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Abstract. This paper gives several conditions in geometric crystallography which force
a structureX inRn to be an ideal crystal. An ideal crystal inRn is a finite union of translates
of a full-dimensional lattice. An(r, R)-set is a discrete setX in Rn such that each open
ball of radiusr contains at most one point ofX and each closed ball of radiusR contains
at least one point ofX. A multiregular point systemX is an(r, R)-set whose points are
partitioned into finitely many orbits under the symmetry group Sym(X) of isometries ofRn

that leaveX invariant. Every multiregular point system is an ideal crystal and vice versa.
We present two different types of geometric conditions on a setX that imply that it is a
multiregular point system. The first is that ifX “looks the same” when viewed fromn+ 2
points{yi : 1 ≤ i ≤ n + 2}, such that one of these points is in the interior of the convex
hull of all the others, thenX is a multiregular point system. The second is a “local rules”
condition, which asserts that ifX is an(r, R)-set and all neighborhoods ofX within distance
ρ of eachx ∈ X are isometric to one ofk given point configurations, andρ exceedsC Rk
for C = 2(n2 + 1) log2(2R/r + 2), thenX is a multiregular point system that has at most
k orbits under the action of Sym(X) onRn. In particular, ideal crystals have perfect local
rules under isometries.
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1. Introduction

One of the central problems in long-range order is to characterize the various types of
ordered discrete structures inRn that are possible. The symmetry group Sym(X) of a
discrete setX is the set of all Euclidean isometries ofRn that mapX to itself. Crystalline
materials have the highest possible symmetry. Anideal crystalor perfect crystalis a
discrete setX in Rn which is a finite union of translates of a full-dimensional latticeL
in Rn. An ideal crystal is just a discrete setX that contains a full-dimensional latticeL
in its symmetry group; however, Sym(X) need not act transitively onX. This definition
of ideal crystal extends a definition of a three-dimensional crystal composed of several
species of atoms that was proposed in 1888 by Sohncke [29, p. 433].

The recent discovery and study of quasicrystals (see [25]) raises the question:
What geometric and physical conditions force a structure to be crystalline rather than
quasicrystalline? In this paper we prove several results giving minimal geometric condi-
tions on a discrete setX inRn that are sufficient to imply thatX is an ideal crystal. These
conditions involve concepts in geometric crystallography, and particularly the notion of
multiregular point systems which we define below.

Geometric crystallography was initiated by Bravais [1] and Sohncke [27]–[29], see
also [9], [14, Chapter 2], and [24]. The basic structures that it studies areDelone sets,
also calledDelaunay setsor (r, R)-sets, which are those setsX inRn that satisfy the two
conditions:

(i) Uniform discreteness. There is anr > 0 such that any open ball of radiusr in Rn

contains at most one point ofX.
(ii) Relative denseness. There is anR > 0 such that any closed ball of radiusR in

Rn contains at least one point ofX.

These sets are named after B. N. Delone who introduced them in 1937, see [6] and [12].
Geometric crystallography is concerned with how a Delone setX looks when viewed

from each of its points. Aregular point system Xis a Delone set such thatX “looks
the same” from every pointx ∈ X. Regular point systemsX are exactly those Delone
sets whose symmetry group Sym(X) acts transitively onX, so thatX is a single orbit
Sym(X) · x of Sym(X). Alternatively, we define the (global)star STy(X) of a set X
centered at a pointy ∈ Rn to be the collection of line segments fromy to everyx ∈ X,
namely

STy(X) := {[y, x] : x ∈ X}.
Then X is a regular point system if for each pairx1, x2 ∈ X there exists an isometry
g = g(x1, x2) such that

g(STx1(X)) = STx2(X).

We set

ST(X) := {STx(X) : x ∈ X},
and let|ST(X)| denote the number of distinct isometry classes among all STx(X) for
x ∈ X. A regular point system is just a Delone setX with the property that|ST(X)| = 1.

One of the major results of geometric crystallography is that a regular point system
is an ideal crystal. However not all ideal crystals are regular point systems.
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Definition 1.1. A multiregular point systemis any Delone setX such that the action
of its symmetry group Sym(X) partitions the points ofX into a finite number of orbits.
That is, a multiregular point system is any Delone setX such that|ST(X)| is finite.

Each ideal crystal is a multiregular point system. In fact, multiregular point systems
coincide with ideal crystals, as was shown by Galiulin [11]. The following theorem
includes this result, and also gives another characterization of multiregular point systems,
in terms of the concept of crystallographic group, for which we give several equivalent
definitions in Section 2.

Theorem 1.1. The following conditions on a set X inRn are equivalent:

(i) X is a multiregular point system. That is, X is a Delone set and the set of isometry
classes among{STx(X) : x ∈ X} is finite.

(ii) X is an ideal crystal. That is, X is a finite union of translates of an n-dimensional
lattice L, with X =⋃k

i=1(xi + L).
(iii) X is a discrete set whose symmetry groupSym(X) is a crystallographic group.

The equivalence (ii)⇔ (iii) is a well-known corollary of Bieberbach’s first theorem
(see [31, Theorem 2]). We give a proof of Theorem 1.1 at the end of Section 2.

The first type of geometric condition on a setX that we consider requires that suitable
finite sets of global stars STyi (X) of X be isometric. These conditions are global in the
sense that a star involves lines to every point ofX; however, only finitely many stars are
used. We show:

Theorem 1.2. Let X be a discrete set inRn and let Y be a finite set inRn with
|Y| = n + 2, such that the convex hull of Y is a full-dimensional simplex containing
one point of Y in its interior. If the n+ 2 stars{STy(X) : y ∈ Y} are all isometric, then
Sym(X) is a crystallographic group, and X is an ideal crystal.

It is easy to show that every ideal crystal contains a setY ⊆ X having the properties
above. We derive Theorem 1.2 in Section 3 as a special case of a more general criterion
(Theorem 3.1).

The condition onY in Theorem 1.2 cannot be relaxed to merely requiring that the
convex hull ofY be full dimensional. For example, letX in R3 be the 12 vertices of a
regular icosahedron, and takeY = X. Here Sym(X) is the alternating groupA5, which
is transitive onX, and all{STx(X) : x ∈ X} are isometric, butX is not an ideal crystal.

The second type of geometric condition that we consider consists of “local rules” that
require that the elements inX in a finite neighborhood of eachx ∈ X of fixed radius be
isometric to one of a finite set of point configurations.

Definition 1.2. A set of local rules of radiusρ0 is a finite collectionL = {Li } of
discrete setsLi with 0 ∈ Li , and with eachLi contained in the closed ballB(0; ρ0) of
radiusρ0 around0. A setX satisfies thelocal rulesL under isometriesif for eachx ∈ X
the set(X − x) ∩ B(0; ρ0) is a rotation of some setLi in L.
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In 1976 Deloneet al. [6] showed that ifX is an(r, R)-set inRn such that all neighbor-
hoods ofX within a distanceρ0 = ρ0(r, R,n) of each pointx ∈ X are isometric, then
X is a regular point system. In 1988 Dolbilin and Shtogrin [8] announced an analogous
result for multiregular point systems. We prove here such a result for multiregular point
systems and give an explicit distance boundρ0(r, R,n, k), wherek = |ST(X)|, given
by (1.4) below.

Definition 1.3. Givenρ ∈ R>0, theρ-star of X centered aty ∈ Rn is the set of line
segments

STy(X; ρ) := {[x, y] : x ∈ X and‖x− y‖ ≤ ρ}.

The set of allρ-stars ofX is denoted

ST(X; ρ) := {STx(X; ρ) : x ∈ X}.
We let |ST(X; ρ)| denote the number of isometry classes among the STx(X; ρ) for
x ∈ X, and define the function

NX(ρ) := |ST(X; ρ)|, 0< ρ <∞.
In Section 4 we prove:

Theorem 1.3. Let X be a Delone set inRn with constants(r, R). If for some radiusρ
the number k= NX(ρ) of isometry classes of itsρ-stars satisfies

NX(ρ) <
ρ

C R
, (1.1)

with

C = 2(n2+ 1) log2

(
2R

r
+ 2

)
, (1.2)

then X is a multiregular point system, and the global stars{STx(X) : x ∈ X} of X
are partitioned into exactly k orbits under the action ofSym(X). Furthermore, the only
Delone sets Y all of whoseρ-stars are isometric toρ-stars of X are sets globally isometric
to X, i.e.,

Y = Q(X + t) for some t ∈ Rn, Q ∈ O(n,R). (1.3)

The bound (1.1) in Theorem 1.3 is best possible up to the value ofC, for in Section 4
we give examples of(r, R)-setsX in Rn which are not multiregular point systems, but
have the property thatNX(ρ) is approximately(

√
n/2)ρ/R for all largeρ.

The interest of Theorem 1.3 to crystallography is that it asserts that the atomic structure
of any ideal crystal is completely determined by “local conditions” of a fixed radius
around each atom separately.

Definition 1.4. Two setsX andX′ arelocally isomorphicif for each finite neighbor-
hood inX an isometric copy of it can be found inX′, and vice versa.
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Definition 1.5. A set of local rulesL areperfect local rules under isometriesif when-
ever two setsX and X′ satisfyL, then X and X′ are locally isomorphic. That is,L
determines a uniquelocal isomorphism classof sets.

If X is a multiregular point system with parameters(r, R) and withk orbits under the
action of Sym(X), then the setL of ρ0-stars ofX for any

ρ0 > C Rk (1.4)

is a set of perfect local rules under isometries forX. Indeed (1.3) then holds and Theo-
rem 1.3 shows that the local isomorphism class ofX consists only of sets isometric to
X. Thus every ideal crystal satisfies perfect local rules under isometries.

There are also various “quasicrystalline” structures that have perfect local rules under
isometries. For further discussions and references concerning “perfect local rules” for
ideal crystals and quasicrystals, see [15], [17], [19], and [25].

One question remaining about Theorem 1.3 is the extent to which the bound forC in
(1.3) can be improved. The value ofC in (1.3) depends onn, R, andr . It is possible that
there exists a smaller bound forC which is a function of the dimension alone. Shtogrin
[26] showed forn = 2 andk = 1 thatρ > 4R suffices forX to be a multiregular point
system, and gave an example showing that 4R is the best possible value. Dolbilin and
Shtogrin [7] showed forn = 3 andk = 1 that the conditionρ > 10R suffices. Their
proof methods do not apply in dimensionsn ≥ 4. Engel [9, Theorem 9.9] announced
a general result of this type fork = 1, namely that (1.4) can then be weakened to the
conditionρ > 6R, independent of the dimension. However his proof is incomplete,
since it depends on his unproved Conjecture 9.7.

In this paper logx and log2 x represent logarithms to basee and 2, respectively.

2. Crystallographic Groups

In this section we give several characterizations of crystallographic groups, most of
which are well known. First, we set some notation. The Euclidean norm onRn is denoted
‖x‖ = (∑n

i=1 x2
i )

1/2. Forρ > 0, let B(x; ρ) denote the closed ball of radiusρ aroundx,
given by

B(x; ρ) := {y : ‖y− x‖ ≤ ρ}.
Let B◦(x; ρ) denote the corresponding open ball and∂B(x; ρ) its boundary,

∂B(x; ρ) := {y : ‖y− x‖ = ρ}.
A subsetX of Rn is discreteif it is closed and for eachx ∈ X there is a radiusρx > 0
such that

X ∩ B(x; ρx) = {x}.
Let En denote the spaceRn endowed with the Euclidean metric. The Euclidean

groupEn = Sym(En) denotes the group of isometries ofRn. It is a real Lie group of
dimensionn(n+ 1)/2 and is a semidirect product of the orthogonal groupO(n,R) =



482 N. P. Dolbilin, J. C. Lagarias, and M. Senechal

{Q : QQT = I } and the translation groupRn. We denote its elementsg = (Q, t) where
Q is therotational partof g andt is thetranslational partof g, with multiplication

g′g = (Q′, t′)(Q, t) = (Q′Q, t′ + Q′t).

A general elementg ∈ En acts onRn by

g · x = Qx+ t. (2.1)

The following definitions concern subgroupsG of the Euclidean groupEn.

Definition 2.1. A groupG is adiscrete subgroupof En if it is a closed subgroup ofEn

and the topology induced onG from the standard (Euclidean) topology onEn is discrete.
That is, for eachg ∈ G there is an open setU of En such thatG ∩U = {g}.

Definition 2.2. A groupG acts discontinuously1 onRn if for everyx ∈ Rn the orbit

G · x := {g · x : g ∈ G}

is a discrete set inRn.

In this definition we allow the possibility that there are distinctg1, g2 ∈ G with
g1 · x = g2 · x.

Definition 2.3. A groupG acts uniformlyonRn if the orbit spaceRn/G is compact in
the quotient topology.

This definition implies that the translational partst of elements ofG spanRn as a
vector space. Indeed, call a groupG of isometriesirreducibleif for each invertible affine
mapα: Rn→Rn the groupG′ = αGα−1 has the property that the translational parts of
all elements ofG′ spanRn. A groupG of isometries is irreducible if and only if it acts
uniformly onRn, see Charlap [3, p. 3].

Definition 2.4. A groupG is crystallographicif it acts uniformly and discontinuously
onRn. (This is the definition of Charlap [3, p. 4].)

Definition 2.5. A groupG is aspace groupif the subgroupT of all pure translations
in G is ann-dimensional lattice. (See Schwarzenberger [23, p. 26].)

The following theorem gives several necessary and sufficient conditions for a group
G to be crystallographic. All of these criteria are quite well known, except for (v), which
will be the criterion we mainly use in this paper.

1 Schwarzenberger [23] terms this “acts discretelyonRn.”
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Theorem 2.1. The following properties of a group G contained in the Euclidean group
En = Sym(En) are equivalent:

(i) G is a crystallographic group. That is, G acts uniformly and discontinuously on
Rn.

(ii) G is a space group. That is, the subgroup of pure translations T in G is an
n-dimensional lattice, which is necessarily the maximal abelian subgroup of G.

(iii) G is a discrete subgroup ofEn andEn/G is compact.
(iv) Every orbit G· x = {g · x : g ∈ G} is a Delone set inRn.
(v) There exists one orbit G· x which is a discrete, relatively dense set inRn.

Remark. We later obtain an even weaker version of (v) in Corollary 3.1.

Proof. (i) ⇔ (ii) The direction (i)⇒ (ii) is Bieberbach’s first theorem, see [2], [3,
p. 17], [18], or [31]. Besides being of finite index inG, T is the unique maximal, normal,
abelian subgroup ofG, see [3, p. 18]. For (ii)⇒ (i) we use [3, p. 4 bottom] to obtain
thatG acts uniformly. NextT is of finite index inG [23, p. 26] and acts discontinuously
onRn. We complete this step by using the observation that ifG contains a subgroup of
finite index that acts discontinuously onRn, thenG also acts discontinuously onRn.

(ii) ⇒ (iii) This is a theorem in [23, p. 27].
(iii) ⇒ (i) This is also a theorem of Bieberbach, see [23, p. 29].
(ii)⇒ (iv) Any orbit T ·x is a translate of then-dimensional latticeT ·0. Since [G : T ]

is finite andT is a normal subgroup ofG, the setG · x consists of [G : T ] translates of
T · 0, hence it is a Delone set.

(iv)⇒ (v) Trivial.
(v)⇒ (iii) Since G · x is relatively dense, the vectors inG · x spanRn, because they

clearly cannot all lie in an(n−1)-dimensional affine subspace. This, together withG ·x
being a discrete set, implies that any elementg of G sufficiently close to the identitye
must be the identity, henceG is a discrete subgroup ofEn.

To show thatEn/G is compact, it suffices to show that for anyg′ ∈ En with g′ · z =
Q′z+ t′ we can find some elementg ∈ G, sayg · z= Qz+ t, such that the elementg′g
with

g′g · z= Q′Qz+ Q′t + t′

has‖Q′t + t′‖ bounded, because any regionO(n,R)× {t : ‖t‖ ≤ R′}, for any R′, is a
compact subset ofEn. Let ‖Q‖2 denote the Frobenius norm on matrices, which is

‖Q‖2 =
(

n∑
i, j=1

Q2
i j

)1/2

= (Tr(QQT ))1/2,

and note that orthogonal matricesQ satisfy‖Q‖2 =
√

n. We now view the orbitG · x
as generated by that elementx in the orbit which minimizes‖x‖. Then‖x‖ ≤ R since
G ·x is relatively dense with constantR. By relative denseness we can also findy ∈ G ·x
such that

‖y− (Q′)−1t′‖ ≤ R.
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Next choose ag ∈ G with y = g · x = Qx+ t. Theng′g has translation part satisfying

‖Q′t + t′‖ = ‖Q′(y− Qx)+ t′‖
≤ ‖Q′‖2 ‖y− (Q′)−1t′‖ + ‖Q′‖2 ‖Q‖2 ‖x‖
≤ (
√

n+ n)R,

which is the desired bound.

From Theorem 2.1 we easily deduce Theorem 1.1.

Proof of Theorem1.1. (i)⇒ (iii) Choose a radiusρ sufficiently large that the ball
B(0; ρ) contains representatives{xi : 1≤ i ≤ |ST(X)|} of each isometry class of global
star STxi (X). For anyx ∈ X there exists somexj such that STx(X) is isometric to
STxj (X) via an isometryg = g(x, xj ) ∈ Sym(X). Then for eachi ,

‖g−1 · xi − x‖ = ‖g−1 · (xi − xj )‖ ≤ 2ρ

and STg−1·xi
(X) is isometric to STxi (X). Thus each of the sets

Xi := {x ∈ X : STx(X) is isometric to STxi (X)}
is relatively dense with constant 2ρ + R. Since

Xi ⊆ Sym(X) · xi ⊆ X,

it follows that the Sym(X)-orbit of xi is discrete and relatively dense, hence Sym(X) is
a crystallographic group by property (v) of Theorem 2.1.

(iii) ⇒ (ii) X is invariant under the maximal abelian subgroupT contained in Sym(X),
which is ann-dimensional lattice since Sym(X) is a crystallographic group. NowX is
a union of orbitsT · x, each of which is a translate of the latticeL = T · 0. SinceX is a
discrete set, there can only be finitely many such orbits.

(ii) ⇒ (i) Immediate.

For each crystallographic groupG there exists some multiregular point system such
that G = Sym(X). This contrasts with the situation for regular point systems. For
example, there is no regular point systemX with Sym(X) equal to a groupG of pure
translationsZn. Indeed, the orbitG · x, which is a translate of a full-rank lattice, has a
strictly larger symmetry group thanG, for Sym(G ·x) contains a reflectiong·y := x0−y
around any given pointx0 ∈ G · x. For this reason the classification of regular point
systems differs from that of crystallographic groups.

We conclude this section with the following consequence of Theorem 1.1. Call a set
X in Rn fully periodicif it is invariant under some full rank latticeL of translations. We
have:If X is a Delone set, then X is not fully periodic if and only if|ST(X)| is infinite.

3. Global Star Criterion

We show that a discrete setX is an ideal crystal provided that certain sets of global stars
{Sty(X) : y ∈ Y} are all isometric.
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Definition 3.1. An arbitrary setY in Rn is anenclosing setif there is a pointy ∈ Y
which is contained in the interior of the convex hull of the remaining pointsY\{y}. We
call any suchy ∈ Y anenclosed point.

This definition requires that the convex hull ofY in Rn be full dimensional, i.e.,
the points ofY do not all lie in some hyperplane. An enclosing setY necessarily has
cardinality|Y| ≥ n + 2, and|Y| = n + 2 occurs whenY consists of the vertices of a
n-simplex plus one point in the interior of the simplex. We prove:

Theorem 3.1. Let X be a discrete set inRn and suppose that Y is a(finite or infinite)
set such that all the stars{STy(X) : y ∈ Y} are isometric. If Y is an enclosing set, then
Sym(X) is a crystallographic group, and X is an ideal crystal.

In this result the setX and the star centersY are not necessarily related, and we may
haveX ∩ Y = ∅. Theorem 1.2 directly follows as a special case of Theorem 3.1.

Theorem 3.1 also gives the following relaxation of property (v) in Theorem 2.2.

Corollary 3.1. If G is a group of isometries ofRn that contains an orbit G· x which
is discrete and is also an enclosing set, then G is a crystallographic group.

Proof. Apply Theorem 3.1 withY = X = G · x.

Before proving Theorem 3.1, we derive some equivalent conditions for a setY to be
an enclosing set.

Definition 3.2. Givenρ > 0, a pointy of a setY in Rn is aρ-point of Y if every ball
B(x; ρ) that containsy on its boundary∂B(x; ρ) also contains a point ofY\{y}.

Definition 3.3. An oriented hyperplane His a hyperplane

H := Hc,d = {x : 〈c, x〉 = d},

together with a particular labelingH+, H− of the two open half-spaces it determines.
The data(c,d) with x 6= 0 determine these open half-spaces by

H+ = {x : 〈c, x〉 > d} and H− = {x : 〈c, x〉 < d}.

We prove:

Lemma 3.1. The following conditions on a pointy in a set Y inRn are equivalent.

(i) y is an enclosed point of Y, i.e., y is in the interior of the convex hull of Y\{y}.
(ii) y is aρ-point of Y, for some finiteρ > 0.

(iii) Every oriented hyperplane H containingy satisfies

H+ ∩ Y 6= ∅ and H− ∩ Y 6= ∅.
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Proof. (i)⇒ (iii) We prove the contrapositive. Suppose (iii) fails. If some hyperplane
H has Int(H+ ∩Y) = ∅, then the convex hull ofY is contained in the closed half-space
H
− = H ∪ H−, andy ∈ H is on its boundary, hencey cannot be an (n-dimensional)

interior point of the convex hull ofY, and (i) fails.
(iii) ⇒ (ii) We prove the contrapositive. Suppose (ii) fails. Then there are arbitrarily

large closed ballsB(xj ; ρj )which havey on their boundary and contain other no point of
Y. Let Hj be the tangent hyperplane to∂B(xj ; ρj ) aty, oriented so thatB(xj ; ρj )\{y} ⊆
H+. Extract a subsequence ofHj that tends to a limit hyperplaneH containingy. Along
this subsequence the setsB(xj ; ρj )\{y} exhaust all ofH+, henceH+ contains no point
of Y, contradicting (iii).

(ii) ⇒ (i) Let Ỹ(y) := Y ∩ B(y;2ρ), which consists of all points ofY contained
in some closed ballB(x; ρ) that containsy on its boundary. We show that̃Y contains
y as an enclosed point. Suppose not. Then there is an oriented hyperplaneH through
y which contains no point ofY\{y} on one sideH+ of it. Consider the closed ball
B(x; ρ) contained inH+ which is tangent toH aty. It contains no point ofY\{y}, which
contradicts (ii).

We also need the following simple criterion for a setY to be relatively dense.

Lemma 3.2. An arbitrary closed set Y inRn is relatively dense if and only if there is
someρ > 0 such that every pointy ∈ Y is aρ-point of Y.

Proof. If Y is relatively dense with parameterR, then every pointy ∈ Y is anR-point.
Indeed, relative denseness implies that every ballB(x, R) with y ∈ ∂B(x, R) contains
some other point ofY.

Conversely, if every point ofY is aρ-point, for fixedρ > 0, thenY is relatively dense
with parameterρ. Suppose not, so that there is some empty ballB(z; ρ ′) with ρ ′ > ρ.
Choose a pointy ∈ Y that is a closest point toz, and translate the ball in the direction
y − z until y ∈ Y is on its boundary. The resulting ballB(z′; ρ) contains no point of
Y\{y} by the triangle inequality, for any other point in it would be closer toz thany.
This contradictsy being aρ-point ofY.

Proof of Theorem3.1. By hypothesis, for each pointyi , yj of Y there is an isometry
gi j of Rn that mapsyi to yj and STyi (X) to STyj (X). We do not require that any of the
yi be in X. Let G be the group of isometries generated by all the possiblegi j ’s. Then
Y ⊆ G · y for any fixedy ∈ Y. Since eachgi j ∈ Sym(X), we haveG ⊆ Sym(X). The
main part of the proof will be to show thatG is a crystallographic group.

Consider an orbitG · x for somex ∈ X and let Aff(G · x) denote the smallest affine
subspace spanned by the elements ofG ·x. We show that dim(Aff (X)) = n. Assume the
contrary, thatG · x spans some affine subspacePk = Aff (G · x) of dimensionk < n.
Now G must leavePk invariant, i.e.,g(Pk) = Pk for all g ∈ G. Sinceg(Pk) = Pk for
all g ∈ G, we have

dist(y, Pk) = dist(g · y, Pk),
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where dist(y, F) := inf{‖y− z‖ : z ∈ F}. Thus the orbitG · y lies on a cylinder

Cα := {z ∈ Rn : dist(z, Pk) = α}.
The constantα > 0, for if α = 0, thenY ⊆ G · y ⊆ Pk, which contradicts the property
that the points of an enclosing setY spanRn. If k < n, then the cylinderCα

∼= Pk×Sn−k

is a convex set, hence a supporting hyperplaneH to a pointy ∈ Y on the surface of
the cylinder leaves the entire cylinderCα in one closed half-spaceH

− = H ∪ H−, say.
Then H+ ∩ Y = ∅, which by Lemma 3.1(iii) shows thatY is not an enclosing set, a
contradiction. Thusk = n.

We next show that Sym(X) acts discontinuously onRn. We must show that every
orbit Sym(X) · z is a discrete set. We know that Sym(X) · x ⊆ X is a discrete set, and
Aff (Sym(X) · x) = Rn becauseRn = Aff (G · x) ⊆ Aff (Sym(X) · x). Now

Aff (Sym(X) · x) = Rn

implies that there existn+ 1 points{xi : 1≤ i ≤ n+ 1} which form a full-dimensional
simplex inRn, so we can write

z=
n+1∑
i=1

ai xi with
n+1∑
i=1

ai = 1.

Here(a1,a2, . . . ,an+1) are barycentric coordinates ofz and

‖z− xi ‖ ≤ c0 :=
n+1∑
i=1

(|ai | + 1)‖xi ‖, 1≤ i ≤ n+ 1.

We now argue by contradiction. Suppose that Sym(X) · z is not discrete. Then there
exists a sequence of distinct points{zj = gj · z : j ≥ 1} tending to a limit pointz∞.
However

gj · z=
n+1∑
i=1

ai (gj · xi ), (3.1)

and allgj · xi ∈ Sym(X) · x. Now we have

‖z∞ − gj · xi ‖ ≤ ‖z∞ − zj ‖ + ‖gj · z− gj · xi ‖ ≤ ‖z∞ − zj ‖ + c0.

Whenever‖z∞ − zj ‖ ≤ 1, the pointgj · xi lies in the fixed ballB(z∞; c0 + 1). Since
X is discrete, there are only finitely points of Sym(X) · x in this ball, hence by (3.1)
there are only finitely many possible choices forgj · z having ‖z∞ − gj · z‖ ≤ 1,
which contradicts the distinctness of allzj . Thus Sym(X) acts discontinuously onRn.
In particular, Sym(X) · y is a discrete set, henceG · y is a discrete set.

Now choosey to be an enclosed point ofY, so it is aρ-point for someρ > 0 by
Lemma 3.1. Now for any isometryg ∈ G, the pointg · y is aρ-point of g(Y), because
property (iii) of Lemma 3.1 is invariant under isometries. SinceY ⊆ G · y we have
g(Y) ⊆ G · y, henceg · y is aρ-point of Y. Thus every point ofG · y is aρ-point, so
G · y is a relatively dense set by Lemma 3.2.
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It follows that G is a crystallographic group by property (v) of Theorem 2.1. Thus
Rn/G is compact, henceRn/Sym(X) is also compact, so Sym(X) acts uniformly on
Rn. We conclude that Sym(X) is a crystallographic group. Theorem 2.2 then shows that
X is an ideal crystal.

For later use we show that for any finite partitionX =⋃k
i=1 Xi of a relatively dense

set, at least one setXi is an enclosing set. The following lemma shows that this conclusion
holds more generally for finite setsX that are relatively dense on any sufficiently large
finite region. We say that a setX is R-relatively dense in the ball B(y; ρ) if every closed
ball B(z; R) contained inB(y; ρ) contains a point ofX.

Lemma 3.3. Let X be a set inRn which is partitioned into k subsets,

X =
k⋃

i=1

Xi with Xi ∩ Xj = ∅ if i 6= j .

If X is R-relatively dense in some ball B(y; ρ) with ρ ≥ 3k R, then at least one subset
Xi is an enclosing set.

Proof. We proceed by induction onk. For the base casek = 1, if X = X1 is R-
relatively dense inB(y;3R), then there exists somex ∈ X with ‖x − y‖ ≤ R. The
set X̃(x) = X ∩ B(x;2R) of all points of X within distance 2R of x containsx as an
enclosed point, as in the proof of Lemma 3.1(ii)⇒ (i), because it includes each point of
X in any B(z; R) that containsx on its boundary, and all suchB(z; R) ⊆ B(y;3R).

Now suppose that the lemma is true for all partitions ofX intok−1 subsets. Consider
a partition ofX into k subsets, and suppose that there is a ballB(y;3k R) on which X
is R-relatively dense. If the setXk is 3k−1R-relatively dense onB = B(y;3k R), then
the setXk is an enclosing set, by applying the base casek = 1. If it is not, then there
is some ballB′ = B(y′;3k−1R) insideB(y;3k R) that contains no point ofXk. Now set
X′ = X ∩ B′ andX′i = Xi ∩ B′, 1≤ i ≤ k−1. Then sinceX′k = Xk ∩ B′ = ∅, we have
a partition

X′ =
k−1⋃
i=1

X′i ,

and X′ inherits theR-relatively dense property onB(y′;3k−1R) from that of X on B.
By the induction hypothesis one of theX′i is an enclosing set, and sinceX′i ⊆ Xi the
enclosing set property holds for the correspondingXi . This completes the induction
step.

4. Local Star Criterion

We deduce results on the multiregularity of a point setX from conditions on a set of
its local stars (ρ-stars) centered at a Delone set of pointsY contained inX. In Corol-
lary 4.1 below we recover the main result stated in [8], which generalizes that of Delone
et al. [6].
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Recall the definition

STy(X; ρ) := {[y, x] : x ∈ X and‖x− y‖ ≤ ρ}.
This implies that

STy(X; ρ) ⊆ STy(X; ρ ′) if ρ ≤ ρ ′. (4.1)

Definition 4.1. The local stabilizerof theρ-star centered aty, denoted Lsymy(X; ρ),
is the group of isometriesg that fix y and leave STy(X; ρ) invariant. That is, it consists
of all g ∈ Sym(En) such thatg · y = y and

g(STy(X; ρ)) = STy(X; ρ).

Lsymy(X; ρ) is a subgroup of the group of rotations centered aty. The relation (4.1)
implies that

Lsymy(X; ρ) ⊇ Lsymy(X; ρ ′) if ρ ≤ ρ ′. (4.2)

Definition 4.2. The (global)stabilizer Lsymy(X) centered aty is the subgroup of
elements of Sym(X) that fixy.

We clearly have

Lsymy(X) ⊆ Lsymy(X; ρ) for anyρ.

Any group Lsymy(X; ρ) or Lsymy(X) is conjugate in Sym(En) to a subgroup of the
orthogonal groupO(n,R) by applying the conjugacy that translatesy to the origin, i.e.,
t−ygty ∈ O(n,R), wherety · x = x+ y.

We generalize these definitions to apply to a partitionX = Y ∪ Z of a setX. We
define thepartitionedρ-star

STw(Y, Z; ρ) := STw(Y; ρ) ∪ STw(Z; ρ) = STw(X; ρ),
and we consider two such partitionedρ-stars isometric if there is an isometry
g ∈ Sym(En) with g · w = w′ which satisfies

g(STw(Y; ρ)) = STw′(Y; ρ) and g(STw(Z; ρ)) = STw′(Z; ρ).
We call any such isometryg a (Y, Z; ρ)-isometry. We set

STW(Y, Z; ρ) := {STw(Y, Z; ρ) : w ∈ W},
and let |STW(Y, Z; ρ)| denote the number of(Y, Z; ρ)-isometry classes among the
members of STW(Y, Z; ρ).

Finally, we define thelocal stabilizerLsymw(Y, Z; ρ) of the partitionedρ-star by

Lsymw(Y, Z; ρ) = Lsymw(Y; ρ) ∩ Lsymw(Z; ρ),
and thestabilizerLsymw(Y, Z) by

Lsymw(Y, Z) = Lsymw(Y) ∩ Lsymw(Z).
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We obtain the following criterion:

Theorem 4.1. Let X be a discrete set which has a partition X= Y ∪ Z in which Y is
a Delone set. Suppose thatρ ≥ 4R is such that:

(a) |STY(Y, Z; ρ)| = |STY(Y, Z; ρ − 2R)| = k; and
(b) Lsymy(Y, Z; ρ) = Lsymy(Y, Z; ρ − 2R) for all y ∈ Y.

ThenSym(Y) ∩ Sym(Z) ⊆ Sym(X) is a crystallographic group. Furthermore, each of
X and Y is a multiregular point system, and the points of X fall into at most k orbits
under the action ofSym(X).

In hypothesis (b) the groups Lsymy(Y, Z; ρ) for y ∈ Y are not all necessarily iso-
morphic. The proof implies that they fall in at mostk isomorphism classes. Lemma 4.2
below shows that, for any value ofρ that satisfies (a) and (b), we have

Lsymy(Y, Z) = Lsymy(Y, Z; ρ) all y ∈ Y. (4.3)

Theorem 4.1 states nothing about the group Sym(Z), but the proof implies that
Sym(Z) acts uniformly onRn. The theorem includes the special caseZ = ∅, where
we make the convention that Sym(∅) = Sym(En) = En. This special case is:

Corollary 4.1. Let X be an(r, R) set for which there exists someρ ≥ 4R such that:

(a) |STX(X; ρ)| = |STX(X; ρ − 2R)| = k; and
(b) Lsymx(X; ρ) = Lsymx(X; ρ − 2R) for all x ∈ X.

Then X is a multiregular point system whose points fall in exactly k orbits under the
action ofSym(X). Furthermore,

Lsymx(X) = Lsymx(X; ρ) for all x ∈ X. (4.4)

Here there are exactlyk orbits because condition (a) asserts that there are at leastk
distinct orbits under the action of Sym(X).

An important part of the proof of Theorem 4.1 is to show that the setX possesses
global symmetries. We establish this in two preliminary lemmas, in which we assume
all hypotheses of Theorem 4.1 are in force.

Lemma 4.1. Let y, y′ ∈ Y and supposeρ ≥ 4R and that there exists g∈ Sym(En)

which is a(Y, Z; ρ−2R)-isometry that mapsSTy(X; ρ−2R) toSTy′(X; ρ−2R). Then
g is also a(Y, Z; ρ)-isometry that mapsSTy(X; ρ) to STy′(X; ρ).

Proof. The hypothesis (a) in Theorem 4.1 implies that the isometry class of a star
STy(Y, Z; ρ − 2R) uniquely determines the isometry class of the star STy(Y, Z; ρ).
Thus the(Y, Z; ρ − 2R)-isometry hypothesis implies that STy(X; ρ) is (Y, Z; ρ)-
isometric to STy′(X; ρ), and we letg′ ∈ Sym(En) be such an isometry between them.
Now

g−1 ◦ g′(STy(X; ρ − 2R)) = g−1(STy′(X; ρ − 2R)) = STy(X; ρ − 2R).
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Thusg−1 ◦ g′ ∈ Lsymy(X; ρ − 2R). Now hypothesis (b) of Theorem 4.1 gives

g′′ = g−1 ◦ g′ ∈ Lsymy(X; ρ).

Thusg = g′ ◦ (g′′)−1 is a(Y, Z; ρ)-isometry.

Next we show that any such local symmetry is a global symmetry of bothY andZ.

Lemma 4.2. Let y, y′ ∈ Y and supposeρ ≥ 4R and that there is a(Y, Z; ρ − 2R)-
isometry g∈ Sym(En) from y to y′, so that

g(STy(X; ρ − 2R)) = STy′(X; ρ − 2R).

Then g∈ Sym(Y) ∩ Sym(Z). In particular,

Lsymy(Y, Z) = Lsymy(Y, Z; ρ).

Proof. SinceY is an (r, R)-set, we can connecty to any ȳ ∈ Y by a finite chain
y0, y1, . . . , ym with y0 = y andym = ȳ, such that

‖yi − yi−1‖ ≤ 2R for 1≤ i ≤ m. (4.5)

This is proved in [6, Section 2], as follows. If‖ȳ − y‖ = R′, then the closed ball
B = B(ȳ; R′) contains only finitely many points ofY, andy lies on its boundary. The
closed ball

B0 := B

(
y+ R

R′
(ȳ− y); R

)
⊆ B

containsy0 = y on its boundary, and by relative denseness it must contain another point
y1 ∈ Y. Then‖y1− y0‖ ≤ 2R and

‖y1− ȳ‖ < ‖y0− ȳ‖,
sincey is the furthest point inB0 from ȳ. Now y1 ∈ B, so we can repeat the same
argument to findy2 ∈ Y ∩ B with ‖y2− y1‖ ≤ 2R and

‖y2− ȳ‖ < ‖y1− ȳ‖.
Continue this process to producey3, y4, . . ., and since there are only finitely many points
of Y in B, this process terminates with someym = ȳ, which gives (4.5).

By hypothesisρ ≥ 4R, hence

y1 ∈ B(y0;2R) ⊆ B(y0; ρ − 2R).

Thus

y1 ∈ X ∩ B(y0; ρ − 2R) ⊆ X ∩ B(y0; ρ),
so Lemma 4.1 applies to give

g · y1 ∈ STy′(X; ρ).
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Nowg is a(Y, Z; ρ)-isometry that takes STy(X; ρ) to STy′(X; ρ), hence it is a(Y, Z; ρ−
2R)-isometry of STy1(X; ρ−2R) to some STy′1(X; ρ−2R)with y′1 ∈ Y. Lemma 4.1 then
implies thatg is a(Y, Z; ρ)-isometry of STy1(X; ρ) to STy′1(X; ρ). Since STy2(X; ρ −
2R) ⊆ STy1(X; ρ) by Lemma 4.1 we get thatg is a (Y, Z; ρ − 2R) isometry of
STy2(X; ρ − 2R) to some STy′2(X; ρ − 2R). Continuing in this fashion, we eventu-
ally obtain thatg is a(Y, Z; ρ) isometry of ST̄y(X; ρ) to some ST̄y′(X; ρ). In particular,

g · ȳ = ȳ′ ∈ Y.

By a similar argumentg−1 · ȳ ∈ Y for all ȳ ∈ Y, henceg ∈ Sym(Y).
Next consider an arbitrarȳz ∈ Z. SinceY is an(r, R)-set, the closed ballB(z̄; R)

contains some pointȳ ∈ Y. By the argument aboveg is a(Y, Z; ρ)-isometry of ST̄y(X; ρ)
to some ST̄y′(X; ρ). Thus the point̄z is mapped to a point̄z′ ∈ Z in STȳ′(X; ρ), i.e.,
g · z̄= z̄′ ∈ Z. Similarly g−1 · z̄ ∈ Z, sog ∈ Sym(Z).

Proof of Theorem4.1. Partition the Delone set

Y :=
k⋃

j=1

Yj ,

in which the Yj comprise the(Y, Z; ρ)-isometry classes of STy(Y, Z; ρ) and k =
|STY(Y, Z; ρ)|. For eachy, y′ ∈ Yj there is someg = gy,y′ ∈ Sym(En) which is a
(Y, Z; ρ)-isometry from STy(Y, Z; ρ) to STy′(Y, Z; ρ). By Lemma 4.2 eachgy,y′ ∈
Sym(Y) ∩ Sym(Z). Let G denote the subgroup of Sym(En) generated by all suchgy,y′

for 1≤ j ≤ k. Then

G ⊆ Sym(Y) ∩ Sym(Z) ⊆ Sym(X).

SinceY is a Delone set andG ⊆ Sym(Y), it follows thatG acts discontinuously onRn.
Next, Lemma 3.3 implies that someYj is an enclosing set. Choose anyy ∈ Yj , and

since allgy,y′ ∈ G for y′ ∈ Yj , we have

Yj ⊆ G · y ⊆ (Sym(Y) ∩ Sym(Z)) · y ⊆ Sym(Y) · y ⊆ Y.

Then Sym(Y)∩Sym(Z) and Sym(Y) are both crystallographic groups by Corollary 3.1,
andY is a multiregular point system by Theorem 1.1.

Finally, since

Yj ⊆ G · y ⊆ Sym(X) · y ⊆ X,

it follows that Sym(X) is a crystallographic group by Corollary 3.1, andX is a multi-
regular point system by Theorem 1.1. The number of isomorphism classes of{STx(X) :
x ∈ X} is at mostk, because the action of Sym(Y)∩Sym(Z) on X givesk isomorphism
classes by Lemma 4.2, and Sym(Y) ∩ Sym(Z) ⊆ Sym(X).

In the remainder of this section we consider the special caseY = X andZ = ∅, and
prove Theorem 1.3 using Corollary 4.1. We begin with the following bound:
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Lemma 4.3. If X is an(r, R)-set inRn andx ∈ X, then

|Lsymx(X;2R)| ≤
(

2R

r
+ 1

)n2

. (4.6)

Proof. The pointx ∈ X is an R-point by the proof of Lemma 3.2. In particular, the
finite setX̃ := X∩B(x;2R) containsx as an enclosed point, by the proof of Lemma 3.1.
We can findn + 1 pointsx0 = x, x1, x2, . . . , xn ∈ X̃ which form a full-dimensional
simplex. (See the proof of Carath´eodory’s theorem in [30, (2.2.12)].) Each elementg of
Lsymx(X;2R) fixesx, and is completely determined by specifying the imagesg · xi of
xi for 1≤ i ≤ n. Now

‖g · xi − x0‖ = ‖g · xi − g · x0‖ = ‖xi − x0‖ ≤ 2R,

hence each imageg · xi lies in X̃. To prove (4.6) it therefore suffices to show that

|X̃| ≤
(

2R

r
+ 1

)n

, (4.7)

for there are then at most(2R/r + 1)n
2

choices for{g · xi : 1 ≤ i ≤ n}. To prove
(4.6), note that sinceX is an(r, R)-set, the open ballsB◦(xi ; r ) are pairwise disjoint.
For if two balls had a common pointw, the open ballB◦(w; r )would contain two points
of X, contradicting ther -uniformly discrete property. All these balls lie inside the ball
B(x;2R+ r ). Comparing the volumes that these balls cover gives

Vol

(⋃
x′∈X̃

B◦(x′; r )
)
= κnr n|X̃| ≤ κn(2R+ r )n = Vol(B(x;2R+ r )),

in whichκn denotes the volume of ann-dimensional unit ball, and this yields (4.7).

Proof of Theorem1.3. We suppose thatX is an(r, R)-set having the property that all
ρ-stars{STx(X; ρ) : x ∈ X} fall in k = NX(ρ) isometry classes, and that

ρ > 2 f (n, r, R)Rk,

with

f (n, r, R) := (n2+ 1)
log(2R/r + 2)

log 2
.

We deduce Theorem 1.3 by showing that for some

ρj := 2 j R with 2≤ j ≤ k f (n, r, R),

the two hypotheses:

(a) NX(ρj ) = NX(ρj − 2R) = k′ ≤ k; and
(b) Lsymx(X; ρj ) = Lsymx(X; ρj − 2R) for all x ∈ X;
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simultaneously hold. If so, then the hypothesis of Corollary 4.1 holds forρj sinceρj ≥
4R, and it implies Theorem 1.3 sinceρ ≥ ρj .

To proceed, we observe thatNX(ρ
′) is a nondecreasing function ofρ ′, hence

NX(ρj ) ≤ NX(ρ) = k.

ThusNX(ρj ) can assume at mostk different values. Next, the function|Lsymx(X; ρ)|
is a nonincreasing function ofρ by (4.2). If

|Lsymx(X; ρj )| 6= |Lsymx(X; ρj−1)|,
then

log|Lsymx(X; ρj )| ≤ log|Lsymx(X; ρj−1)| − log 2, (4.8)

since a strict subgroup of a finite groupG has index at least 2 inG.
We now argue by contradiction. So suppose that for eachj with 2≤ j ≤ k f (n, r, R),

at least one of (a) or (b) does not hold forρj . If condition (a) does not hold forρj , and
j ≥ 3, then

NX(ρj ) > NX(ρj−1),

so this can happen for at mostk − 1 different values ofj . To deal with condition
(b), we select representatives{xi : 1 ≤ i ≤ k} of each of thek isometry classes of
{STx(X; ρ) : x ∈ X} and define the quantity

I j :=
k∑

i=1

log|Lsymxi
(X; ρj − 2R)| for 2≤ j ≤ k f (n, r, R).

Lemma 3.3 gives

log|Lsymx(X;2R)| ≤ n2 log

(
2R

r
+ 1

)
,

which yields

I2 ≤ kn2 log

(
2R

r
+ 1

)
.

If (b) does not hold for a givenρj with j ≥ 3, then (4.8) applies to at least one of the
representative classesxi , hence

I j ≤ I j−1− log 2.

Since allI j ≥ 0, this can occur for at mostkn2 log2(2R/r + 1) values of j . Thus

#{ j } ≤ k+ kn2 log2

(
2R

r
+ 1

)
.

We obtain a contradiction since

#{ j } ≥ k f (n, r, R)− 1> k+ kn2 log2

(
2R

r
+ 1

)
,
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which we obtain using

k log2

(
2R

r
+ 2

)
> k log2(4) ≥ k+ 1,

sinceR/r > 1 for n ≥ 2.
Now suppose thatY is a Delone set all of whoseρ-stars are isometric to one of

{STx(X; ρ) : x ∈ X}. We reduce to the case that0 ∈ Y by translatingY to Y − y, if
necessary. The proof above producedρj with 4R ≤ ρj ≤ ρ such that (a) and (b) above
hold, and these conditions imply that any(ρj − 2R)-star ofY extends in a unique way
to aρj -star ofY.

By hypothesis

ST0(Y; ρj ) = Q(STx0(X; ρj )− x0), (4.9)

for someQ ∈ O(n,R) andx0 ∈ X. Now eachy ∈ Y ∩ B(0; ρj − 2R) has STy(Y; ρj −
2R) ⊆ ST0(Y, ρj ), and this(ρj − 2R)-star extends uniquely to STy(Y; ρj ). The ex-
tensions cover all points ofY in the ballB(0; ρj + R) because ST0(Y; ρj ) inherits the
(r, R)-property ofX to within distanceR of its boundary. Since the uniqueness of these
extensions holds for bothX andY, we obtain

ST0(Y; ρj ) = Q(STx0(X; ρj + R)− x0).

Repeating the same argument, by induction onk ≥ 1, we obtain

ST0(Y; ρj + k R) = Q(STx0(X; ρj + k R)− x0) all k ≥ 1.

ThusY − y = Q(x− x0), which gives (1.3).

The following examples show that some hypothesis like (1.1) is necessary in Theo-
rem 1.3 to conclude thatX is a multiregular point system.

Definition 4.3. A Delone setX has thelocally finite atlas property under isometries,
or is aDelone set of finite type under isometries, if |ST(X; ρ)| is finite for each finite
ρ > 0.

In this case the function

NX(ρ) := |ST(X; ρ)|, 0< ρ <∞,
is a nondecreasing integer-valued function. Theorem 1.3 states that if

NX(ρ) <
ρ

C R
,

for C = 2(n2+ 1) log2(2R/r + 2), thenNX(ρ) is necessarily a bounded function. The
examples below exhibit Delone setsX with NX(ρ)→∞ asρ→∞, in one case with
NX(ρ) growing linearly inρ.

Many studies of quasicrystalline structures have considered equivalence of neighbor-
hoods under translations rather than under isometries. LetN∗X(ρ) denote the number of
translation-equivalence classes ofρ-stars ofX. We clearly have

NX(ρ) ≤ N∗X(ρ) for ρ > 0. (4.10)
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Definition 4.4. A Delone setX has thelocally finite atlas property under translations,
or is aDelone set of finite type under translations, if N∗X(ρ) is finite for allρ > 0.

This property obviously implies the locally finite atlas property under isometries. It
is studied in [16].

Example 4.1(Crystal with “Defects”). Consider the setX in R2 given by

X = {(m,n) ∈ Z2 : n 6= 0} ∪ {(m+ θ,0) : m ∈ Z},
whereθ is a constant with 0< θ < 1

2. It is a Delone set withr = 1
2 and R = √2/2.

It is not a multiregular point system, since the row of “defects” along thex-axis makes
|ST(X)| = ∞. However,X has the locally finite atlas property under translations, with

bρc ≤ NX(ρ) = N∗X(ρ) ≤ bρc + 2;
a complete set of isometry classes ofρ-stars have centers contained in the setx0 = (θ,0)
and{xi = (0, i ) : 1≤ i ≤ bρc + 1}. Its local stabilizers are

Lsymx(X; ρ) =
Z/2Z if x = (m+ θ,0),
{1} if x = (m,n), with 1≤ |n| < ρ,

D8 if x = (m,n), with |n| ≥ ρ,
in which D8 is the symmetry group of the square. For anyk ≥ 3, if ρ = k − 3/2, then
|ST(X; k − 3/2)| = k. The scaled setX′ = √2RX is thus an(r, R)-set inR2 with
ρ = √2R(k− 3/2) which has|ST(X′; ρ)| = k.

There are similar examples inRn. Consider the setX in Rn given by

X = {(m1, . . . ,mn) ∈ Zn : |mn| > 1}
∪ {(m1+ θ, . . . ,mn−1+ θ,0) : (m1, . . . ,mn−1) ∈ Zn−1},

with 0 < θ < 1
2, which is an(r, R)-set withr = 1

2, R = 1
2

√
n. It is not a multiregular

point system, but its group of symmetries Sym(X) includes an(n − 1)-dimensional
lattice of translations. The setX′ = (2/√n)RX is an(r, R)-set that has|ST(X′; ρ)| = k
for ρ = (2/√n)R(k− 3

2).

Example 4.2(Penrose Tilings). Many constructions proposed in connection with
quasicrystals give aperiodic Delone setsX which have the locally finite atlas prop-
erty under translations. Penrose tilings provide examples. Penrose tilings are tilings of
R2 by two types of polygonal tiles called “kites” and “darts,” respectively, see [4], [5],
[13, p. 539], and [25]. We associate to any Penrose tilingT a Delone setX = X(T ) by
choosing a fixed point in each “kite” and “dart.” Such tilings have arepetitivity prop-
erty (under translations), which is that there is a functionL X(ρ) such that a translate
of each finite configuration (“patch”) of tiles of diameterρ occurs inside any ball of
diameterL X(ρ). For Penrose tilings we can takeL X(ρ) = (τ 5+ 2)ρ

.= 13.09ρ, where
τ = (1+√5)/2, see Gr¨unbaum and Shephard [13, p. 563]. We show that

N∗X(ρ) ≤ 830ρ2 for ρ ≥ 3. (4.11)



Multiregular Point Systems 497

This holds since all “kites” and “darts” that touch a ball of radius 13.09ρ are completely
contained in a ball of radius 13.09ρ + (τ + 1) ≤ 14ρ for ρ ≥ 3, and each “kite” and
“dart” has area at least34. Thus 830ρ2 is an upper bound for the number of points ofX
that lie in any ball of radius 13.09ρ, and these points include among them representatives
of all translation-equivalence classes ofρ-stars.

We can choose the Penrose tilingT to have no global symmetry, in which case
X = X(T ) has Sym(X) = {I }. If we chooseρ so thatNX(ρ) = k, then (4.11) implies
thatρ grows at least proportionally to

√
k ask→∞.

For other properties of Penrose tilings, see [4], [5], [13], [21], [22], and [25].

Example 4.3(Pinwheel Tilings). The pinwheel tilings of the plane studied by Radin
[20] have the locally finite atlas property under isometries, but do not have the locally
finite atlas property under translations. We obtain a Delone setX by choosing a fixed
point in each prototile. For the Conway tesselation of the plane described in Section 2 of
[20] and [25, Section 7.4], it can be proved thatNX(ρ) is finite, with NX(ρ) = O(ρ2).
Radin’s results imply thatN∗X(ρ) = +∞ for ρ > 4R.
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