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Multiresolution Analysis and Wavelets
on Vilenkin Groups

Yury A. Farkov

Abstract: This paper gives a review of multiresolution analysis and compactly sup-
ported orthogonal wavelets on Vilenkin groups. The Strang-Fix condition, the parti-
tion of unity property, the linear independence, the stability, and the orthonormality
of ”integer shifts” of the corresponding refinable functions are considered. Necessary
and sufficient conditions are given for refinable functions to generate a multiresolu-
tion analysis in theL2 -spaces on Vilenkin groups. Several examples are provided to
illustrate these results.
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1 Introduction

I T is well-known that the Walsh system is the group of characters of the Cantor
group (the dyadic or 2-series local field). It was discoveredindependently by

Fine [1] and Vilenkin [2]. The latter actually introduced a large class of locally
compact abelian groups (now called Vilenkin groups) and which includes the Can-
tor group as a special case. The books [3–6] are the main references to harmonic
analysis on these groups. See also [7] for applications of the Cantor group to the
theory of lacunary trigonometric series. Orthogonal compactly supported wavelets
on the Cantor group (and relevant wavelets on the positive half-line R+) are studied
in [8–11]. Decimation by an integerp different from 2 is discussed in [12–14], but
construction for a generalp is not completely treated. Here we review some of the
elements of that construction and give an approach to thep = 3 case in a concrete
fashion.
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We define Vilenkin’s groupG as the group of sequences

x = (x j) = (. . . ,0,0,xk,xk+1,xk+2, . . . ),

wherex j ∈ {0,1, . . . , p− 1} for j ∈ Z and x j = 0 for j < k = k(x). The group
operation onG is denoted by⊕ and is defined as coordinatewise addition modulo
p :

(zj) = (x j)⊕ (y j) ⇐⇒ zj = x j +y j (modp) for j ∈ Z,

and topology inG is introduced via the complete system of neighbourhoods of zero

Ul = {(x j) ∈ G| x j = 0 for j ≤ l}, l ∈ Z,

(e.g., [3], ).PutU = U0 and denote by⊖ the inverse operation of⊕ (so, if θ is the
zero sequence, thenx⊖x = θ ).

The Lebesgue spacesLq(G),1≤ q≤ ∞, are defined by the Haar measureµ on
Borel’s subsets ofG normalized byµ(U) = 1 (see, e.g., [3]). Denote by(· , ·) and
|| · || the inner product and the norm inL2(G) respectively.

The group dual toG is denoted byG∗ and consists of all sequences of the form

ω = (ω j) = (. . . ,0,0,ωk,ωk+1,ωk+2, . . . ),

whereω j ∈ {0,1, . . . , p−1} for j ∈ Z andω j = 0 for j < k = k(ω). The operations
of addition and subtraction, the neighbourhoods{U∗

l } and the Haar measureµ∗

for G∗ are introduced as above forG. Each character onG can be defined by the
formula

χ(x,ω) = exp

(
2π i
p ∑

j∈Z

x− j ω j−1

)
, x∈ G,

for someω ∈ G∗ (see, e.g., [5]).

Take in G a discrete subgroupH = {(x j) ∈ G| x j = 0 for j > 0} and define
an automorphismA ∈ AutG by the formula(Ax) j = x j+1. It is easy to see that
the quotient groupH/A(H) containsp elements and the annihilatorH⊥ of the
subgroupH consists of all sequences(ω j) ∈ G∗ which satisfyω j = 0 for j > 0.

We define a mapλ : G→ R+ by

λ (x) = ∑
j∈Z

x j p
− j , x = (x j) ∈ G.

The image ofH underλ is the set of non-negative integers:λ (H) = Z+. For every
α ∈ Z+, let h[α ] denote the element ofH such thatλ (h[α ]) = α . For G∗, we de-
fine the mapλ ∗ : G∗ → R+, the automorphismB∈ AutG∗, the subgroupU∗ and
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the elementsω[α ] of H⊥ similarly to λ ,A,U andh[α ] respectively. We note that
χ(Ax,ω) = χ(x,Bω) for all x∈ G, ω ∈ G∗.

Thegeneralizied Walsh functionsfor G can be defined by

Wα(x) = χ(x,ω[α ]), α ∈ Z+, x∈ G.

These functions are continuous onG and satisfy the orthogonality relations
∫

U
Wα(x)Wβ (x)dµ(x) = δα ,β , α ,β ∈ Z+,

whereδα ,β is the Kronecker delta. It is well-known that the system{Wα} is com-
plete inL2(U). The corresponding system forG∗ is defined by

W∗
α (ω) = χ(h[α ],ω), α ∈ Z+, ω ∈ G∗.

The system{W∗
α} is an orthonormal basis ofL2(U∗).

For any positive intergern let En(G) denotes the collection of all functions on
G which are constant on

Un,α = A−n(h[α ])⊕A−n(U)

for eachα ∈ Z+. The classEn(G∗) is defined in a similar way.

As usial, we denote bŷf the Fourier transform off . According to Proposition
2 in [14] (see also [5]).the following properties hold:

(a) if f ∈ L1(G)∩En(G), then supp̂f ⊂U∗
−n;

(b) if f ∈ L1(G) and suppf ⊂U−n, then f̂ ∈ En(G∗).

In the sequel,1E stands for the characteristic function of a subsetE of G.

2 Stability of Refinable Functions

Let L2
c(G) be the set of all compactly supported functions inL2(G). We say that a

functionϕ ∈ L2
c(G) is arefinable function, if it satisfies an equation of the type

ϕ(x) = p
pn−1

∑
α=0

aα ϕ(Ax⊖h[α ]). (1)
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The functional equation (1) is called therefinement equation. The generalizied
Walsh polynomial

m(ω) =
pn−1

∑
α=0

aαW∗
α (ω) (2)

is called themaskof equation (1) (or the mask of its solutionϕ).

EXAMPLE 1. If a0 = · · ·= ap−1 = 1/p andaα = 0 for all α ≥ p, then a solution
of equation (1) isϕ = 1Un−1; in particular, the Haar function:ϕ = 1U satisfies this
equation whenn = 1 (compare with [12], Remark 1.3, [15]).

The sets
U∗

n,s := B−n(ω[s])⊕B−n(U∗), 0≤ s≤ pn−1,

are cosets of the subgroupB−n(U∗) in the groupU∗. For every 0≤ α ≤ pn − 1
the Walsh functionW∗

α (·) is constant on eachU∗
n,s. Thus, the maskm belongs to

En(G∗).

It was noted in [12] that the coefficients of equation (1) are related to the values
bs of m on cosetsU∗

n,s by means of the direct and the inverse Vilenkin-Chrestenson
transforms:

aα =
1
pn

pn−1

∑
s=0

bsW
∗

α (B−nω[s]), 0≤ α ≤ pn−1, (3)

bs =
pn−1

∑
α=0

aα W∗
α (B−nω[s]), 0≤ s≤ pn−1. (4)

They can be realized by the fast algorithms (see, for instance, [6] p.463, [16]).
Thus, any choice of the values ofmonU∗

n,s defines also the coefficients of equation
(1).

THEOREM 1. Let ϕ ∈ L2
c(G) be a solution of the refinement equation(1), and

let ϕ̂(θ) = 1. Then
pn−1

∑
α=0

aα = 1, suppϕ ⊂ U1−n,

and

ϕ̂(ω) =
∞

∏
j=1

m(B− jω).

Moreover, the following properties are true::

1. ϕ̂(h∗) = 0 for all h∗ ∈ H⊥ \{θ} (the modified Strang-Fix condition);

2. ∑h∈H ϕ(x⊕h) = 1 for almost every x∈ G (the partition of unity property).
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A function f ∈ L2(G) is said to bestableif there exist positive constantsA0 and
B0 such that

A0

( ∞

∑
α=0

|aα |2
)1/2

≤
∥∥∥

∞

∑
α=0

aα f (·⊖h[α ])
∥∥∥≤ B0

( ∞

∑
α=0

|aα |2
)1/2

for each sequence{aα} ∈ ℓ2. In other words, a functionf is stable inL2(G) if
functions f (·⊖h), h∈ H, form a Riesz system inL2(G). Note also, that a function
f is stable inL2(R+) with constantsA0 andB0 if and only if

A0 ≤ ∑
h∗∈H⊥

| f̂ (ω ⊖h∗)|2 ≤ B0 for a.e. ω ∈ G∗ (5)

(the proof of this fact is quite similar to that of Theorem 1.1.7 in [17]). We say that
a functiong : G∗ →C has aperiodic zeroat a pointω ∈ G∗ if g(ω ⊕h∗) = 0 for all
h∗ ∈ H⊥.

THEOREM 2. For any f∈ L2
c(G) the following properties are equivalent:

(a) f is stable in L2(G);

(b) { f (·⊖h)|h∈ H} is a linearly independent system;

(c) the Fourier transform of f does not have periodic zeros.

PROOF. The implication (a)⇒ (b) follows from the well-known property of the
Riesz systems (see, e.g., [17], Theorem 1.1.2). Our next claim is that f ∈ L1(G),
since f has compact support andf ∈ L2(G). Let us choose a positive integern
such that suppf ⊂U1−n. As noted in Introduction, then̂f ∈ En−1(G∗). Besides, if
λ (h) > pn−1,

µ{suppf (·⊖h)∩U1−n} = 0.

Therefore, the linearly independence of the system{ f (·⊖h)|h∈ H} is equivalent
to that of the finite system{ f (· ⊖ h[α ])|α = 0,1, . . . , pn−1 − 1}. Further, if some
vector(a0, . . . ,apn−1−1) satisfies the conditions

pn−1−1

∑
α=0

aα f (·⊖α) = 0 and |a0|+ · · ·+ |a2n−1−1| > 0, (6)

then using the Fourier transform we obtain

f̂ (ω)
pn−1−1

∑
α=0

aαW∗
α (ω) = 0.
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The Walsh polynomial

W∗(ω) =
pn−1−1

∑
α=0

aαW∗
α (ω)

is not identically equal to zero; hence, amongU∗
n−1,s, 0≤ s≤ pn−1−1, there exists

a set (denote it byX) for whichW∗(X⊕h∗) 6= 0, h∗ ∈ H⊥. Since f̂ ∈ En−1(G∗), it
follows that (6) holds if and only if there exists a setX = U∗

n−1,s, X ⊂U∗, such that

f̂ (X⊕h∗) = 0 for all h∗ ∈ H⊥. Thus, (b)⇔ (c).

It remains to prove that (c)⇒ (a). Suppose that̂f does not have periodic zeros.
Then

F(ω) := ∑
h∗∈H⊥

| f̂ (ω ⊖h∗)|2

is positive andH⊥-periodic function. Moreover, sincêf ∈ En−1(G∗), we see that
F is constant on eachU∗

n−1,s 0 ≤ s≤ pn−1− 1. Therefore (5) is satisfied and so
Theorem 2 is established (note that in [14] this theorem was proved in a different
way).

Let M ⊂U∗ and let

TpM =
p−1⋃

l=0

{
B−1ω[l ] +B−1(ω) | ω ∈ M

}
.

The setM is said to beblocked(for the maskm) if it coincides with some union of
the setsU∗

n−1,s, 0≤ s≤ pn−1−1, does not contain the setU∗
n−1,0, and satisfies the

condition

TpM ⊂ M∪{ω ∈U∗ | m(ω) = 0}.

The notion of a blocked set was introduced by the author and V.Protasov in [11]
in the setting of dyadic wavelets onR+, With the help of Theorem 2 can be proved
the following

THEOREM 3 . Letϕ ∈ L2
c(G) be a refinable function in L2(G) such that̂ϕ(θ) =

1. Thenϕ is not stable if and only if its mask m possesses a blocked set.

It is clear that each mask can have only a finite number of blocked sets. Thus,
Theorem 3 reduces the stability problem for a refinable function to the verification
of some combinatorial property, which can be verified, at least theoretically, in
finite time.
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3 Multiresolution Analysis on Vilenkin’s Group

A collection of closed subspacesVj ⊂ L2(G), j ∈ Z is called amultiresolution
analysis(MRA) in L2(G) if the following hold:

(i) Vj ⊂Vj+1 for all j ∈ Z ;

(ii)
⋃

Vj = L2(G) and
⋂

Vj = {0};

(iii) f (·) ∈Vj ⇐⇒ f (A·) ∈Vj+1 for all j ∈ Z ;

(iv) f (·) ∈V0 =⇒ f (·⊖h) ∈V0 for all h∈ H;

(v) there is a functionϕ ∈ L2(G) such that the system{ϕ(·⊖h) | h∈ H} is an
orthonormal basis ofV0.

The functionϕ in condition (v) is called ascaling functionin L2(G).

For arbitraryϕ ∈ L2(G) we set

ϕ j,h(x) = p j/2ϕ(A jx⊖h), j ∈ Z, h∈ H.

We say thata functionϕ generates a MRA in L2(G) if the system{ϕ(·⊖h) | h∈
H} is orthonormal inL2(G) and, in addition, the family of subspaces

Vj = closL2(G)span{ϕ j,h| h∈ H}, j ∈ Z,

is a MRA inL2(G). If a functionϕ generates a MRA inL2(G), then it is a scaling
function inL2(G). In this case the system{ϕ j,h | h∈ H} is an orthonormal basis of
Vj for every j ∈ Z and one can defineorthogonal waveletsψ1, . . . ,ψp−1 in such a
way that the functions

ψl , j,h(x) = p j/2ψl (A
jx⊖ h), 1≤ l ≤ p−1, j ∈ Z, h∈ H,

form an orthonormal basis ofL2(G) (see Section 5). Note that in Example 1 we
can take

ψl (x) =
p−1

∑
α=0

ε lα
p ϕ(Ax⊖h[α ]), 1≤ l ≤ p−1,

whereεp = exp(2π i/p).

Let us denote byδl the sequenceω = (ω j) such thatω1 = l andω j = 0 for
j 6= 1 (in particular,δ0 = θ). It is easily seen that

{ω ∈ H∗ | χ(x,ω) = 1 for x∈ A(H)} = {δ0,δ1, . . . ,δp−1}.
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Hence the set{δl} is the annihilator of the subgroupA(H) in H. It was claimed
in [12] that if a refinable functionϕ satisfies the condition̂ϕ(θ) = 1 and the or-
thonormality of{ϕ(·⊖h) | h∈ H} in L2(G), then

m(0) = 1 and
p−1

∑
l=0

|m(ω ⊕δl)|2 = 1, ω ∈ G∗. (7)

From this it follows that the equalities

b0 = 1, |b j |2 + |b j+pn−1|2 + · · ·+ |b j+(p−1)pn−1|2 = 1, 0≤ j ≤ pn−1−1, (8)

are necessary (but not sufficient, see Example 3 below) for the system{ϕ(·⊖h)|h∈
H} to be orthonormal inL2(G). Under which additional conditions the functionϕ
generates a MRA inL2(G)? Theorem 4 below contains the answer to this question.

A compact subsetE of G∗ is said to becongruent to U∗ modulo H⊥ if µ∗(E) =
1 and, for eachω ∈ E, there is an elementh∗ ∈ H⊥ such thatω ⊕h∗ ∈U∗. Let m
be the mask of equation (1). We say thatm satisfies themodified Cohen condition,
if there exists a compact subsetE of G∗ containing a neighbourhood of the zero
element such that:

1) E congruent toU∗ moduloH⊥;

2) the inequality
inf
j∈N

inf
ω∈E

|m(B− jω)| > 0 (9)

is true.

SinceE is compact, we note that ifm(θ) = 1 then there exists a numberj0
such thatm(B− jω) = 1 for all j > j0, ω ∈ E. Therefore (9) holds if the polynomial
m(ω) does not vanish on the setsB−1(E), . . . ,B− j 0(E). Moreover, we can choose
j0 ≤ pn, becausem is completely defined by the values (4) (andm is an H⊥-
periodic function).

THEOREM 4. Suppose that the refinement equation(1) possesses a solution
ϕ ∈ L2

c(G) such thatϕ̂(θ) = 1 and the corresponding mask m satisfies conditions
(7) Then the following are equivalent:

(a) ϕ generates a MRA in L2(G);

(b) m satisfies the modified Cohen’s condition;

(c) m has no blocked sets.

The proofs of Theorem 1 - 4 are given by the author in the recentpaper [14];
some similar results for the dyadic refinable functions and wavelets onR have been
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obtained in [11] (see also [18]). Forp = 2 the equivalence(a) ⇔ (b) of Theorem
4 was found by W. Lang in [9].

EXAMPLE 2. Let p = n = 2 and

b0 = 1, b1 = a, b2 = 0, b3 = b,

where|a|2+ |b|2 = 1. Puta0 = (1+a+b)/4, a1 = (1+a−b)/4, a2 = (1−a−b)/4,
a3 = (1−a+b)/4.

Fora 6= 0 the modified Cohen condition is fulfilled on the setE =U∗ and hence
the corresponding solutionϕ generates a MRA inL2(G). In particular, fora = 1
and a = −1 the Haar function:ϕ(x) = 1U (x) and the displaced Haar function:
ϕ(x) = 1U (x⊖h[1]) are obtained respectively. If 0< |a| < 1, then a solutionϕ is
defined by the expansion

ϕ(x) = (1/2)1U (A−1x)(1+a
∞

∑
j=0

b jW2j+1−1(A
−1x)), x∈ G. (10)

In the casea= 0 the setU∗
1,1 is a blocked set, a functionϕ is defined by the formula

ϕ(x) = (1/2)1U (A−1x) and the system{ϕ(·⊖h) | h∈ H} is linear dependence.

The decomposition (10) was found by W. Lang in [8]. When|b| < 1/2 the
corresponding wavelets form an unconditional basis in all spacesLq(G), 1 < q <
∞. Moreover, the relevant wavelets on the line may be identified as multiwavelets
consisting of piecewise fractal functions, in the sense of Massopust; see [9] and [10]
for the details.

REMARK 1. In [12], a method for finding estimates of regularity of refinable
functions on Vilenkin groups was developed. Whenϕ is given by (10) we have the
sharp estimate

sup{|ϕ(x)−ϕ(y)| | x,y∈U−1, x⊖y∈U j} ≤C|b| j , j ∈ N

(see Example 4.3 in [12] ). Also, it is known that the exponentof regularity of a
refinable function for smallp andn can be computed using the joint spectral radius
of some linear finite-dimensional operators which are defined by the coefficients of
the corresponding refinement equation (cf. [11], Remark 3, [17]).

REMARK 2. Suppose thatϕ generates a MRA inL2(G). For eachj ∈ Z let us
denite byPj the orthogonal projection ofL2(G) onVj . If known that a ”signal” f
belongs to some classM in L2(G), then it is possible to seek the parametersbs,
which minimize, for some fix j, the quantity

sup{‖ f −Pj f‖ | f ∈ M }
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and to study the behavior of this quantity asj → +∞ (cf. [17]). We refer to [12]
and [19] for an adapted multiresolution analysis inL2(G) based on the entropy
estimates.

4 Expansion in Walsh Series

Assume that a compactly supported solutionϕ of equation (1) generates a MRA
in L2(G) andϕ̂(θ) = 1. Further, suppose that the values of mask (2) on the cosets
U∗

n,s satisfy condition (8) and letγ(i1, i2, . . . , in) = bs, if

s= i1p0 + i1p1 + · · ·+ inpn, i j ∈ {0,1, . . . , p−1}.

Then for an integerl with the p -ary expansion

l =
k

∑
j=0

µ j p
j , µ j ∈ {0,1, . . . , p−1}, µk 6= 0, k = k(l) ∈ Z+, (11)

we definecl [m] as follows

cl [m] =γ(µ0,0,0, . . . ,0,0) if k(l) = 0;

cl [m] =γ(µ1,0,0, . . . ,0,0)γ(µ0,µ1,0, . . . ,0,0) if k(l) = 1;

· · ·
cl [m] =γ(µk,0,0, . . . ,0,0)γ(µk−1,µk,0, . . . ,0,0)

. . .γ(µ0,µ1,µ2, . . . ,µn−2,µn−1) if k = k(l) ≥ n−1.

The indices of each factor in the last product, starting withthe second, are equal
to the indices of the preceding factor shifted one position rightwards; at the free first
position one puts the corresponding digit of thep -ary expansion (11).

Let N0(p,n) be the set of all positive integersl ≥ pn−1 whose p -ary expansion
(11) contains non-tuple(µ j ,µ j+1, . . . ,µ j+n−1) coinciding with any of then-tuples

(0,0, . . . ,0,1),(0,0, . . . ,0,2), . . . ,(0,0, . . . ,0, p−1).

Thenϕ can be written as the following lacunary Walsh series:

ϕ(x) = (1/pn−1)1U (A1−nx)(1+ ∑
l∈N(p,n)

cl [m]Wl (A
1−nx)), x∈ G, (12)

whereN(p,n) = {1,2, . . . , pn−1−1}∪N0(p,n) (see [12]). This result seems sur-
prising, since Lang noted in [9] that even forp= 2,n= 3 ”no simple patterns appear
in the coefficients” in the Walsh expansion ofϕ . Certainly, in the casep = n = 2
the decompositions (10) and (12) coincide.
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5 Construction for the Casep = 3

Following a standard approach (e.g., [20,21]), we reduce the problem ofp -wavelet
decomposition into a problem of matrix extension. More precisely, using Theorem
4 we shall discuss the followingprocedure to construct orthogonal p -wavelets in
L2(G) :

1. Choose numbersbs, 0≤ s≤ pn−1, so that (8) is true.

2. Computeaα , 0≤ α ≤ pn−1, by (3) and verify that the mask

m0(ω) =
pn−1

∑
α=0

aαW∗
α (ω).

has no blocked sets.

3. Find
ml(ω) = ∑

α∈Z+

a(l)
α W∗

α (ω), 1≤ l ≤ p−1,

such thatM(ω) := (ml (ω ⊕B−1ω[k]))
p−1
l ,k=0 is an unitary matrix.

4. Defineψ1, . . . ,ψp−1 by the formula

ψl (x) = p ∑
α∈Z+

a(l)
α ϕ(Ax⊖h[α ]), 1≤ l ≤ p−1.

In the p = 2 case one can choosea(1)
α = (−1)αaα⊕1 or a(1)

α = (−1)αa2n−1−α

for 0≤ α ≤ 2n−1 (anda(1)
α = 0 for the restα); cf. [9], [11].

In the thep > 2 case we take the coefficientsaα as in Step 2 (so thatbs satisfy
(8) andm0 has no blocked sets). Then

pn−1

∑
α=0

|aα |2 =
1
p

. (13)

In fact, Parseval’s relation for the discrete transforms (3) and (4) can be written as

pn−1

∑
α=0

|aα |2 =
1
pn

pn−1

∑
α=0

|bα |2.

Therefore (13) follows from (8). Now we define

A0k(z) =
pn−1−1

∑
l=0

ak+plz
l , 0≤ k≤ p−1,
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and introduce the polynomialsAlk(z), degAlk ≤ pn−1−1, such that

ml (ω) =
p−1

∑
k=0

W∗
k (ω)Alk(W∗

p (ω)), 1≤ l ≤ p−1. (14)

It follows immediately that

M(ω) = A(W∗
p (ω))W∗(ω), (15)

where A(z) := (Alk(z))
p−1
l ,k=0, W∗(ω) := (W∗

l (ω ⊕ B−1ω[k]))
p−1
l ,k=0. The matrix

p−1/2W∗(ω) is unitary. Thus, by (15), unitarity ofM(ω) is equivalent to that of the
matrix p−1/2A(z) with z=W∗

p (ω). From this we claim that Step 3 of the procedure
can be realized by some modification of the algorithm for matrix extension sug-
gested by W. Lawton, S.L. Lee and Zuowei Shen in [22] (see also[23], Theorem
2.1).

We illustrate the described procedure by the following example.

EXAMPLE 3. Let p = 3, n = 2 andb0 = 1, b1 = a, b2 = α , b3 = 0, b4 = b,
b5 = β , b6 = 0, b7 = c, b8 = γ , where

|a|2 + |b|2 + |c|2 = |α |2 + |β |2 + |γ |2 = 1.

Then (3) implies precisely that

a0 =
1
9
(1+a+b+c+ α + β + γ),

a1 =
1
9
(1+a+ α +(b+ β )ε2

3 +(c+ γ)ε3),

a2 =
1
9
(1+a+ α +(b+ β )ε3+(c+ γ)ε2

3),

a3 =
1
9
(1+(a+b+c)ε2

3 +(α + β + γ)ε3),

a4 =
1
9
(1+c+ β +(a+ γ)ε2

3 +(b+ α)ε3),

a5 =
1
9
(1+b+ γ +(a+ β )ε2

3 +(c+ α)ε3),

a6 =
1
9
(1+(a+b+c)ε3+(α + β + γ)ε2

3),

a7 =
1
9
(1+b+ γ +(a+ β )ε3+(c+ α)ε2

3),

a8 =
1
9
(1+c+ β +(a+ γ)ε3+(b+ α)ε2

3),
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whereε3 = exp(2π i/3). Further, ifγ(1,0) = a, γ(2,0) = α , γ(1,1) = b, γ(2,1) = β ,
γ(1,2) = c, γ(2,2) = γ , andµ j ∈ {1,2}, then we let:

cl [m] = γ(µ0,0) for l = µ0;

cl [m] = γ(µ1,0)γ(µ0,µ1) for l = µ0 +3µ1;

· · ·

cl [m] = γ(µk,0)γ(µk−1,µk) . . .γ(µ0,µ1) for l =
k

∑
j=0

µ j3
j , k≥ 2.

According to (12), we get

ϕ(x) = (1/3)1U (A−1x)(1+∑
l

cl [m]Wl (A
−1x)), x∈ G.

The blocked sets are:

1) U∗
1,1 for a = c = 0,

2) U∗
1,2 for α = β = 0,

3) U∗
1,1∪U∗

1,2 for a = α = 0.

Hence,ϕ generates a MRA inL2(G) in the following cases:

1) a 6= 0,α 6= 0,

2) a = 0,α 6= 0,c 6= 0,

3) α = 0,a 6= 0,β 6= 0.

By the definition ofm0 we have

m0(ω) = A00(W∗
3 (ω))+W∗

1 (ω)A01(W∗
3 (ω))+W∗

2 (ω)A02(W∗
3 (ω)),

whereA00(z) = a0+a3z+a6z2, A01(z) = a1+a4z+a7z2, A02(z) = a2+a5z+a8z2.
Now, we require

a 6= 0, α = a, aα +bβ +cγ = a. (16)

In particular, for 0< a < 1 one can choose numbersθ , t such that

cos(θ − t) =
a

1+a

and then setα = a, r =
√

1−a2, β = r cosθ , γ = r sinθ , b = r cost, c = r sint.
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Under the assumptions (16) the maskm0 has no blocked sets. Moreover, it
follows from (13) and (16) that

|A00(z)|2 + |A01(z)|2 + |A02(z)|2 =
1
3

for all zon the unit circleT. To see this, note that by a direct calculation

|A00(z)|2 + |A01(z)|2 + |A02(z)|2 =
8

∑
k=0

|aα |2 +2Re[(a0a3 +a1a4 +a2a5)z]

+2Re[(a0a6 +a1a7 +a2a8)z
2]+2Re[(a3a6 +a4a7 +a5a8)zz

2,

where

27(a0a3 +a1a4 +a2a5)

= a+ α +(α +aα +bβ +cγ)ε3 +(a+aα +bβ +cγ)ε2
3 ,

27(a0a6 +a1a7 +a2a8)

= a+ α +(a+aα +bβ +cγ)ε3 +(α +aα +bβ +cγ)ε2
3 ,

27(a3a6 +a4a7 +a5a8)

= 2ε3Rea+2ε2
3Reα +2Re(aα +bβ +cγ).

Further, if

α0 =
√

3(a0,a1,a2), α1 =
√

3(a3,a4,a5), α2 =
√

3(a6,a7,a8),

then

|α0|2 + |α1|2 + |α2|2 = 1, 〈α0 ,α1〉 = 〈α0 ,α2〉 = 〈α1 ,α2〉 = 0,

where〈· , ·〉 is the inner product inC3. It is clear that

α0 + α1z+ α2z2 =
√

3(A00(z),A01(z),A02(z)).

Let P2 be the orthogonal projection ontoα2, i.e.,

P2w =
〈w,α2〉
〈α2 ,α2〉

α2, w∈ C
3.

Then we have

(I −P2+z−1P2)(α0 + α1z+ α2z2)
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= (I −P2)α0 +P2α1 +z(P2α2 +(I −P2)α1) =: β0+ β1z.

One now verifies that

|β0|2 + |β1|2 = 1, 〈β0 ,β1〉 = 0.

Futhermore, ifP1 is the orthogonal projection ontoβ1, then

(I −P1+z−1P1)(β0 + β1z) = (I −P1)β0 +P1β1 =: γ0.

By the Gram-Schmidt orthogonalization, we can find an unitary matrixΓ0 once
the first row of this matrix is the unit vectorγ0. Then we set

Γ1(z) = (I −P1+zP1)Γ0 and Γ2(z) = (I −P2+zP2)Γ1(z).

The first row ofΓ2(z) coincides withα0 + α1z+ α2z2. Putting

(Alk(z))
2
l ,k=0 =

1√
3

Γ2(z),

we see thatm1 andm2 can be defined as follows:

ml (ω) =
2

∑
k=0

W∗
k (ω)Alk(W∗

3 (ω)) =
8

∑
α=0

a(l)
α W∗

α (ω), l = 1,2.

Finally, we find

ψl (x) = 3
8

∑
α=0

a(l)
α ϕ(Ax⊖h[α ]), l = 1,2.

REMARK 3. For anyn, p we have

m0(ω) =
p−1

∑
k=0

W∗
k (ω)A0k(W∗

p (ω)).

If we require
p−1

∑
k=0

|A0k(z)|2 =
1
p

for all z∈ T, (17)

then the vectors

αl =
√

p(apl ,apl+1, . . . ,apl+p−1), 0≤ l ≤ p−1,

form an orthonormal basis inCp. In this case Step 3 of the procedure can be
realized as in Example 3. However, it is hard to use known methods of matrix
extension to constructψ1, . . . ,ψp−1 without the assumption (17).



324 Y. Farkov:

References

[1] N. J. Fine, “On the Walsh functions,”Trans. Amer. Math. Soc., vol. 65, pp. 372–414,
1949.

[2] N. Y. Vilenkin, “A class of complete orthonormal series,” Izv. Akad. Nauk SSSR, Ser.
Mat., vol. 11, pp. 363–400, 1947, English transl., Amer. Math. Soc. Transl. Ser., 228
(1963), pp. 1-35.

[3] G. H. Agaev, N. J. Vilenkin, G. M. Dzhafarli, and A. I. Rubinshtein,Multiplicative
systems of functions and harmonic analysis on 0-dimensional groups. Baku: Izd.
ELM, 1981, in Russian.

[4] M. H. Tailbleson,Fourier analysis on local fields. Princeton, N.J.: Princeton Uni-
versity Press, 1975.

[5] B. I. Golubov, A. V. Efimov, and V. A. Skvortsov,Walsh series and transforms.
Moscow: Nauka, 1987, English transl., Kluwer, Dordrecht, (1991).

[6] F. Schipp, W. R. Wade, and P. Simon,Walsh series: An introduction to dyadic har-
monic analysis. Bristol and New York: Adam Hilger, 1990, p. 463.

[7] R. E. Edwards,Fourier series. A modern introduction. Berlin: Springer Verlag,
1982, vol. 1,2, ch. 14.3.

[8] W. C. Lang, “Orthogonal wavelets on the Cantor dyadic group,” SIAM J. Math. Anal.,
vol. 27, pp. 305–312, 1996.

[9] ——, “Wavelet analysis on the Cantor dyadic group,”Houston J. Math., vol. 24, pp.
533–544, 1998.

[10] ——, “Fractal multiwavelets related to the Cantor dyadic group,” Int. J. Math. and
Math. Sci., vol. 21, pp. 307–317, 1998.

[11] Y. A. Farkov and V. Y. Protasov, “Dyadic wavelets and refinable functions on a half-
line,” Mat. Sbornik, vol. 197, no. 10, pp. 129–160, 2006, English transl., Sbornik:
Mathematics, 197 (2006), pp. 1529-1558.

[12] Y. A. Farkov, “Orthogonal wavelets with compact support on locally compact abelian
groups,”Izvestiya RAN: Ser. Mat., vol. 69, no. 3, pp. 193–220, 2005, English transl.,
Izvestiya: Mathematics, 69: 3 (2005), pp. 623-650.

[13] ——, “Orthogonalp -wavelets onR+,” in Proc. Int. Conf. Wavelets and splines. St.
Petersburg, Russia: St. Petersburg University Press, July3–8, 2005, pp. 4–16.

[14] ——, “Orthogonal wavelets on direct products of cyclic groups,” Mat. Zametki,
vol. 82, no. 6, pp. 934–952, 2007, English transl., Math. Notes: 82: 6 (2007).

[15] J. J. Benedetto and R. Benedetto, “A wavelet theory for local fields and related
groups,”J. Geometric Analysis, vol. 14, pp. 423–456, 2004.

[16] V. N. Malozemov and S. M. Masharskii, “Generalized wavelet bases related to the
discrete vilenkin - chrestenson transform,”Algebra and Analiz, vol. 13, pp. 111–157,
2001, English transl., St. Petersburg Math. J., 13 (2002), pp. 75-106.

[17] I. Y. Novikov, V. Y. Protasov, and M. A. Skopina,Wavelet Theory. Moscow: FIZ-
MATLIT, 2006, in Russian.

[18] Y. Farkov, “On wavelets related to the Walsh series,”J. Approx. Theory, 2008, in
press, doi:10.1016/j.jat.2008.1003.

[19] B. Sendov, “Adapted multiresolution analysis on the dyadic topological group,”J.
Approx. Theory, vol. 96, pp. 258–280, 1999.

[20] R. Q. Jia and Z. W. Shen, “Multiresolution and wavelets,” Proc. Edinburgh Math.
Soc., vol. 37, pp. 271–300, 1994.



Multiresolution Analysis and Wavelets on Vilenkin Groups 325

[21] Y. A. Farkov, “Orthogonal wavelets on locally compact abelian groups,”Funktsional.
Anal. i Prilogen., vol. 31, no. 4, pp. 86–88, 1997, English transl., Functional Anal.
Appl. 31:4 (1997), pp. 294-296.

[22] W. Lawton, S. L. Lee, and Z. Shen, “An algorithm for matrix extension and wavelet
construction,”Math. Comput., vol. 65, pp. 723–737, 1996.

[23] O. Bratteli and P. Jorgensen, “Wavelet filters and infinite-dimensional unitary
groups,”Studies Adv. Math., vol. 25, pp. 35–65, 2002.


