -It P(li/j II AB/a)(Ja llib)tti~b 
b 

3C VV'il + E (I a II Ib}ttfb 
b 

3D V\)~ + E( -It P«A/ B) I i/j)(kA IIiA}t'iftA 
k 

3E VV~ +( -It P«A/ B) I 1i/j)(J A I/jA}tl~A 

-_ ..... _ ..... -
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Table IV.6 (continued) 

3F \1~~ -( -l)P P(A/ B)(IA II IA)tj8A 

4A \Z})il +~ E(klll ij}t1f/a 
k,l 

4B \L~"U + E(-llp(I/ij)(Jk II ij}t1Jta 
k 

4C \L'5t"U - E( -ll P(i/j)(Ik II Ij)ttrfa 
k 

4D \i~f-V -( -l)P P(i/ j)(I J II Ij)ttr~a 

5A \/\l-\Z + E( -ll peAl B)(Ba II Bb}t~rb 
b 

5B \1~\k -(BA II BA}tl~A 

6A \LV'Vrijb~ + Ehbt1;f;b 
b 

7A \L\i\l-if}c +~ E(aJ II bc)t~rjc 
b,c 

7B ~~[~-jJ"h - E( -l)P P(A/ B)(AJ II Ab)tl~1b 
b 

8A \LV'~-krh - E( -ll P(i/j)(Jk IIjb)t~~kb 
b 
Ie 

-_ ..... _ ........ . 
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Table IV.6 (continued) 

8B \LV~t-nb + E(I J II Ib)t~fJb 
b 

9A \/\i\& - E fkbttifbtic h on_-7( 
b 
k 

~~\rll~ 9B + E(-ll P(AIB)fkAt';eAtt 
k 

lOA ~f '\ii B - E( -ll P(ifj)fkbtk1iBt~ b:--~ \7 
b 
k 

~1- \Ji B lOB - E( -l)P P(j I Ii)!Jbtj1iBt~ b:---~\7 
b 

10C ~1-~\i,\i + E flbtltBt~ 
b 

11A VV\{"Ulc + E(ak" bc}t1Sbt 'k 
b,c 
k 

'\7\B j fA 11B - E( -ll P(AI B)(Ak" Ab}tleAt~ 7\~·~b b 
k 

'\L\i~"irh 12A - E( -l)P P(ilj)(kl "jb}t1i~at~ 
b 

'\L\ii?-"Ulb 
k,1 

12B - E( -ll P(j IIi)(Jk llib}t~~at~ 
b 
k 

V\ii\t"Ulb 12C + E(Ik" Ib}t~fat~ 
b 
k 
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Table IV.6 (continued) 

13A VV'ktl"bV - E(-ll P(ilj)(klll bj)t1ifbt; 
b 

1e,I 

\Z\LJtjb:U 13B - E( -ll P(j I Ii II aIAB)(Jk II bj)tt~btk 
b 
Ie 

~\LltlbV 13C + E(Ik II bI)tf;rbtk 
b 
Ie 

V\LktlA'fJ 13D + E( -ll P(ilj I (AI B»(klll Aj)tjftAtf 
k,l 

13E V\LJt}-AV. + E( -l)P P(j I Ii I (AI B»(Jk II Aj)tjfltt 
k 

13F ~\LlcrA}J - E( -l)P P(AI B)(Ik II AI)tj8Att 
k 

14A VV' ~ + E( -ll P(ifj)(ka II bc)ttfbtj ktIi," .. c 
b,c 
k 

VV' ~ 14B + E(-ll P(j IIi II aIAB)(Ja II bc)t1i~btj rtjb" .. c 
b,c 

14C VV' ~ - E(Ia II bc)tf;rbtr Icrb" .. c b,c 

14D VV' ~ - E( -ll P(ilj I (AI B»(kA II Ab)tjftAt~ kcrA" .. b 
b 
k 

VV' ~ 14E - E( -ll P(j I Ii I (AI B»(J A II Ab)tif./t~ JfjA" .. b 
b 
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Table IV.6 (continued) 

14F V\i ~ + E( -It P(A/ B)(IA II Ab)tj8At~ lOA· .. b 
b 

15A V\l~~ - ~(-ltP(B/a(A/B))(BkIIBb)tti1btk B--: k 
b 
Ie 

\1\l~?d 15B + ~(-lt.P(A/ B)(Bk II BA)t/f;Att B--A k 
k 

16A ~l:u~i -! ~(-lt P(i/j)(klll bj)tk~Bt~ 
b 

1e,1 

~tV,\i 16B + ~(-lt P(i/ I/j)(kIli bI)tktlt~ 
b 
Ie 

~tv\l 16C + ~( -It P( i/ 1/ j)(kJ II bI)tk1!t~ 
b 
Ie 

16D ~tv\l + ~(-lt P(i/ I/j)(I J II bI)t/1jBt~ 
b 

17A i[\iv rt"fb"inc + ~(Jk II bc)t~1Jbtk 
b,c 

Ie 

18A \/V ~?li Ji1b---~ k -! ~(Jk II bC)tti~rtk 
b,c 
Ie 

18B \1\i j?U Ji1A\.: k + E( -It P(A/ B)(Jk II Ab)tif;1
btt 

b 
Ie 

k7- \/,i 19A - ~(-lt P(i/j)(Jk II bc)tJk1ft~ 
b : ... ·knc 

b,c 
Ie 

-- -_ .. _." ... _-
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Table IV.6 (continued) 

19B ~t \/i B + L:(I J II bc)t'iJ1iBt~ m=-jJjc \1 
b,e 

20A \2\~1 +! ~) -It P(A/ B)(klll Bb)t~Tbt:'o 
b 

1e,I 

V\~l 20B -! L:(k111 BA)t'i~At:'A 
k,l 

21A \~JV +t L:(k111 bc)tt,~Ot~i 
b,e 
1e,I 

\~JV 21B +! L:( -I)P P(I /ij)(Jk II bc)t1:/t~'t 
b,e 
Ie 

\~J\l 21C -! L:(-l)P P(i/ j)(Ik II bc)t?1?t~i 
b,e 

" 

~~J\l 21D -! L:(-I)P P(i/j)(I J II bc)t?Wt~i 
b,e 

22A V \ Jj a -! L:( -It P(A/ B I i/j)(Jk II bc)t?Jitel Jfjb·~~\7 
b,e 

" 
V \ J'V 22B - L:( -It P((A/ B) I ifj)(klll Bb)t?tfbtf;° kcrB~W 

b 
1e,I 

22C 
I a i J '/ VkcrA\~\ + L:(-ltp(i/j)(kIIIAB)t'itiBtf,A 

kJ 3 
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Table IV.6 (continued) 

\
1 lB ~_b l~ ~ 

22DnjA'~ V 

+ 1) -l)P P(Ii/ j II B/a(A/ B»(Jk II Ab)ti1ltr;A 
b 

Ie 

VI a ~_.B J~ ~ 
22EnjA"\~ V 

+ "L,(-ltp(Ii/j)( Jk IIAB)t[1?tr;A 
k 

+ "L,(-lt P(A/B)(Ik II Bb)ttI~btf1' 
b 
Ie 

- "L,(Ik II AB)tMBtfl 
k 

-! "L,(k111 bc)t~IBtfj 
b,c 
1<,1 



-----.--_ .. ---
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Table IV.6 (continued) 

\ '7~ J~ \11B 
23B :\rxr'ko c 

- ~] -I)P P(I/ij IIAB/a)(Jkll bc)tj£ftij 

\
1 1~ I ~ V' B 

23C :\rxr'kn c 

\ Il~ I~ V'
B 

23D :\rxr'jrh 

b,c 
Ie 

+ 1) -It P(i/ j)(Ik" bc)t1:ptjj 
b,c 
Ie 

+ ~) -I)P P(i/j I AB/a)(I J" bc)t1Jftjj 

~ ~~ kl VI B 
23E V ~rx"'inA 

~ ~~ Jl \1 lB 
23F V:\rx"'knA 

b,c 

+! E( -It P(A/B)(kl" bA)tk~Btjb 
b 

1e,1 

+ E( -It P((A/ B) I I/ij)(Jk" bA)tjt?tjb 
b 
Ie 



------_._ .. --
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Table IV.6 (continued) 

~ ~~ 11 "lB 
23G V:\~"·knA 

- E( -l)P P«A/ B) I i/ j)(Ik II bA)tr~Bt1J 

~ ~~. h ... _~_7 "lB 
23H V~r·jJjA 

" " 

- E( -l)P P«A/B) I i/j)(I JII bA)tr2ft1J 
b 

\
1 ~\'lB ~ kl 

24A{ :\}\:"·in c 

-! E(k11l bc)t~fbtkl 
",c 
",I 

+t E( -ll P(A/ B)(klll Ab)tlF;Atf,b 

" ",I 

-! E( -ll P(i/j)(klll bc)tIABt~i 
",c 
",I 



-- ..... -....... -
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Table IV.6 (continued) 

~-. 1\1 i,'lB 
25B kcri,"-SW 

\
1 ..yV' B ~1 

26B{ .(ti,"in <;. \ 

-! ~(-lt P(Ii/ j)(kJ II bc)t'j1iBtti 
/J,e 

" 

+! L(klllbc)tl~Bttl 
/J,e 

" 

+ ~(-It P(i/j)(klll bc)t~~btIJ 
/J,e 

",r 

+ ~(-It P(Ii/j II AB/a)(Jk II bc)t~~btki 
/J,e 

" 

~ ..y V' B '".. { ~ 
26C ~{Icri,"~ 

- ~(Ik II bc)t~fbtkl 
/J,e 

" 
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Table IV.6 (continued) 

\
1 1,' lB ~ ~- ~ 

26DkaAi~ 

- L) -ll P(i/j I (AI B))(klll Ab)tjftAttt 

\
1 lV' B ~ ~_ ~ 

26E.(tA~ 

b 

Ie,I 

- 1:( -ll P(Iilj I (AI B))(Jk II Ab)tiflt~1 

~l,'lB - {~ 
26F ~IO·A~ 

27A 

27B 

-- ._ .. __ .- ... --- ... -... 

b 
Ie 

+ 1:( -ll P(AI B)(Ik II Ab)t'JnAt~1 
b 

Ie 

+ 1:( -ll P(AI B)(klll Bb)t~rbtfti 
b 

Ie,I 

- 1:(k111 AB)tMBtft~ 
k,l 
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Table IV.6 (continued) 

28A 

+l E(kl" bC}tk~Bt~ti 
b,c 

",' 

28B 

+ E( -1l P(I/ij)(Jk II bc}tjtft~ti 
b,c 

" 

28C 

- E( -1l P(i/j)(Ik II bc}tltiBt~ti 
b,c 

" 

28D 

-:- E( -ll P(i/ j)(I J II bc}t11iBt~ti 
b,c 

v\i\~ 29A~ .~. ""illc 

- E(k111 bc)t~~btktl 
b,c 

",' 



Table IV.6 (continued) 

. B . avv ,~·;·~7 30A IUh 

. B 
I a'\iV ,~·;·~7 30e IUh 

31A 
~I ~ Vi B ~s ... 11 7 a 

V _kcrb"~ --l! __ _ 

146 
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Table IV.6 (continued) 

\
1 ..yV' B ~s .... 1, 7 

31B[Jijb"~ 

- E(-l)P P(j I Ii" aIAB)(Jk" bc}t~~bt'jtk 
b,c 

" 
~ ..y V' B {s .... 1, 7 

31C Vdjb"~ 

+ E(Ik" bc)t~fbtltk 
b,c 

" 

~1"lB ~b_l; 
31D ~kaA·~ 

+ E( -ll P(il j I (AI B))(klll Ab)tiftAt~tt 

~IV' B ~ b - '- ; 
31E ~JijA·~ 

b 

",I 

+ E( -ll P(j IIi I (AIB))(Jk II Ab)tif;At~tt 
b 

" 

V' a " lB ,I b _ '- ; 
31Flfj·A·~ 

- E( -ll P( AI B)(Ik II Ab)t'J8At~tt 
b 

" 



L_ 
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Table IV.6 (continued) 

(O?Jibl projection (TP3) 

lA VV)ifx - Ehit?jJ 
j 

lB \L~~fX +( -ll P(I/ J)fllttJ1 

2A VV\tx + E( -l)P P(a/b)fbct?Jt 
c 

2B VV\tx +( -ll P(b/Aa)fbBt?jf 

2C \/V\tx f t
baA 

- AA IJi 

3A \IV~i - E(-llP(a/b)(jbllic)t?r 
c J 

j 

3B V~~ - E(-ll P(b/Aa II i/ I J)(jbll iB)t?j!3 
. J 

J 

3C V~M + E (j A II iA)t~i1 
j 

3D ~~}i + E( -ll P(a/bl (1/ J))(Ib II Ic)ttJai 
c 

3E \7\1~ +( -ll P((I/ J) I b/Aa)(Ibll IB)ttJ"f 
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Table IV.6 (continued) 

3F \I~~ -( -It P(I/J)(IA"IA)t~j1 

4A 'Vk?iI' + L) -It P(l / J)(J j II Ji)t1J~ 
. 3 

3 

4B ~Qv -(JIll JI)t~1 

5A 'V\l\Z +! E(ab llcd)t131 
c,d 

5B 'V~~\l + E( -It P(A/ab)(ab II Bc)t11C 
c 

5C \1\Z\i - E(-ltP(a/b)(Ab IIAc)ti1t 
c 

5D \7 \tVa -( -It P(a/b)(Abll AB)t'i1f 

6A 'VV\li(jjiX + EhBt1Jt
B 

i 

7A 'VV\$mc + E(-lt P(a/b)(bj II Bc)t1Ji1
c 

c 
j 

VV\tmB 7B - ~ (Aj II AB)t~JtB 
3 

SA 'VV)if"kl"}B -! E (j k II iB)t1Jjf 
i,k 

-- _ .... _ ...... _. 
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Table IV.6 (continued) 

8B ~SZ~t·jrh + ~(-ll P(I / J)(Ij II IB)ttli;B 
3 

9A V'\l'\~ - ~) -l)P P(a/b)/jct1Jtt~ ~ J.. •• ~ 
c 
j 

\/'\l'\rlt 9B - ~(-ll P(b/Aa)fjBt1JiBt~ J.. •• ~ 
3 

9C VV'\~ + E /jA t~J1t1 J.. .. ~ 
j 

lOA ~f ,\/Ja - E fjct~tJti 
c j:"~\7 c 

j 

~f \/\a lOB + E(-llp(I/J)!Ict~1jtl 
c :"~7 

c 

llA VSZVTfj.d + E( -ll P(a/b)(bj "cd)t1Jttj 
cl.d 

lIB '\/ '\1 \tlth + E( -l)P P(b/Aa)(bj "Bc)ttJ?t~ 
c J 
j 

:\L~Z\t·Hlc llC - E(Aj "Ac)t~J1t.i 
c 
j 

\7\J~t·~c l2A - EUk" ic)t1Jjt% 
c 

j,k 

l2B '\1'\l~;\th + E( -ll P(I/ J)(Ij" Ic)ttt;t~ 
c J 



~-. 
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Table IV.6 (continued) 

13A st:'\1 i(f;\L - L:) -l)P P(a/b)(jk II ci)ttJ~tt 
c J 

j,k 

st:Vitjs\L 13B - E( -ll P(b/Aa II i/ I J)Uk II Bi)t1j/j3tt 
. k J 

J, 

13C VS!itj:.:}J + E U k II Ai)t~J1t: 
j,k 

13D \IS! ,tj~·liL + E( -ll P«I/ J) I a/b)(Ij II cI)tt,it~ 
c J 

13E ,\)S!,tjBiL + ~(-ll P«(I/J) I b/Aa)(Ij II BI)tt,alt~ 
J 

13F V~I,tj:.:il - ~(-ll P(I/J)(Ij IIAI)t~J1tt 
J I A J a i b 

14A V\Zjfj~·~ + E( -ll P(a/b)(jbll cd)t1jJt1 
c,d 
j I A J a i b 

14B V\Zjtfn'il + E(-l)P P(b/Aa II i/ I J)(jbll Bc)t1j!ti 
c 

'b J a ~ 
14C V\Zjtfi" c 

- EUA II Ac)t~J1ti 
c 
j 

\1\1 I b 14D - E( -l)P P«I/ J) I a/b)(Ibll cd)tt,att1 Itf~·'il c,d 

14E '\7V I b - E( -It P«(I/ J) I b/Aa)(Ibll Bc)tt,cttr yfjij'il 
c 

-- ..... - ..... _'-



If_. __ ... 
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Table IV.6 (continued) 

14F VV/(fAVe + E( -l)P P(I/ J)(IA II Ac)t~.I1tl 
c 

15A VV\~ -t E( -It P(a/b)(aj Ilcd)t1J1t~ 
c',d 

15B \L\l\~ - E(-l)PP(A/a/b)(aj IIBc)t11Ct~ 
c 

i 

V~\~ 15C + E( -It P(A/a/b)(Aj IIAc)ti1ft~ 
c 

i 

15D V\t\~ + ~(-lt P(A/a/b)(Aj II AB)tljPt~ 
J 

16A ~tQ\L + E( -It P(i/ 1(1/ J))(jI II cI)ttI1ti 
c 

16B ~tQ\7 - E( -It P(I/ J)(J III cI)tjiibtJ 
c 

17A \/\li b + EUk II Bc)t1JtBtk Vjfj"ilUc c 
i.k 

18A 
\/J a i ~ - E( -It P(a/b)(jk II Bc)t1JnCt~ '\Zjfjii\-£ k 

c 

i.k 

18B Vv i~ + E (j k II AB)t~J1Ptt jfjA\: k 
i,k 

19A 
~f /aJb - t E U k II cB)ttf:jbti c j:--=-itJB\ZSZ c 

i.k 
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Table IV.6 (continued) 

x_ .... fty \'aJb 
19B ~T'jnB ZS7 
20A :\L~~l 

20B :\L~~l 
2oc~1 

C J 

20D V\~l 

21A ~~lv 

21B ~~lv 
~..y ~.d 1,'7b 

22A Vjcr~"~ 

~..y ~-. 1,' b 
22B V jcrB~'~l 

I a J Jib 
22C V jfj'A\~ V 

,'..y ~_.d a I b 

22DL Icr~',~l \7 

+ E( -1)P P(l/ J)(lj" cB)ttj~Jbtl 
c 

i 

+ i E (j k " cd)ttJttJZ 
c,d 
i,k 

+! E( -ll P(A/ab)(jk II Bc)ttJ:CtJZ 
c 

i,k 

-! E( -ll P(a/b)(jk II Ac)ti1tt1t 
c 

i,k 

+! E( -l)P P(l / J)(J j II cd)t1;PtJ1 
c,d 

i 

-! E(IJ II cd)ttJttJ1 
c,d 

-! E (j k II cd) ttIjtk~ 
c,d 
i,k 

- E( -ll P(i/ I J II A/ab)(jk II Bc)ttj~Ctk~ 
c 

i,k 

+ E( -ll P(a/b)(jk II Ac)ti1Jttl 
c 

i,k 

+! E( -llp(l/J)(lj Ilcd)tj1tJ~ 
c,.d 
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Table IV.6 (continued) 

I a J Jib 
22E 'Sl j{j"A\N \l 

~ A.t ~_.,~ __ 1 '7 I b 

22F V IOii'XL \l 
V' a ~_. JIb 

22G IfjA,N \7 

V
' a J JIb 

22H IcrA\~ \l 
V
Jb

,\' .~ Xy 
23A~r'knB~n 

V
J 

b ~. ~ .... _J ~ I a 

23B ~r'jnd\Z 
~ ~'\. lb I a 

23C V~"'HjA\Z 

V
Jb\I ~ ia 

23D~r'jJjd\Z 

V
Jb,\' ~ Ia 

23E'{-\r'jtjB\Z 

+ L:( -ll P(a/bl i/IJ){jk II AB)titfttl 
i,k 

j 

- L:( -ll P((I/ J) I a/b)(Ij II Ac)tif,cttt 
c 
j 

- 2;( -ll P((I/J) la/b)(Ij II AB)titlttt 
J 

-! L:( -ll P(I/ JI a/b){jk II CB)ttk~at~ 
c 

j,k 

- L:( -ll P((I/ J) I a/b)(Jj II cd)t1f;t~i 
c,d 
j 

+ L:( -l)P P(I/ J)(Jj II cA)t~1It1i 
c 
j 

+ L:(-ll P(a/b)(I J II cd)t?JttYr 
c,d 

- L:( -ll P(I/i(I/ J)" b/Aa)(Jj II cB)t1!Iat~i 
c 
j 
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Table IV.6 (continued) 

23F \/'\ If \1 - E{I J /I cA)t~1it11 Y""'jOA c 

23G \/'\ f \1 + E( -ll P(b/Aa){I J II cB)t1J:at':tr ~""jjjB 
c 

24A \1\l~f -~ E( -ll P(a/b)(jk II cd}t1;tt~t ~ :t"'ktjd 
c,d 
j,Ie 

\/\1\ 'f 24B -~ E( -I)P P(b/Aa)(jk II Bc}t1:;iBt~k _____ ~~·k~c 
c 

j,Ie 

24C \/\1\ 'f +~ E(jk IIAc)t~J1t1k ~"'knC c 
j,Ie 

25A \d /\/\1 - ~ E (j k II cd}t%13tjt jfj"~""~ 
c,d 

\d /\/\1 
i,Ie 

25B +~ E( -It P(I/J)(jlllcd}t~1Jtj1 
H"~""7X c,d 

j 

\IV i b 26A + E( -Il P(a/b)(jk II cd)t1;Jtt~ jfj"~"kn d \/ c,d 
j,Ie 

\/\1 i b 26B + E( -IlP(b/Aa II i/IJ)(jk II Bc)t1;~tk~ jfj"Bk(}C\/ c J 
j,I< 

I b Ja ~ 
26C \/\7 jfj"Ak C - E(jk II Ac)t~J1tk1 

c 
j,I< 

26D \1\1 I b - E( -It P«I/J) la/b){Ij Ilcd}t~it1~ Ifj"~"jnd\7 c,d 



156 

Table IV.6 (continued) 

26E 
\1\1 I b - ~(-1t P((I / J) I b/Aa}(Ij II Bc)ttJaPtj~ __ I(}"iijne V 

i 

\/\1 ~ 26F + E( -1t P(I / J}(Ij II Ac)t~j1tj1 IlIAT e c 

i 

27A +! E (j k II cd) t1JttJt~ 
c,d 
i,k 

27B + E( -1)P P(A/ab)(j k II Bc)tf.flCtjtt 
c 

i,k 

27C - E( -1t P(a/b)(jk II Ac)tljtt1t~ 
c 

i,k 

27D - ~)-1tP(a/b)(jkIlAB)tljPt1tt 
. k 3 

3, 

28A + E(-1)PP(I/J)(Jjllcd)t~1jtJtt 
cl,d 

28B - E(J I II cd)tY1itJt1 
d c,d 

29A V\I\ . b - E(-lt P(a/b)(jk II cd)tfjtt~t% ru--!fld c,d 
i,k 

V\I\~ 29B - E(-ltP(b/Aa)(jkIlBc)tfjPt~tk B L "lie 
c 

i,k 

\/\I\~ 29C + E(jk II Ac)t~J1t1tk ~ .. "lie 
c 

i,k 

--" .. _ ..... -_. 



3DA 

3DB 

3lA 

3lB 

3le 

3lD 

3lE 

3lF 

-- -- ---- -.- ---

Table IV.6 (continued) 

- E (j k II cd) t~1Jtitt 
c,d 
j,k 

157 

+ E( -1 t P( 1/ J) (j I II cd)t~tJtit1 
c,d 
j 

- 2) -It P(a/b)(jk II cd)t1jJttt~ 
c,d 
j,k 

- 2) -It P(b/Aalli/IJ)(jk IIBc)t1j!tit~ 
c 

j,k 

+ 'L,(jk II Ac)t~J1titt 
c 

j,k 

+ 'L,( -It P((I/ J) I a/b)(Ij II cd)tt,ait1t~ 
c,d 
j 

+ 'L,(-lt P((I/J) I b/Aa)(Ij IIBc)t~fltlt~ 
c 
j 

- E( -It P(I/ J)(Ij II Ac)t~J1tltt 
c 
j 
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Table IV.7 

Coupled-cluster diagrams from the projection against a quadruply excited 

determinant, representing single and double excitations from a second ref

erence determinant which is doubly excited with respect to the formal ref-

erence. 

(O?~rl projection (QP1) 

lA V\L\1··~ + ~) -1)P P(j II Ji II ablAB)(ab II cj)ttltc 
C 

IB \l~\t~ -( -It P(j II Ji ~ blaB(AI B))(Abll Aj)tl~/ 

2A VVV··~ - L) -It P(ij IIJII bIABa)(kbllij)tt~a 
k 

2B \/V~l··~ +( -It P(j liJ(I I J) II blABa)(Ibll Ij)ttJ~a 

3A \Z~~L~lX + E( -It P(alb)fbcttltr 
c 

3B \/VV\tx -( -It P(AI B)fAAt~~f/ 

4A \ZV\tifx - E( -It P(ilj)fkjttlt'k
b 

k 

4B VV\7~tx +( -1 t P( I I J)h 1t1J:lb 

5A VVvii - E( -It P(ilj I alb)(kblljc)ttlt'kC 

c 

" 
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Table IV.7 (continued) 

5B VV\l'd + ~) -ll P«I/ J) I a/b)(Ibll Ic)ttJ!rc 
c 

5C VV\l~ + E( -ll P(i/j I (A/ B))(kA IIiA)t~~;t 
k 

5D \I\i\l~i -( -ll P«I/ J) I (A/ B))(IA II IA)t~~iiA 

6A vV\[\t +! E(ab II cd)t1J:J
d 

c,d 

6B \7V~t\f - E( -ll P( a/b(A/ B))(Ab II Ac)ti~i1c 
c 

6C ,\1\!\ZVo +(AB II AB)ti~1l 

7A ~LY'V~L +! E(k111 ij)t1J1/
b 

k,l 

7B \LY'\l.i[ - E( -ll P(i/j(I/ J))(Ik II Ij)tt,~kb 
k 

7C \LV~1-·\1 +(1 J II I J)tjfJb 

-- --- ._--- ... ----. 
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Table IV.7 (continued) 

SA V\L\?·Q 
- 2) -Il P(j /1 Ji II a/b/AB)(ak Ilci)t1!.Ct~ 

c 

" 

SB VV\ZiL 
+ 2) -I)P P(j /1 Ji II A/b/aB(A/ B))(Ak II Ai)ti~iAt~ 

k 

- 2)-llp(i/i/IJ llb/ABa)(kb llic)t1!atj 
c 

" 

9B ~Vk?~ 
+ l:J -I)P P(I /i /iJ(I/ J) Ilb/ABa)(Ib II Ic)tti~atj 

c 

+ 2)-ll P(j / I Ji II ab/AB)(abll cd)t1!,Ctj 
c,d 



~. 
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Table IV.7 (continued) 

lOB \7V\t\i 
- E( -l)P P(j /IJi II b/aB(A/B))(Ab 1/ Ac)tl~iAtj 

c 

+ E( -ll P(ij / I J II b/ABa)(klllij)t1~at~ 
k,t 

llB VV'iflL 
- E( -ll P(j /iJ(I/ J) II b/ABa)(Ik II Ij)tti~att 

k 

- E( -l)P P(a/b)!kct1J/;Ctt 
c 

" 

\)\J\)W 12B on .~ 

+ E( -ll P( A/ B)!kA t~~f/tt 
k 

-- ..• --- ... --
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Table IV. 7 (continued) 

- ~) -l)P P(i/j)fkctt1IJttj 
c 

" 

~f \iV'\1 13B c : .. ~ 

+ 2) -ll P(I / J)hct~1l!/ltl 
c 

+ ~] -l)P P(a/b)(bk II cd}t1l!;Ct% 
c,d 

" 

- ~] -l)P P(A/ B)(Ak II Ac}t~~iiAtk 
c 

" 

-t~] -ll P(a/b)(ak II cd}t1JW4 
c,d 

" 

-- -- .. --.. _. -



-- ..... _-.... _.-
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Table IV.7 (continued) 

15B ~V\t\W 
+ 2) -l)P P(b/Aa(A/B))(Ak II Ac)ti~1Ct~ 

c 
I< 

- LX -It P(A/ B)(Ak II AB)ti~1lt: 
k 

- 2) -It P(i/j I a/b)(kl II cj)ttJ:kCtt 
c 

1<,1 

+ 1) -It P(I/ J la/b)(Ik IIcI)ttJfr4 
c 
I< 

+ 2:( -I)P P(ij /1 JII b/ABa)(kl IIij)tfflatt 
k,l 
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Table IV.7 (continued) 

llB VV'ifl1 
- ~(-ll P{j /iJ(I/J) II b/ABa)(Ik IIIj}tt,~at1 

k 

\/\iV\rtl 12B ..... ~ 

~f \/\)\1 13A c :--~ 

~f V,\},/ 13B c :--x 

- ~(-l)P P(a/b)fkctt!/tt1 
c 
Ie 

+ ~(-l)P P(A/ B)/kAt~~&Att 
k 

- ~(-ll P(i/j)/kct11!ttj 
c 
Ie 

+ ~(-ll P(I / J)!Ict~1~atl 
c 
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Table IV.7 (continued) 

15B ~V\t·\?li 

+ E( -1l P(a/b)(bk" cd)t1J:rt~ 
cod 
Ie 

- E( -1)P P(A/ B)(Ak" Ac)t~~;ttk 
c 
Ie 

-t E( -1l P(a/b)(ak IIcd)t1RJdtt 
cod 

Ie 

+ E( -1l P(b/Aa(A/ B))(Ak II Ac)tI~i1Ctt 
c 
Ie 

- E(-1lp(A/B)(AkIIAB)tI~1ltf 
k 



-- -- ---- -_. --
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Table IV.'7 (continued) 

21A \1~dxvV 

- ~(-lt P(i/ j I a/b)(klll cj)ttJ:I:Ctt 
c 

1e,I 

+ ~(-lt P(I / J I a/b)(Ik II cI)tt1;ct~ 
c 
Ie 

- ~(-It P(ij / I J II a/ABb)fkct~1!tif 
c 
Ie 

+ ~(-lt P(j /iJ(I / J) II a/ABb)frct~1ft'ii 
C 

22A VV\l\nd~L 
+ ~(-lt P(a/b/AB Ilj / I Ji)(ak II cd)ttJ:Ctt~ 

c,d 
Ie 



, 
t_. 
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Table IV.7 (continued) 

22B VV\kokf}c\! 
-l)-lt P(A/b/aB(A/B) Ilj/IJi)(Ak IIAc)tl~Atk~ 

c 
Ie 

23A \LV kcr~·\1\L 
+ E(-ltp(IJ/ij II AB/a/b)(kall cd)t1JrCt11 

c,d 
Ie 

23B VV Ifj;o\-Z\L 
- E( -l)P P(iJ/j(I / J) II AB/a/b)(Ia II cd)tt,~Ct1~ 

c,d 

~vJ B ~ }~ hI 
23C ~_kcrA·~ 

- E( -It P(IJ/iillaB/A/b(A/B))(kAIIAc)tl~ttij 
c 
k 

0VJ 
B ~ }~. hI 

23D ~_ Ifj·A·~ 

+ E( -It P(iJ/j(I/J) IIaB/A/b(A/B))(IAIIAc)ti!rAtl~ 
c 



---- ._-- -_. ---
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Table IV.7 (continued) 

24A V\~l\i~ 
-~ L:(-Il P(ii/lJ II a/bAB){ak II cd)t~1Ytij 

24B ~~~LV~ 

cod 
Ie 

+! L:( -Il P(j /iJ(l/ J) II a/bAB){alll cd)t~tJtl~ 
cod 

25A V~\~l'Y 
-! L:( -Il P(l Jifj IB/ab(A/ B»(Bk II cd)t1Jttk~ 

cod 
Ie 

25B \i\h\?-kl'Y 
- L:( -Ilp(l Jifj IIA/B/ab(A/B»(Bk IIBc)t1!/tk~ 

c 
Ie 

\ Il~ ~\' A lV' b 25C~"'~ 

+ L:(-ll P(lJifj II a/B/b(A/B»(Bk IIBA)t~~/t:j 
k 



~-- --

169 

Table IV.7 (continued) 

26A VVW\nJZ 
- rJ-1l P(I J/ifj II ABa/b)(klll ic)t?.ftat,j 

c 
k,l 

26B l'V~·~ 
+ E(-1lp(iJ/I/j(I/J) II ABa/b)(Ik IIIc)ttf/tk~ 

c 
k 

27A V\ikfj~WV 
- E( -1l P(I J/ifj II AB/ab)(klll ci)t?.ftCtij 

c 
k,l 

27B l'V Ifj~V\7 
+ E( -ll P(iJ / Ifj(I/ J) II AB/ab)(Ik II cI)tt}~Ctk~ 

c 
k 

27C ~~kcrAW 
+ E(-llp(IJ/i/j IlaB/b(A/B))(klll Ai)tI~tt~b 

k,l 



-- ~ .... - ..... --

170 

Table IV.7 (continued) 

27D \l'VI(fA'UQ 
- E( -1)P P(iJI Ilj(II J) IlaBlb(AI B»)(Ik II AIWtf/t~j 

k 

28A VV\~i(~7 
+t E( -1t P(I Jilj" ABlab)(klll cj}t1RCtk~ 

c 

",I 

28B ~iL\ntQ 
-! E( -1t P(IJilj IIaBlb(AIB»)(kl "Aj)t'ifiAt~/ 

k,1 

29A V\y"&tV~ 
-! E( -It P(ij I I(II J) I alb)(kl IIcI)t~/~at~J 

c 
1<,1 

29B \L ~k7\tW\l 
- E( -It P(ij I II J(Ij JH ABalb)(Ik" cI)t1:.tt~j 

c 
I< 
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Table IV.7 (continued) 

29C V\~tV~Z 
+ E( -ll P{j / I/i(I/ J) I ABa/b)(J III cI)tjRat% 

c 

30A ~~Ykil;·i~ 
+ E( -ll P(i/j I a/b)(klll cd)t1J/tCtrj 

30B VVYlfj;·~ 

c,d 
1<,1 

- E( -ll P«(I/ J) I a/b)(Ik II cd)ttl;ct%~ 
c,d 

I< 

30C V~\Zkf"fAi~ 
- E( -l)P P(i/j I (A/ B))(klll Ac)t~~ikAtfjA 

c 
1<,1 

30D VVYlfjAkt)c\L 
+ E( -ll P«I/ J) I (A/ B))(Ik II AC)t~~itt~1 

c 
I< 



-- -- --_ .. -.. --

Table IV.7 (continued) 

31A V\L~~1 

31B V\L\~1 

172 

+l L(klll cd)ttJfidtk~ 
c,d 
1e,I 

-! L( -It P(a/b(A/ B))(klll Ac)ti~i1Ct:l 
c 

1e,I 

31C \lV\~l 

32A \~f~V 

32B \~fV~i 

+l L(klll AB)tiYtltt,B 
k,l 

+1 "'(kill cd)tabABt~1 
4 L...J klI.T I) 

c,d 
1e,I 

-l L( -1)P P(i/ j(I / J))(Ikllcd)tit1ftl~ 
c,d 

Ie 
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Table IV.7 (continued) 

32C \~VV 

~ ~VJ B ~-. 1~7b 
33A Y ka~·,X \ 

\j ~VJ B ~_. lVI 
b 

33B Y I{j·~·,~ 

+! E(1 Jllcd)tl~1jBti~ 
a,d 

-l E( -ll P(i/j)(klll cd)ttJ!idt,j 
c,d 
1e,I 

+l E( -ll P(1 / J)(lk II cd)tt}}idtk~ 

VI a VJ 
B ~_. IV' b 

33CkaA"\~ 

c,d 
Ie 

+ ~) -ll P(i/ j I a/b(A/ B»(klll AC)t/~k1Ctdb 
c 

1e,I 
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Table IV.7 (continued) 

V' a VJ 
B ~_. Iv I b 

33E IOA"\X 
- ~) -ll P((I / J) I a/b(A/ B))(Ik II Ac)tj!lr1Ct:: 

c 
k 

X ~VJ a \i I ty ~" 
40H v:\~T·jnA.Y.. 

-( -ll P(a/b(A/B) I i/i)(I J 1/ BA)t1JiBt~1! 

41A \l~vV 
- L:)-ll P(ij /1 JII a/bAB)(ak II cd)t~1!ltit1 

c,d 
k 

41B ~··~lVV 
+ ~) -llp(j /iJ(I/J) lIa/bAB)(aIllcd)t~t!tlt1 

c,d 

42A VVV\~ 

-- ..... -... , -- "-'" 

- ~) -llP(a/b/AB IIIJi/j)(ak Ilcd)t1.Wtjt~ 
c,d 
k 
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Table IV.7 (continued) 

42B ~$J~-\~l 
+ E( -ll P(aB/A/b(A/B) " lJi/j)(Ak Ilcd)tif/tjtt 

c 
/e 

43A VV\g-iL 
+ E(-ll P{I Ji/j II AB/ab)(klll cj)ttRCtktt 

c 
/e,1 

43B V~\d~ 
- E( -ll P(l Ji/j II b/aB(A/ B»(klll Aj)tifiAtttt 

k,l 

V..yJB ia' b 

44A vS1W-~ 

44B 

+ E( -l)P P(l J/i/j II ABa/b)(klll ic)ttJtatjtt 
c 

/e,1 

- E( -ll P(iJ/ l/j(l/ J) IIABa/b)(lk II lc)tti~atjtt 
c 
Ie 



45A 

45B 

45C 

45D 

46A 

176 

Table IV.7 (continued) 

. b I t\! 
~ . a ,\7\ 
I •• .••• __ "AB" 

c· djd -- _ L(-ljPP(i/jla/b)(kqcd}t';IJ t;t. 
c,d 
1<,1 

. b i /\/ 

~ L"I··n '\7'\ ) dbABtcta ~- Id p ((I/J) 1 a/b){kIII cd t
1jjJ 

I k + E(-l) P 
c,d 

Ie 

. A V\ 'bla\! 
I .... l A"B,A 

t c _ou'1
10A

__ p ('/ 'I (A/B))(klll cA)t
'jIJ 

tjtk ~~ +D-l) P, J 

c 
Ie,1 

1 J B I a c.t. '.!lj, . j~ 

V V V '\ I d_ LH jP P( a/b)(k/! cd}ttf.j'tttt 
c,d 
1<,1 
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Table IV.7 (continued) 

\I1bVJ BV' a~ A_k1 
46B:\N

u

i.llc 

+ E( -ll P(A/ B)(klll Ac)t~~i/ttt, 

47A ~~·~7V\)V 

47B ~·~L\LiL~L 

c 

",/ 

- E( -l)P P(i/ j)(klll cd)trJtlt'ktt 
c,d 
/c,/ 

+ E(-1)PP(I/J)(klllcd)tr~t,Bt'kt1 

48A 

48B 

c,d 

" 

+! E(k111 cd)t'kttftitj 
c,d 

",/ 

- E( -ll P(i/j(I/ J))(Ik II cd)trttftrtj 
c,d 

" 



48C 

49A 

49B 

49C 
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+ E (1 J II cd)t'i~1ttlt1 
c,d 

+! E(k111 cd)ttl:jdt'ktt 
c,d 
1e,1 

- E( -ll P(a/b(A/ B))(kl IIAc)t'i~irt:tt 
c 

1e,1 

+ E(kl II AB)t'i~tBt:tr 
k,l 

50A ar~·V·VWV 
- E( -ll P(AB/abll 1 Jifj)(kl II cd)ttl:dtijtk 

c,d 
1e,1 
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Table IV.7 (continued) 

50B ~~"y.y~l \L 
+ ~) -1t P(aB/b(A/B) II IJi/j)(kl II cA)ti~iAtt;btk 

c 
Ie,' 

i ___ 'l ~_. d lb \1 Pr VJ B 
5IA 1£fl~·V·S?\ ! 

- E( -1t P(bAB/a II I J /ij)(kl IIcd)t~f!tiltk 
c,d 
Ie,' 

~ ___ 'l ~_.d lb ~ PrvJ 
B 

5IB 1£fl~"V·:\·?( V 

+ E( -1t P(bAB/a II iJfj(I/ J))(klllcd)t~t!tijtk 
c,d 

" 

52A VV,\Ai"irki[ 
- E( -It P(AB/a/bll I Ji/j)(kll cd)t1.flCt1jtk 

c,d 

"" 

52B VV~"irki[ 
+ E(-1t P(aB/A/b(A/B) II IJifj)(kl IIAc)ti~ltljtt 

c 

Ie,' 
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Table IV.7 (continued) 

53A ~;·~lVV 
- L) -ll P(bAB/a IIIJ/i/j)(klllcd)t~tftikt1 

c,d 
1e,I 

53B~;·~Q 
+ E( -l)P P(bAB/a IliJ/ I/j(I/ J))(kIII cd)t~tftlkt1 

c,d 
Ie 

54AV\~V 
+~ E( -l)P P(i/j I B/ab(A/ B»(klll cd)t1Jtt'iJt~ 

c,d 
1e,I 

54B V\~1\7 
+ E( -ll P(I Ji/j I A/ B/ab(A/ B))(klll Bc)t?.flCt'iJt~ 

c 
1e,I 

54C y\~t\7 
- 2) -ll P(I Ji/j I a/ B/Ab)(klIIAB}tl1iBt~bt~ 

k,l 
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Table IV. 7 (continued) 

55A \~VV 
+! E( -ll P(bAB/a II IJ/ij){klll cd)ttfftijtk 

c,d 
1<,1 

55B \~vv 
-! E( -llP(bAB/a II iJ/j)(kIII cd)t~tftl~tk 

c,d 

" 
{ 1~ ,. ... ~.~ ~ ~VJ B 

56A ~··in<!. V 

- E(-ll P(I J /ij II a/b/AB){klll cd)t1tltijt1 
c,d 
1<,1 

56B illd-"ifld\L'V 
+ 2.":( -ll P(iJ/j(I/ J) II a/b/AB)(kI II cd)t1tltrjt1 

c,d 
I< 

{~~ __ kbJ VI aVJ 
B 

56C ~"inA 

+ E( -llp(IJ/ij IA/b/aB(A/B))(klll cA)t~1ttCt1 
c 

1<,1 
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Table IV.7 (continued) 

56D ~·inAVV 
- E( -ll P(iJ/j(I/ J) I A/b/aB(A/B»(klllcA)t~tttJtt 

c 
Ie 

57A \~t·V·indV~ 
- E(-ll P(i/j /1 J II ab/AB)(klll cd)t1tlt~~t~ 

c,d 
1e,1 

57B '\~t·V·ind\L~l 
+ E(-ll P(I/j /iJ(I/ J) Ilab/AB)(kIII cd)t1fltk~ti 

c,d 
Ie 

57C \~t·V·inAV~ 
+ E( -ll P(i/j /IJII b/aB(A/B»(klll cA)t~tt:jti 

c 
1e,1 

~ __ k ~~ ~ j a J B 

57D ~·inAVV 
- E( -ll P(I/i/iJ(I/J) Ilb/aB(A/B»(klllcA)t~alt:jtl 

c 
Ie 
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Table IV.7 (continued) 

58A \l\~JV 
-! E( -ll P(Ji/j(I/ J) la/b)(kl IIcd}t~tltjitj 

c,d 
1e,I 

58B \l\~V 
- E( -ll P(Ji/j /1(1/ J) II a/bAB)(Jk II cd)t~1ftjit1 

c,d 
Ie 

58e V\~J\i 
+ E( -l)P P(JI/j /i IIa/bAB)(IJ IIcd}t~1ftjltj 

c,d 

59AVV\~ 
+! E(-l)P P(AB/abll I Ji/j)(kl IIcd)t?RCtk~tj 

c,d 
k,l 

59BVV\~ 
-! E(-l)P P(aB/b(A/B) II I Ji/j)(kl II Ac}ti~/t:/ti 

c 
1e,I 
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Table IV.7 (continued) 

+ E( -It P(ij / I J II a/bAB)(klll cd)t~tftitkt1 
c,d 
1e,I 

- E( -l)P P(j /iJ(I/ J) Ila/bAB)(kIII cd)t~t.ftltkt1 
c,d 

Ie 

61A V~~g-~ 
+ E( -It P(I Ji/j II AB/ab)(klll cd)ttJ:Ctkt1t~ 

c,d 
1e,I 

61B yV\d--~ 
- E( -It P(I Ji/j II aB/b(A/ B))(klll Ac)ti~/ttt'Jt~ 

c 
1e,I 
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D. Conclusion 

The proposed method is applicable to the specific case of a reference 

with two dtltermimUlt~ which differ by It two @l@ctron @xcitation. The ad .. 

vantages of this method are as follows. First it possesses the qualities 

and simplicity of single-reference CC. Second the computational expense 

is approximately twice that of singles and doubles from a single reference 

determinant. This method represents a viable, practical solution to the 

MRCC problem for this important case. 

This method is extended to more than two reference determinants as 

well as to determinants which differ from the formal reference by a single 

electron excitation in the next chapter and some numerical results from test 

calculations are presented. Of course considering reference determinants 

which differ by more then a two electron excitation will require higher 

order excitations from the formal reference determinant then quadruples. 
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V THE IMPLEMENTATION OF A MULTI-REFERENCE 
METHOD USING A SINGLE-REFERENCE FORMALISM. 

A. Introduction 

The need for a MRCC method has been the primary reason that the full 

inclusion of triple excitations (CCSDT) and quadruple excitations (CCS

DTQ) has been developed and implemented. However due to the enormous 

computational effort involved, these methods are not practical for large 

scale applications. Several methods, which include triples in an approxi-

can reproduce points on the the potential energy hypersurface for the dis

sociation of a single bond rather well, these approximate triples methods 

can also do this with some degree of success. The problem is reproducing 

the shape of the full configuration interaction (FCI) potential energy hy

persurface correctly for the stretching of multiple bonds as well as single 

bonds. Essentially, in order to do this at a particular level of theory, the 

appropriate excitations from all significant determinants must be included. 

Also ideally no additional excitations from from any of the determinants 

should be included, otherwise the danger of intruder states will arise. 

The approximate triples method implemented and presented in this 

chapter, is a generalization of the two-determinantal coupled-cluster theory 

presented in the last chapter. The procedure has been modified in order 

to accomodate more then two determinants in the reference space, as well 
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as to mr:lke the r;:Qmputation~ implementation of the tr"m~~tiQn s~bf}m~ 

more tractable. This method is based on using a single-reference formalism 

and explicitly includes only those triple excitations from the 'formal' refer

ence determinant, which correspond to single and double excitations from 

selected secondary reference determinants. 
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B. Theory 

The symbolic coupled-cluster equations and their derivation have been 

presented in chapter II, so the details will be omitted here and later pre

sented in the modified form, which represent our approximate triples method. 

This method is not intended to approximate complete CCSDT but rather to 

include triple excitations in such a way as to approximate a multi-reference 

coupled-cluster wavefunction, which includes single and double excitations 

from all selected determinants in addition to single and double excitations 

from the formal reference determinant. 

It was demonstrated in chapter IV how an excitation from a second 

reference determinant, which is doubly excited with respect to the formal 

reference determinant, could be represented in terms of an excitation from 

the formal reference determinant. In our present formalism we utilize sec

ondary determinants, which are singly and doubly excited with respect to 

the formal determinant; 

11) =101), 11) =101!) (1) 

where 10) is the formal reference determinant. In practice all doubly excited 

secondary reference determinants are selected first, and then the singly 

excited detenninants, which correspond to all single excitations appearing 

in the selected doubly excited detenninant, are added to the reference set. 

This choice of the reference detenninants resembles the complete active 

space (CAS) approach. 



189 

Double excitations from these secondary determinants expressed in terms 

of excitations from the formal reference determinant, form a restricted set of 

single and double excitations, which are of course contained in the complete 

set of single and double excitations from the formal reference determinant 

(CCSD), along with a restricted set of triple and quadruple excitations; 

loABab) 
IJij (2) 

The convention is used here, that upper case letters represent the single 

excitation required to produce a secondary determinant from the formal 

reference determinant and lower case letters represent excitations to virtual 

spin-orbitals (virtual spin-orbitals are spin-orbitals which are un-occupied 

in the formal reference determinant). The spin-orbitals represented by the 

upper case letters are special in the sense that they represent a sum over 

selected secondary reference determinants, which are singly and doubly 

excited with respect to the 'formal' reference determinant. 

The doubly excited determinants are generally the important ones in 

the molecular bond dissociation process. It was demonstrated in chapter 

IV that including single and double excitations from a second reference, 

which is doubly excited with respect to the formal reference, generates 

three types of triple excitations and one type of quadruple excitation; 

loABab} 
IJij (3) 

It is worth mentioning that this multi-determinantal approach should 

be invariant with respect to an internal unitary transformation among the 
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virtual spin-orbitals, which are not occupied in any of the reference de

terminants, as well as with respect to an internal transformation among 

the spin-orbitals, which are occupied in all of the reference determinants. 

However the method is not in general invarient to a transformation which 

mixes the two sets of spin-orbitals, or to a transfonnation which mixes 

either set with the spin-orbitals which have different occupations in the 

reference determinants. 

The extension to excitations from more then one detenninant does not 

change the energy expression derived in the single-reference formalism due 

to the fact that the Hamiltonian operator contains at most two-electron 

operators and the excitations from secondary determinants are in terms of 

higher order excitations from the fonnal reference detenninant. 

In the present phase of the implementation of our multi-reference coupled

cluster method, all the selected quadruple excitations, which arise from 

double excitations of the doubly excited secondary reference detenninants 

are neglected. These excitations should not be nearly as important as the 

triple excitations for the dissociation of a single bond. The coupled-cluster 

quadruple amplitudes are usually very small due to the presence of the t~ 

terms, which accounts for most of the correlation effects represented by 

quadruple excitations. The equations, which determine the coupled-cluster 

amplitudes must now be extended to include the selected set of triples, (7). 

In the following equations parenthesis are used to indicate the restrictions 



191 

imposed on the indices of the triple excitations. These equations are; 

(Oit IH[1 + Tl + t Tl + ~ Tl + :h Tt + T2 + t Ti + TIT2 + (5) 

i TlT'J + T3(1;~b) + TIT3(~~b)] 10)0 := 0 

(O~ib IH[1 + Tl + ! T12 + ~ T13 + :h T14 + T2 + ! Ti + TIT2 + (6) 

t TlT2 + tt T~T2 + tt Tl T; + T3(1tl) + 

T1T3(tt/) + ! T1
2
T3(Mb

) + T2T3(tijb)ll O}c = 0 

The multi-reference coupled-cluster wave function is now given by; 

(7) 

where the triple excitation operator is; 

(8) 

The sum over (1) , indicates a sum over all selected singly excited deter

minants. 
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c. Procedure 

The present procedure uses a blocked active space approach to our re

strictions on the sums. The core and virtual space are both blocked into 

active and inactive labels. The active labels are those involved in one of 

the selected singly excited determinants. The labels are then arranged as 

inactive core, active core, active virtual and inactive virtual. Nine types of 

triple projections appear in equation 11, and their corresponding sums are; 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

(ABCI 
lJK 

(ABCI 
IJk 

(aBCI 
lJJ( (aBCI 

IJk 
(ABCI 
Ijk 

(abC I 
IJJ( 

(aBCI 
Ijk 

(abCI 
lJk 

(abCI 
Ijk 

E E E E E E E E E 
I>J>I( I>J,k I>J>K I>J,k I,j>k I>J>I( I,j>k ;>J,k l,j>k 
A>B>C A>B>C a,B>C a,B>C A>B>C a>b,C a,B>C a>b,C a>b,C 

The capital letters represent a sum over the active labels (core or virtual) 

whereas the small letters represent a sum over all labels, active and inactive. 

Projection number (1) represents the case where all labels are active, pro

jections (2) and (3) represent the case with one inactive label, projections 

(4),(5) and (6) contain two inactive labels, projections (7) and (8) contain 

three inactive labels and projection (9) contains four inactive labels and 

one active pair. These include all possible cases as a triples projection 

must contain at least one active pair in order to represent a double exci

tation from one of the the selected secondary reference determinants. As 

it stands then, this procedure would select all singly and doubly excited 
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determinants, which are contained in the active space, as reference deter

minants. In the computational implementation we reduce this to a set of 

active pairs, each pair containing an active occupied and an active unoc

cupied index. A series of 'if' statements is now introduced to our CCSDT 

code. The 'if' statements allow the procedure to continue if the projection 

contains an active pair (one of the singly excited determinants selected as 

a reference determinant). If the projection does not contain an active pair, 

the procedure moves to the next projection. 

For each type of projection a different manipulation of the summation 

indices in the coupled-cluster triples equation is required. In order to be 

in~hul~d in thtl (:oupl€lG-du§t€lr ~qmttion, 0, triple amplitude mu§t contain 

at least one active core label and one active virtual label. This reduces 

the storage requirement for triple amplitudes from n3 v3 to the number of 

pairs in the active space times n2v2
, where n and v represent the size of 

the core and virtual space respectively. Projection (1) contains the entire 

triples equation unmodified as all indices are active. As an example of how 

the equation is modified for the nine projections, let us consider a single 

t2t3 term which appears in the triples equation. 

(1) L: (1m II ef)t~1 t!f< 
e>1 
I,m 

(2) L: (1m II ef)t~1 t!~ 
e>1 
I,m 

(3) L: (1m II eF)t'ljt!f< 
e>F 
I,m 
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(4) :E (1m" eF)tiiJt~f 
e>F 
I,m 

(5) 2: (1m II ej)tM' t~f 
0>1 
I,m 

(6) 2: (1m II eF)tiiJt~f< 
e>F 
I,m 

(7) 2: (1m" eF)tiiJ t~f 
e>F 
I,m 

(8) 2: (1m" eF)t,iJ't~ 
e>F 
I,m 

(9) 2:(lm"eF)tliJt~ 
e>F 
I,m 

The indices of the triple excitation amplitudes are rearranged to use two 

of the active labels as one index. As an example let us consider (9) from 

above. This is written as; 

(9) - 2: (1m" eF)t(IF)fjet~ 
e>F 
I,m 

where (IF) represents a single index running over all the selected active 

pairs. The change in sign is due to the odd number of permutations required 

to acheive this arrangement. 
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D. Results 

At this point, in the implementation of the theory a series of if state

ments is used in the complete CCSDT equations to skip a projection if it 

does not contain an active pair. The same conditional requirements are 

used in our array of triple amplitudes by setting the amplitudes with in

dices, which do not include an active pair, to zero. This means that the 

current version of the computer program is not fully optimal, but should 

produce results in agreement with the theory presented in the previous 

section. 

Our first test case is LiH. The basis set used was of double zeta quality, 

Dunning's contraction48 of Huzinaga's primitive Gaussians (Li(9s5p) and 

H(4s) basis with a hydrogen scale factor of 1.2). The results for several in

ternuclear separations are reported in Table V.I. Four secondary reference 

determinants appear significant as the bond dissociates. At the internu

clear separation of 9.045 a.u the dominant double excitation amplitude was 

-0.95, almost equal to the unit amplitude of the formal reference determi

nant, indicating that the bond was essentailly dissociated. The need for 

as many as four secondary reference determinants, and not one as would 

be expected for the dissociation of a single bond, is most likely caused 

by the use of Hartree-Fock orbitals and not multi-configuration self con

sistant field orbitals, which would be more appropriate for this purpose. 

The present multi-reference coupled-cluster method truncated at triples 
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(MDCCSD) did quite well at reproducing the full CJ results. For all in

ternuclear seaparations the MDCCSD energy is within a few hundreths 

of a millihartree from the full CI results. On the other hand, the single

reference coupled-cluster method including single and double excitations 

(CCSD) reproduced the full CI energy almost as well as MDCCSD did 

at the equilibrium distance, Re = 3.015a.u., (30 f.lhartrees difference from 

full CI, compared to 20 f.lhartrees for MDCCSD). However the difference 

between the CCSD energy and the full CI energy grew continually larger 

as the internuclear separation increased. This is expected since the excita

tions from secondary determinants, which are neglected in CCSD become 

more important at larger internuclear separation. At 9.045 a.u. the CCSD 

energy is as much as 0.4 millihartrees higher the full CI energy, compared 

to the MDCCSD energy which is only 10 f.lhartrees higher. The MDCCSD 

energy is consistantly slightly higher then the full CI results, indicating a 

very good reproduction of the shape of the full CI potential curve. 

The second test case is BH. The basis set used was of double zeta qual

ity, Dunning's contraction48 of Huzinaga's primitive Gaussians (B(9s5p), 

H(4s) basis with a hydrogen scale factor of 1.2). The results for three in

ternuclear distances, (Re = 2.329a.u., 2Re and 3Re) are presented in Table 

V.2. The results at the equilibrium distance for CCSD and MDCCSD are 

comparable, and the deviation from full CI for the CCSD energy is .9 milli

hartrees while for the MDCCSD energy is .25 millihartrees. Once again, as 
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expected, the difference between the full CI energy and the CCSD energy 

increased as the internuclear separation incre~ed. At three times the equi

librium internuclear separation, the difference between the CCSD energy 

and the full CI energy has risen to 4.2 millihartrees while the MDSSCD 

energy has fallen to 78 JLhartrees. The dominant doubly excited coupled

cluster amplitude at this separation is -.86, indicating that the bond is 

essentially dissociated. In the case of BH MDCCSD did not do quite as 

well at reproducing the full CI potential curve, the difference with the full 

CI energy was quite small as the bond was stretched but a little higher at 

equilibrium. This was probably because there were several other double ex

citation coupled-cluster amplitudes corresponding to excitations from the 

3CT orbital, which were significant. A subsequent calculation was done at 

the equilibriuim internuclear distance which included two additional refer

ence determinants. The energy resulting from this calculation was much 

closer to the full CI energy. The importance of these amplitudes diminish 

as one of the 3CT electrons leaves with the H atom during the dissociation 

process. The third test case is H20. The basis set used was of the dou

ble zeta quality, Dunning's contraction48 of Huzinaga's primitive Gaussians 

(O(9s5p) and H(4s) basis with a hydrogen scale factor of 1.2). Calculations 

were performed for the equilibrium structure and for the structure obtained 

by stretching both 0 ... H bonds simultaneously. This stretching simulates 

the dissociation of a double bond. The results are presented in Table V.3. 
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Four double excitations were important in this case. For all the structures 

considered, the MDCCSD method did substantially better then CCSD and 

about equally as well as CCSDT. The agreement with CCSDT, but not as 

good as an agreement with full CI, indicates that probably some quadru

ple excitations would be important, as should be expected for stretching a 

double bond. 

These preliminary results are quite promising and indicate that after 

optimization of the computer code, the method could become a practical 

multi-reference coupled-cluster procedure for larger molecular systems. 
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Table V.l 

Correlation energies for LiH at equilibrium& and displaced geometries for 

difl'erent levels or theory. The amplitudes shown in the table correspond 

to the secondary determinants included in MDCCSD calculations. The 

numbers in parenthesis below CCSD and MDCCSD correlation energies 

represent the difference with Full CI. All energies are in atomic units. 

R=R! R = 1.5Re R= 2Re 

SCF -7.981091 -7.946129 -7.897108 

CCSD -0.027558 -0.037215 -0.056351 

( +0.000030) (+0.000062) (+0.000156) 

t~l) -0.023792 -0.069650 -0.248844 

t~2) ±0.029169 ±0.064722 ±0.185693 

t~3) -0.043226 -0.062463 -0.140338 

MDCCSD -0.027568 -0.037245 -0.Oq6472 

( +0.000020) (+0.000032) (+0.000035) 

Full CI -0.027588 -0.037277 -0.056507 

R = 2.5Re R=3Re 

SCF -7.857855 -7.828040 

CCSD -0.083810 -0.110686 

( +0.000229) (+0.000396) 

t~l) -0.629817 -0.946416 

t~2) ±0.377804 ±OA03532 

t~3) -0.230839 -0.174602 

MDCCSD -0.084096 -0.111072 

( +0.000014) (+0.000010) 

Full CI -0.084110 -0.111082 

a) Re = 3.015 a.u. 
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Table V.2 

Correlation energies for BH at equilibrium'" and displaced geometries for dif

ferent levels of theory. The amplitude shown in the table corresponds to the 

secondary determinant included in MDCCSD calculations. The numbers 

in parenthesis below CCSD and MDCCSD correlation energies represent 

the difference with Full CJ. All energies are in atomic units. 

R=R: R=2Re R=3Re 
SCF -25.113677 -24.986389 -24.891457 

CCSD -0.073080 0.118799 0.186280 

( +0.000912) (+0.002772) (+0.004172) 

tb 
2 -0.055486 -0.407870 -0.862314 

MDCCSD -0.073478 -0.121015 -0.190374 

( +0.000513) (+0.000056) (+0.000078) 
Full CI -0.073991 -0.121071 -0.190452 

a) Re = 2.329 a.u. 

b) When two additional determinants were included at equilibrium the 
correlation energy became -0.073738. The difference with FCI decreased to 

+0.000253. 
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Table V.3 

Correlation energies for H20 at equilibriuma and displaced geometries for 

different levels of theory. The amplitudes shown in the table correspond 

to the secondary determinants included in MDCCSD calculations. The 

numbers in parenthesis below CCSD and MDCCSD correlation energies 

represent the difference with Full CJ. All energies are in atomic units. 

R=R! R= 2Re R=3Re 

SCF -76.009838 -75.803529 -75.595180 

CCSD -0.146238 0.205402 0.300732 

( +0.001790) (+0.004068) (+0.009334) 

CCSDTa -0.147594 0.209519 0.312277 

( +0.000434) (+0.001471) (-0.002211) 

t~l) < 0.01 -0.151375 -0.416300 

t~2) < 0.01 -0.137641 -0.325476 

t~3) < 0.01 -0.086370 -0.119210 

t~4) < 0.01 -0.067994 -0.115207 

MDCCSD -0.146929 -0.208934 -0.311256 

( +0.001099) ( to.OO20g6) (,,0.001190) 
( +0.000665) ( +0.000585) (-0.001021 ) 

Full CIa -0.148028 -0.210990 -0.310066 

a) From reference 19. 
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E. Conclusion 

This is the first development and implementation of a multi-reference 

coupled-cluster method based on the single-reference formalism. The re

sults of the previous section indicate that this approach will become a 

viable coupled-cluster method for those cases which are not adequately 

represented by a single determinantal reference function. The next step 

in the procedure should be the inclusion of the restricted quadruple am

plitudes which were neglected in the present implementation. This would 

facilitate a procedure applicable to the stret.<:hing of multiple bonds. The 

direct inclusion of quadruple amplitudes will involve solving the CCSDTQ 

equations for the restricted quadruple amplitudes as well as placing ad

ditional terms in the equations for doubly and triply excited amplitudes, 

which involve those selected quadruple amplitudes. 
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